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Multiple intermediate phases in the interpolating Aubry-André-Fibonacci model
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We investigate a generalized interpolating Aubry-André-Fibonacci (IAAF) model with p-wave
superconducting pairing, focusing on its localization and topological properties. Within the Aubry-
André limit, we demonstrate that the system experiences transitions from a pure phase, either
extended or critical, to a variety of intermediate phases and ultimately enters a localized phase with
increasing potential strength. These intermediate phases include those with coexisting extended and
localized states, extended and critical states, localized and critical states and a mix of extended,
critical and localized states. Each intermediate phase exhibits at least one type of mobility edge
separating different states. As the system approaches the Fibonacci limit, both the extended and
localized phases diminish, and the system tends towards a critical phase. Furthermore, the model
undergoes a transition from topologically nontrivial to trivial phase as potential strength increases.

I. INTRODUCTION

The study of quantum localization plays an important
role in condensed matter physics, particularly since the
remarkable discovery of Anderson localization in 1958 [1].
It indicates the absence of the delocalization-localization
phase transition in low-dimensional disordered systems
[2-4]. Later, quasiperiodic (QP) potentials have garnered
considerable attention for enabling localization transi-
tions in one-dimensional (1D) systems. These potentials
have been successfully implemented in various experi-
mental platforms, such as in photonic crystals [5-7], ul-
tracold atoms [8, 9] and so on [10-12]. The Aubry-André
(AA) model [13] stands out by demonstrating a phase
transition from an extended to a localized phase when the
quasiperiodic disorder strength exceeds a critical thresh-
old. Similarly, the Fibonacci model, known for its eigen-
states that remain critical at all potential strengths, has
garnered considerable theoretical [14-23] and experimen-
tal [18, 24-27] interest. Both models belong to the same
topological class and are regard as two distinctive limits
within the interpolating Aubry-André-Fibonacci (IAAF)
model [28-30]. The IAAF model provides a unique play-
ground for investigating the localization properties [31-
34]. For instance, Ref [31, 34] present various cascade
behaviors of eigenstates during the continuous transfor-
mation of the AA model into the Fibonacci model.

The concept of mobility edge is crucial in separating
extended from localized states, leading to many novel in-
sights in fundamental physics [4, 35-37]. The quantum
phase where extended and localized states coexist within
the energy spectrum is termed the intermediate phase.
Numerous theoretical studies have confirmed the exis-
tence of this intermediate phase and the mobility edge in
one-dimensional systems with broken self-duality symme-
try [38-50]. In contrast to phases where all eigenstates
are exclusively extended or localized, there exists a dis-
tinct third phase, known as the critical phase, where all
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eigenstates are extended but nonergodic, as observed in
generalized quasiperiodic models [51-54]. Further stud-
ies [55-58] have identified an anomalous mobility edge
separating the extended and localized states from the
critical ones. These findings indicate the existence of
additional intermediate phases there is a coexistence of
critical and other states.

Topological phases of matter have emerged as a fas-
cinating area of research in condensed matter physics,
offering novel insights into the behavior of quantum sys-
tems. These phases are characterized by their robust
properties, which are protected by topological invariants
and are insensitive to local perturbations[59-64]. Among
the most intriguing features of topological phases are the
presence of exotic quasiparticle excitations known as Ma-
jorana zero modes (MZMs)[65-67]. MZMs arise in cer-
tain topological superconductors and are predicted to ex-
ist at the ends of one-dimensional systems or in vortices of
two-dimensional systems[68-70]. The unique properties
of Majorana zero modes, such as their ability to encode
and manipulate quantum information in a fault-tolerant
manner, have attracted significant attention from both
theoretical and experimental perspectives[71-73].

