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Abstract

We consider a version of the classical Hamiltonian FPU (Fermi-Pasta-Ulam) problem with
nonlinear force-strain relation in which a hardening response is taken over by a softening regime
above a critical strain value. We show that in addition to pulses (solitary waves) this discrete
system also supports non-topological and dissipation-free fronts (kinks). Moreover, we demon-
strate that these two types of supersonic traveling wave solutions belong to the same family.
Within this family, solitary waves exist for continuous ranges of velocity that extend up to a
limiting speed corresponding to kinks. As the kink velocity limit is approached from above or
below, the solitary waves become progressively more broad and acquire the structure of a kink-
antikink bundle. Direct numerical simulations and Floquet analysis of linear stability suggest
that all of the obtained solutions are effectively stable. To motivate and support our study of
the discrete problem we also analyze a quasicontinuum approximation with temporal disper-
sion. We show that this model captures the main effects observed in the discrete problem both
qualitatively and quantitatively.

1 Introduction

Front-shaped kinks and pulse-shaped solitary waves are usually perceived as two fundamentally
different types of traveling waves that are ubiquitous in nonlinear discrete systems. Both kinks and
solitary waves are localized coherent structures that represent far-from equilibrium collective phe-
nomena emerging from the underlying many-body interactions. They are encountered in integrable
and non-integrable Hamiltonian systems and can be stable or unstable. Together with breathers,
they play an important role as building blocks in complex dynamic patterns in nonlinear systems
and contribute crucially to the mechanical energy transmission at the microscale [1–4]. Important
applications associated with mechanical kinks and solitary waves are mitigation of impact loadings,
transmission, guiding and encryption of mechanical information, including enabling logic operations
and activating soft robotics [5, 6].

Kinks, originally introduced in the context of sine-Gordon-type equations, are usually perceived
as self-induced topological defects representing connections between different energy wells of a
potential. The dynamics of discrete kinks is typically dissipative due to radiative losses which
results in a finite driving force needed for such defects to be spatially displaced [7–9]. Kinks and
antikinks correspond to the discrete spectrum of a nonlinear eigenvalue problem defining their
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velocity. They are described by heteroclinic trajectories of the corresponding differential equations
and move with specific, usually subsonic speeds [10–13]. Typical mechanical examples of kinks
(not to be confused with shock waves in Burgers-type equations) are phase boundaries [14] and
dislocations [15]. In contrast, solitary waves, often discussed in the context of KdV-type equations,
can be characterized as localized, non-topological and usually non-dissipative wave packets whose
existence does not require a multiwell structure of the potential [16–19]. Solitary waves usually
move with supersonic speeds and belong to a continuous spectrum of traveling wave solutions
described by homoclinic trajectories in the phase space [20]. Typical mechanical examples are tidal
bores [21] and self-healing pulses imitating earthquakes [22].

While both kinks and solitary waves first appeared in the context of integrable, exactly solvable
nonlinear models, which describe physical systems only within a certain approximation, here we
consider a more realistic non-integrable Hamiltonian mechanical system that bears both kinks and
solitary waves. More specifically, we consider the well known discrete Fermi-Pasta-Ulam (FPU)
model [23–25] and in this way address the issue of the coexistence of kinks and solitary waves in
a one-dimensional mass-spring chain. Such coexistence was absent in the α-FPU setting, which
relied on quadratic nonlinearity of the force-strain relation. Here we consider an extension of this
prototypical model in which a hardening response is taken over by a softening regime above a
critical strain value. Meanwhile, the interaction potential is a convex function of strain in the
relevant strain interval.

The choice of hardening-softening interactions is inspired by stress-strain laws in a range of soft
biological tissues from skin to muscles [26]. For instance, in tendons and ligaments the hardening
stage of the mechanical response can be linked to the straightening of crimped collagen fibers
while the softening stage may be due to the beginning of the distributed microscopic fracturing of
these fibers [26, 27]. Hardening to softening transition is also ubiquitous in elastomeric molecular
composites [28] and can be even mimicked in NiTi mesh implants [26]. Note that apparently similar
convex material response but of softening-hardening type have been studied before in continuum
setting, however, with the dynamic response found to be uneventful and basically the same as
in the other well studied cases with double-well potentials, where kinks that are topological are
fundamentally different from solitary waves that are non-topological [29,30].

Existence and properties of either kinks or solitary waves in hardening-softening discrete FPU
system have been studied before [31–35] but the unifying perspective on their coexistence and
interplay in a generic setting was missing. Other systems supporting coexisting kinks and solitary
waves include discrete transmission lines [36, 37], complex Ginzburg-Landau equation [38–40] and
the Gardner equation [41–43]. Studies specifically focused on the interrelation between kinks and
solitary waves in these and other related systems include [44–52].

In the present paper we clarify why in addition to conventional solitary waves, the hardening-
softening discrete FPU model also necessarily supports non-topological and dissipation-free kinks.
Kinks have polarity and thus always arrive together with their twins of opposite polarity, which
we call antikinks. Under certain conditions kinks and antikinks can form a bundle and in this
way annihilate their polarity. Since kink and antikink can move with the same speed, the bundled
compact configurations can also move with a constant speed. The ensuing “marginal” solitary
waves lie on the boundary of the solitary-wave domain in the space of parameters (the kink limit).

More specifically, we show that kinks and solitary waves, viewed as two types of discrete super-
sonic traveling wave solutions of the FPU model, belong to the same family. Within this family,
solitary waves exist for continuous ranges of velocity that extend up to a limiting speed corre-
sponding to kinks. As the kink velocity limit is approached from above or below, the solitary
waves become progressively more broad and acquire the structure of a kink-antikink bundle. This
scenario differs from the systems with nonconvex interaction potentials, where in contrast to non-
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topological and non-dissipative solitary waves, the generic kinks are necessarily topological and
dissipative (radiative).

In the recent paper [53] we showed that in the Hamiltonian FPU model there can appear
exactly three distinct classes of steady switching fronts, subkinks, shocks and superkinks, which
fundamentally differ in how (and whether) they produce and transport oscillations. In this clas-
sification subkinks are subsonic and dissipative (radiative), shocks are supersonic and dissipative
and superkinks are supersonic and non-dissipative. The kinks considered in the present paper are
supersonic and non-dissipative and thus are superkinks in the sense of [53].

