2401.16456v2 [cs.CV] 27 Mar 2024

arxXiv

SHVIiT: Single-Head Vision Transformer with Memory Efficient Macro Design

Seokju Yun

Youngmin Ro*

Machine Intelligence Laboratory, University of Seoul, Korea
Code: https://github.com/ysj9909/SHViT

Abstract

Recently, efficient Vision Transformers have shown great
performance with low latency on resource-constrained de-
vices. Conventionally, they use 4x4 patch embeddings and
a 4-stage structure at the macro level, while utilizing so-
phisticated attention with multi-head configuration at the
micro level. This paper aims to address computational re-
dundancy at all design levels in a memory-efficient man-
ner. We discover that using larger-stride patchify stem not
only reduces memory access costs but also achieves com-
petitive performance by leveraging token representations
with reduced spatial redundancy from the early stages. Fur-
thermore, our preliminary analyses suggest that attention
layers in the early stages can be substituted with convo-
lutions, and several attention heads in the latter stages
are computationally redundant. To handle this, we intro-
duce a single-head attention module that inherently pre-
vents head redundancy and simultaneously boosts accu-
racy by parallelly combining global and local information.
Building upon our solutions, we introduce SHVIiT, a Single-
Head Vision Transformer that obtains the state-of-the-art
speed-accuracy tradeoff. For example, on ImageNet-1k, our
SHViT-54 is 3.3%, 8.1X, and 2.4 faster than MobileViTv2
x 1.0 on GPU, CPU, and iPhonel2 mobile device, respec-
tively, while being 1.3% more accurate. For object detec-
tion and instance segmentation on MS COCO using Mask-
RCNN head, our model achieves performance compara-
ble to FastViT-SA12 while exhibiting 3.8x and 2.0x lower
backbone latency on GPU and mobile device, respectively.

1. Introduction

Vision Transformers (ViT) have demonstrated impres-
sive performance across various computer vision tasks due
to their high model capabilities [1-3]. Compared to Convo-
lutional Neural Networks (CNN) [4, 5], ViTs excel in mod-
eling long-range dependencies and scale effectively with
large amounts of training data and model parameters [6].
Despite these advantages, the lack of inductive bias in
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Figure 1. Comparison of throughput and accuracy between our
SHVIT and other recent methods.

vanilla ViTs necessitates more training data, and the global
attention module incurs quadratic computational complex-
ity with respect to the image size. To address these chal-
lenges, previous research has either combined ViTs with
CNNss or introduced cost-efficient attention variants.

Recently, studies addressing problems with real-time
constraints have also proposed efficient models following
similar strategies. And their strategies can be categorized
into two groups: 1) efficient architecture - macro design;
and 2) efficient Multi-Head Self-Attention (MHSA) - micro
design. Studies exploring architectural design [7—12] utilize
convolution to handle high-resolution / low-level features
and employ attention for low-resolution / high-level fea-
tures, demonstrating superior performance without complex
operations. However, most of these methods mainly focus
on which modules to use for aggregating tokens rather than
how to construct the tokens (about patchify stem and stage
design). On the other hand, efficient MHSA techniques re-
duce the cost of attention by implementing sparse atten-
tion [9, 13—18] or low-rank approximation [19-22]. These
modules are applied with the commonly adopted multi-head
mechanism. Despite all the great progress, redundancies in
macro/micro design are still not fully understood or ad-
dressed. In this paper, we explore the redundancy at all de-
sign levels, and propose memory-efficient solutions.

To identify computational redundancy in macro design,
we concentrate on patch embedding size, observing that
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most recent efficient models use a 4x4 patch embedding.
We conduct experiments as shown in Fig. 2 to analyze spa-
tial redundancy in traditional macro design and find sev-
eral intriguing results. First, despite having fewer channels,
the early stages exhibit a severe speed bottleneck due to
the large number of tokens (at 224 x224, stagel: 3136 to-
kens; stage2: 784 tokens). Second, using a 3-stage design
that processes 196 tokens in the first stage through a 1616
patchify stem does not lead to a significant drop in perfor-
mance. For further comparison, we set up a basic model
(Tab. 6 (2)) employing the aforementioned macro design,
performing simple token mixing using a 3x3 depthwise
convolution. Compared to the efficient model MobileViT-
XS [18], our simple model achieves 1.5% superior accuracy
on ImageNet-1k [23], while running 5.0 / 7.6 faster on
the A100 GPU / Intel CPU. These results demonstrate that
there is considerable spatial redundancy in the early stages,
and compared with specialized attention methods, efficient
macro design is more crucial for the model to achieve com-
petitive performance within strict latency limits. Note that
this observation does not mean the token mixer is trivial.

We also probe redundancy in micro design, specifically
within the MHSA layer. Most efficient MHSA methods
have primarily focused on effective spatial token mixing.
Due to the efficient macro design, we are able to use com-
pact token representations with increased semantic density.
Thus, we turn our focus to the channel (head) redundancy
present in attention layers, also crucial aspect overlooked in
most previous works. Through comprehensive experiments,
we find that there is a noticeable redundancy in multi-head
mechanism, particularly in the latter stages. We then pro-
pose a novel Single-Head Self-Attention (SHSA) as a com-
petitive alternative that reduces the computational redun-
dancy. In SHSA, self-attention with a single head is applied
to just a subset of the input channels, while the others re-
main unchanged. SHSA layer not only eliminates the com-
putational redundancy derived from multi-head mechanism
but also reduces memory access cost by processing par-
tial channels. Also, these efficiencies enable stacking more
blocks with a larger width, leading to performance improve-
ment within the same computational budget.

Based on these findings, we introduce a Single-Head Vi-
sion Transformer (SHViT) based on memory-efficient de-
sign principles, as a new family of networks that run highly
fast on diverse devices. Experiments demonstrate that our
SHVIT achieves state-of-the-art performance for classifi-
cation, detection, and segmentation tasks in terms of both
speed and accuracy, as shown in Fig. 1. For instance, our
SHViT-S4 achieves 79.4% top-1 accuracy on ImageNet
with throughput of 14283 images/s on an Nvidia A100 GPU
and 509 images/s on an Intel Xeon Gold 5218R CPU @
2.10GHz, outperforming EfficientNet-BO [24] by 2.3% in
accuracy, 69.4% in GPU inference speed, and 90.6% in
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Figure 2. Macro design analysis. All stages are composed of
MetaFormer blocks [28]. The stages depicted in blue and red uti-
lize depthwise convolution and attention layers as token mixer, re-
spectively. In the table below, the macro design numbers represent
the number of channels, while the numbers in parentheses indicate
the number of blocks.

CPU speed. Also, SHVIT-S4 has 1.3% better accuracy than
MobileViTv2x1.0 [21] and is 2.4 x faster on iPhonel2 mo-
bile device. For object detection and instance segmentation
on MS COCO [25] using Mask-RCNN [26] detector, our
model significantly outperforms EfficientViT-M4 [27] by
6.2 AP®* and 4.9 AP™2** with a smaller backbone latency
on various devices.

