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Abstract

In the first part of the article, we study one-dimensional noninter-
acting fermions in the continuum and in the presence of the repulsive
inverse power law potential, with an emphasis on the Wigner function
in the semiclassical limit. In this limit, the Wigner function exhibits
an edge called the Fermi surf that depends only on the classical one-
particle Hamiltonian. Around the Fermi surf, under a well-defined
semiclassical limit, the Wigner function can be expressed in terms of
Airy functions which yield a smooth matching between the two re-
gions delimited by the Fermi surf. In the second part of the article,
the system is prepared in the ground state of the inverse power law
potential where only the left half line is filled with fermions. Then the
potential is switched off, resulting in the emergence of a propagating
quantum front. We show that the power law decay of the pre-quench
potential that separates the left and right half systems leads to the
emergence of the Airy kernel (well known in Random Matrix Theory)
at the quantum front in the long-time limit. This also comes with
anomalous diffusive spreading around the front.

1 Introduction

Historically, the study of quantum many-body systems has been pursued
under the equilibrium or maximal entropy hypothesis. In this context, the
Wigner function [1] has proven particularly useful as a phase space approach
to quantum mechanics. The Wigner function was considered by Berry [2]
in the case of the semiclassical limit of a single-particle state. It has been
employed in various contexts [3], including quantum optics [4], the modeling
of optical devices [5], and quantum information [6]. One natural question is
whether the Wigner function can be measured. This has been accomplished
with quantum state tomography [7] and trapped atom setups [8].
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TheWigner function of one-dimensional trapped fermions in their ground
state was first studied by Balazs and Zipfel [9]. In the semiclassical limit,
the Wigner function exhibits an edge called the Fermi surf. For one dimen-
sional systems, the behavior of the Wigner function around the Fermi surf
was analysed both in and out of equilibrium [10, 11]. This study was latter
extended to dimensions lager than one and non-zero temperature set up [12,
13]. At equilibrium trapped Fermi gases has raised interest both on the
experimental and theoretical side [14, 15]. Despite their simplicity, nonin-
teracting Fermi gases have been shown to exhibit rich universal behaviors
[12, 16–24]. The latter also have multiple connections with the eigenvalues
of random matrices, see [25] for a recent review. In particular, there is an ex-
act connection between the positions of noninteracting fermions trapped in
a harmonic potential and the eigenvalues of the Gaussian Unitary Ensemble
(GUE) [17, 22, 23, 26].

On the other side, non-equilibrium quantummechanics has been a rapidly
developing topic, particularly with the aim of addressing transport in meso-
scopic materials. This was done by the so called Landauer-Büttiker for-
malism [27–29]. This understanding is well-established for the transport of
noninteracting electrons between different channels separated by a scatter-
ing defect. In this case, the study was extended to Full Counting Statistics
(FCS) [30], which allows for a complete characterization of current noise.

More recently, the theoretical and experimental attention has focused
on investigating the full dynamics using quench setups [31–35]. There are
many kinds of quenches, for example, the interaction can be changed [36],
it can be studied in different contexts whether the system is a Luttinger
liquid [37–40], is integrable [41–43], or when Conformal Field Theory can be
used [38, 44–49]. Specifically, substantial focus has been on one-dimensional
quenches called bipartition protocol, where two halves of the system are
prepared with different densities. The system then evolves freely, inducing
a long-time stationary current from the higher to the lower density region
[50–52]. A scattering defect can be added to this quench [53–57], such that
the large time limit yields the stationary statistics found with the Landauer
Büttiker formalism [27, 30]. However, in this discussion, we focus on the
case without defects.

In such a step-like initial density quench, an interesting phenomenon
arises: the emergence of a propagating quantum front that propagates bal-
listically in the lower density regions. In the case of fermions on the lattice
(or spin chains), this front exhibits a staircase-like fine structure in density
[58–60]. Interestingly, this phenomenon was related [51] to the statistics of
eigenvalues at the edge of the GUE [61–63], where the FCS takes the form
of a Fredholm determinant involving the so-called Airy kernel. For the pur-
pose of this article, it is useful to recall the main results of these works [51,
58–60].

The authors of [51] consider spinless free fermions on a lattice. The
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corresponding discrete Hamiltonian is given by:

Ĥd = −1

2

+∞∑
m=−∞

(c†mcm+1 + c†m+1cm), (1.1)

where c†m and cm are respectively the fermionic creation and annihilation
operators at site m. Initially, the system is prepared in a step like condition
filling every sites of the left half of the system

⟨c†mcn⟩ =

{
δn,m n,m ≤ 0

0 else
. (1.2)

Now we are interested in the time-dependent correlation, i.e. Cm,n(t) =

⟨c†m(t)cn(t)⟩ where cn(t) is the time evolved fermionic annihilation operator
in the Heisenberg picture. More precisely, a propagating front moving from
left to right emerges, and we are interested in the correlation around this
front. It can be shown that the density in the large time limit takes a scaling
form (see Fig. 1)

ρn(t) ≃


1 if x/t < −1

arccos(x/t)/π if − 1 < x/t < 1

0 if 1 < x/t

. (1.3)

The correlations can be computed in the large time limit with a saddle
point approximation. However, near the quantum front, the saddle point
is by definition located at the maximum of the velocity v(k) = ϵ′(k) (the
dispersion relation is ϵ(k) = − cos(k)) that is the saddle point is at v(k∗) =
sin(k∗) = 1. As a consequence, the expansion around the saddle point has
a vanishing second order term at the quantum front. Hence, the resulting
third order term ∼ k3 leads to the emergence of the Airy kernel [51]

Cm,n(t) ≃ in−m(
2

t
)1/3KAi

(
m− t

( t2)
1/3

,
n− t

( t2)
1/3

)
, (1.4)

where the Airy kernel defined as

KAi(x, x
′) =

Ai(x)Ai′(x′)−Ai(x′)Ai′(x)

x− x′
, (1.5)

and Ai(x) refers to the Airy function, i.e. the solution of the equation

y′′ − xy = 0, (1.6)

with the initial conditions

y(0) =
1

32/3
Γ(

2

3
), and y′(0) = − 1

31/3
Γ(

1

3
). (1.7)
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The Airy kernel was initially found at the edge of the Gaussian Unitary
Ensemble (GUE) [61] and then led to the so called Tracy-Widom distribution
[62], i.e. the distribution of the largest eigenvalue of the GUE. We see that
t1/3 emerges as a characteristic length. Note that the Wick theorem implies
that the phase factor in−m in front of the kernel is irrelevant for the density-
density correlations.
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Figure 1: Illustration of the density ρn(t) = Cn,n(t). On the
left panel [50], we plot the large time scaling form of the density
(1.3). We observe the propagation of a front in the density. On
the right panel, we show the density rescaled around the front
which follows Eq. (1.4). There is a staircase structure at the
edge of the front [58].