After formulating the discrete problem and providing the conditions necessary for the coex-
istence of superkinks and solitary waves, we consider a quasicontinuum (QC) approximation of
the discrete problem that adds to the conventional continuum elastrodynamics a mixed space-time
higher-order derivative term describing temporal dispersion and accounting for microinertia contri-
bution to the kinetic energy [54–57]. In contrast to the more conventional QC models that involve
purely spatial dispersion term [58–60], this approximation generates a bounded dispersion relation
for a linearized problem, which precludes short-wave instabilities. We present a detailed analysis
of the QC problem and show that it possesses a family of superkink and solitary wave solutions,
which are computed explicitly for a cubic extension of the α-FPU interaction force. The analytical
transparency of the QC model allows one to understand in full detail the singular role played by
superkinks embedded inside the continuous range of solitary waves and to associate the special
kinetic relation, characterizing such kinks, with their non-dissipative nature.

Using the obtained solutions of the QC problem as a starting point, we then proceed to compute
the corresponding traveling wave solutions of the discrete problem. To do so, we take advantage
of the fact that traveling waves are periodic modulo shift by one lattice space and thus can be
computed as fixed points of the corresponding nonlinear map [61–63]. We then follow the ap-
proach in [62, 64, 65] and exploit the periodicity-modulo-shift of the traveling waves to study their
linear stability by computing the Floquet multipliers associated with the corresponding linearized
problem. Similar to other related problems [65,66], our Floquet analysis indicates mild oscillatory
instabilities that appear to be a spurious artifact of the chain size in the computations, since their
magnitude decreases for longer chains. Effective stability of the computed waves is supported by
direct numerical simulations that show their steady propagation. We also present some simulation
results for initial value problems that show formation and steady motion of superkinks and solitary
waves.

Comparison of the computed solutions of the discrete problem with the corresponding exact
solutions of the QC model shows a very good agreement on both qualitative and quantitative
levels. It is important to mention that the proposed QC framework not only provides a transparent
interpretation of the two types of nonlinear waves, but also helps to explain in physical terms
why kinks are dissipation-free and why at least some solitary waves can be viewed as nonlinear
superpositions of kinks and antikinks. Previous results for this problem, revealing similar effects,
concern a bilinear version of the model which turns out to be analytically solvable in both discrete
and QC versions [34,35].

The paper is organized as follows. In Section 2 we introduce the discrete problem and discuss
some general properties of superkinks and solitary waves. In Section 3 we introduce the QC model
and present the phase-plane analysis of the problem for general hardening-softening nonlinearity.
Explicit traveling wave solutions of the QC problem with a cubic nonlinearity are derived and
discussed in Section 4. These solutions are used in Section 5 to obtain the traveling wave solutions
of the discrete problem as fixed points of the corresponding nonlinear map and compare the results
of the two problems. Stability of the obtained solutions of the discrete problem is investigated in
Section 6 using both Floquet analysis and direct numerical simulations. Concluding remarks are
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presented in the final Section 7.

2 Supersonic kinks and solitary waves: general properties

We consider the basic FPU model, which describes the dynamics of a one-dimensional chain of
identical masses interacting with their nearest neighbors. The dimensionless governing equations
are

ün = f(un+1 − un)− f(un − un−1), (1)

where un(t) is the displacement of nth particle at time t, ün(t) = u′′n(t), and f(w) = Φ′(w) is
the nonlinear interaction force obtained from the interaction potential Φ(w). Introducing particle
velocities vn = u̇n(t) = u′n(t) and strain variables wn = un − un−1, we can rewrite (1) as the
first-order system

ẇn = vn − vn−1, v̇n = f(wn+1)− f(wn). (2)

Written in terms of strain variables alone, the equations are

ẅn = f(wn+1)− 2f(wn) + f(wn−1). (3)

In what follows, we assume that f(0) = 0 and that in an interval (α, β) of strains that includes
zero, we have f ′(w) > 0. Note that this implies that the corresponding interaction potential
Φ(w) =

∫ w
0 f(s)ds is convex in the interval (α, β). We further assume that there exists w∗ such

that 0 < w∗ < β, f ′′(w∗) = 0, and we have f ′′(w) > 0 for α < w < w∗ (hardening response)
and f ′′(w) < 0 for w∗ < w < β (softening response), so that f ′(w) has a local maximum at
w = w∗. A simple example of such hardening-softening (convex-concave) interaction force is the
cubic interaction force

f(w) = aw3 + bw2 + w, a < 0, b > 0, (4)

shown by the red curve in Fig. 1. In this case we have

(α, β) =

(
−
√

b2 + 3|a| − b

3|a|
,
b+

√
b2 + 3|a|
3|a|

)
, w∗ =

b

3|a|
. (5)

We reiterate that while the convex, hardening part of f(w) can be associated with reorganization
of the micro-constituents contributing to interconnectivity and increasing rigidity, the concave,
softening part can be linked to the loss of interconnectivity associated with the ultimate emergence
of damage [26–28]. In what follows, we restrict our attention to solutions with strain values in the
(α, β) interval given in (5), where the corresponding potential Φ(w) is convex, thus preventing the
non-physical behavior at large |w|.