In summary, our contributions are as follows:

* We conduct a systematic analysis of the redundancy
that has been overlooked in the majority of existing
research, and propose memory-efficient design princi-
ples to tackle it.

* We introduce Single-Head ViT(SHViT), which strike
a good accuracy-speed tradeoff on a variety of devices
such as GPU, CPU, and iPhone mobile device.

e We carry out extensive experiments on various tasks
and validate the high speed and effectiveness of our
SHVIT.

2. Analysis and Method

In this section, we first conduct analyses of redundan-
cies in both macro and micro design through first-of-its-
kind experiments and then discuss various solutions to mit-
igate them. After that, we introduce the Single-Head Vision
Transformer (SHViT) and explain its details.

2.1. Analysis of Redundancy in Macro Design

Most efficient models [5,7-9,11,17,19,21,29,30] adopt
a 4x4 patchify stem / 4-stage configuration (Fig. 2 (a)). In
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Figure 3. Multi-head redundancy analysis on DeiT [31]. To bet-
ter analyze head redundancy, we increase the number of heads in
DeiT-T from 3 to 6 and retrain the model. We compute the atten-
tion maps and calculate the average cosine similarity between each
head in different layers across 128 test samples from ImageNet.
The importance of each head is determined by its score when it is
removed and when it is left alone. Zoom-in for better visibility.

contrast, plain ViT models [1,31] adopt a 16x 16 patchify
stem to generate meaningful input tokens for subsequent
MHSA layers. We focus on this discrepancy and further hy-
pothesize that a larger-stride patchify stem is not only nec-
essary for the MHSA layers but also crucial for effective
representation learning within tight latency regimes.

To substantiate our hypothesis, inspired by [10,27,32],
we adopt 16 x 16 patchify stem and 3-stage design. We build
two models based on the MetaFormer block [28] and the
two aforementioned macro designs (see Fig. 2 for details).
Specifically, we configured both models to have a similar
number of channels for equivalent feature map size. Sur-
prisingly, model (b) is 3.0x /2.8 x faster on the GPU / CPU,
respectively, although it performs 1.5% worse than (a). Fur-
thermore, when trained at a resolution of 256 x256, (b’) is
not only comparable to (a) but also significantly faster.

As shown in the above observations, our proposed effi-

cient macro design has the following advantages:
1) token representations with large receptive fields and re-
duced spatial redundancy can be utilized at the early stages.
2) It can diminish the feature map size by up to 16 times,
leading to a significant reduction in memory access costs.
3) due to the aggressive stride design, there’s only a mild
decrease in throughput when the resolution is increased,
leading to effective performance enhancement (as shown in
Fig. 2(b"), 8, and Tab. 2).

2.2. Analysis of Redundancy in Micro Design

MHSA layer computes and applies attention maps in-
dependently in multiple subspaces (heads), which has con-
sistently shown enhanced performance [1, 33]. However,
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Figure 4. Multi-head redundancy analysis on Swin [40]. We
scale down by halving the width of Swin-T. Left: the average co-
sine similarity. Right: head masking results. The process of deriv-
ing the results is the same as the DeiT experiment. (Fig. 3)

while attention maps are computationally demanding, re-
cent studies have shown that many of them aren’t critically
essential [34-39]. We also delve into the multi-head redun-
dancy of prevailing tiny ViT models (DeiT-T [31], Swin-
T [40]) through three experiments:attention map visualiza-
tion, head similarity analysis, and head ablation study.

For head similarity analysis, we measure the average cosine
similarity between each head and other heads in the same
layer. For head ablation study, we evaluate the performance
impact by nullifying the output of some heads in a given
layer while maintaining full heads in the other layers. And
the highest score is reported. Details of each experiment and
further results are provided in the supplementary materials.

First of all, in the early stages (Fig. 3 (a)), we observe that
the top-performing heads tend to operate in a convolution-
like manner, while heads that have minimal impact on
performance when removed typically process information
more globally. Also, as shown in Fig. 2 (b”"), the model us-
ing attention layers in the first stage exhibits a less favor-
able speed-accuracy trade-off compared to those employing
depthwise convolution layers in the first stage. Hence, for
efficiency, we use convolutions with spatial inductive bias
as the token mixer in the initial stage.

In the latter stages, we find that there is a lot of redun-
dancy both at the feature and prediction levels. For example,
the latter stages of DeiT-T (Fig. 3 (b)) exhibit the average
head similarity of 78.3% (64.8% for 6 heads), with Swin-
T also demonstrating notably high values (Fig. 4 Left).
In the experiment of removing one head, We observe that
the majority of heads can be removed without deviating
too much from the original accuracy. Remarkably, in some
cases of Swin-T (Fig. 4 Right), removing a head even leads
to slightly improved score. Furthermore, when using just
one head out of 12 or 24 in Swin-T, the performance drop
is, on average, only 0.95% points.

Previous approaches [34—39] to tackle head redundancy
typically train full networks first and then prune unneces-
sary heads. Although these methods are effective, they come
at the expense of increased computational resources and
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Figure 5. Overview of Single-Head Vision Transformer (SHViT). The model starts with a 1616 overlapping patch embedding layer
and uses single-head attention layers in the latter stages to efficiently compute global dependencies. See text for details.

memory footprints during training. To address the afore-
mentioned problem cost-effectively, we design our attention
module with a single head to inherently avoid head redun-
dancy. This approach ensures both the training and infer-
ence processes are streamlined and efficient.

2.3. Single-Head Self-Attention

Based on the above analyses, we propose a new Single-
Head Self-Attention (SHSA), with details presented in the
lower right corner of Fig. 5. It simply applies an attention
layer with a single head on only a part of the input chan-
nels (C,=rC) for spatial feature aggregation and leaves the
remaining channels untouched. We set r to 1/4.67 as a de-
fault. Formally, the SHSA layer can be described as:

SHSA(X) = Concat(f(att, XTES)WO (1)
Xaue = Attention(Xoy W, X W5, Xore W), (2)
Attention(Q, K, V) = Softmax(QK' /\/d)V, (3)
Xatts Xres = Split(X, [Cp, C — Cp]) 4)

where W, WX, WV, and WO are projection weights,
dgi, is the dimension of the query and key (set to 16 as
a default), and Concat( - ) is the concatenation operation.
For consistent memory access, we take the initial C), chan-
nels as representatives of the whole feature maps. Addition-
ally, the final projection of SHSA is applied to all channels,
rather than just the initial C}, channels, ensuring efficient
propagation of the attention features to the remaining chan-
nels. SHSA can be interpreted as sequentially stretching the
previously parallel-computed redundant heads along the
block-axis.
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Figure 6. Comparison of Single-head attention designs. (a) re-
places convolution with single-head attention in ResNet’s bottle-
neck block [4]. The contraction ratio is equal to the partial ratio in
(c). (b) uses full channels for single-head attention modules. All
models are configured to have similar speeds. Our partial channel
approach has the best speed-accuracy tradeoff.