In this paper, we explore a generalized quasiperiodic
model, namely the TAAF model with p-wave supercon-
ducting (SC) pairing terms. We find that the potential
effectively transforms into a cosine QP modulation up
to a constant on-site chemical potential shift in the AA
limit (see Fig. 1). The system undergoes transitions from
a pure phase, either extended or critical, to a localized
phase with a strong enough potential strength. Many
types of intermediate phases emerged during this process,
including those with coexisting extended and localized
states, extended and critical states, localized and critical
states and a coexistence of extended, critical and local-
ized states. Specially, each intermediate phase exhibits at
least one type of mobility edge separating different states.
As the system approaches the Fibonacci limit where the
potential corresponds to a step potential switching be-
tween +1 values according to the Fibonacci substitution
rule (see Fig. 1), the domains for extended and localized
phases diminish, leading the system towards a critical
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FIG. 1. (Color online). Schematic of the quasiperiodically

modulated on-site potential (eq. (2)) for several values of
B =10.01, 0.2, 5, 1000 (light to deep blue curves).

phase. Additionally, we observe that the model experi-
ences a transition from topologically nontrivial to trivial
phase via increasing the strength of potential. MZMs are
present in the topological nontrivial phase.

The structure of the paper is as follows: In Sec. II,
we briefly introduce the Bogoliubov-de Gennes (BdG)
theory and outline several physical quantities to charac-
terize the extended, localized and critical states, as well
as the corresponding phases. In Sec. III and Sec. 1V, we
study the localization properties ranging from AA limit
to Fibonacci limit. In Sec. V, we analyse the topological
properties of our model. Sec. VI provides the conclusion
and outlook.

II. MODEL AND METHOD

Here, we start from the 1D p-wave superconducting
paired TAAF model with Hamiltonian defined as

H =" [~Jéleip1 + Aéicipr + hoc. + AVi(B)ii], (1)

%

where ¢ denote the lattice site index. CZ<CT) is annihilation
(creation) operator of the spinless fermion on ¢ and 7; =
éTél J is the nearest-neighboring (NN) single-particle
hopping amplitude and let J =1 in this paper. A is the
pair-driving rate, which we take as real and positive. A
is the strength of the quasiperiodically modulated on-site

chemical potential. The potential V; reads

tanh[B(cos(2mai+ 0) — cos(ma))]

Vi() = e e

Without loss of generality, we set the phase term of the
potential to be zero (8 = 0). The golden mean ratio « can
be derived from the limit of the ratio of consecutive Fi-
bonacci numbers F; [74]: « = lim,,_, o F;‘l = ‘/52_1 with
Fy = F}, = 1. The parameter 3 serves as a control mech-
anism allowing interpolation between two known limiting
cases of f — 0 and 8 — oco. For the former, the poten-

tial V() simplifies to cos(2mai + ) — cos(wra). Then the

model becomes a 1D p-wave superconductor in the in-
commensurate lattices [75] up to a constant on-site chem-
ical potential shift. For the latter, V;(8) corresponds to a
step potential switching between +1 values following the
Fibonacci substitution rule. Fig. 1 illustrates the on-site
potential V;(3) to have a more intuitive understanding.
Considering the Hamiltonian. (1) owns particle-hole
symmetry, we can employ the Bogoliubov-de Gennes
(BdG) transformation [76] to diagonalize it, as follows:

Z Vip€i + Ui C) ) (3)

where L is the number of lattice sites and p = 1,..., L.
In this paper, we set L = F,,_1/F, to ensure a periodic
boundary condition. Then the eq. (1) in terms of the 7,
and ’Ay)l operators reads:

L
=3 26,304 — 5) (1)

p=1

Assuming the energy spectrum ¢, is non-negative. The
eigenstates in terms of spinless fermion language is de-
fined as |®,) = (uy,v,)T = (up1, .o, UL, vu1, -vur)
and the positive eigenvalues €, are obtained by solving
Bogoliubov-de Gennes equation:

“) = ) ()= )
5

Given that all couplings are real in our model, the asso-
ciated 2L x 2L matrices H is real and symmetric. Hence
the matrix A is real and symmetric (4 = A* = AT),
while B is real and anti-symmetric (B = B* = —B7T).
The eq. (5) can be further read as:

(A+ B)ou = €utu, (A= By = eudu, (6)

where ¢, = u, + v, and ¢, = u, —v,. The elements
of 7:[ are defined as QAW = )\‘/U(Slj — J(éj,i-i-l + (;j,i—l)v
2B;; = —A(0ji+1 — 0j,—1). The eigenvector compo-
nents are defines as u) = (uu1,...,u,r)” and vl =
(Vu1s s vur) T The eigenvalues satisfy 4, (€,,) = '?L(—e#)
where only the zero-energy states (e, = 0) are self-
conjugate due to the particle-hole symmetry. Our cal-
culations will focus solely on the quasiparticle spectra of
the BAG Hamiltonian for simplify.

In this following, we discuss several physical quantities
to characterize the nature of wave function. Firstly, we
introduce the inverse participation ratio (IPR) defined in
eq. (7) and the normalized participation ratio (NPR) de-
fined in eq. (8), which are utilized to differentiate among
the extended, critical and localized states [56].

L
PR = 3 " [lul? [ + ol |, (7)
m=1
NPR™ = [2L x IPR(™] 71, (8)
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FIG. 2. (Color online). Phase diagram that varies with (A, \)
in terms of n (a) and (D) (b). The pure phase (intermediate
phase) is corresponding to the blue (red) region in (a). The
pure phase is further distinguished into extended (deep red
region) and localized phase (deep blue region) in (b). The
critical phase is persists along A = 1 with A < 0.57, marked
in red elliptic. Here, we set the parameter § = 0.01 and
L =610.

Where eq. (7) satisfies IPR(™ ~ 1/(2L) [50]. The in-
dex n denotes the n-th eigenstate of BAG Hamiltonian
and m is the m-th element of that eigenstate. For the
n-th eigenstate, when IPR approaches 0, it indicates a ex-
tended state and the corresponding 7, = 1. Conversely,
NPR approaches 0 and ~, = 0 for a localized state. If
the state is critical, 7, € (0,1).

For a large-size system, the fractal dimension D™ is
defined as follows [48-50]:

log(IPR(™)

DM = — i
e log 2L

L—o0 (9)
By analyzing the inverse participation ratio IPR(”), we
can easily infer that D™ goes to 0 (1) for the localized
(extended) state and D™ € (0,1) for the critical state.

Then the average fractal dimension (D) averaged over
the BdG quasiparticle spectrum can capture the overall
characteristics of the system and it is defined as:

1 L
(D) =+ > b, (10)
n=1

The system exhibits phases that are either extended,
where the average fractal dimension (D) approaches 1, or
localized, where (D) approaches 0. However, it cannot
distinguish the critical phase from intermediate phase.
It is necessary to compute D) for each eigenstate, if
D™ ¢ (0,1) for all the eigenstates, it suggests a critical
phase. Furthermore, we define D averaged across a sub-
set of eigenstates to capture the different states coexist
in an intermediate phase.

Next, we introduce 1 which aids in distinguishing pure
phases (extended or localized phase) from intermediate
phase, defined as [48-50],

1 = log1o[(IPR) x (NPR)], (11)

where (IPR) and (NPR) are given by eq. (12). For the
extended phase, (IPR) — 0 [(NPR) — finite]. Con-
versely, for the localized phase, (NPR) — 0 [(IPR) —
finite]. So we have (IPR) x (NPR) ~ 1/2L and n < —3
in the pure phases, where L = 610 in Fig. 2. For the
intermediate phase, both of (IPR) and (NPR) keep finite
and -3 <n < —1

L L
1 1
(IPR) = — n§=1IPRn, (NPR) = — n§:1 NPR,. (12)

