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The symmetry of a crystal structure with a three-dimensional (3D) lattice can be classified by one
of the 230 space group types. For some types of crystals, e.g. crystalline films, surfaces, or planar
interfaces, it is more appropriate to assume a 2D lattice. With this assumption, the structure can be
classified by one of the 80 layer group types. We have implemented an algorithm to determine the
layer group type of a 3D structure with a 2D lattice, and applied it to more than 15 000 monolayer
structures in the Computational 2D Materials (C2DB) database. We compare the classification
of monolayers by layer groups and space groups, respectively. The latter is defined as the space
group of the 3D bulk structure obtained by repeating the monolayer periodically in the direction
perpendicular to the 2D lattice (AA-stacking). By this correspondence, nine pairs of layer group
types are mapped to the same space group type due to the inability of the space group to distinguish
the in-plane and out-of-plane axes. In total 18% of the monolayers in the C2DB belong to one of
these layer group pairs and are thus not properly classified by the space group type.

I. INTRODUCTION

The classification of periodic solids by means of sym-
metry groups is fundamental to our understanding and
description of crystalline materials. In addition to pro-
viding a unique classification scheme for crystal struc-
tures, the symmetry group can be used to derive impor-
tant qualitative information about the physical proper-
ties of a material before they are measured or calculated.
For example, the symmetry group dictates the possible
degeneracy of energy levels, governs the selection rules
for electronic and vibronic transitions [1], determines the
possible topological phases [2], and relates different spa-
tial components of response tensors of crystals [3].

The symmetry of a three-dimensional (3D) crystal
structure with 3D translation periodicity, i.e. a 3D lat-
tice, is described by one of the 230 space group types.
For a 3D crystal structure with a 2D lattice, for example
a crystalline film, the relevant symmetry group is repre-
sented by the layer group. There exist a total of 80 layer
group types in contrast to the 230 space group types.
For the point group operations of the layer group, the
symmetry axis of the operations must be either parallel
or perpendicular to the 2D lattice plane. Moreover, the
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direction of the translation part of the symmetry opera-
tions must be parallel to the lattice plane.

Materials with a 2D lattice and a thickness of only
a few atoms are generally referred to as 2D materials.
This class of materials has attracted enormous atten-
tion from a broad range of scientific communities due
to their unique and easily tunable properties, their ex-
treme thinness, and their good device integration poten-
tial [4–8]. Despite of this interest, the symmetry char-
acterization of 2D materials has not received the atten-
tion it deserves, and is often restricted to specification
of the point group or the space group of some related
layered bulk structures. This holds in particular for all
the computational databases of 2D materials, e.g. the
Computational 2D Materials Database (C2DB) [9, 10],
the Materials Cloud[11], and the 2DMatPedia[12], which
hold the atomic structures of thousands of monolayers.
Similar to the vast majority of studies on 2D materi-
als, these databases have classified the monolayers by the
space group of the bulk structure obtained by repeating
the monolayer periodically in the direction normal to the
2D lattice plane, i.e. the space group of the AA-stacked
bulk crystal. An important reason for this state of af-
fairs has been the lack of a readily accessible software
tool to determine the layer group of a general 2D atomic
structure.

Here we report on a numerical algorithm to determine
the layer group of a 3D crystal structure with a 2D lattice.
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The algorithm has been implemented and made available
as part of the open source space group and magnetic
space group symmetry analysis library Spglib [13, 14],
which is widely used by material design [15–17], simu-
lation [18–21] and analysis [22–29] programs and var-
ious high-throughput material databases [9–12, 30–32].
We use the algorithm to obtain the layer groups of the
15733 crystal structures currently contained in the C2DB
database, and we present a statistical analysis of the
data. This analysis reveals a rather inhomogeneous dis-
tribution with a number of layer group types being ei-
ther very scarcely represented or not represented at all.
We also show that the classification of a monolayer by
the space group of its AA-stacked bulk structure is in-
complete. In fact, for 18% of the monolayers in C2DB,
the space group of the AA-stacked bulk crystal does not
uniquely determine the layer group.

II. METHOD

In this paper, we use layer system to refer to the collec-
tion of a layer group crystallographic coordinate system
and the atomic structure defined in this coordinate sys-
tem. Following Refs. 13 and 33, a, b and c represent
basis vectors of the system, with two of the basis vectors
being lattice vectors. Without loss of generality, we take
the lattice vectors to be a and b. Furthermore, we de-
note the basis vectors in different unit cells by (ai,bi, ci),
(ap,bp, cp), and (ac,bc, cc), where the subscripts refer
to the input cell, primitive cell, and conventional cell, re-
spectively. Atom coordinates in the unit cell basis, i.e.
fractional coordinates, are denoted by x. When neces-
sary, the subscript i, p or c is used to indicate the type of
unit cell. For layer groups, the role of c is only to provide
a basis vector for representing the atomic positions. Nev-
ertheless, the current implementation follows the crys-
tallographic space group convention which requires the
rotation part of symmetry transformations to be repre-
sented by integral matrices under primitive cell basis (see
Sec. II B). Hence the choice of c-basis can affect the point
group and thus layer group. In this paper, we fix the non-
lattice vector ci to be orthogonal to ai and bi to obtain
the highest symmetry.

For crystals with periodicity along the three basis axes,
the distance between two atoms with positions x and x′

respectively is defined by

d(x,x′) = ∥(a,b, c)(∆x− ⌊∆x⌉)∥. (1)

Here (a,b, c) denotes the coordinate matrix of the unit
cell basis vectors, ∆x = x − x′, and ⌊·⌉ rounds compo-
nents of a vector to the nearest integer. Layer systems do
not have periodicity in the direction along the non-lattice
vector c, and the rounding operation in Eq. (1) is not ap-
plied to this coordinate. To account for small distortions
or numerical noise, Spglib determines the equality of two
atom positions by the condition

d(x,x′) < ϵ, (2)

where ϵ is a small tolerance parameter (called ‘symprec’)
set by the user.