In Fig. 6, we also explore various single-head designs.
Recent studies [7, 12,27, 29, 32,41, 42] sequentially com-
bines convolution and attention layers to incorporate local
details into a global contexts. Unfortunately, this approach
can only extract either local detail or global context in a
given token mixer. Also, it is noted in [6] that some channels
process local details while others handle global modeling.
These observations imply that the current serial approaches
have redundancy when processing all channels in each layer
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Figure 7. Runtime breakdown. Operations highlighted in the red
box represent memory-bound operations, where the majority of
the duration is consumed by memory accesses, and the computa-
tional time is relatively brief.

(Fig. 6 (a), (b)). In contrast, our partial channel approach
with preceding convolution memory-efficiently addresses
the aforementioned issue by leveraging two complementary
features in parallel within a single token mixer [12,43].

For effective utilization of the attention layer, Layer Nor-
malization [44] is essential, meanwhile, to implement a
multi-head approach, data movements like reshape opera-
tion are required. Consequently, as shown in Fig. 7, a large
portion of MHSA’s runtime is taken up by memory-bound
operations like reshaping and normalization [27,45—47]. By
minimizing the use of memory-bound operations or apply-
ing them to fewer input channels, the SHSA module can
fully leverage the computing power of GPUs/CPUs.

2.4. Single-Head Vision Transformer

An overview of the Single-Head Vision Transformer
(SHViT) architecture is illustrated in Fig. 5. Given an in-
put image, we first apply four 3x3 strided convolution lay-
ers to it. Compared to the stride-16 16x 16 convolution to-
kenizing used by standard ViT models [1, 31], our over-
lapping patchify stem can extract better local representa-
tions [10,27,32]. Then, the tokens pass through three stages
of stacked SHVIT blocks for hierarchical representation
extraction. A SHVIT block consists of three main mod-
ules (see Fig. 5): Depthwise Convolution (DWConv) layer
for local feature aggregation or conditional position em-
bedding [48,49], Single-Head Self-Attention (SHSA) layer
for modeling global contexts, and Feed-Forward-Network
(FFN) for channel interaction. The expansion ratios in FFN
are set to 2. The combination of DWConv and SHSA cap-
tures both local and global dependencies in a computation-
ally and memory-efficient manner. Based on findings in
sec. 2.2, we do not use the SHSA layer in the first stage.
To reduce tokens without information loss, we utilize an ef-
ficient downsampling layer, which is composed of two stage
1 blocks, with an inverted residual block [27,50,51] (stride-
2) placed between them. Finally, the global average pooling

Model variants | Depth Emb. dim. Reso. | Partial ratio | Exp. ratio
SHVIT-S1 [2,4,5] [128,224,320] 224

SHVIT-S2 [2,4,5] [128,308,448] 224 17467 2
SHViT-S3 [3,5,5] [192,352,448] 224 ’

SHViIT-S4 [4,7,6] [224,336,448] 256

Table 1. Architecture details of SHVIT variants.

and fully connected layer are used to output the predictions.

Besides the aforementioned operators, normalization
and activation layers also play crucial roles in determin-
ing the model speed. We employ Layer Normalization [44]
only for the SHSA layer while integrating Batch Normal-
ization (BN) [52] into the remaining layers, as BN can be
merged into its adjacent convolution or linear layers. We
also use ReLU [53] activations instead of other complex al-
ternatives [51, 54, 55], as they are much slower on various
inference deployment platforms [7,27,56].

We build four SHVIT variants with different settings of
depth and width. Due to the large-sized patch embedding
and single-head design, we can use a larger number of chan-
nels and blocks than previous efficient models. Model spec-
ifications are provided in Tab. 1.

3. Experiments
3.1. Implementation Details

We conduct image classification on ImageNet-1K [23],
which includes 1.28M training and 50K validation images
for 1000 categories. All models are trained from scratch us-
ing AdamW [57] optimizer for 300 epochs with a learn-
ing rate of 10~2 and a total batch size of 2048. We use co-
sine learning rate scheduler [58] with linear warmup for 5
epochs. Weight decays are set to 0.025/0.032/0.035/0.03 for
SHVIT-S1 to S4. For fair comparison, we follow the same
data augmentation proposed in [31], including Mixup [59],
random erasing [60], and auto-augmentation [61]. For 3842
and 5122 resolution, we finetune the model for 30 epochs
with weight decay of 10~8 and learning rate of 0.004. Ad-
ditionally, we assess throughput performance across vari-
ous hardware platforms. We measure GPU throughput on
an Nvidia A100 with batch size of 256. For CPU and
CPUpnnx, We evaluate the runtime on an Intel(R) Xeon(R)
Gold 5218R CPU @ 2.10GHz processor , with batch size
of 16 (using a single thread). For CPUgnnx, We convert the
models to ONNX [62] runtime format. Mobile latency is
measured using iPhone 12 with iOS version 16.5. We export
the models (batch size is set to 1) using CoreML tools [63]
and report the median latency over 1,000 runs. We also vali-
date our model as an efficient vision backbone for object de-
tection and instance segmentation on COCO [25] with Reti-
naNet [64] and Mask R-CNN [26], respectively. All models
are trained under 1x schedule (12 epochs) following [40]
on mmdetection library [65].