III. PHASE DIAGRAM FOR SMALL g

As mentioned above, the potential V;(3) simplifies to
cos(2mai + 0) — cos(ma) in small S limit. The system
enters into the localized phase when A exceeds a critical
threshold due to the existence of quasiperiodic potential,
i.e., a is incommensurate (see Appendix. A). It differs
from the previous study which exclusively considered a
cosine potential without the constant on-site chemical
potential shift [75]. In order to substantiate this dis-
tinction, we show the phase diagram where variable 7
and fractal dimension (D) versus (A, A) in Fig. 2. This
diagram features two distinct regions: the pure phases
(depicted in blue) and various intermediate phases (de-
picted in red) separated by n in Fig. 2(a), which is the
key point in our paper. The pure phases are further dis-
tinguished into extended phases (deep red region) and
localized phases (deep blue region) by (D) in Fig. 2(b).

In order to have a complete insight into the phase di-
agram, we calculate the fractal dimension D™ where n
denotes n-th eigenstate of BAG Hamiltonian versus the
potential strength A for different A = 0.5, 1 and 1.5,
as illustrated in Fig. 3. It is interesting that the criti-
cal phase is confined to a narrow line where A = 1 and
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FIG. 3. (Color online). (a)-(c) The fractal dimension D™ versus A, where n denotes n-th eigenstate of BAG Hamiltonian. The
parameter A is 0.5 (a), 1 (b) and 1.5 (c¢), respectively. Other parameters are 8 = 0.01 and L = 610.
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FIG. 4. (Color online). (a)-(c) The fractal dimension D™
for different L at fixed A = 0.5 and A = 0.2 (a), A =1 and
A =102 (b), A =0.5 and A = 5.8 (c), where n denotes n-th
eigenstate. (d) Finite-size extrapolation of (D) as a function
1/log(2L).

A < 0.57. Therefore, the complete phase diagram in-
cludes three pure phases (extended, localized and critical
phase) and many types of intermediate phases. A more
detailed discussion of these phases will be provided in
subsequent sections.

A. Pure phases

Fig. 3 shows the system is in the extended (critical)
phase where all the states are extended (critical) when
A #1 (A =1), with weak potential strength A. To pro-
vide more precise numerical evidences, we further calcu-

late the D™ for various lattice sizes L at selected values
of A, the results are displayed in Fig. 4(a)-(b). And the
finite-size extrapolation of (D) averaged over the quasi-
particle spectrum is shown in Fig. 4(d). Take A = 0.5
and A\ = 0.2 for example, Fig. 4(a) shows the D(™ for
all the states increases with L and (D) approaches 1 in
the thermodynamic limit, indicating the system is in the
extended phase. Additionally, when A = 1, the D™
fluctuates from 0 and 1, independent on L, indicating all
the states are critical, as shown in Fig. 4(b). When the
potential strength A is strong enough, such as A = 5.8
for A = 0.5, the system goes to a localized phase where
D™ for all the states decreases with L and (D) tends
to 0 in the thermodynamic limit, as shown in Fig. 4(c).
Therefore, the system exhibits three distinct pure phases,
including extended, critical and localized phase.

B. Intermediate phases

One can observe that the system undergoes various in-
termediate phases before transitioning into the localized
phase as shown in Fig. 3. When A = 0.5 and A = 1.8
as shown in Fig. 5(a) (d), D™ corresponding to the low
energy states in zone I increases with L, and the finite-
size extrapolation of D averaged over the zone I goes to
1, indicating all the states in zone I are extended. While
D™ corresponding to the high energy states in zone IIT
decrease with L, and the finite-size extrapolation of D av-
eraged over the zone III goes to 0, indicating all the states
in zone III are localized. In contrast, D) for the states
in zone II fluctuates around 0.6, almost independent of L,
and the finite-size extrapolation of D averaged over the
zone IT approaches a finite value between 0 and 1, indicat-
ing all the states in zone II are critical. Hence the system
exhibits an intermediate phase with coexisting localized,
extended, and critical states. These states are separated
by the two types of anomalous mobility edge separat-
ing extended or localized from critical states. When A\ is
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FIG. 5. (Color online). (a)-(c) The fractal dimension D™
for different L at fixed A = 0.5 and A = 1.8 (a), A = 0.5
and A = 2.3 (b), A = 1.5 and A = 3.5 (c), where n denotes
n-th eigenstate. (d)-(f) Finite-size extrapolation of (D) as a
function 1/log(2L) averaged over the different state zones in