We are interested in traveling waves that connect stable equilibrium states of the system, with
constant strains w± such that f ′(w±) > 0 and constant particle velocities v±, and propagate with
velocity V that is supersonic with respect to both limiting states: V 2 > f ′(w±). Thus, we seek
solutions in the form

wn(t) = w(ξ), vn(t) = v(ξ), ξ = n− V t, (6)

where
lim

ξ→±∞
w(ξ) = w±, lim

ξ→±∞
v(ξ) = v±. (7)

Monotone traveling fronts connecting two different states, w+ ̸= w−, correspond to superkinks.
As shown in [31], in the case of smooth f(w) small-amplitude superkinks bifurcate from local
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Figure 1: Interaction force f(w) (red) and the Rayleigh line (black) connecting (w+, f(w+)) and (w−, f(w−))
(black). The strain w∗ marks the transition from the hardening (convex) to softening (concave) regime. A superkink
transition wave with limiting states w± and supersonic velocity VSK such that V 2

SK > f ′(w±) exists when the two
shaded areas cut by the Rayleigh line, which has the slope V 2, are equal. The associated solitary wave solutions have
velocity V such that either c2+ < V 2 < V 2

SK or V 2
SK < V 2 < c2−, where c2+ and c2− are the slopes of the blue and green

straight lines passing through (w+, f(w+)) and tangent to f(w) at w+ and ws
−, respectively. See the text for more

details.

maxima of f ′(w) connecting convex and concave parts of f(w). Global existence of such fronts
in the FPU problem with convex-concave nonlinearity was established in [32, 33] under the area
condition discussed below. As we will show, superkinks are closely related to solitary waves, pulse-
like solutions of (8) connecting identical limiting states, w− = w+ = wB, and propagating with
supersonic velocities. Existence of such solutions has been shown in [67]. In what follows, we focus
on these two types of traveling waves.

For both types of solutions, the function w(ξ) must satisfy the advance-delay differential equa-
tion

V 2w′′(ξ) = f(w(ξ + 1))− 2f(w(ξ)) + f(w(ξ − 1)) (8)

obtained by substituting (6) into (3). Using (2) instead, we obtain the equivalent system of first-
order equations:

−V w′(ξ) = v(ξ)− v(ξ − 1), −V v′(ξ) = f(w(ξ + 1))− f(w(ξ)). (9)

Combining these two equations, we obtain the energy balance law [32]

−V
d

dξ

[
1

2
v2(ξ) + Φ(w(ξ))

]
= f(w(ξ + 1))v(ξ)− f(w(ξ))v(ξ − 1). (10)

Integrating the equations in (9) over the finite interval [−N,N ] and taking the limit N → ∞ as
in [32] (see also [61,68]), we recover the classical Rankine-Hugoniot jump conditions

−V (w+ − w−) = v+ − v−, −V (v+ − v−) = f(w+)− f(w−), (11)

which upon the elimination of v± yield the single condition

f(w+)− f(w−) = V 2(w+ − w−). (12)
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This condition trivially holds for solitary waves, since w− = w+ in that case. For superkinks, it
states that the slope of the Rayleigh line connecting (w+, f(w+)) and (w−, f(w−)) equals V 2, as
shown in Fig. 1.

Similarly, integrating (10), we obtain

−V

(
1

2
v2+ +Φ(w+)−

1

2
v2− − Φ(w−)

)
= f(w+)v+ − f(w−)v−. (13)

A simple calculation then shows that (13), (12) and the first of (11) imply [32,33]

Φ(w+)− Φ(w−)−
1

2
(w+ − w−)(f(w+) + f(w−)) = 0. (14)

For solitary waves, this condition is again trivially satisfied. For superkinks, however, the condition
(14) has an important physical meaning. It is a kinetic relation that states that the driving force
G = Φ(w+)−Φ(w−)− 1

2(w+−w−)(f(w+)+f(w−)) [69] on the moving front is zero, and thus there
is no dissipation associated with its motion. Geometrically, this means that the two areas cut by
the Rayleigh line from f(w) must be equal, as shown in Fig. 1.

Conditions (12) and (14) are thus necessary for the existence of a superkink solution. Therefore,
they appear in the existence conditions obtained [32,33] and were also independently obtained in the
case of piecewise linear f(w) in [34,35,53], where they were linked to the absence of elastic radiation
of lattice waves which serve as a Hamiltonian analog of macroscopic dissipation. Importantly, the
two conditions imply that in the case of superkinks, only one of the values w−, w+ and V can be
prescribed independently. In particular, they determine w± as a function of V .

Note that for each superkink solution propagating with velocity V , there exists a solution of the
same form but velocity −V . In addition, for each kink solution with w− > w+, i.e., a front with
w′(ξ) < 0, there is an antikink solution with the limiting states interchanged, so that w′(ξ) > 0,
and the same velocity. Meanwhile, solitary waves can be tensile, w(ξ) > wB, or compressive,
w(ξ) < wB. Similar to the superkinks, for each solitary wave moving with velocity V , there is a
wave of the same form moving with velocity −V . Properties of solitary waves associated with a
superkink are discussed in detail below.

3 Quasicontinuum model

To motivate and support our study of the discrete problem, we first consider its quasicontinuum
(QC) approximation. To obtain it, we note that in Fourier space (8) becomes

k2V 2W (k) = 4 sin2(k/2)F (k),

where k is the wave number, and W (k) and F (k) are the Fourier transforms of w(ξ) and f(w(ξ)),
respectively. Using the (2, 2) Padé approximation, 4 sin2(k/2) ≈ k2/(1 + k2/12), of the discrete
Laplacian in Fourier space and taking the inverse Fourier transform, we obtain

V 2w′′ − V 2

12
w′′′′ = (f(w))′′. (15)

The same traveling wave equation can be obtained by differentiating the regularized Boussinesq
partial differential equation

utt −
1

12
uxxtt = (f(ux))x,

6
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Figure 2: Phase portraits for (17) with f(w) given by (4), w+ = 1 and (a) V = VSK − 0.001; (b) V = VSK ; (c)
V = VSK + 0.005, where VSK satisfies the conditions (12), (14) with the corresponding w−. See the text for details.
Here VSK = 2

√
65/3, w− = 17/3. The colored trajectories corresponds to a tensile solitary waves in (a), superkinks

in (b) and a compressive solitary wave in (c).

which describes the QC model derived in [55], with respect to x and seeking solutions in the form
y(x, t) = ux(x, t) = w(ξ), ξ = x−V t. The above equation can also be derived from the Lagrangian
density

L =
1

2

(
u2t +

1

12
u2tx

)
− Φ(ux), (16)

which contains a “microkinetic” energy term (1/24)u2tx in addition to the classical kinetic and
potential energy terms. Integrating (15) twice and using the boundary condition for w(ξ) at ξ → ∞
in (7), we obtain

−V 2

12
w′′ + V 2w − f(w) = V 2w+ − f(w+). (17)

Applying the boundary condition for w(ξ) at ξ → −∞ in (7) to (17), we recover the Rankine-
Hugoniot condition (12). Integrating (17) and taking into account the boundary condition for w(ξ)
at ξ → ∞ in (7) yields

−V 2

24
(w′)2 = Φ(w)− Φ(w+)− f(w+)(w − w+)−

V 2

2
(w − w+)

2. (18)

Applying the boundary condition for w(ξ) at ξ → −∞ in (7) to (18), we obtain

Φ(w−)− Φ(w+)− f(w+)(w− − w+)−
V 2

2
(w− − w+)

2 = 0,

which together with (12) implies (14).
To construct a superkink solution of (17), it thus suffices to find w± satisfying (12) and (14) for

a given V (or, equivalently, w− and V satisfying these conditions for a given w+) and then solve
the first-order equation (18).