FLOPs Params Throughput (images/s) Top-1  Top-5
Model Reso. Epochs ™) ™) GPU CPU CPUonux (%) (%)
MobileNetV3-Small [51] 224 600 57 2.5 31477 167 1172 67.4 -
MobileViT-XXS [18] 256 300 410 1.3 7594 21 170 69.0 -
MobileViTV2 x0.5 [21] 256 300 466 1.4 8616 17 157 70.2 -
EfficientViT-M2 [27] 224 300 201 42 30377 147 781 70.8 90.2
MobileOne-S0 [56] 224 300 275 2.1 19689 86 1648 71.4 -
EMO-1IM [29] 224 300 261 1.3 10032 34 119 71.5 -
FasterNet-TO [30] 224 300 340 39 23518 92 844 71.9 -
ShuffleNetV2 x1.5 [66] 224 300 299 35 16495 62 799 72.6 -
MobileFormer-96M [19] 224 450 96 3.6 13106 91 235 72.8 -
SHViT-S1 224 300 241 6.3 33489 143 1111 728 91.0
EfficientFormerV2-S0 [9] 224 300 400 35 2374 54 372 73.7 -
EfficientViT-M4 [27] 224 300 299 8.8 26201 113 616 74.3 91.8
EdgeVIiT-XXS [17] 224 300 600 4.1 6763 33 168 74.4 -
MobileViT-XS [18] 256 300 986 2.3 4408 8 96 74.8 -
ShuffleNetV2 x2.0 [66] 224 300 591 7.4 12276 40 250 749 924
EMO-2M [29] 224 300 439 2.3 7333 25 78 75.1 -
MobileNetV3-Large [51] 224 600 217 5.4 13994 43 613 75.2 -
SHViIT-S2 224 300 366 114 26878 99 951 752 924
FastViT-T8 [7] 256 300 700 2.1 5978 23 140 75.6 -
GhostNet x1.3 [67] 224 300 226 7.3 9433 39 109 75.7 92.7
FasterNet-T1 [30] 224 300 850 7.6 17827 41 552 76.2 -
EfficientNet-B0 [24] 224 350 390 5.3 8433 26 267 77.1 93.3
EfficientViT-M5 [27] 224 300 522 12.4 18722 64 456 77.1 93.4
PoolFormer-S12 [28] 224 300 1823 11.9 5432 13 120 77.2 -
MobileOne-S2 [56] 224 300 1299 7.8 9355 22 581 77.4 -
SHViIT-S3 224 300 601 142 20522 62 731 774 934
EdgeViT-XS [17] 224 300 1100 6.7 5520 21 120 71.5 -
EfficientFormerV2-S1[9] 224 300 650 6.1 2112 37 325 71.9 -
MobileViTV2 x1.0 [21] 256 300 1800 49 4345 7 63 78.1 -
ResNet50 [4,5] 224 300 4110 25.6 5281 8 271 78.8 -
FasterNet-T2 [30] 224 300 1910 15.0 11181 21 417 78.9 -
EMO-6M [29] 224 300 961 6.1 5105 15 50 79.0 -
EfficientNet-B1 [24] 240 350 700 7.8 4982 11 156 79.1 94.4
FastViT-T12 [7] 256 300 1400 6.8 4197 14 92 79.1 -
MobileFormer-508M [19] 224 450 508 14.0 5390 23 91 79.3 -
MobileOne-S4 [56] 224 300 2978 14.8 5281 11 281 79.4 -
SHViT-S4 256 300 986 16.5 14283 36 509 794 945
Finetuning with higher resolution
EfficientViT-M5,354 [27] 384 330 1486 12.4 7041 17 176 79.8 95.0
EfficientViT-M5,512 [27] 512 360 2670 12.4 3771 9 88 80.8 95.5
SHViT-S4,.354 384 330 2225 16.5 6702 14 315 81.0 954
SHViT-S4,5:2 512 360 3973 16.5 3957 8 198 82.0 959

Table 2. SHVIT classification performance on ImageNet-1K [23] with comparisons to SOTA efficient models. Throughput is measured on
an Nvidia A100 GPU with batch size of 256 for GPU and Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz processor with batch size of 16
for CPU and CPUonnx. Larger throughput means faster inference speed. FLOP count is computed by fvcore [68] library.

3.2. SHViT on ImageNet-1K Classification

As shown in Fig. 1, Tab. 2, and 4, we compare Single-
Head Vision transformer (SHViT) with the state-of-the-
art models. The comparison results clearly show that our
SHVIT achieves a better trade-off between accuracy and
throughput/latency across various devices.

Comparison with efficient CNNs. Our SHViT-S1 achieves
5.4% higher accuracy than MobileNetV3-Small [51], while
maintaining similar speeds on both the A100 GPU and Intel
CPU. Compared to ShuffleNetV2 x2.0 [66], SHVIT-S2 ob-
tains slightly better performance with 2.2x and 2.5 speed
improvements on the A100 GPU and Intel CPU, respec-
tively. Furthermore, our model is 3.8x faster when con-
verted to the ONNX runtime format. Compared to the re-
cent FasterNet-T1 [30], SHViT-S3 not only achieves 1.2%

higher accuracy but also runs faster: 15.1% on the A100
GPU and 32.4% on the Intel CPU. Notably, at Top-1 ac-
curacy of 79.1—79.4%, our model is 2.9x/ 3.3x faster
than EfficientNet-B1 [24], 3.4x/ 5.5x faster than FastViT-
T12 [7], and 2.7 x/ 1.8 x faster than MobileOne-S4 [56] on
the A100 GPU/Intel CPU with ONNX format. When lever-
aging minimal attention module in a memory-efficient way,
ViTs can still show fast inference speeds like efficient CNNs.

Comparison with efficient ViTs and hybrid models.
Our SHVIT-S1 has 10% and 42% higher throughput than
EfficientViT-M2 [27] on the A100 GPU and Intel CPU with
ONNX runtime, respectively, while showing better perfor-
mance with a large margin (70.8% — 72.8%). SHViT-S3
obtains similar accuracy to PoolFormer-S12 [28], but it uses
3x fewer FLOPs, is 3.8 x faster on the A100 GPU, and



Flops Throughput (images/s) Top-1

Model Reso. M) ~GPU CPU CPUomx (%)
SHVIT-ST 224 241 33489 143 11 740
SwiltFormer-XS [60] 24600 7922 %6 175 757
EfficientFormerV2-S0 [9] 224 400 2374 54 32 757
SHVIiT-S2 24 366 26878 99 951 762
FastViT-T8 [7] 256 1400 5978 23 140 767
SHVIiT-S3 24 601 20522 62 731 783
SwiftFormer=S [60] 224 1000 6415 21 147 785
EfficientFormerV2-S1 [9] 224 650 2112 37 325 79.0
EfficientFormer-L1 [8] 24 1300 6840 21 274 792
SHVIiT-S4 256 986 14283 36 509 802

Table 3. Comparison of SOTA efficient models on ImageNet-1K
classification, using DeiT [31] distillation recipe.

6.1x faster as ONNX model. Remarkably, our SHViT-S4
surpasses recent EdgeViT-XS [17] with a 1.9% higher accu-
racy, while being 2.6 x faster on A100 GPU, 1.7 x faster on
Intel CPU, and 4.2 x faster on ONNX implementation. As
shown in the results above, when converted to ONNX for-
mat, our models demonstrate a notable performance boost
compared to the recent SOTA models. This enhancement is
largely because our single-head design uses fewer reshape
operations, which often cause overhead in ONNX runtime.
To summarize, the above results demonstrate that our pro-
posed memory-efficient macro design has a more significant
impact on the speed-accuracy tradeoff than efficient atten-
tion variants or highly simple operations like pooling.
Finetuning with higher resolution. Following [27], we
also finetune our SHViT-S4 to higher resolutions. Com-
pared to the state-of-the-art EfficientViT-M5,.512 [27], our
SHViT-S4,354 attains competitive performance, even when
trained at a lower resolution. Additionally, SHViT-S4,3g4
is 77.4% faster on the A100 GPU, 55.6% on the Intel
CPU, and an impressive 3.6x faster on ONNX runtime for-
mat. Moreover, SHViT-54,.515 achieves 82.0% top-1 accu-
racy with throughput of 3957 images/s on the A100 GPU,
demonstrating effectiveness across various input sizes.
Distillation results. We report the performance of our mod-
els using DeiT [31] distillation recipe in Tab. 3. Notably, our
models outperform competing models in both speed and ac-
curacy. Specifically, SHViT-S3 even surpasses FastViT-T8
which is 5.2x slower as ONNX models. SHViT-S4 attains
superior performance than EfficientFormer-L1 [8] while be-
ing 2.1x / 1.9x faster on the GPU / ONNX runtime.
Mobile Latency Eval-

Model Latency Tobp-l . N
(s) *) uation. We also verify

EfficientFormer-L1 [8] 1.5 77.3(79.2) .

