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Heat transfer is studied in the system of electron double layers of correlated composite fermion
quantum liquids. In the near-field regime, the primary mechanism governing interlayer energy
transfer is mediated by the Coulomb interaction of thermally-driven charge density fluctuations.
The corresponding interlayer thermal conductance is computed across various limiting cases of the
composite fermion Chern-Simons gauge theory, encompassing ballistic, diffusive, and hydrodynamic
regimes. Plasmon enhancement of the heat transfer is discussed. The relationship between the heat
transfer conductance and the drag resistance is presented for electron states formed in the fractional
quantum Hall effect of even denominator filling fractions.

I. INTRODUCTION

In studies of strongly correlated electrons of condensed
matter systems, the problem of two-dimensional (2D)
fermions coupled to a gauge field arises naturally in many
different contexts as an effective low-energy model. The
emergent gauge theory provides a powerful framework to
address properties of quantum spin systems, fractional
quantum Hall liquids, and unconventional superconduc-
tors [1, 2].

In the paradigmatic example of the fractional quan-
tum Hall effect with the even denominator filling frac-
tions, such as the half-filled Landau level [3, 4], the effec-
tive action description is obtained in connection to the
composite fermion (CF) representation [5–7]. A compos-
ite fermion is introduced in the theory by attaching an
even number of flux quanta to an electron. This transfor-
mation is realized by introducing an appropriate Chern-
Simons gauge field. There are several advantages of such
reformulation of the original problem. At the mean-field
level, the composite fermion experiences no magnetic
field, which is enforced by the cancellation of the properly
chosen Chern-Simon flux and the externally applied mag-
netic field. Consequently, the system of strongly inter-
acting electrons in a magnetic field can be mapped onto
a Fermi liquid of weakly interacting composite fermion
quasiparticles. Extending beyond the mean-field level,
fluctuations of the gauge field can be addressed within
the random-phase approximation (RPA). The approach
based in the Chern-Simons theory has demonstrated suc-
cess, enabling relatively straightforward and systematic
calculations of experimentally measurable quantities such
as conductivities and various response functions, as elab-
orated in Refs. [8–13]. It is worth noting, however, that
the electromagnetic and thermal responses of composite
fermions differ significantly from those observed in con-
ventional Fermi liquids.

The double-layer quantum well heterostructures, com-
posed of closely spaced parallel two-dimensional electron
systems, unveil a myriad of intriguing quantum Hall
physics. These systems offer a unique platform for ex-
ploring nonlocal transport effects that are exclusive to
bilayers. Experimentally observed examples of emer-

gent phenomena in high-mobility semiconductor devices
or graphene bilayers include Coulomb drag [14–18] and
quantum Hall drag [19–22], particularly at half-filling per
layer. Additionally, superfluid exciton condensation of
composite quasiparticles has been observed [23–26]. The
existing theories provide a foundational support for many
observed features [27–35], and go beyond by identifying
a host of other possible states at fractional total filling
some of which are expected to display exotic topological
properties [36–40].

This paper is motivated by the physics of bilayers,
with a primary objective of investigating specific thermal
transfer properties defined by the near-field effect [41–43].
It has long been established [44–46] that the heat flux
between two closely spaced planar bodies, maintained
at different temperatures, is dominated by fluctuation-
driven near-field evanescent electromagnetic modes. This
regime is realized when the interlayer separation becomes
smaller than the thermal de Broglie wavelength of the
photon. Notably, for conducting layers, such a near-field
effect is dominated by the Coulomb interactions between
thermal fluctuations of electron density [47]. Despite its
relevance to most modern nanostructures, see e.g. Refs.
[48–51], this physics has yet to be explored in the context
of composite fermion double-layer systems, constituting
our primary goal.

The presentation is organized as follows. In Section
II, we apply the RPA of Chern-Simons theory to com-
pute the near-field thermal conductance between unequi-
librated layers in a composite fermion picture, discussing
the coupling between layers in purely electronic terms.
This approach elucidates the underlying physical picture
and establishes connections to previous works on heat
transfer between 2D conductors. In Section III, we em-
ploy the semiclassical Boltzmann equation to incorporate
impurity scattering and derive heat transfer in the dif-
fusive limit. Section IV delves into the hydrodynamic
limit of the composite fermion liquid, assuming fast in-
tralayer equilibration and subjecting the system to a dis-
order potential with a long correlation radius. In this
regime, we derive heat conductance in terms of dissipa-
tive coefficients of the fluid, such as intrinsic conductivity
and viscosity, and the correlation function of the disor-
der potential. Additionally, we highlight the mechanism
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FIG. 1. Schematic representation of the interactively cou-
pled two-dimensional composite fermion liquids formed in an
electron double layer system with interlayer spacing d. The
composite fermion quasiparticles are depicted as circles with
attached fluxes ϕ labeled by arrows. The interlayer coupling
is denoted by the Coulomb potential U12. The underlying
background of each layer represents disorder potential. Each
layer is kept at different temperatures T1,2 and wavy dashed
lines pointing up or down represent vertical heat fluxes J1,2

between the layers generated in the near-field regime.

of plasmonic enhancement. For a broader perspective,
in Section V we draw parallels between the technicalities
underlying the near-field effect and the problem of non-
local Coulomb drag resistance [52]. Finally, in Sec. VI
we provide typical parameters used in the calculations
and the order of magnitude estimates. In the paper we
work in the natural units setting Boltzmann and Planck
constants to unity kB = ℏ = 1.