Now we compare this with fermions in the continuum whose dynamics
where already analysed in [11, 13, 64]. We will focus on a bipartition protocol
as this was the case in [52]. The one particle Hamiltonian is given by

Ĥ = −1

2
∂2x. (1.8)

In that case, the dispersion relation is ϵ(k) = k2

2 , therefore the velocity
v(k) = k has no extremum. This implies that we will never witness the
emergence of the Airy kernel as it is the case for fermions in the lattice [51].
Despite this, we propose a quench protocol for fermions in the continuum
where the Airy kernel Eq. (1.5) arises at the edge of the quantum front. Note
that a similar phenomenon was already observed in a different context in [11].
However, the phenomenon we observed is distinct, and the mathematical
approach we took has given rise to new questions. The main trick is to
change the initial condition. Instead of the domain wall initial condition as
in [51, 52], we prepare the system in the ground state of the inverse power-
law potential V (x) = c

|x|γ , such that only the left half-space is filled up to the
Fermi momentum pF . Then, at the initial time, we turn off the potential,
allowing the fermions to freely propagate. From here, the statistics at the
edge of the quantum front can be related to the Wigner function in the initial
state. Therefore, following [12], we examine the initial state Wigner function
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corresponding to the ground state of the inverse power-law potential, and we
demonstrate the emergence of the Airy kernel Eq. (1.5) at the edge of the
quantum front. Additionally, this comes with anomalous diffusion around
the quantum front with a continuum of generalized diffusion coefficient.

2 Main results

2.1 The Wigner function and the inverse power law potential
The first result of this article is the careful study of the ground state Wigner
function W (x, p) [1] (defined below in (3.1)) in the repulsive inverse power
law potential V (x) = c

|x|γ in the large chemical potential µ limit or in the
small ℏ limit.

We first recall already known properties of the Wigner function in the
case of a smooth potential. It is already known [23, 65] that in both the limits
of large µ and small ℏ, for non interacting fermions in a smooth potential,
the Wigner function has the limit

W (x, p) ≃ 1

2πℏ
Θ(µ−H(x, p)), (2.1)

where Θ(x) is the Heaviside theta function, µ =
p2F
2m is the chemical potential,

and H(x, p) = p2

2m + V (x) is the classical one particle Hamiltonian of a
particle in a smooth potential V (x). The surface defined by

H(xs, ps) = µ, (2.2)

is called the Fermi surf, this is illustrated in the case of a harmonic potential
in Fig. 2.

Fermi surf

generic point

bulk

Figure 2: Representation of the Fermi surf for the harmonic poten-
tial. We also represent in red, the width of the Wigner function in
the semiclassical limit around the Fermi surf. Additionally, the ver-
tical line in blue is the integral contour of the formula (3.5) which
leads to the recovery of the Airy kernel at the edge of the gas (2.7).
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Additionally to that, it is known that for any generic point close to the
Fermi surf, the Wigner function has the subdominant universal behaviour
in the large µ limit [12]:

W (x, p) ≃ W(a)

2πℏ
=

1

2πℏ

∫ ∞

22/3a
dzAi(z), (2.3)

a =
H(x, p)− µ

e
, e = (

ℏ2

2
(p2sV

′′(xs) + (V ′(xs))
2)1/3,

where Ai is the Airy function. We say this scaling is universal in the sense
that it is valid for any smooth potential as long as e ̸= 0. Note that

W(a) ≃

{
1 if a→ −∞
(8π)−1/2a−3/4 exp

(
−4

3a
3/2
)

if a→ +∞
. (2.4)

This provides a smooth matching between the two behaviours of the Wigner
function on each sides of the Fermi surf in (2.1). Furthermore, let us define
the correlation function as

C(x, x′, t) = ⟨c†x(t)cx′(t)⟩ , (2.5)

with c†x(t) the time evolved fermionic creation operator in the Heisenberg
representation. Then, using the formula from [66]∫

dk

π
e−ik(p−q)Ai(k2 + p+ q) = 22/3Ai(21/3p)Ai(21/3q), (2.6)

together with some changes of variables, and the formula (3.5) relating the
correlation function to the Wigner function, one can show [12] that the
correlation function at the edges of the gas is related to the Airy kernel
(1.5) for any smooth potential

C(x, x′) ≃
N→∞

KAi(
x− xedge
wN

,
x′ − xedge

wN
), wN =

(
ℏ2

2mV ′(xedge)

)1/3

,

(2.7)
where xedge is the edge of the particle density defined by V (xedge) = µ, not
to be confused with the Fermi surf (xs, ps) (see Fig. 2).

The Airy scaling (2.3) is valid in a smooth potential only close to any
generic point of the Fermi surf, i.e. for V (xs) ≃ µ and ps ≃ µ1/2. The case
of the harmonic potential was studied in detail and the Airy scaling (2.3)
was shown to be valid close to any point of the Fermi surf, including non
generic points [12].

Now, we consider the particular case of the repulsive inverse power law
potential. We look at the complete Fermi surf which includes non generic
points and we ask the question where the Airy scaling (2.3) is valid. For
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this purpose, we split the Fermi surf into two different regions, near the gas
edge xedge and away from it.

Near the gas edge. We want to look at the Wigner function near the
gas edge that is where the particle density vanishes. The gas edge is defined
by ps = 0, and xs = xedge = ( cµ)

1/γ (see Fig. 3). We define the rescaling of
the Fermi surf as

xs = x̄xedge, (2.8)

ps =
√
2mµ(1− x̄−γ),

where x̄ ∈ [1,+∞[. Then we consider the different limits (large µ or small
ℏ) with x̄ fixed. In that case, we showed (see Section 3) that the Airy scaling
(2.3) is valid under the condition

ℏ2µ
2−γ
γ

mc
2
γ

≪ 1. (2.9)

Hence, we find the Airy scaling Eq. (2.3) in two different limits, for µ →
∞, γ > 2, or for ℏ → 0 with any γ > 0. In other words, the limit ℏ → 0

yields the Airy scaling for any γ. Notice that if we set c =
ℏ2(ν2− 1

4
)

2m (this
would be the case if we proceed to the spherical harmonic decomposition of
fermions in d dimensions), the previous condition becomes

1

m(ν2 − 1
4))

2
γ

(
ℏ2

µ
)
γ−2
γ ≪ 1. (2.10)

Thus, for small c ∼ ℏ2 barrier, the small ℏ and the large µ limit are equivalent
and the Airy scaling is valid only if γ > 2, which agrees with [25, 67].

Away from the gas edge. We look at the Wigner function for xedge ≪
xs and ps ≃

√
2mµ (see Fig. 3) or equivalently x̄→ ∞ in (2.8). In the limits

of interest, we showed (see Section 3) that the the Airy scaling is correct
only if the following condition is satisfied

ℏ√µxγ−1
s√

mc
≪ 1. (2.11)

Let us make a few remarks on this condition:

• The large µ limit does not satisfy the condition (2.11), hence, there is
no Airy scaling at large µ, and large xs for both of those limits.