A symmetry operation maps the crystal structure onto
itself. The operation is denoted (W ,w), where the linear
part W is a 3×3 integral matrix, and the translation part
w is a 3× 1 column vector. By the symmetry operation,
an atom with position x will be sent to

x̃ = Wx+w. (3)

Symmetry requires the position x′ of one and only one
atom with the same species to be equal to x̃ in the sense
of Eq. (2).

Our algorithm for determining the layer group of a
layer system is illustrated in Fig. 1. The algorithm fol-
lows the one already implemented in Spglib for space
groups and documented elsewhere [13]; thus we mainly
focus on the aspects that are specific to layer groups. The
lower part of Fig. 1 shows the main steps required to de-
termine the layer/space group while the upper part de-
tails the criteria used to select the conventional unit cell
for the various crystal systems. In addition to determin-
ing the point group and space/layer group, the algorithm
also determines the site symmetry group for each atom
and the occupied Wyckoff positions, and symmetrizes the
input structure.

A. Primitive cell

The input cell will be transformed to a provisional
primitive cell to reduce the computational complexity.
To determine the primitive cell, the first step is to check
whether the input cell can be reduced to a smaller unit
that generates the crystal. Specifically, the algorithm
searches for symmetry operations that are pure transla-
tions, i.e. Wi = I and wi ̸= 0. The three vectors among
the found ws and the input cell basis ai, bi and ci which
form the cell with smallest non-zero volume are the prim-
itive cell basis vectors. For layer systems, the non-lattice
vector ci will always be chosen as the primitive basis
vector cp. The obtained primitive cell will further be
transformed to the Delaunay cell [35]. The shape of the
Delaunay primitive cell belongs to one of the 24 symmet-
ric varieties [35, 36]. Matrix elements of the linear part
Wp are 0, 1 or -1 under the Delaunay reduced basis. Note
that this procedure may not be fully applicable to a layer
system as it can transform the lattice vectors into linear
combinations of the original lattice and non-lattice vec-
tors. Thus the Delaunay reduction requires special care
for layer systems as discussed in detail in Appendix. B.

B. Symmetry operations

After obtaining the primitive cell, the algorithm
searches for the matrix-column pairs (Wp,wp) of all sym-
metry operations in the Delaunay reduced primitive cell
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Cell basis

Atom coordinates

Symmetry 
operations

Symmetry 
classification

3D Crystal system Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

Bulk crystal Niggli cell

b: ±2-fold axis

α = γ = 90°

a, c: Delaunay basis

a, b, c: ±2-fold axis

α = β = γ = 90°

nl = 2: a ≤ b

Bulk only:

nl = 3: a ≤ b, a ≤ c

nl = 6: a ≤ b ≤ c

c: ±4-fold axis

α = β = γ = 90°

a = b

c: ±3-fold axis

α = β = 90°

γ = 120°

a = b

Same as

trigonal

a, b, c: ±N-fold axis

N = 2 or 4

α = β = γ = 90°

a = b = c

Layer system

Non-lattice vector c

(Rotated) Niggli 

cell

c: ±2-fold axis

α = β = 90°

a, b: Delaunay 

basis

a: ±2-fold axis

β = γ = 90°

b, c: (partially) 

Delaunay reduced
✖

2D Bravais system Oblique Rectangular Square Hexagonal

Input cell
(ai, bi, ci)

Primitive cell
(ap, bp, cp)

Conventional 
cell

(ac, bc, cc)

Symmetrized 
input cell

(as, bs, cs)

{𝒙i} {𝒙p}

{(Wp, wp)}

Point group

{(Wc, wc)}

Space/layer 
group

{(Ws, ws)}

{𝒙s}

Wyckoff 
positions

{(I, wi)}

FIG. 1. Upper: The criteria (rotation axes and metric conditions) used by Spglib to determine a standardized conventional cell
of a bulk crystal (3D lattice) and a layer system (2D lattice). The criteria are listed for each of the seven crystal systems. The
layer system can be additionally classified by the Bravais system of its lattice, which is listed in the last row of the table. For
triclinic and monoclinic crystal systems, the criteria specific to bulk and layer systems are listed in the second and third rows,
respectively. Monoclinic crystal systems with oblique and rectangular lattices have different criteria, and are separately listed
with different colors. For orthorhombic systems, the bulk and layer systems share most of the conditions. For the tetragonal,
trigonal and hexagonal crystal systems, the bulk and layer systems share all the same criteria, and the rows for these systems
are combined. The cubic crystal system does not exist for layer groups, and is left blank in the table. The criteria include axis
choices for selecting ac, bc and cc from the symmetry operation with certain types, and metric parameters. The remaining
conditions are additional metric rules used by Spglib when the standard choices defined in Refs. 34 and 33 cannot uniquely
determine the shape and/or setting of the conventional cells. Details of the rules are described in Appendix. C. Lower: Workflow
used by the algorithm to determine the point group, space/layer group, Wyckoff positions, and more.

basis (ap,bp, cp). For space group operations, Wp con-
sists of 0 and ±1 satisfying det(Wp) = ±1. For layer
groups, preservation of the 2D lattice prohibits mixing
the non-periodic component into the lattice vectors, e.g.
a′ = a + c. For layer systems, ‘A’-face, ‘B’-face, body-,
and face centred conventional cells do not exist. Conse-
quently, these conventional cells are not considered. The
algorithm searches for operations with the matrix pattern

Wlayer =

W11 W12 0
W21 W22 0
0 0 ±1

 Wij = 0,±1. (4)

With this matrix pattern, any operation with rotation or-
der higher than two must have the rotation axis perpen-
dicular to the lattice plane. Consequently, point groups
belonging to the cubic crystal system are not allowed for
layer systems. In addition, any ±2-fold rotations must
have the rotation axis either parallel or perpendicular to
the lattice plane. Furthermore, Eq. (1) rules out the pos-

sibility of finding screw rotation or glide reflection with a
non-lattice component in the translation part w. To find
the symmetry operations of a layer system, the algorithm
searches for all transformations (W ,w) with W of the
form (4) satisfying d(x̃,x′) < ϵ, where d(·, ·) is defined in
Eq. (1), x̃ = Wx+w, and x and x′ are the position of
atoms of the same type.