II. NEAR-FIELD EFFECT IN BILAYERS

A. Formalism

The basic setup for considering the near-field effect
consists of two parallel 2D layers separated by a distance
d, and kept at different temperatures T1 and T2, see Fig.
1 for illustration. It can be shown that in such a bilayer
the heat current per unit area is given by

J =

∫
ω[N1 −N2]ℑΠ1(q, ω)ℑΠ2(q, ω)|U12(q, ω)|2dΓqω

(1)
In the theory of near-field heat transfer (NFHT) this ex-
pression is often called the Caroli formula. It can be
derived from variety of methods based on e.g. fluctua-
tional electrodynamics [44, 45], nonequilibrium Green’s
function formalism [53, 54], kinetic equation [55–57], and
Ehrenfest theorem [58, 59]. The physical picture behind
Eq. (1) was comprehensively discussed in the literature
by many authors. Here we briefly repeat main points
to have a self-contained presentation. In the Coulomb
limit NHFT arises from scattering of electrons in differ-
ent layers resulting in finite momentum q and energy ω
transfer. Thus the integration expands over the phase

space dΓqω = dωd2q/(2π)3 and N1,2(ω) = 1/(eω/T1,2 −1)
denotes the Planck distribution function. In the linear re-
sponse, the layer polarizability Π1,2(q, ω) is given by the
density-density correlation function, which relates the in-
duced charge density to the total electric potential [60].
The response function Π1,2(q, ω) also determines the dy-
namically screened Coulomb potential both for intralayer
and interlayer interaction. It follows from the matrix
Dyson equation. Within the limits of RPA and written
in the layer basis it reads

Û = V̂q ◦
(
1 + Π̂ ◦ V̂q

)−1

(2)

where ◦ denotes matrix multiplication and

V̂q = Vq

(
1 e−qd

e−qd 1

)
, Π̂ =

(
Π1 0
0 Π2

)
. (3)

Here Vq = 2πe2/ϵq is the bare Coulomb potential and ϵ is
the dielectric constant of the host material surrounding
the electron layers. The fact that the polarization oper-
ator has no off-diagonal elements, reflects the assumed
absence of tunneling between the layers. In Eq. (1)

U12(q, ω) is the off-diagonal element of Û(q, ω). It takes
the form

U12 =
Vqe

−qd

(1 + VqΠ1)(1 + VqΠ2)− V 2
q Π1Π2e−2qd

. (4)

The validity of Eq. (1) is not limited to a small differ-
ence between T1 and T2, however it is useful to introduce
the linear in ∆T = T1 − T2 heat transfer conductance

κ = lim
T1,2→T

J(T1, T2)

T1 − T2
(5)

Differentiating Eq. (1), and assuming for simplicity iden-
tical layers, Π1,2 = Π, one finds

κ =

∫
ω2(ℑΠ(q, ω))2|U(q, ω)|2

4T 2 sinh2(ω/2T )
dΓqω. (6)

In general, the temperature dependence of κ comes
from the thermal factor and temperature dependence
of the polarization function. For example, in a two-
dimensional electron gas (2DEG) at temperatures be-
low Fermi energy, polarization is weakly temperature
dependent, therefore, the main dependence on T comes
from the thermal broadening and phase space available
to quasiparticle excitations. In contrast, in graphene
devices close to charge neutrality, polarizability is very
strongly temperature dependent, which leads to addi-
tional features. The dependence of κ on the interlayer
spacing d is primarily determined by the screening effects,
which are implicit in the form of the interlayer interaction
potential U(q, ω).
In bilayers of composite fermions, polarization is ap-

proximately temperature independent. However, proper-
ties of this function at low-frequency and long-wavelength
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lead to an emergence of the T -dependent momentum
scale that sets the typical momentum transfer between
the layers. In a conventional 2DEG this scale is simply
set by the interlayer separation q ∼ 1/d. Since Π(q, ω)
also enters the interlayer interaction and modifies screen-
ing, this combined effect leads to a unique T and d de-
pendence of κ, which differs significantly from that of the
Fermi liquid regime.

B. Composite fermion description

The single-layer electronic polarizability Π(q, ω) can be
calculated with the composite fermion theory. Follow-
ing Ref. [4] we introduce electronic Π̂el and composite

fermion Π̂cf density and current response functions. The
latter describes the response of the composite fermions
to the total scalar and vector potentials including exter-
nal, Coulomb, and Chern-Simons contributions. These
functions are related to each other,

(Π̂el)−1 = Ĉ + (Π̂cf)−1, (7)

by the Chern-Simons interaction matrix

Ĉ =

(
0 2πiϕ/q

−2πiϕ/q 0

)
. (8)

For the case of the half-filled Landau level ϕ = 2. The
composite fermion matrix Π̂cf can be calculated within
the RPA and simply corresponds to the noninteracting
fermion at zero magnetic field. Therefore, it is a diagonal
matrix