Emergence of superkinks and the associated solitary wave solutions can already be seen from
the phase plane analysis of (17) for fixed w+ < w∗ and different values of V , as illustrated in Fig. 2
for the cubic case (4). Let VSK denote the velocity of the superkink, which satisfies the conditions
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(12), (14) with the corresponding w−. Observe that the Rayleigh line R(w) = f(w+)+V 2(w−w+)
passing through (w+, f(w+)) is tangent to f(w) at w = w+ when V 2 = c2+, where

c+ = (f ′(w+))
1/2, (19)

and at w = ws
− ̸= w+ satisfying f(ws

−) = R(ws
−) when

c− = (f ′(ws
−))

1/2, (20)

Here c+ and c− denote the sound speeds at w = w+ and w = ws
−, respectively, and the correspond-

ing Rayleigh lines are shown by blue and green in Fig. 1. The critical points of (17) rewritten as a
first-order system are given by the intersections of R(w) and f(w). A simple analysis shows that
for c2+ < V 2 < c2− there are three such points in the phase plane (w,w′): saddle points (w+, 0)
and (wS , 0) and a center point (wC , 0). Moreover, for c2+ < V 2 < V 2

SK , (18) describes a homoclinic
trajectory emanating from the saddle point (w+, 0) and corresponding to a tensile solitary wave
solution with the background state wB = w+ at infinity (see the magenta trajectory in Fig. 2(a)
for an example).

As V 2 approaches V 2
SK from below, the amplitude of the solitary wave (determined by the right

hand side of (18)) increases. Its trajectory is passing closer to the saddle point (wS , 0), where
wS(V ) approaches w− from above, causing the wave to become more flat and wide in the middle.
At V 2 = V 2

SK the homoclinic orbit reaches the saddle point (w−, 0), whereupon two heteroclinic
trajectories that correspond to superkink solutions form, as shown in Fig. 2(b). The lower trajectory
(marked in red) has the strain w− behind the moving front and w+ ahead (a kink), while the upper
trajectory (green) has w− ahead and w+ behind (an antikink).

When V 2 exceeds V 2
SK , the heteroclinic orbits are destroyed, and there is another homoclinic

trajectory (an example is shown by magenta in Fig. 2(c)) that emanates from the saddle point
(wS , 0) and corresponds to a compressive solitary wave with the background state wB = wS that
depends on the velocity V of the wave. This trajectory is described by (18) with w+ replaced by
wS . Such compressive waves exist for V 2

SK < V 2 < c2−, where c− is given by (20). As V 2 → c2−, wS

approaches ws
−, and as V 2 → V 2

SK , it tends to w−. As V 2 approaches V 2
SK from above, the width

and amplitude of the solitary wave grow, and it becomes more flat in the middle due to its trajectory
passing closer to the saddle point (w+, 0). In the sonic limits both tensile and compressive waves
delocalize to their background states.

In the above discussion, we chose w+ to be below w∗, where f ′(w) has a local maximum; recall
that this is the strain value associated with the emergence of small-amplitude kink solutions [31].
The picture is similar when w+ > w∗ but in that case the solitary waves leading to the emergence
of superkinks as V 2 approaches V 2

SK from below are compressive, while above V 2
SK there are tensile

waves. At w+ = w∗, we have c
2
+ = V 2

SK = c2−, and both solitary waves and the superkinks disappear.
To summarize, for a given state w+ ahead, superkinks arise as the limit of solitary wave solutions.

As the kink velocity is approached, these solutions grow in amplitude and become wider and more
flat in the middle, with the two boundary layers on the left and on the right that approximate
monotone kink and antikink solutions. Thus, for velocities just below the kink limit, solitary waves
acquire a dipole structure, where a kink and an antikink move in tandem. This will be further
illustrated by explicit solutions constructed in the next section.

We remark that broad solitary waves the type we see around V = VSK , are sometimes referred
to as “flat-top solitons”. They have been seen in a variety of models, including, for example,
the recent analysis of the continuum nonlinear equations of Gardner-type [41, 70] and of closely
related overdamped discrete oscillator chains [42, 43]. In the context of the FPU problem, such
solitary wave solutions and the limiting superkinks were first studied for the special case of bilinear
interactions in [34,35], where the discrete problem could be solved explicitly.

8



4 Explicit solutions for the quasicontinuum model

The generic scenario described in the previous section holds for any smooth hardening-softening
f(w). In the cubic case (4), we can integrate (18) to obtain explicit solutions that have a simple
form. One can show that f(w) in (4) has the symmetry property

f(w) =
4b

3
w2
∗ + 2w∗ − f(2w∗ − w),

with w∗ given in (5), so if w(ξ) is a traveling wave solution of either discrete or QC problem with
velocity V , so is w̃(ξ) = 2w∗−w(ξ) with the corresponding adjustment of the conditions at infinity.