(a)-(c).
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FIG. 6. (Color online). (a) The fractal dimension (D) aver-
aged over all the BAG quasiparticle spectrum versus A. (b)
The fractal dimension D™ for different L at A = 1, where n
denotes n-th eigenstate. The parameter A = 0.2.

slightly increased (i.e., A = 2.3) shown in Fig. 5(b)(e),
we identify another intermediate phase with coexisting
localized and extended states where D goes to 1 (I) and
0 (II) in the thermodynamic limit, respectively. This
intermediate phase exhibits a traditional mobility edge
separating the extended and localized zones. When the
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FIG. 7. (Color online). (a)-(b) Phase diagram of variable n
versus (A, A). The red dashed line corresponds to A = 0.5.
(¢)-(d) The fractal dimension D™ versus \, where n denotes
n-th eigenstate of BAG Hamiltonian when A = 0.5. The green
dashed lines corresponds to A = 0.2 and 5.8, respectively.
Here, the parameter 8 =5 (a)(c), 50 (b)(d) and L = 610 .

A = 1.5 and X = 3.5 shown in Fig. 5(c)(f), D™ for states
in zones II and IV decrease with L and its average value
D goes to 0, indicating they are localized. Conversely,
D™ fluctuates around 0.56 and 0.5 for states in zones I
and III , indicating the states are critical. Therefore, the
system has an intermediate phase with coexisting local-
ized and critical states. These states in different zones
are separated by an anomalous mobility edge.

The system is known to exhibit a critical phase when
A =1 and A < 0.57 (see Sec. IIT A). Additionally, a
distinct intermediate phase emerges when A is slightly
deviating from 1. Now take A = 0.2 for example,
Fig. 6(a) shows that the (D) varies smoothly versus A
when A < 0.92. A notable decrease in (D) is first ob-
served when the system goes into the intermediate phase
with coexisting extended (I) and critical states (II), as
shown in Fig. 6(b). Subsequently, a second notable de-
cline occurs when the system enters the critical phase
with A = 1 [see Fig. 4(b)]. The phenomenon is easily
understand by the ultimate value of D™ is less than 1
in the thermodynamic limit for the critical states. Con-
sequently, the system exhibits four distinct intermediate
phases: the first one with coexisting extended and lo-
calized states; the second one with coexisting extended
and critical states; the third one with coexisting localized
and critical states; and the fourth one with coexisting ex-
tended, critical, and localized states.
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FIG. 8. (Color online). The fractal dimension D™ for different L at fixed 8 = 0.01 (a), 8 =5 (b), A = 50 (c), where n denotes
n-th eigenstate. Other parameters A = 0.5 and A = 0.2 (5.8) for the upper (lower) panel of each figure.

IV. PHASE DIAGRAM WITH INCREASING g

In order to investigate the effect of increasing 3, we
begin by analyzing the phase diagram where variable 7
versus (A, A) at fixed f = 5 and § = 50, as shown in
Fig. 7(a) and (b). In contrast to the phase diagram shown
in Fig. 2(a), we found that the zones for pure phases
such as extended phase and localized phase are signifi-
cantly diminished with increasing 3. We plot the fractal
dimension D™ versus A at fixed A = 0.5 in Fig. 7(c)-
(d). Fig. 7(c) shows that an extensive number of ex-
tended states are replaced by the critical states or local-
ized states when the strength of potential is weak, which
differs markedly from the scenario presented in Fig. 3(a).
As the strength of potential A increases, the system ex-
hibits various intermediates phases, such as one compris-
ing both localized and critical states, and another with
coexisting extended, critical and localized states. What
is more, the system goes to the localized phase when
the strength of potential is further increased. Hence,
the phase diagram does not have essential changes when
B = 5. However, the pure phases (extended or localized
phase) almost disappear and more critical states emerge
when further increasing 3, as shown in Fig. 7(d).