C. Point group

The linear part W of all found symmetry operations
(W ,w) compose the crystallographic point group P in
the primitive cell basis. The type of the point group is
determined by counting the number of the ten different
rotation orders (±1,±2,±3,±4,±6) appearing in P (see
Table V in Ref. 13). Once the point group type has been
determined, the search for the space/layer group can be
narrowed down accordingly.
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D. Standardized conventional cell

To determine the space/layer group type from the sym-
metry operations they must be compared with those al-
ready stored in Spglib. However, a direct comparison re-
quires that the same crystallographic coordinate systems
(CCS), i.e. origin position and basis vectors (including
their order), are employed. For each space group, Ref. 34
lists the possible conventional CCSs and designates one
of them as the standard choice. A standard CCS for layer
systems is defined by Ref. 33.
Spglib adopts Hall symbols [37] to distinguish the

different choices of CCS. A table of all the Hall sym-
bols for space groups can be found in table A1.4.2.7 of
Ref. 38. Spglib contains a database with all (W ,w)
matrix-column pairs generated using Hall symbols. For
layer groups, we are not aware of a complete table of
Hall symbols. Thus we have produced one correspond-
ing to the different choices of CCSs listed in Ref. 33, see
Appendix. D.

E. Layer group

The crystallographic point group determines the type
of the Bravais lattice and puts some constraints on the
metric parameters of the conventional cell (relations be-
tween basis vector lengths and angles), see upper panel
of Fig. 1 and Appendix. C. Generally, one of the basis
vectors ac, bc and cc is chosen as the symmetry axes
of a specific symmetry operation, as shown in the first
line for each criterion in Fig. 1. The shortest vectors in
the perpendicular plane that satisfy the metric conditions
are chosen for the remaining two basis vectors. The W
matrices will retain integer elements under this basis.

When the basis vector choices are the same as the
standard CCS of the relevant space/layer group, W will
match the standard counterparts stored in Spglib. Still,
w may differ from the stored ones by a shift of the origin.
The origin shift is determined following the algorithm in
Ref. 13 and Ref. 39 except the distances in the algorithm
are measured by Eq. (1).

F. Symmetrization

The site symmetry group of each atom is determined
using the distance measure in Eq. (1) and (2). Each
atom is further assigned a Wyckoff position. Finally, the
atomic structure is symmetrized by applying all of the
site symmetry operations separately to each atom and
performing an average over the resulting positions. The
standardized conventional cell is symmetrized such as to
satisfy the lattice metric conditions in Fig. 1(upper) ex-
actly to obtain the symmetrized input cell (as,bs, cs) and
the standard primitive cell. For the standard conven-
tional cells with primitive lattice, the standard primitive

cells are the conventional cells. While for ‘C’-face cen-
tred standard conventional cells, the standard primitive
cell (asp,bsp, csp) = (asc,bsc, csc)PC, where

PC =


1
2

1
2 0

1̄
2

1
2 0

0 0 1

 . (5)

III. RESULTS

The Computational 2D Materials Database (C2DB)
currently contains 15 735 2D materials. Most of the
structures have been generated by computational exfo-
liation of experimentally known layered bulk crystals fol-
lowed by systematic lattice decoration (atomic substitu-
tion) of the thus obtained monolayers [9, 10]. Recently,
the data set was amended by monolayers created by a
deep generative model [40]. All the monolayers in C2DB
have been relaxed using density functional theory with
the PBE exchange-correlation functional.

We have determined the layer group of all the monolay-
ers in C2DB alongside the space group of the correspond-
ing AA-stacked bulk structures (see next section). Fig. 2
shows the distribution of the C2DB monolayers accord-
ing to the layer group. The distribution shown has been
limited to the subset of monolayers for which the band
gap has been calculated (7 201 materials), and the ma-
terials have been divided into metallic and non-metallic
compounds. The background color is used to indicate
the different crystal systems (along with the Bravais sys-
tem if necessary). Examples of crystal structures from
selected layer groups are shown.

The most frequently occurring layer group is number
72 (p3̄m1) with 1 231 occurrences. It should be noted,
that the distribution of materials by layer group num-
ber is highly non-uniform, with several completely empty
bins accompanied by several with just a few materials.
In particular, there are no materials in C2DB with layer
groups 19, 24, 25, 30, 38, 39, 43, 49, 54, 56, 60, 73, 75, 76
and 77 (using a tolerance parameter ‘symprec’=0.1Å).

There is a tendency that insulating behaviour (blue
bars) is more pronounced among the materials with lower
layer group numbers while metallic behaviour (red bars)
is dominant in materials with high layer group numbers.
This is due to the fact that, as a rough rule, layer groups
with smaller numbers contain fewer symmetry transfor-
mations. The less symmetric crystals will have energy
bands of lower degeneracy and therefore a higher chance
of all bands being either fully occupied or empty. On the
other hand, more symmetric crystals will have energy
bands of higher degeneracy and consequently a higher
chance of partially occupied, i.e. metallic, bands.
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FIG. 2. Distribution of materials of C2DB according to layer group number. The background color coding refers to the crystal
system (the monoclinic crystal system is further classified according to its lattice type). Some examples of structures from
different layer groups are shown. The blue (red) part of the bars refers to materials with finite (zero) band gap.

A. Layer group versus space group

As mentioned in the introduction, 2D materials have
so far mainly been classified using space groups. This
is true in particular for the C2DB, which has used the
space group of the AA-stacked bulk materials to repre-
sent the crystal symmetry of a monolayer. The ‘2D ma-
terial model’ and the ‘AA-stacking model’ are illustrated
in Fig. 3. In this section, we compare the two crystal
models and highlight possible pitfalls arising when using
the AA-stacking model to describe a monolayer.