Superkinks. We begin by constructing a superkink solution. Due to the symmetry it suffices to
consider the case w− > w+. Note that (4) implies that

Φ(w−)− Φ(w+)−
1

2
(w− − w+)(f(w+) + f(w−)) = −1

2
(w− − w+)

3

[
−a

2
(w+ + w−)−

b

3

]
,

so that (14) yields

w+ + w− =
2b

3|a|
= 2w∗. (21)

Noting that

f(w−)− f(w+) = (w− − w+)
[
a(w2

+ + w+w− + w2
−) + b(w+ + w−) + 1

]
and using (21), we find that (12) yields

V 2
SK = 1 +

b2

3|a|
− |a|

(
w+ − b

3|a|

)2

, (22)

which together with (21) implies that

w± =
b

3|a|
∓

√
b2

3a2
−

V 2
SK − 1

|a|
. (23)

The expression under the square root must be positive, which yields the upper velocity bound,
V 2
SK < 1 + b2/(3|a|). It is reached when w+ = w− = w∗ = b/(3|a|), the strain value where f(w)

changes curvature from convex to concave and the bifurcation point for the superkink solution.
Substituting (23) in (18) with f(w) given by (4), we obtain

V 2
SK

24
(w′(ξ))2 = −a

4
(w − w+)

2(w − w−)
2, (24)

where we recall that a < 0. Note that b > 0 then ensures that w+ and w− have a positive average
b/(3|a|) , and f(w) monotonically increases in the interval in (5) around this average. Requiring
that w± in (23) belong to this interval (so that f ′(w±) > 0) gives the lower velocity bound, which
together with the upper bound obtained above yields

2

3

(
1 +

b2

3|a|

)
< V 2

SK < 1 +
b2

3|a|
. (25)
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Figure 3: (a) The limiting strains w± of a superkink as functions of VSK for the cubic nonlinearity (4) with a = −1
and b = 10. The figure is symmetric about the vertical axis. (b) Strain profiles for the QC model at different velocity
values.

Since w′(ξ) < 0 along the solution we seek, with w+ < w(ξ) < w−, (24) yields the separable
ordinary differential equation

dw

dξ
= −

√
6|a|

|VSK |
(w − w+)(w− − w),

which is readily solved. Assuming w(0) = (w+ + w−)/2 = w∗ (a choice we can make due to
translational invariance) and using (23), we obtain

w(ξ) =
w+ + w−

2
− w− − w+

2
tanh(pξ), p =

√
6|a||w− − w+|

2|VSK |
=

√
2(b2 − 3|a|(V 2

SK − 1))

|VSK |
√
|a|

. (26)

As V 2
SK increases within the interval in (25), the values w± move toward each other, while the

width of the transition front increases. This is illustrated in Fig. 3.
In the above construction, we assumed that w− > w+. Due to the symmetry mentioned above,

solutions with w+ > w− have the same form (26) but ∓ in the right hand side of (23) becomes ±.

Solitary waves. We now consider solitary wave solutions associated with a superkink that has
the state w+ ̸= w∗ ahead and velocity VSK given by (22). Recall from Sec. 3 that such waves have
velocity V such that either c2+ < V 2 < V 2

SK or V 2
SK < V 2 < c2−, where c+ and c− are defined in

(19) and (20). Recall also that the waves have the background state

wB =

{
w+, c2+ < V 2 < V 2

SK ,

wS(V ), V 2
SK < V 2 < c2−,

(27)

where wS ̸= w+ is such that f(wS) − f(w+) = V 2(wS − w+) and V 2 > f ′(wS), so that (wS , 0)
corresponds to a saddle point in the phase plane for (17).

In the cubic case (4) we use

f(wS)− f(w+) = (wS − w+)
[
a(w2

+ + w+wS + w2
S) + b(w+ + wS) + 1

]
10
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to obtain

wS =
1

2|a|
[b− |a|w+ ∓

√
b2 − 3a2w2

+ + 2|a|bw+ − 4|a|(V 2 − 1)], (28)

with the minus sign if w+ > w∗ and plus sign if w+ < w∗. To find c− in (20), we recall that
f(ws

−)− f(w+) = f ′(w2
−)(w

s
− − w+). Substituting (4), we obtain, after some algebra,

ws
− =

1

2|a|
(b− |a|w+),

and hence c2− = f ′(ws
−) = 3a(ws

−)
2 + 2bws

− + 1 yields

c− =

√
1

4
(b− |a|w+)

(
3w+ +

b

|a|

)
+ 1. (29)

Meanwhile, c+ = (f ′(w+))
1/2 = (3a(w+)

2 + 2bw+ + 1)1/2. For w+ ̸= w∗ we have c2+ < V 2
SK < c2−,

as illustrated in Fig. 4. At w+ = w∗ the three velocities coincide: c2+ = V 2
SK = c2− = 1− b2/(3a).

For solitary waves (18) with f(w) given by (4) has the form

V 2

24
(w′(ξ))2 = −a

4
(w − wB)

2(wT − w)(wM − w), (30)

where the equilibrium points wT and wM are given by

wT,M =
2b

3|a|
− wB ±

√
4

(
wB − b

3|a|

)2

− 2

|a|
(V 2 − 1)− 6w2

B +
4b

|a|
wB, (31)

with plus sign in front of the square root for wT and minus for wM when w+ < w∗, c
2
+ < V 2 < V 2

SK

or w+ > w∗, V 2
SK < V 2 < c2− and vice versa when w+ > w∗, c2+ < V 2 < V 2

SK or w+ < w∗,
V 2
SK < V 2 < c2−, and we recall that a < 0. Solving (30), we obtain the solitary wave

w(ξ) = wB +
2(wM − wB)(wT − wB)

wM − 2wB + wT + (wT − wM ) cosh(γξ)
, γ =

√
6|a|
|V |

√
(wM − wB)(wT − wB), (32)

11
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Figure 5: (a) Tensile solitary waves (TSW) in the QC model with cubic nonlinearity (4) at c+ < V < VSK ; (b)
compressive solitary wabes (CSW) at VSK < V < c−; (c) solitary waves just below and just above VSK , shown
together with kink and antikink fronts. Here w+ = 1, a = −1, b = 10, yielding VSK = 2

√
65/3, w− = 17/3,

c+ = 3
√
2, c− = 11/2.

where we recall (27) and (28). As shown in Fig. 4, for w+ < w∗, the solitary waves are tensile when
c2+ < V 2 < V 2

SK and compressive when V 2
SK < V 2 < c2−, and the opposite is true for w+ > w∗.