• In the case of the small c =
ℏ2(ν2− 1

4
)

2m barrier, again, the large µ and
small ℏ limit play the same role and there is no Airy scaling at large
xs.
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• There is a change of behavior at γ = 1. For γ > 1 the Airy scaling is
recovered for small ℏ as long as xs is small enough to verify Eq. (2.11).
For γ ≤ 1 the Airy scaling is recovered for any xs.

• The question that remains open is how the Wigner function behaves
near the Fermi surf when the condition Eq. (2.11) is broken as xs is
taken large.

The limit leading to the Airy scaling are summarized in the table 1.

Limit Near the gas edge Away from the gas edge

µ→ +∞ γ > 2 ∅
ℏ → 0 ∀γ ∀x if γ < 1 or if xγ−1 ≪

√
mc

ℏ√µ

Table 1: Summary of the conditions under which the Wigner function ex-
hibits the Airy scaling (2.3) along the Fermi surf (see Fig. 3) for the ground
state in the inverse power law potential.

Near the gas edge

Away from the gas edge

Fermi surf

Figure 3: Illustration of the Fermi surf of the Wigner function for the ground
state of the repulsive inverse power law potential V (x) = c

|x|γ . We specify
the two regions of the Fermi surf defined in terms of x̄ of order one or taken
large where x̄ is defined in (2.8).

2.2 Airy kernel at the edge of the propagating front
The second result of this article is stated as follows. A gas of fermions is
prepared in the ground state of the repulsive inverse power law potential,
such that only the left half space is filled up to momentum pF (or chemical

potential µ =
p2F
2m) with small ℏ. Then we quench the potential such that the
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fermions evolve freely and a front propagates with a positive velocity. Our
result is the emergence of the Airy kernel (1.5) at the edge of the propagating
front. More precisely, close to the edge xedge(t) of the propagating front, the
correlation function takes the form

C(x, x′, t) ≃ − 1

w(t)
e−

i
ℏ (p(t)(x−x′)+

(x−xedge(t))
2

2t
−

(x′−xedge(t))
2

2t
)

×KAi(
x− xedge(t)

w(t)
,
x′ − xedge(t)

w(t)
), (2.12)

w(t) = t(
ℏ2|p′′s(x(t))|

2
)1/3 = (ℏ2

γ + 1

2
(
pF
γc

)1/(γ+1))1/3t
2γ+1
3(γ+1) ,

where xedge(t) is defined in (4.8), and x(t), p(t) are defined in (4.6). Let us
make a few remarks:

• At large time w(t) ∼ t
2γ+1
3(γ+1) . For γ → 0 we recover the ∼ t1/3 from

(1.4) and for γ < 1 the process is subdiffusive. For γ = 1 the propaga-
tion is diffusive and it becomes super diffusive for γ > 1 up to ∼ t2/3

when γ → ∞.

• Notice that the phase in front of the kernel is not relevant for the
computation of the density density correlation. Indeed, if we note the
correlations with a phase Cf (x, y) = ef(x)−f(y)C(x, y), where f(x) an
arbitrary function of x, the density density correlation is given by

R(x1, ..., xn) = det
1≤i,j≤n

|Cf (xi, xj)] = det
1≤i,j≤n

|C(xi, xj)|. (2.13)

However in the case of non-equilibrium dynamics of fermions, observ-
ables like the current are affected. Indeed, we recall that the particle
current is a functional of the kernel as

J [C] (x, t) =
1

2i
(∂y − ∂x)C(x, y, t)|x=y. (2.14)

This implies that the phase modifies the current as

J [Cf ] (x, t) = J [C] (x, t) + if ′(x)ρ(x, t), (2.15)

where ρ(x, t) = C(x, x, t). In our specific case, because the Airy kernel
alone produces no current this yields

J(x, t) =

(
p(t) +

x− xedge(t)

t

)
ρAi

(
x− xedge(t)

w(t)

)
, (2.16)

where we used the notation ρAi(x) = KAi(x, x). Notice that the first
term can be interpreted as a consequence of the motion of the quantum
front with velocity p(t).
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• Here, the Airy kernel at the quantum front is already present at initial
time. This does not have to be the case, for example if the initial
potential behaves like the power law potential for large x but has a
derivative that cancels precisely at the edge of the gas (V ′(xedge) = 0).
Then, the Wigner function at initial time exhibits the Airy scaling
(2.3) only far away from edge of the gas, such that we expect the Airy
kernel to appear only in the large time limit.

• In [13], a small ℏ analysis of the Wigner function propagation within a
potential is done. The conclusion is that if present at initial time, the
Airy scaling (2.3) would persist at short time (up to some rescaling of
the width e).

• The Airy kernel (2.12) is valid only if the initial time Wigner function
exhibits the Airy scaling at position x(t), that is if x(t) verifies the
condition (2.11) from the first section.

• This quench set up appears as a possible experimental protocol to
measure fine features of the Wigner function in an equilibrium state.
It allows to probe the Airy scaling of the ground state Wigner function
when |xs| → ∞. This is because the Airy scaling behaviour of the pre-
quench Wigner function is related to the Airy kernel emerging at the
propagating front in the large time limit.

The rest of the article is organised as follows. The section 3 is dedicated to
the study of the initial condition, that is the ground state properties of non
interacting fermions in the inverse power law potential V (x) = c

|x|γ . More
precisely, our goal is to explore the properties of the semiclassical limit of
the Wigner function and to prove the result given in the table 1.

In the section 4, we introduce a quench protocol where noninteracting
fermions are prepared in the ground state of the inverse power law potential
V (x) = c

|x|γ , occupying only the left half of the system. This way the
initial condition corresponds to the Wigner function studied in the precedent
section 3. Then, the potential is quenched to zero, allowing the fermions
to evolve freely. Consequently, a quantum front (or the edge of the gas)
propagates from left to right. In section 4, as a consequence of section 3, we
give a derivation for (2.12), that is the emergence of the Airy kernel around
the quantum front. The article is closed by a concluding section 5. Finally,
we have two appendices. In Appendix A we proceed to the analysis of the
Wigner function in the particular case of the inverse squared potential. In
Appendix B we provide the analysis of the Wigner function for the general
repulsive inverse power law potential.
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3 Airy statistics and the Wigner function

3.1 Wigner function
In quantum mechanics, the position probability density function is given
by the squared modulus of the wave function, ρ(x) = |ψ(x)|2, where ρ
represents the spatial density. Similarly, the momentum density function is
related to the squared modulus of the Fourier transform of the wave function,
ρ̂(p) = |ψ̂(p)|2, where ψ̂ is the Fourier transform of ψ, and ρ̂ represents
the momentum density. However, due to the uncertainty principle, a well-
defined joint probability density function (JPDF) in the position-momentum
phase space (x, p) cannot be defined.