First, on a general note, it has been shown that for each
layer group L with point group P and translation lattice
LL, there exists a symmorphic representative which is
the 3D space group S that shares the same point group
and symmetry diagram [41, 42]. The lattice of the sym-
morphic representative

LS = LL ⊕ LR (6)

is the direct sum of the 2D lattice of the layer group
L and the 1D lattice LR of a symmorphic rod group R
with point group P. The layer group and its symmorphic
representative can be represented by the same Hermann-
Mauguin symbol which only differs by the upper and low-
ercase of the first letter [42]. However, for some types
of space groups, the manner of splitting the lattice LS

into two P-invariant sub-lattice is not unique. Conse-
quently, one symmorphic representative may correspond

to multiple layer groups with different types. Ambiguity
thereupon arises.

To be more specific, the symmorphic representatives
of the 80 layer group types belong to 71 different space
group types. 62 of these 71 space group types have a
one-to-one mapping with the corresponding layer group
types, while the rest 9 space group types map to 2 dif-
ferent layer group types, respectively. In Table I, we
list these 9 non-injective mappings. The numbers in
parenthesis represent the number of materials in C2DB
with that layer group type. Examples of concrete struc-
tures from the relevant layer group types are provided in
Fig. 4. Note that only eight cases are shown in Fig. 4
as C2DB currently does not include any structures from
layer group 24. As illustrated in Table I, a total of 2 848
of the monolayers in C2DB (18%) belong to one of the
layer group types in Table I, and thus are not uniquely
classified by the space group of the AA-stacked structure.

Inspection of the structures/layer groups in Fig. 4 and
Table I shows that the first five pairs are examples where
the two layer groups belong to the monoclinic crystal
systems with oblique and rectangular Bravais systems,
respectively. In these cases, one of the structures has
an in-plane ±2-fold symmetry, which is replaced by an
out-of-plane ±2-fold symmetry in the other structure.
The last four pairs of layer groups all belong to the or-
thorhombic crystal system. For each pair of the exam-
ples, the out-of-plane rotation, mirror reflection or glide
translation is exchanged with an in-plane symmetry that
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(a) 2D material model

(b) AA-stacking model

Periodic along a and b, but not c

Periodic along a, b, and c

FIG. 3. (a) The 2D material is periodic along the a and b
axes, but not along the c axis. (b) In the AA-stacking model,
the 2D material is periodically repeated along the out-of-plane
c axis, extending it to the domain of space groups and making
it compatible with computational plane wave codes, which
require periodic boundary conditions in all directions.

has a different type. For example, the out-of-plane 2-
fold rotation and one of the in-plane mirror reflections
of layer group 23 (pmm2) becomes an out-of-plane mir-
ror reflection and in-plane 2-fold rotation for layer group
27 (pm2m). These distinctions cannot be made by the
space group of the AA-stacked bulk.

The ability of the layer groups to differentiate struc-
tures of the same space group type (defined via the AA-
stacking model) is not without practical value. For ex-
ample, Ji et al. showed how layer groups can be used as
a tool to determine possible outcomes of ferroelectricity
when two monolayers are stacked to form a bilayer [43].
They further divide the layer groups into distinct polar
types, according to whether polarization is allowed in-
plane or out-of-plane or both. An example is given by
Fig. 4, where layer group 4 (p11m) is polar in-plane and
layer group 11 (pm11) is polar out-of-plane, while both
share the space group 6 (Pm).

IV. CONCLUSIONS

We have introduced an algorithm to determine the
layer group of a crystal structure with a two-dimensional
(2D) periodic lattice, and applied it to 15 000+ atomi-

FIG. 4. Examples of structures that are incompletely classi-
fied by the space group of their AA-stacked bulk, cf. Table I.
Each row shows a pair of 2D crystal structures belonging to
distinct layer group types, but with the same space group type
(of the AA-stacked bulk). Structures from the layer group
pair (24, 31) are not shown as the C2DB contains no mono-
layers from layer group 24.
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Layer group pairs Space group
3: p112 (46) 8: p211 (11) 3: P2
4: p11m (59) 11: pm11 (591) 6: Pm
5: p11a (201) 12: pb11 (11) 7: Pc
6: p112/m (30) 14: p2/m11 (230) 10: P2/m
7: p112/a (51) 16: p2/b11 (88) 13: P2/c
23: pmm2 (375) 27: pm2m (186) 25: Pmm2
28: pm21b (245) 29: pb21m (24) 26: Pmc21
24: pma2 (0) 31: pm2a (10) 28: Pma2
40: pmam (5) 41: pmma (154) 51: Pmma

TABLE I. List of all cases where two different layer group
types are mapped to the same space group type upon AA
stacking of the 2D material. The number of monolayers in the
C2DB is indicated in parenthesis after the Hermann-Mauguin
symbol of each layer group type with the tolerance parameter
set to 10−1Å. In Fig. 4 some illustrative examples of crystal
structures from the relevant layer group types are shown.

cally thin crystals stored in the Computational 2D Ma-
terials Database (C2DB). A symmetry analysis of the 2D
materials in C2DB revealed a rather inhomogeneous dis-
tribution of layer groups with several layer groups only
sparsely populated and 15 groups not represented at all.
It would be interesting for future 2D materials discov-
ery projects to focus on crystals from these layer groups.
We have shown that classification of 2D materials by the
space group of the AA-stacked bulk crystal is ambiguous
for a significant fraction (18%) of the C2DB materials,
due to the inability of the space group to distinguish be-
tween the in-plane and out-of-plane directions. Specif-
ically, there are nine pairs of layer group types, which
cannot be distinguished by the space group of the AA-
stacked bulk crystal.