Π̂cf =

(
Πcf

ρρ 0
0 Πcf

jj

)
. (9)

The density element of this matrix reflects the finite com-
pressibility of the system. The current element describes
the diamagnetism. In the low-energy limit q/kF ≪ 1 and
ω/vFq ≪ 1, and to the lowest nonvanishing order [4]

Πcf
ρρ ≈ m∗

2π
, Πcf

jj ≈ − q2

24πm∗ +
iωkF
2πq

, (10)

where m∗ is the quasiparticle effective mass [61, 62], vF
and kF =

√
4πn are the Fermi velocity and momentum,

respectively, with n being average particle density per
layer. The imaginary part of Πcf

jj describes Landau damp-

ing. We need to extract the density element of Π̂el that
enters Eq. (6). Inverting matrix in Eq.(7) one finds

Π(q, ω) ≡ Πel
ρρ =

Πcf
ρρ

1−Πcf
ρρΠ

cf
jj(2πϕ/q)

2
. (11)

Using the explicit forms of Πcf
ρρ and Πcf

jj from Eq. (10)
we arrive at the well-known result [4]

Π(q, ω) =
νq3

q3 − 2πiνϕ2ωkF
, (12)
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FIG. 2. Plots of the dimensionless function F defined by Eq.
(16) that show its dependence on the interlayer separation d
at different temperatures as described by the dimensionless
parameter αT (top panel) and vise versa, dependence on αT

at several values of kTFd (bottom panel).

where we introduced the thermodynamic compressibil-
ity ν = (m∗/2π)/(1 + ϕ2/12). The above form of the
polarizability is reminiscent of that of a disordered elec-
tron gas νDq2/(Dq2 − iω), see further discussion in Sec.
III, but with an effective diffusion constant D that de-
pends linearly on q. This particular feature leads to a
slow spreading of charge fluctuations and it also weakens
screening effects thus enhancing the thermal transfer due
to Coulomb coupling.

C. NFHT conductance

With all the ingredients described in the previous sec-
tion, we focus our attention to Eq. (6). The key element
that we need to unpack is the product ℑΠ(q, ω)|U(q, ω)|.
In the case of symmetric layers, the denominator of
the interlayer interaction in Eg. (4) factorizes into a
product of two simple terms (1 + VqΠ) ± VqΠe−qd =
1 + VqΠ(1 ± e−qd). This leads to the following identity
(omitting q, ω arguments of Π and U for brevity)

ℑ(Π)|U | =

−ℑ(Π−1)

∣∣∣∣ Vqe
−qd

[Π−1 + Vq(1 + e−qd)][Π−1 + Vq(1− e−qd)]

∣∣∣∣ .
(13)
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It is instructive to examine poles of the product
ℑ(Π)|U |. From the expression above it is clear that they
occur when Π−1 = −Vq(1 ± e−qd). From Eq. (12) it
then follows that in the long wave length limit, q → 0,
we have two overdapmed modes, ω+ ∝ iq2 and ω− ∝ iq3.
Therefore, density fluctuations relax slowly. It should
be also stressed, that screening of such fluctuations is
weak. These two factors lead to a substantial enhance-
ment of heat transfer and drag resistance. Based on these
considerations one should expect an unconventional tem-
perature dependence of κ. Indeed, the typical frequency
of excitations is set by temperature ω ∝ T . This im-
mediately leads to a characteristic transfer momentum
q ∝ T 1/3 of the ω− mode, which will be shown to dom-
inate the response of the system. This is distinct from
the case of conventional 2DEG, where typical q are de-
termined by the interlayer spacing q ∝ 1/d. As a conse-
quence, the phase space integral in Eq. (6) will be dom-
inated by the characteristic momenta of the collective
modes. Since q ∝ T 1/3 one expects κ to scale with the
fractional power of temperature. The scaling q ∝ T 1/3 at
lowest temperatures also supports the argument of weak
screening since in that limit e−qd factor in the interlayer
interaction can be approximated by unity since qd ≪ 1.
To further illuminate the physical significance of poles,

one can express the polarization function Π(q, ω) in terms
of the conductivity σ(q, ω). This is easily done by us-
ing the continuity equation relating density and current,
along with the Kubo formula that defines conductivity
from the current-current correlation function, whereas Π
is determned by the density-density correlation function.
One thus finds σ(q, ω) = −ie2(ω/q2)Π(q, ω). Therefore,
the dispersion relation for the collective modes can be
written as

iω =
q2

e2
σ(q, ω)Vq(1± e−qd). (14)

In the range of frequencies where conductivity is real the
solution to this equation gives only overdamped modes
discussed above. However, when σ is purely imaginary,
the solution of Eq.(14) are given by plasmons of the
double-layer system [63], namely in-phase (optical) and
out-of-phase (acoustic) density oscillations. Plasmons
are higher in energy excitations and their role in the heat
transfer and drag resistance will be discussed in Sec. IV
and V respectively. We also remind that Eq. (14) played
a pivotal role in the analysis of surface acoustic wave
experiments [64, 65], which provided the first clear indi-
cation of the existence of a compressible state of the half
filled Landau level.