EfficientFormerV2-S1 [9] 13 77.9 (79.0) the effectiveness of our

MobileViTv2 X 1.0 [21] 38 78.1 .

EffcientNet-B1 [24] s 0 model on the mobile de-

FastViT-T12 [7] 1.4 79.1 (80.3) 1 3

MobileOne-S4 [56] 1.7 79.4 vice m Tab' 4 Compared

SHVIT-S4 16 14602 to the efficient models

EfficientNet-B1 [24] /
MobileOne-S4 [56], our
SHViT-S4 achieves sim-
ilar accuracy while run-
ning 0.2 ms / 0.1 ms
faster on iPhone 12 device. SHViIT-S4 also obtains com-

Table 4. Mobile latency com-
parison. The results in brack-
ets are trained with distilla-
tion [31].

20.0 ] —® SHViT-S4 79.4% (1.6ms) @ 256 -
—&— FastViT-T12 79.1% (1.4ms) @ 256 /6; N
17.5 4 —®— EfficientFormer-L1 77.3% (1.5ms) @ 224 // o.an
@
£
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Figure 8. Mobile latency comparison of a SHViT-S4 with recent
state-of-the-art FastViT [7] and EfficientFormer [8]; measured on
iPhone 12 for various input sizes.

RetinaNet Object Detection on COCO
Latency (ms)

Backbone GPU CPU_ Mobiie AP  AP5g AP;; APy AP, AP
MobileNetV3 [51] 0.34 75 75 299 493 308 149 333 411
EfficientViT-M4 [27] 0.33 73 7.8 327 522 341 176 353  46.0
PVTv2-BO [70] 073 1154 275 372 572 395 231 404 497
MobileFormer-508M [19] | 0.89  35.7 26.9 38.0 583 403 229 412 497
EdgeViT-XXS [17] 0.88 384 129 387 59.0 41.0 224 420 516
SHVIiT-S4 028 5.0 33 388 598 411 220 424 527

Mask R-CNN Object Detection & Instance Segmentation on COCO
Latency (ms)
GPU CPU Mobile

Backbone AP' AP}, APY, AP APZ  APH

EfficientNet-BO [24] 054 167 38 319 51.0 345 294 479 312
EfficientViT-M4 [27] 0.33 73 78 328 544 345 310 512 322
PoolFormer-S12 [28] 1.20 404 6.8 373 59.0 40.1 346 558 369
EfficientFormer-L1 [8] 0.84  21.0 4.3 379 603 410 354 573 373
ResNet-50 [4] 094  19.0 8.8 380 58.6 414 344 551 367
FastViT-SA12 [7] 1.06 394 6.5 389 605 422 359 576 381
SHViT-S4 0.28 5.0 33 390 612 419 359 579 379

Table 5. Comparison results on object detection and instance seg-
mentation on COCO 2017 [25] using RetinaNet [64] and Mask
RCNN [26] head. Backbone latencies are measured with image
crops of 512 x 512. The batch sizes used for GPU, CPU, and Mo-
bile latency are 32, 16, and 1 respectively.

petitive performance against highly-optimized models for
mobile latency, indicating its consistent performance across
diverse inference platforms. Further results in Fig. 8 show
that our model significantly outperforms over the recent
models FastViT [7] and EfficientFormer [8], especially at
higher resolutions. At low resolutions, SHViT-S4 is slightly
slower, but at 1024 x 1024, our model achieves 34.4% and
69.7% lower latency than FastViT and EfficientFormer, re-
spectively. These results stem from the increased memory
efficiency in the macro and micro design.

3.3. SHViT on downstream tasks

In Tab. 5, We evaluate the transfer ability of our SHViT
using two frameworks: 1) RetinaNet [64] for object detec-
tion, 2) Mask R-CNN [26] for instance segmentation.
Object detection. SHVIT-S4 is 2.3 x faster on mobile de-
vice than MobileNetV3 [51] and outperforms it by +8.9 AP.
Compared to MobileFormer [19], our model achieves better
performance while being 3.2 x and 8.2 x faster on the A100
GPU and mobile device, respectively.



Throughput (images/s) Top-1

#Row Ablation Variant GPU  CPU CPUomx (%)
[¢)] Single Head ~ — MHSA [1,33] 18036 50 578 71.7
2) Self-Attention — None 22075 6l 792 76.3
3) =1/8 20666 57 754 77.1
4) Partial Ratio = 1/4.67 (SHViT-S3) 20522 62 731 714
) =1/2 19976 56 673 71.5

Table 6. Ablation on our proposed Single-Head Attention and de-
sign choice for SHVIiT-S3 variant.

Instance Segmentation. SHViT-S4 surpasses GPU or
mobile-optimized models like EfficientViT [27] and Effi-
cientNet [24] in speed, while delivering a substantial perfor-
mance boost. Remarkably, our model gains 1.7 AP? and 1.3
AP™ over PoolFormer [28] but runs 4.3x, 8.1x, and 2.1 x
faster on the GPU, CPU, and mobile device respectively.

As shown in the above results, the large-stride patchify
stem with 3-stage reduces not only computational costs but
also generates meaningful token representations, especially
at higher resolutions. Furthermore, the marked performance
gap with EfficientViT [27], using a similar macro design,
proves the efficacy of our micro design choices.

3.4. Ablation Study

In this section, we first verify the effectiveness of our
proposed Single-Head Self-Attention (SHSA) layer and
then conduct a concise ablation study on the value of the
partial ratio for SHSA layer. Results are provided in Tab. 6.
Effectiveness of SHSA. To assess whether the SHSA layer
can effectively capture the global contexts like the Multi-
Head Self-Attention (MHSA) [1] layer, we conduct an ab-
lation study by either replacing the SHSA layer with the
MHSA layer or removing it. As shown in Tab. 6 (1, 2 vs. 4),
SHSA layer exhibits a better speed-accuracy tradeoff com-
pared to MHSA layer. While removing SHSA layer results
in a faster model speed, it leads to a significant drop in ac-
curacy. Meanwhile, model (2) can also achieve highly com-
petitive performance compared with the SOTA models in
Tab. 2, which shows that our proposed macro design offers
a solid architectural baseline under tight latency constraints.
Searching for the appropriate partial ratio of SHSA. By
default, we set the partial ratio to 1 / 4.67 for all SHViT
models, which obtains the optimal speed-accuracy tradeoff
(3, 5 vs. 4). Compared to a very small value, increasing the
channels moderately for token interaction achieves effective
performance enhancement at low costs. Also, a too large
value does not provide a performance boost that compen-
sates for the accompanying costs.