The method to determine the layer group is available
as part of the open source Spglib library. The algorithm
will be useful for researchers working with 2D crystal
structures in general, and will facilitate the application
of various theories and concepts for 2D materials that
build on the layer group symmetry [43–49].
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Appendix A: Classification of layer group

Below we summarize the mathematical structure and
classification of the layer groups. We mainly follow

TABLE II. Classification of the point groups of layer groups.
Names and symbols of the crystal systems and geometric crys-
tal classes are based on Table 3.2.1.4 of Ref. 34. The Laue
class classifies the geometric crystal classes by ignoring inver-
sion.

Crystal system Laue class Geometric crystal classes
Triclinic 1̄ 1, 1̄
Monoclinic 2/m 2, m, 2/m
Orthorhombic mmm 222, 2mm, mmm
Tetragonal 4/m 4, 4̄, 4/m

4/mmm 422, 4̄2m, 4mm, 4/mmm
Trigonal 3̄ 3, 3̄

3̄m 32, 3m, 3̄m
Hexagonal 6/m 6, 6̄, 6/m

6/mmm 622, 6̄2m, 6mm, 6/mmm

the terminologies in Refs. 34 and 33. We classify
the layer groups according to the point groups (Ap-
pendix. A 1), Bravais lattice (Appendix. A 2), and both
(Appendix. A 3).

1. Point group of layer group

Two point groups, P and P ′, belong to the same geo-
metric crystal class if they are conjugate by an invertible
matrix P , i.e. P−1PP = P ′. Two layer groups, L and
L′, with point groups P and P ′ belong to the same geo-
metric crystal class if and only if P and P ′ belong to the
same geometric crystal class. Because the point groups
of layer groups are three-dimensional, geometric crystal
classes of layer groups are classified with the same nota-
tion as those of space groups.

Two point groups belong to the same crystal system
if and only if the sets of Bravais type of lattices which
these point groups leave invariant, coincide. Crystal sys-
tems of layer groups are also classified with the same
notation as those of space groups: triclinic, monoclinic,
orthorhombic, tetragonal, trigonal, and hexagonal. Note
that a cubic crystal system does not exist for layer groups
because the point groups of layer groups should preserve
the 2D lattice plane (the point group of the cubic crys-
tal system would contain an operation that rotates the
structure out of the lattice plane). Table II shows the
classification of point groups for layer groups.

2. Translation lattice of layer group

For a lattice L, a Bravais group B(L) is a set of isom-
etry mappings that preserve L. Two lattices L and L′

belong to the same Bravais type of lattices if and only
if their Bravais groups are conjugate by an unimodular
matrix P , i.e. P−1B(L)P = B(L′). Because transla-
tion lattices of layer groups are two-dimensional, Bravais
types of lattices of layer groups are classified with the
same notation as those of plane groups.
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TABLE III. Classification of translation lattices of layer
groups. Names and symbols of lattice systems are based on
Table 3.1.1.1 of Ref. 34. Symbols of Bravais types of lattices
are based on Table 3.1.2.1 of Ref. 34.

Lattice system Holohedry Bravais type
Oblique (monoclinic) m 2/m mp
Rectangular mmm op
(orthorhombic) o oc
Square (tetragonal) t 4/mmm tp
Hexagonal h 6/mmm hp

Two lattices L and L′ belong to the same lattice system
if and only if their Bravais groups belong to the same ge-
ometric crystal class. The corresponding point group for
the geometric crystal class is called a holohedry. Lattice
systems of layer groups are also classified with the same
notation as those of plane groups: Oblique, Rectangular,
Square, and Hexagonal. Table III shows the classification
of translation lattices of layer groups.

3. Arithmetic-geometric crystal class

Let Ti and Pi be a translation subgroup and a point
group of layer groups Li (i = 1, 2). Two layer groups L1

and L2 belong to the same arithmetic-geometric crystal
class [50] if P1 and P2 are conjugate by a basis trans-
formation from T1 to T2 and a transformation along the
non-periodic axis. Table IV shows the classification of
layer groups by the arithmetic-geometric crystal classes.

Appendix B: DELAUNAY REDUCTION

Given an n-dimensional (nD) lattice, the goal of De-
launay reduction is to find the shortest basis vectors
bi(1 ≤ i ≤ n) spanning the lattice. In practice, the
algorithm achieves that by minimizing

n+1∑
i=1

b2
i , (B1)

where

bn+1 = −
n∑

i=1

bi. (B2)

For n = 2, we start by selecting two basis vectors b1

and b2. The extended basis b3 = −b1 − b2. Check the
3 scalar products bi · bj(i ̸= j) one after the other. Any
time bi · bj > 0, the transformation

b′
i = −bi

b′
j = bj

b′
k = bk + 2bi

(B3)

TABLE IV. Arithmetic-geometric crystal classes for layer
groups. Each arithmetic-geometric crystal class is represented
by a layer group in ITE whose sequential number is the small-
est among the belonging arithmetic-geometric crystal class.

Crystal class/lattice system Geometric Arithmetic-
crystal class geometric

crystal class
Triclinic/oblique 1 p1 (1)

1̄ p1̄ (2)
Monoclinic/oblique 2 p112 (3)

m p11m (4)
2/m p112/m (6)

Monoclinic/rectangular 2 p211 (8)
c211 (10)

m pm11 (11)
cm11 (13)

2/m p2/m11 (14)
c2/m11 (18)

Orthorhombic/rectangular 222 p222 (19)
c222 (22)

mm2 pmm2 (23)
cmm2 (26)

(m2m) pm2m (27)
cm2m (35)

mmm pmmm (37)
cmmm (47)

Tetragonal/square 4 p4 (49)
4̄ p4̄ (50)
4/m p4/m (51)
422 p422 (53)
4mm p4mm (55)
4̄2m p4̄2m (57)
(4̄m2) p4̄m2 (59)
4/mmm p4/mmm (61)

Trigonal/hexagonal 3 p3 (65)
3̄ p3̄ (66)
312 p312 (67)
(321) p321 (68)
3m1 p3m1 (69)
(31m) p31m (70)
3̄1m p3̄1m (71)
(3̄m1) p3̄m1 (72)