To this end, we turn to the analysis of Eq. (6). The in-
tegral in Eq. (6), with an input from Eqs. (12) and (13),
suggests the following dimensionless variables x = qd and
y = ω/T for momenta and frequencies respectively. After
some straightforward algebra, this leads to the result

κ =
Tk2TF

8π2
F(αT , kTFd), (15)

where we introduced the inverse Thomas-Fermi screening
radius kTF = 2πe2ν/ϵ and dimensionless parameter αT =
2πνϕ2TkF d

3. The two-parameter dimensionless function
F(a, b) is defined by the following double integral

F(a, b) =

+∞∫∫
0

a2x5y4e−2xdxdy

sinh2(y/2)|X+(a, b)|2|X−(a, b)|2
(16)

with

X±(a, b) = x3 + bx2(1± e−x)− iay. (17)

We have evaluated this function numerically in order to
extract the characteristic dependence of thermal conduc-
tance on temperature and interlayer separation. In Fig.
2 we plot F as a function of kTFd at several different
values of αT , and conversely, as a function of αT at vary-
ing kTFd. We always work under the tacit assumption
that kTFd > 1. This parameter range is relevant ex-
perimentally and compatible with the condition required
for the near-field effect, namely k−1

TF < d < c/T . It is
clear that F decays algebraically as a power law in 1/d,
so does the NFHT conductance κ ∝ (1/d)pd with the
exponent pd > 1. The temperature dependence of F ,
implicit in the parameter αT , is nonmonotonic. It has
a peak at αT ∼ 1 that sets the scale for a characteristic
crossover temperature ∼ EF /(kF d)

3. For kF d ≫ 1 this
temperature is much smaller than the Fermi energy so
that the crossover occurs within the domain of validity
of low-energy effective model. In order to highlight the
temperature dependence of conductance κ, we plot the
product TF(αT , kTFd) versus αT with the proper prefac-
tor based on Eq. (15). This is shown in Fig. 3. From the
graph it is apparent that thermal conductance displays
monotonic growth. At lowest temperatures, it scales as
a power law, κ ∝ T pT , with the exponent pT > 1. This
regime is rather narrow. It is followed by a much wider
regime with approximately T -linear behavior and a round
off at higher temperatures when αT > 1.
The limiting cases discussed above can be analyzed an-

alytically. The integral is dominated by values {x, y} <
1. Provided {kFd, kTFd} > 1 one can approximate
X+ ≈ 2kTFdx

2 − iαT y and X+ ≈ (1 + kTFd)x
3 − iαT y,

and take e−2x ≈ 1 in the numerator of Eq. (16). These
steps give

F ≈
+∞∫∫
0

dxdy
y4

sinh2(y/2)

× α2
Tx

5

[4(kTFd)2x4 + α2
T y

2][(1 + kTFd)2x6 + α2
T y

2]
. (18)

For the sufficiently small αT , one can further neglect
α2
T y

2 as compared to 4(kTFd)
2x4 in the first bracket of

the denominator, but the y dependence must be retained
in the second bracket, which controls convergence of the x
integral. Note this bracket corresponds to the ω− mode.
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FIG. 3. Temperature dependence of the dimensionless ther-
mal transfer conductance K = κ/κ0 [from Eq. (6)] plotted
in the units of κ0 = r2sνvF/8πϕ

2kFd
3. The bottom panel

shows the same data as the top panel but zoomed into the
low-temperature domain of parameters.

After this additional approximation the x integration be-
comes elementary and can be done by rescaling the vari-
able x → (αT y/(1 + kTFd))

1/3x:

F ≈ 1

(2kTFd)2

(
αT

1 + kTFd

) 2
3

∞∫
0

y
8
3 dy

sinh2(y/2)

∞∫
0

xdx

(x6 + 1)
.

(19)

The integral over x brings a factor of π/(3
√
3) while the y

integral can be expressed as a product of Euler’s gamma
function and Riemann’s zeta function as 4Γ( 113 )ζ( 83 ). Us-
ing this asymptote of F in Eq. (6) we find

κ ≈
Γ( 113 )ζ( 83 )

24
√
3π

T

d2

(
αT

1 + kTFd

) 2
3

. (20)

This asymptote applies for T ≪ EF(kTFd)/(kFd)
3. Re-

call that kTF ∼ kF for rs = e2/ϵvF ∼ 1. Since αT con-
tains one power of temperature and three powers of in-
terlayer separation we deduce that κ ∝ T 5/3/d2/3 in this
limit. It can be compared to the corresponding result of
the Fermi liquid theory κ ∝ T 3/d2 (an extra log factor is
omitted for brevity, see Refs. [57, 66] for a complete re-
sult). We conclude that weak screening leads to a much
slower decay of the heat transfer conductance with inter-
layer spacing thus providing a significantly stronger effect
(for numerical estimates see Sec. VI).