4. Related Work

Leveraging Convolutional Neural Networks (CNN) in
resource-constrained devices has gained significant atten-
tion from many researchers. Within this trend, several
strategies have emerged, including decomposition of con-
volution in MobileNets [50, 51, 71], channel shuffling in

ShuffleNets [66, 72], cheap linear transformation in Ghost-
Net [67], compound scaling law in EfficientNet [24], and
structural re-parameterization in many works [7,56,73].

Even within the Vision Transformer (ViT) [1] realm,
there are ongoing numerous efforts for efficient designs to
accelerate inference speed on various devices. One promis-
ing approach is designing a new ViT architecture that in-
tegrates the local priors of CNN. This method mostly in-
corporates attention only in the latter stages, allowing for
the efficient extraction of global information without con-
siderable computational overhead [7-10, 12]. In contrast,
other methods employ attention and convolution in paral-
lel, either within a single token mixer [14,43,74] or on a
block-by-block basis [19], to combine a rich set of features.
Another line of approach focuses on reducing the compu-
tational complexity of MHSA [17,18,21,69]. For example,
MobileViTv2 [21] introduces a separable self-attention with
linear complexity with respect to the number of tokens (res-
olution). EdgeViT [17] applies MHSA to sub-sampled fea-
tures to perform approximately full spatial interaction in a
cost-effective manner. Unlike the above approaches, we pri-
oritize organizing tokens with minimal spatial redundancy
over efficiently mixing tokens.

Also, recent works [27, 34-39, 75-77] have demon-
strated that numerous heads function in similar ways and
can be pruned without notably affecting performance. Effi-
cientViT [27] proposes feeding attention heads with differ-
ent splits of the full channel to improve attention diversity.
In addition, [76] presents a regularization loss for multi-
head similarity, while [78] explores head similarity across
different layers. As opposed to reducing multi-head redun-
dancy, we design module with single-head configuration,
which not only inherently prevents multi-head redundancy
but also saves computation costs.

5. Conclusion

In this work, we have investigated redundancies at both
the spatial and channel dimensions of the architectural de-
sign commonly used by many established models. We then
proposed 16x 16 patch embeddings with 3-scale hierarchi-
cal representations and Single-Head Self-Attention to ad-
dress the computational redundancies. We further present
our versatile SHVIT, built upon our proposed macro/micro
designs, that achieves ultra-fast inference speed and high
performance on diverse devices and vision tasks.
Discussion. While our macro design is effective, there is a
need for fine-grained (high-resolution) features to enhance
performance further or to recognize small objects. There-
fore, our future work focuses on devising cost-effective
ways to utilize them. Integrating the single-head design into
existing sophisticated attention methods will be an intrigu-
ing way to explore.



6. Acknowledgement

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ko-

rea

government (MSIT) (NO.RS-2022-00166109) and

(2022M3J6A1084845).

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 3, 5, 8

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part 1 16, pages 213-229.
Springer, 2020. 1

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. Advances in Neural Information Processing Systems,
34:17864-17875, 2021. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 1,4, 6,7

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976-11986,
2022.1,2,6

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Advances
in Neural Information Processing Systems, 34:12116-12128,
2021. 1,4

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, On-
cel Tuzel, and Anurag Ranjan. Fastvit: A fast hybrid vision
transformer using structural reparameterization. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2023. 1,2,4,5,6,7, 8, 13

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios
Evangelidis, Sergey Tulyakov, Yanzhi Wang, and Jian
Ren. Efficientformer: Vision transformers at mobilenet
speed. Advances in Neural Information Processing Systems,
35:12934-12949, 2022. 1,2, 7,8, 13

Yanyu Li, Ju Hu, Yang Wen, Georgios Evangelidis, Kamyar
Salahi, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. Re-
thinking vision transformers for mobilenet size and speed.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 16889-16900, October
2023.1,2,6,7,8

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing for
faster inference. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 12259-12269,
2021. 1,3,5,8, 14

Muhammad Maaz, Abdelrahman Shaker, Hisham
Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muham-
mad Anwer, and Fahad Shahbaz Khan. Edgenext: efficiently
amalgamated cnn-transformer architecture for mobile vision
applications. In Computer Vision—-ECCV 2022 Workshops:
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
VII, pages 3-20. Springer, 2023. 1, 2

Namuk Park and Songkuk Kim. How do vision transformers
work? In International Conference on Learning Representa-
tions, 2022. 1, 4,5, 8, 14

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations, 2020. 1

Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision
transformers with hilo attention. Advances in Neural Infor-
mation Processing Systems, 35:14541-14554, 2022. 1, 8

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure
Leskovec, Dale Schuurmans, and Bo Dai. Combiner: Full at-
tention transformer with sparse computation cost. Advances
in Neural Information Processing Systems, 34:22470-22482,
2021. 1

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568-578, 2021. 1

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz
Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais
Martinez. Edgevits: Competing light-weight cnns on mobile
devices with vision transformers. In Computer Vision-ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XI, pages 294-311. Springer,
2022.1,2,6,7,8

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In International Conference on Learning Represen-
tations, 2022. 1,2, 6, 8

Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5270-5279, 2022. 1,2, 6,7, 8

Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. In International
Conference on Learning Representations, 2021. 1



[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Sachin Mehta and Mohammad Rastegari.
attention for mobile vision transformers.
arXiv:2206.02680,2022. 1,2,6,7, 8
Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 2, 5, 6

Separable self-
arXiv preprint

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105-6114. PMLR,
2019. 2,6,7,8,13

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 2, 5,7

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017. 2,
5,7

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang,
Han Hu, and Yixuan Yuan. Efficientvit: Memory efficient
vision transformer with cascaded group attention. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14420-14430, 2023. 2, 3, 4,
5,6,7,8, 14

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10819-10829, 2022. 2, 3,6, 7, 8
Jiangning Zhang, Xiangtai Li, Jian Li, Liang Liu, Zhucun
Xue, Boshen Zhang, Zhengkai Jiang, Tianxin Huang, Yabiao
Wang, and Chengjie Wang. Rethinking mobile block for
efficient attention-based models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1389-1400, 2023. 2, 4, 6

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song
Wen, Chul-Ho Lee, and S.-H. Gary Chan. Run, don’t walk:
Chasing higher flops for faster neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12021-12031, June
2023. 2,6, 14

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347-10357. PMLR, 2021. 3, 5,7, 13, 14

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr
Dollar, and Ross Girshick. Early convolutions help trans-
formers see better. Advances in Neural Information Process-
ing Systems, 34:30392-30400, 2021. 3,4, 5

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

[44]

[45]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30,2017. 3,8

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen
heads really better than one? Advances in neural information
processing systems, 32,2019. 3, 8

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. Analyzing multi-head self-attention: Spe-
cialized heads do the heavy lifting, the rest can be pruned.
arXiv preprint arXiv:1905.09418, 2019. 3, 8

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision transform-
ers: An end-to-end exploration. Advances in Neural Infor-
mation Processing Systems, 34:19974-19988, 2021. 3, 8