To address this issue, Wigner introduced the concept of the Wigner
function in 1932 [1]. The Wigner function provides an attempt at describing
the phase-space properties of quantum systems. For a wave function of N
fermions in one dimension, the Wigner function is defined as follows:

W (x, p) =

∫ +∞

−∞

dy

2πℏ

N∏
i=2

dxie
ipy
ℏ ψ∗(x+

y

2
, x2, ..., xN )ψ(x− y

2
, x2, ..., xN ).

(3.1)
From this, integrating over momentum, or position space, yields the spatial
and momentum particle densities

∫ +∞

−∞
dpW (x, p) = ρN (x),

∫ +∞

−∞
dxW (x, p) = ρ̂N (p),∫∫ +∞

−∞
dxdpW (x, p) = N. (3.2)

We used the definition

ρN (x) = ⟨
N∑
i=1

δ(x− xi)⟩ , ρ̂N (p) = ⟨
N∑
i=1

δ(p− pi)⟩ , (3.3)

where ⟨...⟩ is the average over the quantum state of wave function ψ. Notice
that the two densities are well normalised

∫
dxρN (x) =

∫
dpρ̂N (p) = N .

However, the Wigner function does not represent a probability distribution
as it can take negative values, although it remains a real-valued function.

In the case of noninteracting fermions, it can be related to the correlation
function through the Weyl transform

W (x, p) =

∫ +∞

−∞

dy

2πℏ
e

ipy
ℏ C(x+

y

2
, x− y

2
). (3.4)

Together with its inversion formula

C(x, x′) =

∫ +∞

−∞
dpe−i pℏ (x−x′)W (

x+ x′

2
, p). (3.5)
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Now we want to delve into the semiclassical behaviour of the Wigner func-
tion.

First, let us provide a detailed justification for the classical limit (2.1)
of the Wigner function. By doing so, we will also refine this limit form and
obtain the semiclassical Airy scaling (2.3) around the generic points.

3.2 Short time expansion of the propagator and the semiclassical
Limit
In this subsection, we recall the derivation from [12] which yields the semi-
classical limits (2.1) and (2.3). This derivation was given in the large µ limit
close to a generic point of the Fermi surf. Here we restore ℏ and explain
why it yields the same limit if ℏ is small. Then we will give details on the
difference between both of those limits in the specific case of the inverse
power law potential. We will discuss the behaviour of the Wigner function
close to the complete Fermi surf, both at generic points and away from such
points.

Imaginary Time Propagator. We consider a system of noninteracting
trapped fermions with a single-particle Hamiltonian Ĥ, wave functions, and
eigenenergy family {ϕk, ϵk} (with k = 0, 1, 2, ...). The system is in the ground
state with chemical potential µ or equivalently a finite number ofN fermions.
We note Cµ the function

Cµ(x, x
′) =

∞∑
k=0

ϕ∗k(x)ϕk(x
′)Θ(µ− ϵk). (3.6)

Note that in the case of a non-trapping potential the family ϕk, ϵk have a
continuously indexed component, the previous sum turns into an integral,
and for a given chemical potential µ the number of fermions is infinite. Our
method relies on the imaginary quantum propagator

G(x, x′, t) = ⟨x′|e−
Ĥt
ℏ |x⟩ = t

ℏ

∫ ∞

0
dµe−

µt
ℏ Cµ(x, x

′). (3.7)

The last formula can be inverted to give the kernel as

Cµ(x, x
′) =

∫
Γ

dt

2πit
e

µt
ℏ G(x, x′, t), (3.8)

where Γ is the Bromwich contour in the complex plane. Hence putting
together Eq. (3.4), and (3.8), yields the expression for the Wigner function
in the ground state of chemical potential µ

W (x, p) =
1

2πℏ

∫
C

dt

2πit
e

µt
ℏ

∫ +∞

−∞
dye

ipy
ℏ G(x+

y

2
, x− y

2
, t). (3.9)

12



The propagator obeys the following equation

ℏ∂tG(x, x′, t) =
(

ℏ2

2m
∂2x − V (x)

)
G(x, x′, t), G(x, x′, 0) = δ(x− x′).

(3.10)
Now, using the Feynamnn-Kac formula, the solution of this equation can
be written as a path integral [68]. This can then be written in term of a
Brownian bridge [25]

G(x+
y

2
, x−y

2
, t) =

√
m

2πℏt
e−

my2

2ℏt ⟨exp(− t

ℏ

∫ 1

0
duV (x+y(

1

2
−u)+

√
ℏt
m
Bu))⟩B.

(3.11)
Here B is a Brownian bridge that is a Gaussian process on u ∈ [0, 1] with
zero mean and correlation ⟨BuBu′⟩B = min(u, u′)−uu′, hence B0 = B1 = 0.
From here, the argument is that in the semiclassical limit (where µ is large),
the Wigner function, given by Eq. (3.9), will be dominated by short-time
contributions. Therefore, we proceed with the short-time expansion of the
propagator. There is a saddle point at y = itp, so we make the change of

variable y = itp
m +

√
ℏt
m ỹ which yields (appendix of [12])

W (x, p) =
1

2πℏ

∫
C

dt

2πit
e(µ−

p2

2m−V (x)) t
ℏ+S(x,p) (3.12)

S(x, p) = ln⟨exp
(
− t

ℏ

∫ 1

0

du

[
V (x+

itp

m
+

√
ℏt
m
ỹ(

1

2
− u) +

√
ℏt
m
Bu)− V (x)

])
⟩B,ỹ,

with ⟨...⟩B,ỹ =
∫ dỹ√

2π
e−

ỹ2

2 ⟨...⟩B.

Recovering the classical limit. Now, our goal is to justify the classical
limit (2.1). In order to do so, we expand V in (3.12) for (x, p) close to (xs, ps)
at small time t and we stop to the zeroth order in time. The two potentials
V in (3.12) cancel, which yields S(x, p) ≃ 0, and therefore

W (x, p) =
1

2πℏ

∫
C

dt

2πit
e(µ−

p2

2m
−V (x)) t

ℏ =
1

2πℏ
Θ(µ−H(x, p)). (3.13)

This is the result of Eq. (2.1). The only missing part in our derivation is a
justification for the short time expansion. In the large chemical potential µ
limit, this expansion was justified in [12].