Equation (20) should also hold for the filling fractions
1/4 and 3/4 per layer. The only modification is in the
value of the flux attachment ϕ = 4. This leads to a
verifiable conclusion that at low temperatures, where Eq.
(20) applies, if the filling fraction is varied from 1/2 to 1/4
(or 3/4) at fixed electron density, then the interlayer heat
conductance should increase by a factor close to 45/3.
At higher temperatures, T > EF/(kFd)

2, we deduce
from Eq. (18) a different asymptote that translates to the
conductance in the form (with the logarithmic accuracy)

κ ≈ T

18d2
ln

(
αT

kTFd

)
, (21)

corresponding to the approximate T -linear regime clearly
visible in Fig. (3). Interestingly, in this limit the heat
conductance is nearly universal, i.e. independent of any
microscopic parameters of the material (modulo the log-
arithmic factor).
The validity of Eq. (6) should extrapolate to the onset

of the collision-dominated regime with respect of the in-
tralayer collisions. It is marked by the condition when the
composite fermion mean free path lcf becomes compara-
ble to the interlayer spacing, lcf ∼ d. In the framework of
the Chern-Simons theory lcf ∼ k−1

F (EF/T )
2/3, therefore

the approach based on the RPA breaks down above the
scale of ∼ EF/(kFd)

3/2.

III. DISORDERED BILAYERS

It is of practical importance to consider effect of dis-
order which is inevitably present in any bilayer device.
The impurity scattering can be included via the Boltz-
mann equation (BE) for the composite fermion distribu-
tion function [8, 11]. At the simplest level, the collision
term of the BE can be taken in the relaxation time ap-
proximation. While it may be insufficient in general this
approach is adequate to describe the low-energy diffusive
limit. Solving this equation in response to the alternat-
ing electric field ∝ eiqr−iωt leads to the density response
function of the form

Πcf
ρρ =

m∗

2π

[
1 +

iωτcf√
(1− iωτcf)2 + (qvFτcf)2 − 1

]
, (22)

where τcf is the composite fermion transport mean free
time. Extrapolating this result empirically to the dia-
magnetic term one can write

Πcf
jj = − q2

24πm∗

− iωm∗

2πq2τcf

[
(1− iωτcf)−

√
(1− iωτcf)2 + (qvFτcf)2

]
,

(23)

which has a correct form of Eq. (10) in the clean
limit τcf → ∞. In contrast, in the diffusive limit
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{ωτcf, qvFτcf} ≪ 1, expanding both Πcf
ρρ and Πcf

jj and
using Eq. (11) one finds

Π(q, ω) ≈ νDq2

Dq2 − iω
, (24)

with the effective diffusion constant in the form

D =
1 + ϕ2/12

1 + (ϕkFlcf/2)2
v2F τcf
2

. (25)

Coincidently, the density-density response function of the
form of Eq. (24) is identical to that of a disorder 2DEG.
Therefore, the dynamically screened interaction in this
case takes a familiar form from the theory of disordered
electron systems [67]

U(q, ω) ≈
(

1

2νDq2

)
(Dq2 − iω)2

(1 + kTFd)Dq2 − iω
. (26)

Substituting this expression and Eq. (24) into Eq. (6)
leads to the heat conductance in the form

κ =

∫
(ω2/4T )2

sinh2(ω/2T )

dΓqω

(1 + kTFd)2(Dq2)2 + ω2
(27)

After integration we find as a final result

κ =
3ζ(3)

16π

1

(1 + kTFd)

T

L2
T

, (28)

where we have introduced the diffusive thermal length
LT =

√
D/T . Notice that in this limit diffusive spread-

ing of charge density fluctuations restores the Fermi-
liquid form of the temperature dependence of κ ∝ T 2

[56, 57].

IV. HYDRODYNAMIC REGIME

In clean electron systems with sufficiently frequent col-
lisions the system can attain a hydrodynamic limit. It
can be described macroscopically based on the equations
of motion for particle, entropy, and momentum densities
of the fluid. This formulation enables obtaining results
that go beyond the perturbation theory in interaction.
However, it requires a proper values of temperatures and
particle density to justify the hydrodynamic description.
In the context of bilayers, hydrodynamic theory can be
applicable at temperatures when intralayer mean free
path becomes shorter than interlayer separation.

The near-field effect in the hydrodynamic limit was
considered recently in Ref. [59] for pristine systems. Here
we merely repeat this calculation for composite fermions
including the generalization to incorporate the disorder
potential with the long correlation radius that exceeds
the scale of equilibration length. It introduces friction
that damps collective excitations at long wave length. In
what follows, we summarize the main steps of derivation
and present the end result.

f(β)

g(β)

0.2 0.4 0.6 0.8 1.0
β=

1

Ωp τ

2

4

6

8

10
f(β),g(β)

FIG. 4. Numerically evaluated dimensionless functions that
describe the plasmon enhancement of thermal conductance
κ. Plasmon resonances are most pronounced for Ωpτ > 1
therefore we constrain the plot only to the values of β < 1.