The solution (32) satisfies w(0) = wM and w(ξ) → wB as ξ → ±∞. The amplitude of the
solitary wave is thus given by

wQC
amp = |wM − wB| (33)

Note that the amplitude tends to zero (solution delocalizes to the constant strain wB) as V tends
to the corresponding sonic limit. As the superkink velocity limit, VSK , is approached, wB → w−,
wT,M → w+ for V 2

SK < V 2 < c2−. Meanwhile, for c2+ < V 2 < V 2
SK we have wB = w+, and

wT,M → w− in the superkink limit. Thus

wQC
amp → |w− − w+|,

where w− is the strain behind the superkink front corresponding to w+, and we recall (21). Note
also that in this limit γ in (32) tends to 2p, with p defined in (26). Thus, as the superkink velocity
is approached, the solitary wave (32) becomes wider, with the two boundary layers on the left and
on the right approaching the corresponding superkink solutions, and the strain in between tending
to the constant value given by w− for c2+ < V 2 < V 2

SK and w+ for V 2
SK < V 2 < c2−. Just below and

12
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just above the limit, solitary waves have the structure of a kink-antikink bundle. This is illustrated
in Fig. 5.

Since the energy of the waves with nonzero background is infinite, we renormalize it by sub-
tracting the energy of the background:

EQC
ren(V ) =

∫ ∞

−∞

{
1

2
V 2w2(ξ) +

1

24
V 2(w′(ξ))2 +Φ(w(ξ))− Φ(wB)−

1

2
V 2w2

B

}
dξ, (34)

where we used the fact that for a traveling wave solution with the strain w(ξ) = w(x − V t)
the particle velocity is v(ξ) = −V w(ξ). Fig. 6 shows the typical dependence of amplitude and
renormalized energy of the waves on their velocity. As discussed above, in the superkink limit
(marked by the dashed vertical line) the amplitude reaches the finite value |w− −w+| (a corner in
Fig. 6(a)), while the renormalized energy diverges near the limit (see Fig. 6(b)) because the two
superkinks forming such solitary waves undergo an unlimited separation.

Thus, we can see already at the QC level that the superkink and solitary wave solutions form
a single family, with a singular superkink limit embedded in the continuum range of solitary wave
velocities.

5 Traveling wave solutions of the discrete problem

Having explored the relation between superkinks and solitary waves on the QC level, we now con-
sider the corresponding traveling wave solutions of the discrete problem (3). Due to the symmetry
of the problem with respect to velocity V , it suffices to obtain solutions with V > 0.

Superkinks. To compute the superkink solutions, we follow the approach in [61–63] and observe
that by virtue of the traveling wave ansatz (6) such solutions are necessarily periodic modulo shift
by one lattice space,

wn+1(t+ T ) = wn(t), T = 1/V, (35)

13



and thus can be cast as fixed points of the nonlinear map[
{wn+1(T )}
{ẇn+1(T )}

]
= N

([
{wn(0)}
{ẇn(0)}

])
(36)

defined by integration of the governing equations (3) over one period followed by a shift of indices.
To obtain the traveling waves, we follow an approach used in computing discrete breathers [71]
and employ the fixed point method. For a large even number N (we used N = 500 in a typical
computation) and given T = 1/V , we perform the Newton-Raphson iterations with numerically
computed finite-difference Jacobian to solve

wn+1(T ) = wn(0), n = −N/2, . . . , N/2− 1,

ẇn+1(T ) = ẇn(0), n = −N/2, . . . , N/2− 2, w1(T ) = w∗
(37)

for {wn(0), ẇn(0)}, n = −N/2, . . . N/2− 1. To obtain wn(T ) and ẇn(T ) for given wn(0) and ẇn(0)
at each iteration, we integrate (3) over one period using the Dormand-Prince algorithm (Matlab’s
ode45 routine) with boundary conditions

w−N/2−1(t) = w−, wN/2(t) = w+, (38)

where w± are found from (12), (14). The last equation in (37) represents a pinning condition.
Due to translational invariance of solutions of (8), such condition is necessary to select a unique
traveling wave solution. The one we select facilitates the comparison with superkink solutions
wQC(ξ) of the QC model in (26), which are also used to obtain an initial guess for the Newton-
Raphson procedure and parameter continuation. Recall that these solutions satisfy wQC(0) = w∗,
so that w0(0) = w1(T ) = wQC(0) and thus the traveling wave w(ξ) for the discrete problem
satisfies w(0) = wQC(0). We drop the equation for ẇN/2(T ) in (37) in order to obtain a system
of 2N nonlinear equations for 2N unknowns while prescribing the pinning condition. We have
verified that the omitted equation is automatically satisfied up to the order of 10−13 at most in the
computed solutions, due to the large value of N .

The computed superkink profiles wn(0) = w(n) for are shown in Fig. 7, together with the
corresponding profiles w(x) obtained from the exact solutions (26) of the QC model. One can see
that these solutions are very close, with barely visible difference in the transition layer.

Solitary waves. To compute the solitary wave solutions for given w+ and velocity V in the
intervals (c+, VSK) and (VSK , c−), we use the same approach as for the superkinks. In this case the
prescribed pinning condition is ẇ1(T ) = 0, to ensure that the maximum of a tensile solitary wave
(or the minimum of a compressive one) is at n = 0 when t = 0, and the boundary conditions are
w−N/2−1(t) = wN/2(t) = wB, where we recall (27).

The resulting strain profiles are shown in Fig. 8 together with their QC counterparts (32). For
further comparison of solitary waves in the discrete and QC models, we show the corresponding
amplitude-velocity plots in Fig. 9 and energy-velocity plots in Fig. 10. In the latter, we compare
the renormalized energy (34) for the QC model with the corresponding values

ED
ren(V ) =

∑
n

{
1

2
v2n +

1

2
(Φ(wn) + Φ(wn+1))− Φ(wB)−

1

2
V 2w2

B

}
(39)

in the discrete case, where we recall that vn are the particle velocities, and all values are evaluated
at t = 0 due to the energy conservation.
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Figure 7: Superkink solutions wn(0) = w(n) of the discrete problem (8) (circles) with cubic nonlinearity (4) and
the corresponding solutions w(x) for the QC model (18) (solid curves) evaluated at t = 0. Here a = −1, b = 10.