Hexagonal/hexagonal 6 p6 (73)
6̄ p6̄ (74)
6/m p6/m (75)
622 p622 (76)
6mm p6mm (77)
6̄m2 p6̄m2 (78)
(6̄2m) p6̄2m (79)
6/mmm p6/mmm (80)

is performed, where k ̸= i, j. After the transformation,∑
b′
i′
2
=

∑
b2
i′−4bi ·bj <

∑
b2
i′ . Then we check b′

1 ·b′
2,

b′
1 · b′

3 and b′
2 · b′

3, and so on. The loop stops when all
bi · bj ≤ 0, i.e., the angles between b1,b2,b3 all be-
come non-acute. 2D Delaunay reduction is applied to
the basis vectors forming the oblique face of a mono-
clinic cell and works well on bulk systems. For the mon-
oclinic/oblique cell, the target vectors to be reduced are
the lattice vectors a and b, and the procedure has no
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A B C D

b1 -b1

b2

b3

b1+2b2

-b2

O

FIG. 5. Schematic diagram of 2D Delaunay reduction. The
solid arrows denote the vectors at an intermediate step during
the Delaunay reduction. Since the angle between b2 and b3

is smaller than 90◦, the next step will transform b1 and b2 to
b1 +2b2 and −b2, respectively. The transformed vectors are
denoted by dotted arrows. If the 2D lattice is spanned by b1

and a vector perpendicular to the paper, such transformation
breaks the lattice plane and is not allowed. The Delaunay
reduction will stop at the previous step. The above-mentioned
case appears when b2 lies in the white circles. The Delaunay
reduction can be fully applied when b2 lies in the rest areas
(edge included). Green and yellow indicate b1 finally being
transformed to b1 and −b1, respectively.

difference from the bulk case. However, the oblique face
of a monoclinic/rectangular cell is composed of b1 = b
and b2 = c. As shown in Fig. 5, the basis vectors of
the periodic plane are b1 and the unique axis a which is
vertical to the paper. Allowed transformations for b1 are
b1 → b1 and b1 → −b1. When the angle between b2 and
b3 is acute, Delaunay reduction requires b1 → b1 + 2b2

and b2 → −b2. The new vectors break the lattice plane,
which is not permitted (dotted arrows in Fig. 5). For cer-
tain input cell, candidates for b2,b3 are predetermined
(represented by hollow points in Fig. 5). When the points
lay on the colored areas (including edges), ∀bi · bj ≤ 0
fulfills after Delaunay reduction. b2 with the initial po-
sition at the green areas will be sent to the green area
of region C. b2 in the yellow areas will finally deposit in
region B, with b1 being switched to −b1. If the input
b2 lies in any of the white circles, at least one angle be-
tween the vectors will be acute. In the algorithm, it is set
to be the one between b2 and b3. After reduction, the
non-lattice vector c and the shortest two vectors among
b1, b2 and b3 are selected to build the bulk or mono-
clinic/oblique cell. While for a monoclinic/rectangular
cell, one of ±b1 must be chosen to maintain the periodic
plane. The other two vectors are a and the shortest in
b2 and b3.

The workflow for n = 3 is similar. The transformation

for bi · bj > 0 (i, j = 1, . . . , 4; i ̸= j) reads

b′
i = −bi

b′
j = bj

b′
k = bk + bi

b′
l = bl + bi

(B4)

For layer systems, when the non-lattice vector c lies in
the intersection of an infinitely long prism and a sphere,
the Delaunay reduction cannot be fully applied. The
angle between b3 and b4 will be less than 90◦. The two
basis vectors that form the cross-section of the prism are

p1 =
(b1 + b2) · b2

(b2 × b1) · ez
(ez × b1) and ,

p2 =
(b1 + b2) · b1

(b2 × b1) · ez
(ez × b2),

(B5)

where ez = (0, 0, 1), p1⊥b1, p2⊥b2, and p1+p2 = −b1−
b2. The prism is infinite along the ±z direction. The
origin of the sphere is − 1

2 (b1 + b2) and the radius is
− 1

2 |b1 + b2|.

Appendix C: CONVENTIONAL CELLS

The standard crystallographic coordinate system
(CCS) choices defined in Refs. 34 and 33 impose con-
straints on the choices and the orientations of the basis
vectors, and are firstly consulted for building the con-
ventional cells. Additional metric rules are added when
the standard choices cannot uniquely determine the cell.
The criteria used by Spglib are summarized in Fig. 1.

For triclinic lattices, a Niggli cell [51] is chosen to be
the conventional cell by virtue of its uniqueness. For
bulk crystals (3D lattice), the Niggli conditions include
|ac| ≤ |bc| ≤ |cc| and |ac · cc| ≤ |ac · bc| if |bc| = |cc|
for bulk systems. The Niggli reduction will swap bc and
cc when the aforementioned conditions are not met. For
layer systems with the non-lattice vector cc, such action
is not allowed. In this case, the resulting cell will thus
differ from the conventional Niggli cell by a rotation.

The monoclinic crystal system is subdivided into mon-
oclinic/oblique and monoclinic/rectangular according to
the 2D Bravais lattice. The unique two-fold axis is ver-
tical to the plane and is set to be parallel to cc for the
former, while for the latter the axis is in-plane and chosen
to be along ac. 2D Delaunay reduction is conducted for
the oblique face of the cell. As shown in Appendix. B,
this procedure cannot be completely performed for the
monoclinic/rectangular system. In this case, both the
shape and the orientation of the resulting cell will differ
from the conventional cell that would have been obtained
for a monoclinic bulk crystal.