One starts from the continuity and Navier-Stokes equa-
tions for an electron fluid. The latter includes electric
potential, which is related to the electron charge den-
sity by the Poisson equation. Working to the linear or-
der in fluctuations one expresses electron density vari-
ation mediated by fluctuating viscous stresses and in-
trinsic currents. This approach to the problem based
on the hydrodynamic equations with random Langevin
fluxes is analogous to the fluctuational electrodynamics
in the Coulomb limit. The correlation functions of the
hydrodynamic Langevin sources are found from the re-
spective fluctuation-dissipation relations [68]. Heat flux
between the layers can be directly related to the dy-
namic structure factor of the fluid which is given by the
density-density response function [69]. Since fluctuations
of viscous stresses are not correlated with fluctuations of
intrinsic currents, the corresponding near-field transfer
conductance is found as a sum of two terms

κ = κσ + κυ, (29a)

where

κσ =

∫
dΓqω

(
2πe2

ϵq

)
e−qd

(
2σq2

e2

)
×

ω2(ω2 + 1/τ2)(ω2
+ − ω2

−)/τ

[(ω2 − ω2
+)

2 + ω2/τ2][(ω2 − ω2
−)

2 + ω2/τ2]
, (29b)

and

κυ =

∫
dΓqω

(
2πe2

ϵq

)
e−qd

(
4(η + ζ)q4

(m∗)2

)
×

ω2(ω2
+ − ω2

−)/τ

[(ω2 − ω2
+)

2 + ω2/τ2][(ω2 − ω2
−)

2 + ω2/τ2]
. (29c)

Both contributions have transparent physical meaning.
The first term under the integral of each expression,
2πe2/ϵq, is just the Coulomb potential that couples the
layers, whereas exponential, e−qd, captures the screening.
The next factor in each term represents the strength of
Langevin fluxes that drive the density fluctuations. For
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κσ it scales with the intrinsic conductivity of the fluid σ,
whereas for κυ it is determined by the shear (η) and bulk
(ζ) viscosities, as dictated by the fluctuation-dissipation
theorem. For the case of short-ranged interactions of
composite fermions one can extract intrinsic conductiv-
ity and viscosity from the model of Fermi surface coupled
to U(1) gauge field for dynamical critical exponent z = 3.
The dissipative coefficients have the following parametric
dependence [4, 70, 71]:

σ ∝ e2
(
EF

T

)2/3

, η ∼ ζ ∝ k2F

(
EF

T

)2/3

. (30)

The remaining terms in Eqs. (29b) and (29c) are just
the corresponding parts of the dynamical structure factor
that are peaked at the frequencies of two plasmon modes

ω2
± =

2πne2q

ϵm∗ (1± e−qd). (31)

The broadening of these resonances is governed by the
relaxation time τ induced by the disorder potential. The
primary difference with the earlier analysis is that in pris-
tine systems decay of plasmons is determined by the com-
bination of viscous diffusion, ℑω ∝ (η+ ζ)q2/(m∗n), and
the Maxwell relaxation, ℑω ∝ σq. It is clear that in the
long wave length limit, q → 0, attenuation of plasmons
is ultimately determined by disorder potential [72].

Both expressions for κσ and κυ can be significantly
simplified by rescaling momentum integrals in units of
x = qd and frequency integrals in units of y = ωτ . This
gives as a result

κσ =
σ

ϵd3
f(β), κυ =

υ

d4
g(β). (32)

where we introduced the kinematic viscosity of the fluid
υ = (η + ζ)/nm∗. The dimensionless functions f and
g depend on a single variable β = 1/(Ωpτ), where

Ωp =
√
2πe2n/ϵm∗d is the plasmon frequency at the

characteristic momentum transfer q = 1/d. For plas-
mons to be well-defined and long-lived excitation we as-
sume Ωpτ > 1. These functions capture the plasmon
enhancement of the heat transfer. They can be evalu-
ated numerically and plotted in Fig. 4. A crude estimate
suggests f ∼ g ∼ ln4(1/β) for β ≪ 1. Finally, we should
note that the crossover from the low-temperature RPA-
limit of the heat transfer given by Eq. (21) to the higher-
temperature hydrodynamic limit given by Eq. (32) is not
immediately clear and requires additional consideration.

V. DRAG RESISTANCE

This section serves a complementary purpose. First,
we recapitulate known result for the drag resistance in
electron bilayers at half filling of the Landau level [27–
30]. Next, we highlight several experimentally relevant
limiting cases which were not discussed in the literature
before. We do so in light of the near heat field transfer

κTFd=2
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κTFd=8
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FIG. 5. Temperature dependence of the drag resistance pre-
sented in the dimensionless units. Based on Eq. (35) R is
defined by ρD in units of (1/4πe)2(1/nd2)2 whereas αT ∝ T .

The domain of validity of Eq. (37), when R ∝ T 4/3, is limited
to the lowest temperatures T ≪ EF/(kFd)

2. Above this scale
drag resistance is nearly linear in temperature R ∝ T lnT ,
see Eq. (40).

problem, which originates from the same mechanism of
interlayer coupling. Therefore we relate the two phenom-
ena in the context of composite fermions. This parallels
recent discussion of the related physics presented in the
context of strange metals [73].
Coulomb drag [52] is an example of a nonlocal trans-

port effect that arises in the electrically isolated but in-
teractively coupled conducting layers when drag volt-
age Vdrag is induced in one layer by the drive cur-
rent Idrive in the other layer. The nonlocal resistance
ρD = Vdrag/Idrive provides a direct measure of the inter-
layer electron correlations. The microscopic foundations
of the drag effect were developed in Refs. [74–77] and the
corresponding resistance can be expressed as follows

ρD =
1

2e2n2T

∫
q2(ℑΠ(q, ω))2|U(q, ω)|2

sinh2(ω/2T )
dΓqω. (33)

Apart from the overall factor, ρD has almost the same
form as the expression for κ in Eq. (6) except that under
the integral two powers of frequency, relevant for the heat
transfer, are replaced by the two powers of momentum,
relevant for the drag. It is therefore not surprising that
these two quantities share similar characteristic features.