To illustrate the impact of 8 on the system, we exam-
ine the fractal dimension D™ for different L at a fixed
weak A = 0.2 and a strong A = 5.8, with 8 ranging from
small to large, as shown in the upper and lower panels of
Fig. 8, respectively. The D™ goes to 1 (0) with the in-
crease of L when 8 = 0.01, representing a completely ex-
tended (localized) phase, as shown in Fig. 8(a). At 8 =5,
D™ exhibits minor fluctuations for a limited number of
states, suggesting a slightly deviation from pure phase,
yet without significantly altering its essence, as shown in
Fig. 8(b). However, this fluctuation becomes pronounced
at higher § values. Fig. 8(c) reveals that D fluctuates
between 0 and 1 for more states, indicating the critical
states. Hence the system has an intermediate phase with
coexisting more critical states and less localized states.

One can infer that the localized states will be completely
replaced by the critical states with further increments in
[, which is confirmed in Appendix B 1. Additionally, we
also explore the fate of the critical phase for large A, the
details are shown in the Appendix B 2).

V. TOPOLOGICAL PROPERITY

In this section, we study the topological properties of
system using Zs topological invariant M, which emerged
as a frontier in understanding the properties of materials
that exhibit topological superconductivity[65]. We em-
ploy the numerical method referenced in [77] to calculate
Z5 topological invariant in the open boundary condition
(OBC). The eq. (6) can be simplified into the following
form with zero-mode states e; =0 (pn = 1):

(A+ B)pr =0, (A=B)Yr =0, (13)

In the transfer matrix form, ¢, and ¢; can be rewritten
as:

(610 — 1), 01(D)]" = Fi[1(4), ¢1 (i + 1)]7,
[1(i + 1), 1 ()] = E[r(3), 9166 — D]F,  (14)

where

AVi(B) A-J
F, = < Air,] A(J)rJ ) . (15)

The total transfer matrix for system size L is defined
as F = FrFr_1---FyF;. The Z5 topological invariant
M is determined as M = sgn(In(|Az2])), where A\;, Ao are
eigenvalues of F' with the assumption |A;| < |Az|. The
topological phase diagram as a function of (3, ) is il-
lustrated in Fig. 9(a), where M = —1(1) corresponds to
the topological non-trivial (trivial) phase. We observe
that the topological phase transition point is less than 3
[75] when 8 — 0, which emphasizes once again for the
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FIG. 9. (Color online). (a) Phase diagram that varies with (8, A) in terms of Z3 topological invariant M. (b) Energy spectrum
versus A for L = 610, The color coding correlates to the fractal dimension D™, (c) The spatial distributions of ¢ and v for the
lowest excitation with V' = 1.0 (upper panel) and V = 1.5 (lower panel) where j is j-th site. The parameter 5 =5 for (b)-(c).

Open boundary condition.

discrepancy with QP potential without constant on-site
chemical potential shift. The topological phase bound-
ary decay slightly at the onset but quickly reach satura-
tion with increasing (3, indicating the topological nature
does not change in the process of AA limit tending to
the Fibonacci limit. Additionally, the topological phase
transition is accompanied by the closure and subsequent
reopening of the energy gap, as shown in Fig. 9(b). The
gap narrows when A is small and may close completely
when A intersects in the topological phase boundary, then
the gap reopens as A further increases. To intuitively un-
derstand the behavior of the edge states, we present the
lowest excitation state of ¢ and ¢ in Fig. 9(c). When
A = 1.0, the distribution of zero-mode state ¢ (¢) lo-
cates at left (right) end with a narrow spread, which is
consistent with topological non-trivial phases, as shown
in the upper panel of Fig. 9(c). When A = 1.5 within the
trivial phase (see the lower panel), the ¢ and 1 extended
throughout the bulk, meaning the loss of majorana edge
states.