The conventional cells of the orthorhombic groups are
cuboids. The standard CCS choice requires the axes of
certain symmetry operations to be perpendicular to the
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faces of the cuboids. When multiple faces share the same
symmetry diagram up to an origin shift, permutation of
the cell vectors will not influence the CCS choice. To
find out which basis vectors can be swapped, the Eu-
clidean normalizer of the space/layer group is utilized.
The Euclidean normalizer of a group G is the group NE
consisting of all Euclidean transformations which map G
onto itself by conjugation

NE(G) ≡
{
s ∈ E | s−1Gs = G

}
, (C1)

where E is the group of all Euclidean transformations [34].
G is a normal subgroup of NE , and the factor group
NE(G)/G classifies the transformations. Each element
sG of the factor group represents a different kind of CCS
transformation (axis permutation, origin shift, etc.) that
does not alter the CCS choice. We are interested in all
the sG which contains one of the six right-handed axis
permutations abc, bac̄, cab, c̄ba, bca and ac̄b. They
can be obtained by exploiting the group-subgroup rela-
tionship revealed in section 3.5.2.1 of Ref. 34

G ≤ K(G) ≤ L(G) ≤ NE(G), (C2)

where K(G) is an intermediate group that retains the
linear part of G and the translation part of NE(G).
L(G) = K(G)⊗{1, 1̄} if G does not have inversion symme-
try while NE(G) is centrosymmetric, else L(G) = K(G).
The group NE(G)/L(G) factors out choices related to ori-
gin shift and inversion which flips the handedness. The
index nl = |NE(G)/L(G)| indicates the number of axes
permutation types that preserves the CCS choice. For
space groups, when nl = 6, the six different axis permu-
tations do not influence the CCS choice. The order of
the three basis vectors can be arbitrarily chosen. Spglib
requires |ac| ≤ |bc| ≤ |cc|. Space groups P222, F222,
Ibca, etc. belong to this case. Space group Pbca is the
only one with nl = 3, where abc, cab and bca pre-
serves the standard CCS choice, while bac̄, c̄ba and
ac̄b changes the choice to another. Spglib chooses ac
to be the shortest vector, the orientation of bc and cc
will be settled accordingly. nl = 2 means the standard
choice fixes certain symmetry axis being parallel to cc.
ac and bc cannot be determined by symmetry. Spglib
adds the constraint |ac| ≤ |bc|. Typical space groups are
P2221, C222, etc. The rest orthorhombic space groups

like Pmc21 have nl = 1, of which the standard choices
uniquely determine the basis of the conventional cells.
For layer groups, nl ≤ 2 due to cc being the non-lattice
vector.

For bulk, Table 3.5.2.4 of Ref. 34 lists nl for cen-
trosymmetric NE(G), and nk = |NE(G)/K(G)| for non-
centrosymmetric NE(G). For simplicity, we use nl to de-
note the two symbols. Different metric parameter condi-
tions may lead to different NE(G), and the one with the
highest symmetry should be consulted. For layer, nl can
be deduced from the table by consulting the line with the
highest symmetry under the metric conditions a ̸= c and
b ̸= c. It can also be found in Ref. 52.

For space groups, additional correction matrices must
be applied for monoclinic and orthorhombic conventional
cells with ‘A’, ‘B’ or body-centering types, as the stan-
dard choices only possess ‘C’ centering lattices. The cor-
rection matrices are listed in Ref. 13. This step is not
necessary for layer groups.

Appendix D: HALL SYMBOLS

Hall symbols are used to represent the different CCS
choices of space and layer groups in Spglib. Compared
to Hermann–Mauguin symbols, Hall symbols take the
origin of each symmetry operation into consideration. A
unique symmetry group can be deduced from a Hall sym-
bol without additional information. The 530 Hall sym-
bols for different choices of space groups are tabulated
in table A1.4.2.7 of Ref. 38. As there does not exist
a standard table for layer group Hall symbols, we have
produced Table V as a reference.

The first column of the table gives the layer group num-
ber. If there are multiple CCS choices for one layer group
type, the group number is followed by the axis codes of
the choice. The first row of each group number always
corresponds to the standard choice defined in chapter 4
of Ref. 33. The non-standard choices are generated ac-
cording to table 1.2.6.1 and chapter 4 of Ref. 33. The
second to the fourth column lists the Hermann–Mauguin
entries, Hall entries suitable for computer processing and
the Hall symbols, respectively. The detailed meaning of
the Hall symbols is described in Ref. 38, except we use
symbols with the first letter upper and lowercase to dis-
tinguish the space and layer groups, respectively.
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n:c H-M entry Hall entry Hall symbol n:c H-M entry Hall entry Hall symbol
1 p 1 p 1 p 1 34:b-ac p 2 a n p -2ab 2 p 2̄ab 2