Zhuoran Song, Yihong Xu, Zhezhi He, Li Jiang, Naifeng
Jing, and Xiaoyao Liang. Cp-vit: Cascade vision transformer
pruning via progressive sparsity prediction. arXiv preprint
arXiv:2203.04570, 2022. 3, 8

Zejiang Hou and Sun-Yuan Kung. Multi-dimensional model
compression of vision transformer. In 2022 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages
01-06. IEEE, 2022. 3, 8

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo
Molchanov, Hai Li, and Jan Kautz. Global vision trans-
former pruning with hessian-aware saliency. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18547-18557, 2023. 3, 8

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012-10022, 2021. 3,5, 13

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 22-31, 2021. 4

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao
Chen, Yunhe Wang, and Chang Xu. Cmt: Convolutional neu-
ral networks meet vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12175-12185, 2022. 4

Chenyang Si, Weihao Yu, Pan Zhou, Yichen Zhou, Xinchao
Wang, and Shuicheng YAN. Inception transformer. In Ad-
vances in Neural Information Processing Systems, 2022. 5,
8, 14

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 5

Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and
Torsten Hoefler. Data movement is all you need: A case
study on optimizing transformers. Proceedings of Machine
Learning and Systems, 3:711-732,2021. 5



[46]

[47]

(48]

[49]

(501

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Hamid Tabani, Ajay Balasubramaniam, Shabbir Marzban,
Elahe Arani, and Bahram Zonooz. Improving the effi-
ciency of transformers for resource-constrained devices. In
2021 24th Euromicro Conference on Digital System Design
(DSD), pages 449-456. IEEE, 2021. 5

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-
pher Ré. Flashattention: Fast and memory-efficient exact at-
tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344-16359, 2022. 5

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and
Chunhua Shen. Conditional positional encodings for vision
transformers. In ICLR 2023, 2023. 5

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355-9366, 2021. 5, 13

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510-4520, 2018. 5, 8

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314-1324, 2019. 5,
6,7,8

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448-456. pmlr, 2015. 5

Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), pages 807-814, 2010. 5

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic relu. In Com-
puter Vision—-ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part XIX 16,
pages 351-367. Springer, 2020. 5

Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, On-
cel Tuzel, and Anurag Ranjan. Mobileone: An improved
one millisecond mobile backbone. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7907-7917, 2023. 5,6, 7, 8

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 5

Ilya Loshchilov and Frank Hutter.
gradient descent with warm restarts.
arXiv:1608.03983, 2016. 5

Sgdr: Stochastic
arXiv preprint

[59]

[60]

[61]

[62]

(63]

[64]

[65]

(66]

[67]

[68]

(69]

(70]

(71]

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 5

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI conference on artificial intelligence, volume 34,
pages 13001-13008, 2020. 5

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
113-123, 2019. 5

Ke Zhang et al Junjie Bai, Fang Lu. Onnx: Open standard
for machine learning interoperability. https://github.
com/onnx/onnx, 2019. 5

Core ml tools. https://coremltools.readme.io/
docs, 2017. Use Core ML Tools to convert models from
third-party libraries to Core ML. 5

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980-2988, 2017. 5, 7

Kai Chen, Jiaqgi Wang, Jiangmiao Pang, Yuhang Cao,
Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei
Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu,
Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetec-
tion: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155, 2019. 5

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116-131, 2018. 6, 8, 14
Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1580-1589,
2020. 6, 8

fvcore. fair. https : / / github . com /
facebookresearch/fvcore, 2019. 6

Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed,
Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan.
Swiftformer: Efficient additive attention for transformer-
based real-time mobile vision applications. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 17425-17436, October 2023. 7, 8
Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):415-424,2022. 7, 13

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 8


https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://coremltools.readme.io/docs
https://coremltools.readme.io/docs
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

(81]

(82]

[83]

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6848-6856, 2018. 8

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages

13733-13742,2021. 8

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vi-
tae: Vision transformer advanced by exploring intrinsic in-
ductive bias. Advances in Neural Information Processing
Systems, 34:28522-28535, 2021. 8

Liyuan Liu, Jialu Liu, and Jiawei Han. Multi-head or
single-head? an empirical comparison for transformer train-
ing. arXiv preprint arXiv:2106.09650, 2021. 8

Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadal-
lah, and Zhangyang Wang. The principle of diversity: Train-
ing stronger vision transformers calls for reducing all levels
of redundancy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12020—
12030, 2022. 8

zhuofan xia, Xuran Pan, Xuan Jin, Yuan He, Hui Xue’, Shiji
Song, and Gao Huang. Budgeted training for vision trans-
former. In The Eleventh International Conference on Learn-
ing Representations, 2023. 8

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021. 8

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 13

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213-229. Springer, 2020. 13

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 13, 14

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 32-42,
October 2021. 13

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances
in Neural Information Processing Systems, 34:15908-15919,
2021. 13

[84]

(85]

(86]

(87]

(88]

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data
sizes. Advances in Neural Information Processing Systems,
34:3965-3977,2021. 13

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bo-
janowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Na-
talia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit:
Cross-covariance image transformers. Advances in neural
information processing systems, 34:20014-20027, 2021. 13

Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao.
Focal modulation networks. Advances in Neural Information
Processing Systems, 35:4203-4217, 2022. 13

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976-11986,
2022. 13

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Hougiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3651-3660, 2021. 13



SHVIT: Single-Head Vision Transformer with Memory Efficient Macro Design
—— Supplementary Material —

This supplementary material presents additional comparison
results, memory analysis, detection results, and experimental set-
tings.

A. Comparison with Tiny Variants of Large-
scale Models

We compare our model against tiny variants of established
models in Tab. 7. Our model, when applied to higher resolu-
tions, outperforms state-of-the-art models in terms of parameter
and throughput. Compared to Swin-T [40], our SHViT-S4,354 is
0.3% inferior in accuracy but is 2.3x / 9.5% faster on the A100
GPU / Intel CPU.

In Fig. 9, we also provide further results of Section 3.2. It
demonstrates improved speed performance when increasing the
resolution not only on mobile devices but also on other inference
platforms compared to the recent models [7, 8]. This result show-
cases that our model can be a competitive alternative in real-world
applications. Further analysis of these performance enhancements
will be detailed in the following section.

B. Memory Efficiency Analysis

Our model has a larger number of parameters compared
to lightweight models. For instance, SHViT-S3 has 2.7x more
parameters compared to EfficientNet-BO [24]. However, an im-
portant consideration for deploying the model on resource-
constrained devices is the memory access cost of the feature maps.
On an I/0 bound devices, the number of memory access for a given
layer is as follows

2xbxhxwxc+k?xc? (®)]

Particularly, when increasing batch size to enhance throughput, or
for applications that require high-resolution input, the impact of
the first term in the above equation becomes significantly more
critical. Our proposed macro and micro designs considerably re-
duce memory usage by eliminating redundancies in the first term’s
h x w and ¢ components, respectively. In Tab. 8, our model, de-
spite having more parameters than EfficientNet-B0, consumes less
test memory. Notably, the disparity in memory usage grows with
increasing batch sizes.