The semiclassical limit. Now, we want to push this expansion to
higher orders. We choose a point close to the edge, (x, p) ≃ (xs, ps), and we
expand V in (3.12) around xs. The expansion is achieved in detail in the
Appendix B considering the fluctuations of the Brownian bridge Bu. The
expansion is found to be valid under the conditions given in the Appendix
in Eqs. (B.1), and (B.5). For now let us assume that those conditions are
satisfied. The expansion yields the following result
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W (x, p) ≃
N→∞

1

2πℏ

∫
C

dt

2πit
e(µ−H(x,p)) t

ℏ+
t3

24ℏ (p
2
sV

′′(xs)+V ′(xs)2), (3.14)

=
1

2πℏ

∫
C

dτ

2πiτ
e−22/3aτ+ τ3

3 =
W(a)

2πℏ
,

where a was defined in Eq. (2.3). This is the Airy scaling discussed above
in Eq. (2.3). The authors of [12] then argued that in smooth confining
potentials, close to a generic point of the Fermi surf, the conditions Eqs.
(B.1) and (B.5) are verified in the large µ→ ∞ limit, which allows to recover
the universal scaling Eq. (2.3) and (2.7). From now on, the conditions Eqs.
(B.1) and (B.5) will be essential if one wants to know whether the Wigner
functions follows the Airy scaling (2.3) in a specific region of the Fermi surf.

While the Airy scaling (2.3) is generally valid for generic points, it has
been found to be absent at certain points of specific potentials. For instance,
when examining the Wigner function of potentials V (x) ∼ x2n with 2 ≤ n,
it is clear that e defined in (2.3) becomes equal to zero at xs = 0, such that,
the Airy scaling is not verified. This phenomenon is discussed in [69], where
the authors obtained the momentum coordinate kernel at the edge of the
momentum density and found it to differ from the Airy kernel. Another

example is provided by the inverse power law potential V (x) =
ℏ2(ν2− 1

4
)

2m|x|γ ,

for which the kernel at the edge of the density was determined in [67].
This analysis shows the emergence of the Airy kernel for large µ, if γ > 2.
Knowing this, we aim to extend the analysis to the full Wigner function
and investigate the conditions under which the Wigner function exhibits
the Airy scaling (2.3) for the inverse power law potential.

Remark. It is interesting to note that the short time expansion of the
propagator can be obtained from an expansion around the classical path, as
demonstrated in [70]. In the case of an inverse power law potential V (x) =
c
xγ , there are two such paths: a direct path and an indirect path with a
turning point [71, 72]. However, when using the imaginary time propagator
in the small ℏ limit, the contribution from the indirect path is subleading
such that the two different methods yield identical results.

3.3 The Inverse Repulsive Power Law Potential V (x) = c
|x|γ

Here for purpose that will become clear in the section 4 we want to extend the
previous analysis to the special case of the non-confining potential V (x) =
c

|x|γ with c > 0. We show that for this potential, the Airy scaling Eq. (2.3)
in the large µ limit is valid only under tight conditions, that is for γ > 2 and
close to the edge of the gas (or equivalently on the part of the Fermi surf
Eq. (2.2) where ps ≃ 0). Our main result relies in the fact that the Airy
scaling remains valid on a wider part of the Fermi surf in the small ℏ limit.
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More precisely as ℏ → 0, the Airy scaling is valid on the complete Fermi
surf if γ ≤ 1, and only for ℏxγ−1

s ≪ 1 if γ > 1. Our results are summarized
in the table 1 and figure 3.

In Ref. [12], the analysis was carried out with ℏ = 1. Here, we reintro-
duce ℏ, and we realize that the limit ℏ → 0 leads to the Airy scaling (2.3)
on a wider part of the Fermi surf than in the large µ limit.

The inverse square potential, γ = 2. Before examining the general
inverse power law potential, we start with a particular case, the inverse
squared potential. For γ = 2, the eigenfunctions are known such that one
can compute exactly the Wigner function. We know [67] that the Airy kernel
is recovered when ν → ∞, for fixed c, which is equivalent to taking the ℏ → 0

limit, as ν =
√

1
4 + 2mc

ℏ2 . Therefore, we consider the Wigner function in the

latter limit and prove that it exhibits the Airy scaling (2.3). In this case,
the single-particle eigenfunctions ϕp form a continuously indexed family, and
they are related to the Bessel functions through the following expression

ϕp(x) =

√
px

ℏ
Jν

(px
ℏ

)
, (3.15)

with ν ≃
ℏ→0

√
2mc
ℏ . This leads to the following expression for the Wigner

function [24]

W (x, p) =
1

2πℏ3

∫ pF

0
p′dp′

∫ 2x

−2x
dye

iνy
xα(p)

√
(x+

y

2
)(x− y

2
) (3.16)

× Jν

(
ν
x+ y/2

xα(p′)

)
Jν

(
ν
x− y/2

xα(p′)

)
,

where xα(p
′) =

√
2mc
p′ is the turning point (i.e. the point where p′2

2 = V (xα))

for a wave of impulsion p′. Using the integral representation for the Bessel
function Jν(x) =

1
2π

∫ π
−π dτe

i(ντ−x sin(τ)) in (3.16) leads to

W (x, p) =
1

(2πℏ)3

∫ pF

0

p′dp′
∫ 2x

−2x

dy

∫ π

−π

dτ1dτ2

√
x2 − y2

4
eiνF (τ1,τ2,p

′,y)

F (τ1, τ2, p
′, y) = τ1 + τ2 −

x+ y
2

xα(p′)
sin(τ1)−

x− y
2

xα(p′)
sin(τ2) +

y

xα(p)
. (3.17)

In the small ℏ limit, ν → ∞, hence we will evaluate the four dimensional
integral Eq. (3.17) using a saddle point method. We notice that the y
dependent integral converges towards a delta Dirac function in the small ℏ
limit.∫ 2x

−2x
dy

√
x2 − y2

4
e
iνy

(
sin(τ2)−sin(τ2)

2xα(p′) + 1
xα(p)

)
≃

ν→∞

1

ν
δ

(
sin(τ2)− sin(τ2)

2xα(p′)
+

1

xα(p)

)
(3.18)
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When expanding the function F to second order, the delta Dirac part, that
is the term proportional to y constrain τ1 and τ2 to a one dimensional curve
such that their second derivative contributions cancel out close to the saddle
point. Therefore one has to push the expansion of F to the third order. For
a phase space point taken close to the Fermi surf (x, p) ≃ (xs, ps), the third
order terms lead to the Airy scaling limit Eq. (2.3). See Appendix A for
details of this saddle point approximation. Additionally, we find that the
saddle point approximation leading to the Airy scaling is valid under the
following condition

xpℏ
mc

≪ 1. (3.19)

A few remarks are in order:

• Notice that if the Airy scaling was obtained here in the limit ℏ → 0,
it would not be possible to obtain it solely from the large µ limit.

• Typically p is lower or close to
√
2mµ and the condition (3.19) is not

satisfied away from the potential that is for large x ∼ ℏ−1.

The inverse power law potential, γ ≥ 0. In order to generalise the
result obtained for γ = 2, we apply the short time propagator expansion
method (3.2) to the inverse power law potential. Note that one could worry
about the fact that the potential is not smooth anymore and exhibits a
diverging singularity eventually invalidating the previous analysis. In fact,
this is not a problem, as long as the singularity is repulsive, in this case the
propagator from (3.11) is still well defined.