One can see that in the case of solitary waves some discrepancy between solutions of the discrete
and QC problems is visible away from the sonic and superkink limits. However, the QC model
still provides a very good quantitative approximation of the entire solution family. Importantly, it
captures the singular nature of the superkink limit as well as near-sonic regimes exceptionally well.

6 Stability of superkinks and solitary waves

To investigate the linear stability of the obtained traveling wave solutions in the problem with
cubic nonlinearity (4), we follow the approach in [62,64,65] and use Floquet analysis that exploits
periodicity-modulo-shift (35) of the traveling wave solutions. Substituting wn(t) = ŵn(t) + ϵyn(t)
into (3), where ŵn(t) = w(n − V t) is the traveling wave solution, and considering O(ϵ) terms, we
obtain the governing equations for the linearized problem:

ÿn = f ′(ŵn+1)yn+1 − 2f ′(ŵn)yn + f ′(ŵn−1)yn−1. (40)

The Floquet multipliers µ for this problem are the eigenvalues of the monodromy matrix M defined
by [

{yn+1(T )}
{ẏn+1(T )}

]
= M

[
{yn(0)}
{ẏn(0)}

]
. (41)

To obtain M, we compute the fundamental solution matrix Ψ(T ), which maps [{yn(0)}, {ẏn(0)}]T
onto [{yn(T )}, {ẏn(T )}]T , n = −N/2, . . . , N/2 − 1, for the first-order linear system equivalent to
(40). We use periodic boundary conditions yN/2(t) = y−N/2(t), y−N/2−1(t) = yN/2−1(t), which
is justified by the fact that for both solitary waves and superkinks in the problem with cubic
nonlinearity (4) the values f ′(ŵn) at the two ends of a large chain rapidly approach the same
constant value. We then shift the rows of Ψ(T ) up by one row in the two parts of the matrix
corresponding to yn and ẏn, respectively, with the last row in each part replaced by the first,
obtaining M in (41).

The Floquet multipliers are related to the eigenvalues λ of the linearization operator via µ =
eλ/V , and thus |µ| > 1 (Re(λ) > 0) corresponds to instability. The Hamiltonian nature of the
problem means that there are quadruples of non-real Floquet multipliers, i.e., if µ is a multiplier,
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Figure 8: Solitary wave solutions wn(0) = w(n) of the discrete problem (8) (circles) with cubic nonlinearity (4)
and the corresponding solutions w(x) for the QC model (18) (solid curves) evaluated at t = 0. The top two panels
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VSK = 2
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√
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Figure 11: Maximum modulus of Floquet multipliers for superkink solutions in the discrete problem with cubic
nonlinearity (4). Here a = −1, b = 10.

than so are µ̄, 1/µ and 1/µ̄, while the real multipliers come in pairs µ and 1/µ. Linear stability
thus requires that all Floquet multipliers lie on the unit circle: |µ| = 1.

To further explore stability of the waves, we complement the Floquet analysis by direct numer-
ical simulations.

6.1 Stability of superkinks

Consider the superkink solutions in the case of cubic nonlinearity (4) with a = −1, b = 10, which
are shown in Fig. 7. In this case the velocity range (25) for the superkink traveling waves is
4.78423 < V < 5.85947. The results of our Floquet computation with N = 500, shown in Fig. 11,
indicate that for V ≥ 5.74 within this range the maximum modulus of the Floquet multipliers
exceeds 1 by O(10−8) at most, and thus the corresponding solutions may be considered linearly
stable within the accuracy of numerical computation. Below this threshold, quartets of complex
multipliers corresponding to oscillatory instability modes emerge from the unit circle for some
velocities, as illustrated in Fig. 12, and rejoin it for others. However, the associated instabilities
remain small in magnitude (|µ| < 1.0001) for V ≥ 5.57, and the maximum modulus, which exhibits
an overall growth as velocity is decreased toward the lower bound, stays below 1.005 over the entire
velocity range. It should be noted that the Floquet multipliers associated with the oscillatory
instabilities depend on the chain size; in particular, their magnitudes decrease as the chain size is
increased. This suggests that similar to the case of discrete breathers [66] and solitary waves [65],
these mild instabilities are a spurious artifact of the finite chain size and disappear as N tends to
infinity.

In addition to the Floquet analysis, we tested stability of the superkinks by conducting nu-
merical simulations of (3) on a finite chain using the Dormand-Prince algorithm. In the first set
of simulations, we extracted initial conditions from the computed superkink solutions, i.e., set
wn(0) = ŵn(0) and ẇn(0) = ˙̂wn(0), and used the corresponding fixed boundary conditions (38).
These simulations resulted in steady propagation of the traveling wave with velocity that remained
within O(10−8) or less from the prescribed value for the entire range of velocities, suggesting that
the traveling waves are at least long-lived and likely stable. Representative examples are shown in
Fig. 13.

The second set of simulations was conducted on a chain with L particles using free-end boundary
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Figure 12: (a) Floquet multipliers µ (blue crosses) for the superkink solution of the discrete problem with cubic
nonlinearity (4) at V = 5.2. (b) Enlarged version of the region inside the rectangle in (a) showing multipliers with
|µ| > 1 that correspond to mild oscillatory instabilities. The unit circle is shown in red. Here a = −1, b = 10.

50 100 150 200 250 300 350 400
n

0

5

10

15

20

25

30

35

40

t

0

1

2

3

4

5

6

100 200 300 400 500
n

0

5

10

15

20

25

30

35

40

45

t

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(a) (b)

Figure 13: Space-time strain evolution initiated by computed superkink solutions with velocities (a) V = 4.8; (b)
V = 5.2. Here a = −1, b = 10.
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conditions and Riemann initial data

wn(0) =

{
wl, 1 ≤ n ≤ L/2

wr, L/2 + 1 ≤ n ≤ L
, ẇn(0) = 0, n = 1, . . . , L, (42)

where the left strain satisfies w∗ < wl < (b +
√

b2 + 3|a|)/(3|a|), in accordance with the bounds
for the limiting strain behind a superkink, and we set the right strain to zero: wr = 0. The strain
values obtained in the simulations remained within the region where f ′(w) > 0. The size L of the
chain was chosen sufficiently large to avoid any boundary effects.