VI. CONCLUSION AND OUTLOOK

In summary, our research delineates the various quan-
tum phases and the topological properities emerged in
the ITAAF model with p-wave SC pairing terms. For the
former, this model exhibits modifiable phase diagrams
through the tunable parameter 8. For small values of j3,
this model can be reduced to the generalized AA model
up to a constant on-site chemical potential shift. The
system is always in the pure phases when the strength of
potential is weak (extended or critical phase) or strong
(localized phase) enough. What is more, it is interesting
that the system has many types of intermediate phases
when the strength of potential is moderate. For instance,
one can observe an intermediate phase where extended
and localized states coexist, as well as phases where ex-

tended and critical states, or localized and critical states,
are present concurrently. Also, the coexistence of ex-
tended, critical and localized states. These coexisting
states are separated by different type of mobility edges.
As [ increase, the pure phases (extended or localized
phase) will gradually diminish, and the system becomes
critical in the Fibonacci limit. For the latter, we observe
the system transitions from topologically nontrivial to
trivial phase via increasing A\. The existence of the ma-
jorana edge states and the closure and reopening of the
energy gap demonstrate the Z2 topological nature.

Experimentally, we expect that the proposed model
can be realized in current superconducting circuit quan-
tum simulator[78-80], where the nearest neighboring
pairing can be realized as a consequence of coherent two-
photon driving. Even though in such a system, the par-
ticle is boson instead of fermion, one can tune the on-site
repulsive interaction between the bosons to make them
become hard-core. For a 1D system, a hard-core bo-
son model is equivalent to a spinless fermion model even
in the presence of nearest neighboring pairing. In such
a synthetic quantum system, the parameters are highly
tunable, which allows us to access the parameter regime
studied in this paper.

This work unveils a quantum model that exhibits many
types of intermediate phases, thereby enriching the un-
derstanding of mobility edges. A natural question is that
whether these intermediate phases are robust when inter-
actions are introduced. Additionally, investigating the
dynamic properties that arise from the various phases
may be another intriguing question. Besides, the one-
dimensional (1D) p-wave superconducting paired fermion
model can be mapped onto the transverse XY model via
the Jordan-Wigner transformation [81, 82]. Our research
casts a new light on the study of analogous phenomena
related to localization in low-dimensional quasi-periodic
spin systems.
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Appendix A: Breakdown of phase boundary in the
small 8 limit

Ref. [75] deduced the delocalization-localization tran-
sition at A. = 2(J + A) for the Hamiltonian with co-
sine QP potential. In the main text, V;(8) simplifies to
cos(2mai + 0) — cos(ma), reflecting the cosine QP poten-
tial with a constant on-site chemical potential shift in the
small 8 limit. Thus Anderson’s theorem is also not ap-
plicable here due to the presence of QP potentials. While
the phase boundaries A, = 2(J + A) demarcating the dif-
ferent phases have become distorted under the effect of
cos(ma)), as shown in Fig. 10. The upper panel of Fig. 10
reveals that the finite-size extrapolation of (D) cannot
goes to zero for certain values of A (e.g. A = 1.2), indi-
cating the inability to transition into the localized phase.
However, the system can be localized for larger A (e.g.
2A + 2.5), as shown in the lower panel of Fig. 10. This
suggests that, within the parameter space considered, the
system experiences a localized phase for A values in the
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FIG. 10. (Color online). Finite-size extrapolation of (D) as
a function 1/log(2L), where A = 2A + 2 (upper panel) and
A = 2A + 2.5 (lower panel).