2 p -1 -p 1 p̄ 1 35 c m 2 m c -2 -2 c 2̄ 2̄

3:c p 1 1 2 p 2 p 2 35:b-ac c 2 m m c -2 2 c 2̄ 2

4:c p 1 1 m p -2 p 2̄ 36 c m 2 e c -2a -2a c 2̄a 2̄a

5:c1 p 1 1 a p -2a p 2̄a 36:b-ac c 2 m e c -2a 2 c 2̄a 2

5:c2 p 1 1 n p -2ab p 2̄ab 37 p m m m -p 2 2 p̄ 2 2

5:c3 p 1 1 b p -2b p 2̄b 38 p m a a -p 2a 2 p̄ 2a 2

6:c p 1 1 2/m -p 2 p̄ 2 38:b-ac p b m b -p 2b 2b p̄ 2b 2b

7:c1 p 1 1 2/a -p 2a p̄ 2a 39 p b a n -p 2ab 2b p̄ 2ab 2b

7:c2 p 1 1 2/n -p 2ab p̄ 2ab 40 p m a m -p 2 2a p̄ 2 2a

7:c3 p 1 1 2/b -p 2b p̄ 2b 40:b-ac p b m m -p 2 2b p̄ 2 2b

8:a p 2 1 1 p 2x p 2x 41 p m m a -p 2a 2a p̄ 2a 2a

8:b p 1 2 1 p 2y p 2y 41:b-ac p m m b -p 2b 2 p̄ 2b 2

9:a p 21 1 1 p 2xa p 2xa 42 p m a n -p 2ab 2 p̄ 2ab 2

9:b p 1 21 1 p 2yb p 2yb 42:b-ac p b m n -p 2ab 2ab p̄ 2ab 2ab

10:a c 2 1 1 c 2x c 2x 43 p b a a -p 2a 2b p̄ 2a 2b

10:b c 1 2 1 c 2y c 2y 43:b-ac p b a b -p 2b 2ab p̄ 2b 2ab

11:a p m 1 1 p -2x p 2̄x 44 p b a m -p 2 2ab p̄ 2 2ab

11:b p 1 m 1 p -2y p 2̄y 45 p b m a -p 2a 2ab p̄ 2a 2ab

12:a p b 1 1 p -2xb p 2̄xb 45:b-ac p m a b -p 2b 2a p̄ 2b 2a

12:b p 1 a 1 p -2ya p 2̄ya 46 p m m n -p 2ab 2a p̄ 2ab 2a

13:a c m 1 1 c -2x c 2̄x 47 c m m m -c 2 2 c̄ 2 2

13:b c 1 m 1 c -2y c 2̄y 48 c m m e -c 2a 2 c̄ 2a 2

14:a p 2/m 1 1 -p 2x p̄ 2x 49 p 4 p 4 p 4

14:b p 1 2/m 1 -p 2y p̄ 2y 50 p -4 p -4 p 4̄

15:a p 21/m 1 1 -p 2xa p̄ 2xa 51 p 4/m -p 4 p̄ 4

15:b p 1 21/m 1 -p 2yb p̄ 2yb 52:1 p 4/n:1 p 4 -1ab p 4 1̄ab

16:a p 2/b 1 1 -p 2xb p̄ 2xb 52:2 p 4/n:2 -p 4a p̄ 4a

16:b p 1 2/a 1 -p 2ya p̄ 2ya 53 p 4 2 2 p 4 2 p 4 2

17:a p 21/b 1 1 -p 2xab p̄ 2xab 54 p 4 21 2 p 4 2ab p 4 2ab

17:b p 1 21/a 1 -p 2yab p̄ 2yab 55 p 4 m m p 4 -2 p 4 2̄

18:a c 2/m 1 1 -c 2x c̄ 2x 56 p 4 b m p 4 -2ab p 4 2̄ab

18:b c 1 2/m 1 -c 2y c̄ 2y 57 p -4 2 m p -4 2 p 4̄ 2

19 p 2 2 2 p 2 2 p 2 2 58 p -4 21 m p -4 2ab p 4̄ 2ab

20 p 21 2 2 p 2 2a p 2 2a 59 p -4 m 2 p -4 -2 p 4̄ 2̄

20:b-ac p 2 21 2 p 2 2b p 2 2b 60 p -4 b 2 p -4 -2ab p 4̄ 2̄ab

21 p 21 21 2 p 2 2ab p 2 2ab 61 p 4/m m m -p 4 2 p̄ 4 2

22 c 2 2 2 c 2 2 c 2 2 62:1 p 4/n b m:1 p 4 2 -1ab p 4 2 1̄ab

23 p m m 2 p 2 -2 p 2 2̄ 62:2 p 4/n b m:2 -p 4a 2b p̄ 4a 2b

24 p m a 2 p 2 -2a p 2 2̄a 63 p 4/m b m -p 4 2ab p̄ 4 2ab

24:b-ac p b m 2 p 2 -2b p 2 2̄b 64:1 p 4/n m m:1 p 4 2ab -1ab p 4 2ab 1̄ab

25 p b a 2 p 2 -2ab p 2 2̄ab 64:2 p 4/n m m:2 -p 4a 2a p̄ 4a 2a

26 c m m 2 c 2 -2 c 2 2̄ 65 p 3 p 3 p 3

27 p m 2 m p -2 -2 p 2̄ 2̄ 66 p -3 -p 3 p̄ 3

27:b-ac p 2 m m p -2 2 p 2̄ 2 67 p 3 1 2 p 3 2 p 3 2

28 p m 21 b p -2b -2 p 2̄b 2̄ 68 p 3 2 1 p 3 2" p 3 2"
28:b-ac p 21 m a p -2a 2a p 2̄a 2a 69 p 3 m 1 p 3 -2" p 3 2̄"
29 p b 21 m p -2 -2b p 2̄ 2̄b 70 p 3 1 m p 3 -2 p 3 2̄

29:b-ac p 21 a m p -2 2a p 2̄ 2a 71 p -3 1 m -p 3 2 p̄ 3 2

30 p b 2 b p -2b -2b p 2̄b 2̄b 72 p -3 m 1 -p 3 2" p̄ 3 2"
30:b-ac p 2 a a p -2a 2 p 2̄a 2 73 p 6 p 6 p 6

31 p m 2 a p -2a -2a p 2̄a 2̄a 74 p -6 p -6 p 6̄

31:b-ac p 2 m b p -2b 2 p 2̄b 2 75 p 6/m -p 6 p̄ 6

32 p m 21 n p -2ab -2 p 2̄ab 2̄ 76 p 6 2 2 p 6 2 p 6 2

32:b-ac p 21 m n p -2ab 2ab p 2̄ab 2ab 77 p 6 m m p 6 -2 p 6 2̄

33 p b 21 a p -2a -2ab p 2̄a 2̄ab 78 p -6 m 2 p -6 2 p 6̄ 2

33:b-ac p 21 a b p -2b 2a p 2̄b 2a 79 p -6 2 m p -6 -2 p 6̄ 2̄

34 p b 2 n p -2ab -2ab p 2̄ab 2̄ab 80 p 6/m m m -p 6 2 p̄ 6 2

TABLE V. Table of the layer group numbers along with possible axis codes, Hermann–Mauguin symbols, Hall entries and Hall
symbols. The table follows the format of table A1.4.2.7 in Ref. 38. The first row of each layer group number demonstrates the
standard choice. All the choices are compatible with the symmetry diagrams in chapter 4 and table 1.2.6.1 of Ref. 33. The
first letter ’p’ and ’c’ of the Hall symbols are in lowercase to represent layer groups.
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