A. Ballistic limit

We use Eqs. (12) and (13) to rewrite Eq. (33) in the
dimensionless notations

ρD =
1

8π2e2
1

(nd2)2
R(αT , kTFd) (34)

where

R(a, b) =

+∞∫∫
0

a2b2x7y2e−2xdxdy

sinh2(y/2)|X+(a, b)|2|X−(a, b)|2
(35)



8

with x = qd and y = ω/T . From here one can extract two
limiting case of interest. At lowest temperatures, T ≪
EF/(kFd)

2, one can use exactly the same approximations
that lead to Eq. (18), namely, take X+ ≈ 2kTFdx

2,
X− ≈ (1 + kTFd)x

3 − iαT y, and e−2x ≈ 1, which gives

ρD ≈ α2
T

32π2e2
1

(nd2)2

+∞∫∫
0

x3y2dxdy

sinh2 y
2 [(1 + kTFd)2x6 + α2

T y
2]

(36)
Here x integral can be done first by rescaling the variable,
followed by y integral. Collecting all the factors we get

ρD ≈
Γ( 73 )ζ(

4
3 )

24
√
3πe2

(
1

nd2

)2 (
αT

kTFd

) 4
3

(37)

which reproduces earlier result ρD ∝ T 4/3 [27–30]. At the
intermediate temperatures, when αT > kTFd, we use dif-
ferent approximations to extract the leading asymptote.
The expressions of X± remain the same, but we recog-
nize that the dominant range of y integration is limited by
the domain y ≪ 1 therefore we can take y2/ sinh2 y

2 → 4.
This gives

ρD ≈ α2
T

2π2e2
(kTFd)

2

(nd2)2

×
+∞∫∫
0

x7e−2xdxdy

[4(kTFd)2x4 + α2
T y

2][(1 + kTFd)2x6 + α2
T y

2]
.

(38)

At this point y integration can be completed exactly with
the help of the tabulated integral for the product of two
Loretzians∫ ∞

0

dy

(y2 + a2)(y2 + b2)
=

π

2ab(a+ b)
, (39)

and the remaining x integral can be done with the loga-
rithmic accuracy to yield the final expression

ρD ≈ 1

12πe2

(
1

nd2

)2 (
αT

kTFd

)
ln

(
αT

kTFd

)
. (40)

In this limit we deduce ρD ∝ T lnT . This behavior was
clearly observed in several experiments [14, 16, 17], how-
ever it was not addressed theoretically. The full temper-
ature dependence is depicted in Fig. 5 for several values
of kTFd.

B. Diffusive limit

Eq. (33) for the drag resistance applies to the dis-
ordered systems as well with the proper modifications
to the polarization function and screened interaction.
Therefore, using Eqs. (24) and (26) we find

ρD =
1

8e2n2T

∫
ω2

sinh2 ω
2T

q2dΓqω

(1 + kTFd)2(Dq2)2 + ω2
.

(41)

The resulting temperature dependence can be estimated
as follows. It is clear that the leading contribution comes
the low-frequency ω ≲ T and small-wave-vector behavior
of the integrand. Thus the contributions to the integral
in q for q <

√
ω/D can be neglected. These observations

lead to the approximate expression

ρD ≈ 1

32π2e2n2

1

(1 + kTFd)2

∫
ω2dω/T

sinh2 ω
2T

1/lcf∫
√

ω/D

dq

D2q
.

(42)
The logarithmically divergent momentum integral is cut
by the inverse of the mean free path at the upper limit,
which confines the applicability of the diffusive approxi-
mation, and by thermal length at the lower limit, due to
approximation made to the screening of the interaction.
In principle, frequency integral should also be stopped at
1/τcf, but owing to its rapid convergence the limits can
be extended to infinity. Therefore, with the logarithmic
accuracy, one arrives at

ρD ≈ 1

12e2

(
1

nL2
T

)2 (
1

1 + kTFd

)2

ln
LT

lcf
. (43)

Coincidently, the resulting temperature dependence is
identical to that of drag resistance derived for the dis-
ordered Fermi gas at zero field ρD ∝ T 2 lnT [75, 76].