As a representative example, we show the results for wl = 4.6 in Fig. 14. One can see that the
initial data leads to formation of two non-stationary (spreading) dispersive shock waves propagating
in opposite directions and a superkink that travels to the left ahead of the corresponding dispersive
shock wave (DSW) [72–76]. The numerically measured velocity of the superkink, V = −5.7209,
coincides up to O(10−8) with the value associated with the prescribed wl; see also the comparison of
the (appropriately shifted) computed superkink solution and w100(t) in panel (c). Formation of the
superkink front from generic initial conditions indicates its effective stability, in agreement with the
results of the Floquet analysis. The velocity of the leading edge of the weak DSW moving to the left
behind the superkink is VDSWl

= −5.6159, while the strong DSW moving to the right propagates
with VDSWr = 4.6404. As shown in panels (d) and (e), their leading edges are well approximated
by computed solitary wave solutions with the corresponding velocities and background strains.

6.2 Stability of solitary waves

We also examined stability of the obtained solitary waves solutions using Floquet analysis and
direct numerical simulations. In this case, the Floquet analysis also shows eventual emergence of
spurious oscillatory instabilities that are similar to the ones we saw in the case of superkinks. As
shown in Fig. 15, these instabilities are very mild: the maximum modulus, which increases as the
superkink limit is approached, is bounded by 1.0006 and 1.001 in the two cases shown.

Direct numerical simulations initiated by computed solitary waves show their robust propagation
with velocity within O(10−8) or less from the prescribed value and suggest that the waves are
effectively stable, or at least long-lived, in the entire velocity range; see Fig. 16 for representative
examples.

We also considered generic Gaussian-type initial conditions of the form

wn(0) = wB +A exp[−(1/2)(n− L/2)2], ẇn(0) = 0, n = 1, . . . , L (43)

Using this initial data with various background strain wB and signed amplitude A in simulations
with free boundary conditions, we observed formation and steady propagation of both tensile (for
A > 0) and compressive (for A < 0) solitary waves. Two examples are shown in Fig. 17. In the
first example, shown in Fig. 17(a), we set A = 6 and wB = 1. One can see formation of two tensile
solitary waves of the same form propagating in opposite directions with velocities V = ±5.2494. The
waves are trailed by small-amplitude dispersive waves. In the second case (Fig. 17(b)), where we set
A = −6 and wB = 6, there are two pairs of compressive solitary waves, the smaller-amplitude waves
moving with velocities V = ±3.811 and the large-amplitude ones propagating with V = ±5.025,
with dispersive waves trailing the smaller-amplitude solitary waves.

7 Conclusions

Classical studies of FPU-type systems involve weak nonlinearity, where the Hookean force-elongation
relation of the linear theory is replaced by the simplest quadratic relation describing either hard-
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Figure 14: The results of simulations with Riemann initial data (42) with wl = 4.6, wr = 0, L = 3600 and cubic
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ening or softening of the mechanical response of the springs. The main nonlinear effect in such
setting is the emergence of solitary wave solutions parameterized by their velocities and stretching
continuously over a semi-infinite range of velocities from the weak, strongly continuum near-sonic
waves to the strongly discrete ones moving with arbitrarily large supersonic velocity. In this setting,
a hardening nonlinearity produces tensile solitary waves while a softening nonlinearity generates
their compressive analogs.

In this paper we considered the synthetic model containing hardening-softening nonlinearity,
which can be represented by the simplest cubic force-strain relation. In other words, we considered a
version of the classical Hamiltonian FPU problem with peculiar springs where a hardening response
is taken over by a softening regime above a critical strain value. The resulting dynamic picture is
expectedly more complex, with both tensile and compressive solitary waves simultaneously present,
even if in different parameter ranges.

The proposed version of the FPU model was also shown to demonstrate a fundamentally new
feature emerging as a result of the interplay between hardening and softening. Thus, in addition to
conventional solitary waves, such discrete system also supports non-topological and dissipation-free
kinks. More precisely, we showed that in the proposed model, instead of growing without bound,
the amplitude of both compressive and tensile solitary waves saturates around a velocity value
which can be interpreted as a critical regime. Around this value of the parameter the compressive
and the tensile solitary waves each converge to a configuration that can be seen as a bundle (or
tandem) of infinitely separated kinks and antikinks. The infinite width of such a bundle suggests
that the effective correlation length diverges and the increasingly flattening top or bottom of the
near-critical solitary waves points towards the formation of a “second phase”, which can now coexist
with the original ground state, or the “first phase”.

The emerging picture is rather remarkable given that the elastic energy density remains convex
within the range of strains involved in these solutions. The emergence of the “second phase” can be
thus interpreted as a purely dynamical phenomenon, requiring a delicate interplay between kinetic
and potential energy which are then conspiring to produce an effectively dynamic double-well
structure. In this perspective solitary waves can be viewed as crossover features connecting sonic
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waves in both phases with the critical waves represented by stable supersonic kinks and antikinks.
While the latter are fully nonlocal, as they are conditioned by the limits at plus and minus infinity,
they are non-topological, in contrast to conventional sine-Gordon-type kinks, as the limiting states
are not separated by an elastic energy barrier. A striking feature of the proposed model is that
both nonlocal kinks and local solitary waves can move in a discrete setting with the same speed
and without radiating lattice waves.

An interesting property of our hardening-softening version of the FPU model is that all the
crucial features of the traveling wave solutions can be already captured by the simplest QC ap-
proximation, which, however, is not of a conventional KdV type and instead involves temporal
dispersion. The analytical transparency of the proposed QC model allowed us to corroborate and
to rationalize theoretically various effects observed in our numerical investigation of the discrete
model. Near superkink limit the observed agreement between the QC and discrete models was not
only qualitative but also quantitative, which is not surprising in view of the critical nature of such
regimes.

Finally, we mention that various localized traveling waves studied in this paper can be viewed
as elementary bites of mechanical information that can be generated, delivered, and erased in
periodic lattice metamaterials. Due to the presence of stress-sensitive repeating structural units,
such metamaterials can be designed to exhibit complex mechanical response, in particular, to ensure
that the mechanically triggered switching and actuation takes place at a predefined place and at a
given level of stress.
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