i b Y S AGnREEEEEEEES e
B e B =
4 ! 0.5 V=02, (D)o=0.82
0.5F =% « L=610 - L=4181
i © L=1597 - L=10946
1 1

o V=538, (D)=0.60

0 0.5 1 (1} 0.05 0.1 0.15
n/L 1/log2L
-3
x10

—n =10 —n = 5100 —n = 10700

0 " eahesshadaadddasd Adaaa

0 5000 7 10000

FIG. 11. (Color online). (a) The fractal dimension D™ for
different L, where n denotes n-th eigenstate. (b) Finite-size
extrapolation of (D) as a function 1/log(2L). (¢) The proba-
bility distribution of selected (n-th) eigenstate for L = 10946,
where index j denotes j-th site. The parameter A = 0.2 (5.8)
for the upper (lower) panel of each figure, A = 0.5, § = 10%.

vicinity of 2(J 4+ A), indicating a slight distortion of the
phase boundary.

Appendix B: Fate of the critical phase with large
1. The effect of small A

In the main text, we find the pure phases (extended
or localized phase) almost disappear and more critical
states emerge when further increasing 5. So we infer that
system is critical when the § is further increased (e.g.
B = 10%), which is confirmed in Fig. 11. The distribution
of D™ for all the eigenstates fluctuates between 0 and 1,
and the finite-size extrapolation of (D) averaged over the
quasiparticle spectrum converges to a finite value for both
of A =0.2 and A = 5.8, as depicted in Fig. 11(a)-(b). In
order to have a intuitive comprehension of these critical
states, we plot the probability distributions of selected
eigenstates in Fig. 11(c). It reveals that the states remain
extended but nonergodic, irrespective of their position
relative to the boundaries or centers of energy bands,
thus confirming their multifractal nature.
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FIG. 12. (Color online). The fractal dimension D™ for different L , where n denotes the n-th eigenstate and 8 = 50 (a),

B=10° (c), f = 10" (e

panel of (c)(e )

). The parameters A = 10 (100) for the upper (lower) panel of (a), A = 100 (1000) for the upper (lower)
(b)(d)(f) The probability distributions of selected (n-th) eigenstate for L = 10946, where j denotes the j-th

lattice site. Other parameters are same with (a)(c)(e), respectively.

2. The effect of large A\

The localized zone gradually diminishes as 8 increases,
which seems to indicate the system enters the localized
phase requiring a larger A. This is confirmed in the left-
hand panels of Fig. 12. For 8 = 50 and A = 10, the
upper panel of Fig. 12(a)-(b) shows that D) for some
eigenstates fluctuate away 0 and 1, and their probability
distributions remain extended but nonergodic, highlight-
ing critical states. Upon increasing A to 100, these states
become localized to narrow lattice sites, as depicted in
the lower panel of Fig. 12(a)-(b). It may be presumed
that the system is perpetually localized as long as the
potential strength A is large enough. However, this is
not the case. Take 3 = 102 for example, the upper panel
of Fig. 12(c) reveals that the fractal dimension D™ for
a large number of eigenstates fluctuates form 0 and 1,
with only a few exceptions (such as n = 30), signifying

the emergence of many critical states even with A fixed
at 100. Most importantly, these critical states persist
in an extended but non-ergodic form when A further in-
creases to 1000, as shown in the blue and green lines in
Fig. 12(d). For 8 = 10%, the right-hand panel of Fig. 12
shows that the distribution of D) for almost all the
eigenstates varies from 0 to 1. These critical eigenstates
remain extended yet non-ergodic regardless of their prox-
imity to the energy band boundaries or centers, which
again corroborates their multifractal nature. This be-
havior stems from the increasing 3, which causes eq. (2)
to more accurately approximate the potential which al-
ternates between +1 values following the Fibonacci sub-
stitution rule. The most prominent feature of Fibonacci
chain is that all the eigenstates are critical no matter how
strong the potential strength A is. Consequently, the crit-
ical phase remains stable at high values of 3, despite the
presence of strong potential strength.
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