Near the gas edge. We want to look at the Wigner function near
the gas edge that is where the particle density vanishes. The gas edge
corresponds to the area of the Fermi surf around ps = 0, and xs = xedge =
( cµ)

1/γ (see Fig. 3). The correct rescaling of the Fermi surf is defined as

xs = x̄xedge, (3.20)

ps =
√
2mµ(1− x̄−γ),

where x̄ ∈ [1,+∞[. Then we consider the different limits (large µ or small ℏ)
with x̄ fixed. In that case, the conditions for the validity of the Airy scaling
are given in Appendix B, Eqs. (B.1), and (B.5). Those conditions yield

Eq. (B.7) which depends only on one dimensionless parameter ω = ℏ2

µ
γ−2
γ c

2
γ
.

Finally, the expansion of the propagator is valid if this parameter is small
that is if the single condition Eq. (2.9) is satisfied. We recall that the short
time expansion of the propagator has an interpretation in terms of classical
paths. In the inverse power law potential there are two such paths, a direct
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path and an indirect path. Notice that the contribution of the indirect path
can be neglected unless the condition Eq. (2.9) is not respected.

Away from the gas edge. We look at the Wigner function for xedge ≪
xs and ps ≃

√
2mµ (see Fig. 3) or equivalently x̄→ ∞ in (3.20). This time

the conditions Eqs. (B.1) and (B.5) yield Eq. (B.9), such that, in the limits
of interest, the Airy scaling is correct only if the condition (2.11) is satisfied.
This close the proof of the results (2.9) and (2.11). Notice that the condition
(2.11) matches (3.19) for γ = 2.

4 Airy kernel at the quantum front

Now let us give details on the proposed quench protocol that will yield a
propagating front with the Airy kernel (2.12).

Initial condition. Instead of having a domain wall release like in [51]
the system is prepared in the ground state of noninteracting fermions with
the impenetrable barrier V (x) = c/|x|γ , studied in Section 3. This ground
state is such that only the left half space is filled up to Fermi momentum pF

or chemical potential µ =
p2F
2 . The initial Wigner function W0(x, p) exhibits

a Fermi surf (2.2). For the inverse power law potential (see Fig. 3), the
Fermi surf (xs, ps) at a given Fermi momentum pF follows the equaion

p2s
2

+
c

|xs|γ
=
p2F
2
. (4.1)

Additionally near the Fermi surf, in the small ℏ limit, the initial Wigner
function W0(x, p) exhibits the Airy scaling (2.3) which by taking the deriva-
tives of (2.2), takes the form

W0(x, p) ≃
W(κ(x)δp(x))

2πℏ
,

κ(x) = (
ℏ2p′′s(x)

2
)−1/3 ≃

x→∞
(
2pF |x|γ+2

ℏ2γ(γ + 1)c
)
1
3 , (4.2)

δp(x) = p− ps(x).

Quench. Then, we switch-off the trap and consider the free evolution
of fermions, producing a positive current, i.e. particles moving from left to
right. For free fermions, the dynamical evolution of the Wigner function is
simply the Liouville dynamics

∂tW (x, p, t) + p∂xW (x, p, t) = 0, (4.3)

such that

W (x, p, t) =W (x− pt, p, t = 0) =W0(x− pt, p), (4.4)
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where W0(x, p) is the Wigner function at initial time. This implies that the
Fermi surf will be deformed with time (see Fig. 4), such that x(p, t) the
Fermi surf at time t is given by

x(p, t) = xs(p) + pt. (4.5)

Fermi surf Fermi surf at time t

t=0 t>0

Figure 4: Plot of the Fermi surf for the inverse power law poten-
tial (red line, left) and its free evolution at time t (red line, right).
We also plot the line tangent to the Fermi surf at the quantum
front (xedge(t), p(t)) (blue, right) and its backward time propaga-
tion, i.e., the tangent to the point (x(t), p(t)) (blue, left). These
two tangent lines appear in (4.10), where in the first line of the
equation the integral is performed over a line parallel to the right
tangent line, and in the second line of the equation, the integral
is performed over a line parallel to the left tangent line. Thus, in
the large time limit, the computation of the kernel (4.10) probes
the edge properties of the Wigner function in the inverse power
law potential away from the center of the potential (xs → −∞),
leading to the Airy kernel at the quantum front (4.20).

Therefore, we will observe a quantum front, i.e., the point where the
density vanishes in the classical limit, propagating to the right. We look for
the position xedge(t) of the propagating quantum front, which is given by
xedge(t) = maxp x(p, t). This obeys the equation ∂px(p(t), t) = 0, defining
the corresponding point p(t) and x(t) = xs(p(t)), which is the projection of
the quantum front on the Fermi surface of the initial Wigner function. The
functions p(t) and x(t) obey the two equivalent equations

x′s(p(t)) + t = 0, (4.6)

p′s(x(t)) +
1

t
= 0.

One can verify that xedge(t) is a monotonically increasing function of t, such
that the front is moving to the right. By construction x(t) and p(t) are
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monotonous, they have the following large time limit (see Fig. 4)

lim
t→∞

xedge(t) = +∞, (4.7)

lim
t→∞

x(t) = −∞,

lim
t→∞

p(t) = pF ,

and the three of them are linked by the relation

xedge(t) = x(p(t), t) = x(t) + tp(t). (4.8)

Their large time asymptotics are

p(t) ≃
t→∞

pF − 1

(γt)
γ

γ+1

(
c

pF
)

1
γ+1 , (4.9)

x(t) ≃
t→∞

−(
γct

pF
)

1
1+γ .

Going back to the kernel, the Liouville dynamics (4.4) gives the time depen-
dent kernel at time t as a functional of the initial Wigner function

C(x, x′, t) =

∫
dpe−i pℏ (x−x′)W (

x+ x′

2
, p, t) (4.10)

=

∫
dpe−i pℏ (x−x′)W0(

x+ x′

2
− pt, p).

As illustrated in Fig. 4, the integral (4.10) giving the correlation at the
quantum front xedge(t) is performed over a line parallel to the line tangent
to the Fermi surf at the quantum front of the Wigner function at time t. In
the second line of (4.10), the integral is now performed on a line parallel to
the line tangent to the Fermi surf of the initial Wigner function at the point
(x(t), p(t)). Thus the correlation at the quantum front is dominated by the
part of the integral that is close to the Fermi surf. Hence, using the Airy
scaling (4.2) for the initial Wigner function yields

C(xedge(t) + y, xedge(t) + y′, t) (4.11)

=

∫
dpe−i pℏ (y−y′)W0((p(t)− p)t+ x(t) +

y + y′

2
, p)

=
1

ℏt
e−i

p(t)
ℏ (y−y′)

∫
dx

2π
ei

x−(x(t)+
y+y′

2 )

ℏt (y−y′)W(a(x)),

where the last line is obtained through the change of variable

x = (p(t)− p)t+ x(t) +
y + y′

2
, (4.12)
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and a(x) is expressed using (4.2) as

a(x) = κ(x)δp(x), (4.13)

δp(x) = p(t)− ps(x)−
x− (x(t) + y+y′

2 )

t
,

≃ (x− x(t))2

2
|p′′s(x(t))|+

y + y′

2t
.