C. Hydrodynamic limit

Drag effect also admits hydrodynamic description in
strongly correlated electron liquids [35, 78–80]. Compu-
tation of the dragging force exerted from the drive layer
on electron fluid in the drag layer requires considerations
of the density fluctuation advected by the flow. This
analysis can be carried out to the linear order in hydro-
dynamic velocity. We find that drag resistance is domi-
nated by plasmon resonance and can be expressed as the
sum of two terms

ρD = ρσ + ρυ. (44)

In complete analogy with the heat transfer conductance,
the first term ρσ is generated by fluctuating intrinsic cur-
rents, whereas the second term ρυ stems from the density
fluctuations induced by viscous stresses. We find that the
latter is parametrically smaller and decays fast with the
interlayer separation. Therefore, we focus on the former
contribution that can be found in the following analytical
form

ρσ =
1

2e2n2

∫
dΓqω

(
2πe2

ϵq

)
e−qd

(
Tσq4

e2

)
×

ω2(ω2
+ − ω2

−)/τ

[(ω2 − ω2
+)

2 + ω2/τ2][(ω2 − ω2
−)

2 + ω2/τ2]
. (45)

Observe that the splitting of plasmon resonances becomes
exponentially small at q > 1/d. Therefore, in order to
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estimate the frequency integral in the above expression it
is not sufficient to take poles of two separate Lorentzians.
Fortunately, this integral can be calculated exactly so
that the above expression reduces to

ρσ =
1

2e2n2

∫
d2q

(2π)2

(
2πe2

ϵq

)
e−qd

(
Tσq4

e2

)
×

(ω2
+ − ω2

−)

[(ω2
+ − ω2

−)
2 + 2(ω2

+ + ω2
−)/τ

2]
. (46)

The final result for the transresistance can be presented
in the form

ρσ =
σ

e4
T

EF

1

(nd2)2
h(β), β =

1

Ωpτ
. (47)

The dimensionless function is defined by the integral

h(β) =
1

4

∫ ∞

0

x4e−2xdx

xe−2x + 1/β2
. (48)

This contribution to drag resistance displays anomalous
sublinear temperature dependence, ρD ∝ T 1/3. This be-
havior is qualitatively consistent with experimental ob-
servations reported in Refs. [16, 17]. Finally, we deduce
that viscosity dependent contribution scales as follows

ρυ =
ϵvF
e4

T

EF

η + ζ

n

1

(kFd)5
w(β), (49)

where w(β) is yet another dimensionless function that has
logarithmic dependance on β in the well-resolved plas-
mon limit when β < 1.

VI. PARAMETERS AND ESTIMATES

Drag of composite fermions was measured in several
groundbreaking experiments [14–17]. We take some typ-
ical values for parameters of the bilayer devices to es-
timate the magnitude of the effect and compare that
to drag between weakly correlated 2D electron systems.
Near field effect was not measured for composite fermion
bilayers but we will assume the same range of parameters
in order to estimate its value comparatively to the known
examples. Assuming identical layers with the average
electron density n ∼ 1011 cm−2 and interlayer spacing
d ∼ 200Å, we can estimate kFd ∼ 2. In principle, this
product can be much bigger since drag resistance was suc-
cessfully measured for much larger interlayer separations
up to d ∼ 5000Å [81]. For the effective mass of compos-
ite fermions we take m∗ ≈ 12mb, where mb ≈ 0.067me

is the band mass in GaAs and me is bare electron mass.

Putting these numbers together we estimate the Fermi
energy to be about EF ∼ 10 K. The condition αT∗ =
kTFd defines the crossover temperature T ∗ between low
and intermediate temperature regimes. It evaluates to
T ∗ = (2e2/ϕ2ϵvF)EF/(kFd)

2 and for above parameters
is close to ∼ 1 K. In a weakly correlated 2DEG bilayer
drag resistance is given by ρD ∼ e−2(T/EF)

2/(kFd)
4 at

temperatures T < EF/(kFd). If we compare that to re-
sistance of composite fermions at T ∼ T ∗ from Eq. (40),
accounting for the difference in Fermi energy due to ef-
fective mass, we find the ratio of the two to be roughly
(m∗/mb)

2(kFd)
4 ∼ 103. Therefore, drag of composite

fermions is three orders of magnitude stronger. This
analysis corroborates earlier conclusions [27]. The com-
posite fermion drag measured in approximately equiva-
lent bilayers (in terms of values of n and d) give values
ρD ∼ 100Ω/□ [14] and ρD ∼ 2Ω/□ [16] at T ∼ 2K. The
typical number of the zero-field value of drag in weakly
correlated 2DEG bilayers is in the range of ρD ∼ 10
mΩ/□ [82] at T ∼ 2 K. Thus, strong enhancement of
drag in composite fermions systems is apparent.
Interestingly, the same enhancement parameter ap-

plies to the near field thermal conductance. Indeed, the
Fermi liquid prediction κ ∼ (T/d2)(T/EF)

2 applicable
for T < EF/(kFd) should be compared to Eq. (20) or
(21) depending on the value of T . Then for T ∼ T ∗

we deduce the same parametric enhancement given by
(m∗/mb)

2(kFd)
4 ≫ 1.

In summary, we conducted a comprehensive analysis
of the near-field thermal transfer conductance in bilayers
of composite fermions. Our theoretical framework spans
various transport regimes, encompassing the ballistic to
hydrodynamic limits. The impact of disorder on the con-
ductance is also discussed. Additionally, we delved into
the issue of drag resistance, reproducing prior findings
and expanding the scope of results to a wider range of
parameters pertinent to experimental devices and mea-
surements.
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