C. Further Results on COCO Detection

We also present results on COCO object detection bench-
mark [79] with DEtection TRansformer (DETR) [80, 81] frame-
work in Tab. 9.

The encoder of DETR consists of self-attention and FFN, and
the decoder consists of self-attention, cross-attention, and FEN. To
demonstrate the efficacy of our single-head attention module not
only as a feature extractor but also as a detection head, we apply
single-head design to the encdoer’s self-attention and decoder’s
cross-attention layers. These two layers involve significant com-
putational costs, thus employing a single-head design can greatly

Params FLOPs Throughput (image/s) Top-1

Model

™M) G) GPU  CPUonnx (%)
CaiT-XXS36 [82] 17 3.8 1394 24 79.1
Twins-PCPVT-S [49] 24 38 3800 53 81.2
Swin-T [40] 28 4.5 2868 33 81.3
TNT-S [83] 24 52 1554 37 81.5
CoAtNet-0 [84] 25 42 2448 53 81.6
DeiT-B [31] 87 17.6 3227 21 81.8
XCiT-S12 [85] 26 4.8 3110 - 82.0
PVTv2-B2 [70] 25 4.0 2924 14 82.0
FocalNet-T [86] 28 44 2808 68 82.1
ConvNeXt-T [87] 29 4.5 3325 49 82.1
SHViT-S4 17 1.0 14283 509 79.4
SHViT-S4, 334 17 2.2 6702 315 81.0
SHViT-S4, 5,5 17 4.0 3957 198 82.0

Table 7. Comparison with the tiny variants of state-of-the-art large-
scale models on ImageNet-1K classification. ‘r384’ means fine-
tuned at 384 X384 resolution. Models which could not be reliably
converted to ONNX format are annotated by ‘—’.

—&— SHVIT-S4 79.4% (2.0ms) @ 256 4.3x
—e~ FastVITT12 79.1% (10.0ms) @ 256
- EfficientFormer-L1 (4.1ms) 77.3% @ 224

—o— SHVIT:54 79.4% (0.13ms) @ 256
—o— FastViTT12 79.1% (0.24ms) @ 256
e~ EfficientFormer-L1 (0.18ms) 77.3% @ 224

GPU Latency (in

200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
Image Resolution (in pixels) Image Resolution (in pixels)

Figure 9. GPU, CPU latency comparison of a SHViT-S4 with
recent state-of-the-art FastViT [7] and EfficientFormer [8]; mea-
sured on A100 GPU, Intel CPU for various image resolutions.

Top-1 Params Inference Memory (MB) / Throughput (images/s)

(%) M) bsl bs32 bs256 bs1024
SHVIT-S3 77.4 142 18557147 1963 /4691 2613/20522 5525/22309
EfficientNet-BO  77.1 53 1931/175 2015/5427 3861/8433 10493 /8706

Model

Table 8. Memory Consumption Comparison with EfficientNet-
B0 [24]. ‘bs32’ indicates that test time memory consumption and
throughput are measured at batch size of 32.

enhance the model speed. However, in the detection head, each of
the attention weights localizes different extremities [88], making
it challenging to simply combine them into a single-head design.
Furthermore, we find that the multi-head design in both the initial
layer and latter layers of the encoder/decoder is vital. Thus, we em-
ploy single-head attention modules in the 2nd, 3rd, and 4th layers
of each encoder/decoder. To minimize performance degradation,
we also increase the head dimension in the single-head module
from 32 to 64. We train our model using the training recipe of De-
formable DETR [80, 81]. As shown in Tab. 9, single-head module
demonstrates reasonable performance as a detector head and is a



Method Params FPS AP AP;y AP;; APs APy APy
Deformable DETR w/ single-head  37.1M  31.4 4% 1) 43.1 62.7 46.6 263 466 572
Deformable DETR 40.0M 254 438 626 477 264 47.1 580

Table 9. Effectiveness of our Single-Head Attention module with
Deformable DETR [81] framework. Our method improves test
speed by 24% without significant performance degradation.

competitive alternative for applications where inference speed is
crucial.

D. More Details on Redundancy Experiments

In this section, we provide implementation details of section 2.2.
head similarity analysis. For each layer ¢, the average cosine sim-
ilarity value is computed as:

HeadSim; = L j Zcos(h@adj, heady)  (6)
i

Np(Np —1 ‘

where NN}, is the number of heads. Then, the value is averaged for
all batches.

head ablation study. In order to perform head ablation exper-
iments, we modify the formula for Multi-Head Self-Attention
(MHSA):

MHSA = Concat(d,heads, ..., ovheadn )W,  (7)
head; = Attention(X; W2, X, W/, X, W,"), ®)
Attention(q, k, v) = Softmax(qk’ /v/dhead)V, )

where the 0 are mask vaiables with values in {0, 1}. When all §
are equal to 1, the above layer is equivalent to the MHSA layer. In
order to ablate head i, we simply set §; = 0. We conduct experi-
ments by selectively removing one or more attention heads from a
given architecture during test time and assessing the resulting im-
pact on accuracy. And we report the best accuracy for each layer in
the model, i.e. the accuracy achieved by reducing the entire layer
to the single most important head.

We further investigate head redundancy in DeiT-S-Distill [31],
a vision transformer distilled with knowledge from ConvNets. In
the distilled model, we can also observe a significant computa-
tional redundancy among many heads in the latter stages. Addi-
tionally, in the early stages, where many heads operate similarly
to convolution, there is a relatively substantial decline in perfor-
mance.

E. Further Discussions on Related Works

About Macro Design. Our patch embedding scheme is similar
to that of [10,27], but the derivation process takes place from a
completely different perspective. While [10] indirectly determines
the patch embedding size through experiment grafting ResNet and
DeiT, our work, on the other hand, investigate redundancy from
the beginning, analyzing it separately in terms of spatial and chan-
nel. This allows us to address not only the spatial redundancy
in traditional patch embedding but also propose a SHSA mod-
ule, in contrast to [10] which employs MHSA (at mobile, SHViT-
S4 80.2%/1.6ms vs. LeViT-192 80.0%/28.0ms). To the best of
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Figure 10. Head ablation study on DeiT-Small-Distill [31].

our knowledge, none of existing works have analyzed the effects
(speed, memory efficiency) of resolving spatial redundancy in di-
verse environments (devices, tasks).

About Partial Design in SHSA. Partial channel design has also
been employed in previous research [30, 66]. However, our work
is distinct in both motivation and effectiveness. While prior work
primarily focused on FLOPs (or throughput) and so employs con-
volutions (either depthwise or vanilla) on partial channels, this pa-
per addresses multi-head redundancy by employing attention with
single-head on partial channels. Furthermore, our SHSA, with
preceding convolution, memory-efficiently leverages two comple-
mentary features in parallel within a single token mixer [12,43].
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