The integral in the last line of (4.11) is dominated by the vicinity of x ≃ x(t),
such that we can use (4.6) to expand δp(x) around x(t) which is done in
(4.13). Now expanding a(x) to the second order in x we have

W(a(x)) ≃
∫ ∞

0
dzAi

[
z + (x− x(t))2

∣∣∣∣p′′s(x(t))ℏ

∣∣∣∣2/3 + y + y′

t

∣∣ℏp′′s(x(t))∣∣−1/3

+(x− x(t))κ′(x(t))
y + y′

21/3t
+

(x− x(t))2

2
κ′′(x(t))

y + y′

21/3t

]
. (4.14)

In order to recover the Airy kernel, we set the new variables
x̃ = (x− x(t))|p

′′
s (x)
ℏ |1/3

ỹ = y
t|ℏ2p′′s (x)|1/3

ỹ′ = y′

t|ℏ2p′′s (x)|1/3

, (4.15)

leading to

W(a(x)) ≃
∫ ∞

0
dzAi(z + x̃2 + ỹ + ỹ′ + x̃(ỹ + ỹ′)2−1/3ℏκ′(x(t)) (4.16)

+ x̃2(ỹ + ỹ′)
ℏ4/3κ′′(x(t))

24/3(|p′′s(x(t))|)1/3
).

The two last terms can be discarded if{
ℏκ′(x(t)) ≪ 1
ℏ4/3κ′′(x(t))

(2|p′′s (x(t))|)1/3
≪ 1

⇔ ℏpFx(t)γ−1

c
≪ 1. (4.17)

Notice that this is the same condition as (2.11) which is needed for the use
of the Airy scaling (4.2). Hence we need to make sure that this condition is
verified if we want to observe the Airy kernel. Finally, we end up with the
simple form

W(a(x)) ≃ 2

∫ ∞

0
dzAi(x̃2 + ỹ + ỹ′ + 2z), (4.18)

such that taking into account the change of variable (4.15), the correlation
at the quantum front is given by
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C(xedge(t) + y, xedge(t) + y′, t) = −1

t

1

(ℏ2|p′′s(x(t))|)1/3
e−i

p(t)
ℏ (y−y′) (4.19)

e−
i
2ℏ (y

2−y′2)

∫ ∞

0
dz

∫
dx̃

π
eix̃(ỹ+z−(ỹ′+z))Ai(x̃2 + ỹ + z + ỹ′ + z).

We end the computation using the integral identity (2.6) which leads to

C(x, x′, t) ≃ − 1

w(t)
e−

i
ℏ (p(t)(x−x′)+

(x−xedge(t))
2

2t
−

(x′−xedge(t))
2

2t
) (4.20)

×KAi(
x− xedge(t)

w(t)
,
x′ − xedge(t)

w(t)
),

that is the emergence of the Airy kernel at the quantum front as stated in
(2.12).

5 Discussion

In this article, we were interested in the ground state Wigner function of a
noninteracting Fermi gas with the inverse power law potential. We analyzed
the fine structure of the edge of the Wigner function called the Fermi surf in
the semiclassical limit, aiming to determine whether it exhibits the smooth
Airy scaling (2.3). We differentiated between two regimes. The first one,
”near the gas edge”, exhibits the Airy scaling unless the condition (2.9)
is violated. This occurs when the indirect classical path induced by the
repulsive inverse power law cannot be neglected. The second regime, ”away
from the gas edge”, is valid unless the condition (2.11) is violated.

In the second part of the article, we proposed a quench setup where the
system is initialized in the previously studied ground state of the inverse
power law potential. Then, the potential is turned off, and the fermions
evolve freely. Using the first part, we were able to prove the emergence
of the Airy kernel at the edge of the propagating front. Additionally the
gas exhibits anomalous diffusion around the quantum front with generalized
diffusion exponent ranging from 1

3 to 2
3 depending on the exponent γ of the

pre-quench potential.
This results raise new axis of research. The Airy kernel arises as a

consequence of the initial equilibrium Wigner function, hence it would be
interesting to see if changing the initial state by some thermal state would
lead to the kernel observed at the edge of a thermal Fermi gas. Additionally,
it would be interesting to observe this phenomenon in an experiment, even
though this seems to be challenging given the current spatial resolution of
cold atoms experiments. Such a quench could then be used as a method to
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probe fine details of the Fermi surf of the pre-quench Wigner function.
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discussions. We thank B. Douçot and P. Vignolo for useful comments. We
acknowledge support from ANR grant ANR-17-CE30-0027-01 RaMaTraF.

Appendix A: The inverse squared potential γ = 2

Let us give details on the behaviour of the Wigner function of the gournd
state of the inverse square potential. The single particle problem of the
inverse square potential can be solved exactly, and the single particle eigen-
functions are simply related to the Bessel function Jν through.

ψp(x) =

√
px

ℏ
Jν(

px

ℏ
), Jν(x) =

1

2π

∫ π

−π
dτei(ντ−x sin(τ)), (A.1)

with ν =
√

1
4 + 2c

ℏ2 ≃
ℏ→0

√
2c
ℏ . For now we will keep ν =

√
2c
ℏ . This leads to

the following expression for the Wigner function

W (x, p) =
1

2πℏ3

∫ pF

0
p′dp′

∫ 2x

−2x
dye

iνy
xα(p)

√
(x+

y

2
)(x− y

2
) (A.2)

× Jν(ν
x+ y/2

xα(p′)
)Jν(ν

x− y/2

xα(p′)
).

Here xα(p
′) =

√
2c
p′ is the turning point for a wave of impulsion p′, i.e. the

point where p′2

2 = V (xα). This leads to

W (x, p) =
1

(2πℏ)3

∫ pF

0
p′dp′

∫ 2x

−2x
dy

∫ π

−π
dτ1dτ2

√
x2 − y2

4
eiνF (τ1,τ2,p′,y),

F (τ1, τ2, p
′, y) = τ1 + τ2 − p′

x+ y
2√

2c
sin(τ1)− p′

x− y
2√

2c
sin(τ2) +

py√
2c
. (A.3)

This is a four dimensional integral with a saddle point. Let us analyse
the integral limit at large ν with the saddle point method. The saddle
point equation ∇F = 0 for x > 0, p > 0 leads to the unique critical point
(τ∗1 , τ

∗
2 , p

∗, y∗)

τ∗1 = −τ∗2 = arcsin(p/p∗),

(p∗)2

2
=
p2

2
+

c

x2
, (A.4)

y∗ = 0.
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We voluntary forgot the solution τ1 = −π − arcsin(sin(τ2) +
2p
p′ ), and τ1 =

π − arcsin(sin(τ2) +
2p
p′ ) which arise if the conditions x > 0, p > 0 are re-

laxed. Additionally we have F (τ∗1 , τ
∗
2 , p

∗, y∗) = 0 leading to the second order
expansion

F (τ1, τ2, p
′, y) ≃ xp√

2c

τ ′21 − τ ′22
2

+
(τ ′1 + τ ′2)p

′′

p∗
+ y(

p√
2cp∗

p′′ +
τ ′2 − τ ′1
2x

),

(A.5)

with τ ′i = τi − τ∗i , p′′ = −(p′ − p∗). Notice that the y variable plays the
role of a Dirac delta function with the change of variable y = ℏỹ. This
could already be seen in (A.3) by isolating the integral over y which can be
expressed as a Bessel function and converges towards a Dirac delta function
when ℏ is small. This delta Dirac impose the following relation

p+
p′

2
(sin(τ2)− sin(τ1)) = 0, (A.6)

which after a first order expansion gives

p√
2cp∗

p′′ +
τ ′2 − τ ′1
2x

= 0. (A.7)

Substituting this in Eq. (A.5) results in

F (τ2, p
′) ≃

√
2(p2/2 + V (x))

V (x)
τ̃2p̃+

√
2p

V 3/2(x)

p̃2

2
. (A.8)

We see that the second order term τ ′21 and τ ′22 from Eq. (A.5) are cancelled.
Hence we need to expand F to third order

F (τ2, p
′) ≃ xp√

2c
(1− p′′

p∗
)
τ ′21 − τ ′22

2
+

(τ ′1 + τ ′2)p
′′

p∗
+
τ ′31 + τ ′32

6
(A.9)

+ y(
p√
2cp∗

p′′ +
τ ′2 − τ ′1
2x

+
p′′

2xp∗
(τ ′1 − τ ′2) +

p

4
√
2c

(τ ′21 + τ ′22 )).

Once again, we need to enforce the constraints from the delta Dirac, reducing
F to a two dimensional function. This is done by expanding (A.6) to the

second order such that p√
2cp∗

p′′+
τ ′2−τ ′1
2x + p′′

2xp∗ (τ
′
1− τ ′2)+

p

4
√
2c
(τ ′21 + τ ′22 ) = 0.

This can be inverted as

τ ′1 = τ ′2 +
2xp√
2c

p′′

p∗
(A.10)

+
px√
2c
τ ′22 +

x2p2

c

p′′τ ′2
p∗

+ (
2xp√
2c

+ 2(
xp√
2c

)3)
p′′2

(p∗)2
.
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Finally the constraint is substituted back in (A.9) leading to

W (x, p) =
1

(2πℏ)2
2x2p∗√

2c

∫ p∗

p∗−pF

dp′′
∫
I
dτ2e

iνF (τ2,p′),

F (τ2, p
′) ≃ (1 + 3

p2/2

V (x)
)
τ ′32
3

+

√
2(p2/2 + V (x))

V (x)
τ ′2p

′′, (A.11)

+

√
2p

V 3/2(x)

p′′2

2
.

Note that the delta Dirac function brings an additional factor 2πℏ 2x2
√
2c

in

front of the integral, and I = {τ ′ ∈ [−π, π]|∃τ, p + p′ sin(τ
′)−sin(τ)
2 = 0}.

Proceeding to the change of variable τ ′2 = ν−1/3(1 + 3 p2/2
V (x))

−1/3τ̃

p′′ = ν−2/3(1 + 3 p2/2
V (x))

1/3 V (x)√
2(p2/2+V (x))

p̃ = ℏ2/3
2
√
2

(p2V ′′(x)+(V ′(x))2)1/3√
p2

2
+V (x)

p̃
,

(A.12)

and for fixed x, using the relation

(p∗ − pF )
2p∗

ℏ2/3(p2V ′′(x) + (V ′(x))2)1/3
= 22/3a

2p∗

p∗ + pF
, (A.13)

leads to the Airy scaling (2.3)

Large x In section 4, we study the emergence of the Airy kernel at the
propagating front (2.12). This depends on the behavior of the initial Wigner
function at position x(t), i.e. for |x| → +∞. Therefore, we need to now if
the Airy scaling is still verified when |x| → +∞. For fixed x, the Airy scaling
is verified only because as ℏ goes to 0, the last term of (A.11) also goes to
0, and the interval I goes to R. However for x large, the last term of (A.11)
(and also all other third order term of expansion of F ) is a power of xpℏ

c . In

fact even the interval I has a width of order ∆ ≃ (xpℏc )−1/3. Therefore, for
the inverse squared potential, the Airy scaling is recovered only under the
condition

xpℏ
c

≪ 1. (A.14)

This implies that ℏ has to be small and x cannot be taken too large.

Appendix B: Short time propagator expansion

Here we give some details on the short time propagator expansion presented
in the appendix of [12]. We carefully restore the ℏ factors in order to perform
the small ℏ analysis.
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General smooth potential. We consider the Wigner function written
as (3.12) at a point near the Fermi surf (x, p) ≃ (xs, ps). The small time
expansion of Eq. (3.12) is valid if the arguments of V in Eq. (3.9) are
small compared to x ≃ xs. In other words, we require that the following
conditions hold: {

pst
mxs

≪ 1
ℏt

mx2
s
≪ 1

. (B.1)

Considering the Brownian bridge, the expansion to order 3 results in

S(x, p) ≃ − t
2

m
(
1

24
+

1

12
)V ′′(xs) +

t3

24mℏ
(V ′(xs))

2 (B.2)

− t3

m2
[− 1

24ℏ
p2sV

′′(xs) + ℏ(
1

640
+

1

480
+

1

240
)V ′′′′(xs)] +O(t4).

because we want to recover the Airy function, we want the second order to
be negligible. Let us assume that, finally, the only remaining term is

S(x, p) ≃ t3

24mℏ
(
p2s
m
V ′′(xs) + V ′(xs)

2). (B.3)

Then we can make the change of variable t = 22/3ℏτ/eN in the integral
(3.12), with

eN = ℏ/tN =
ℏ2/3

(2m)1/3
(
p2s
m
V ′′(xs) + V ′(xs)

2)1/3, (B.4)

and the Airy scaling emerges (see Eq. (3.14)). If we assume that the integral
is dominated by t ∼ tN , we obtain the condition for neglecting the discarded
terms in (B.2) as

t2

m
V ′′(xs) ≃

t2NV (xs)

mx2s
≪ 1, (B.5)

ℏV ′′′′(xs) ≪
1

ℏ
p2sV

′′(xs) +
m

ℏ
V ′(xs)

2 ≃ t−3
N .

Hence, the Airy sclaing is valid if the conditions (B.1) and (B.5) are satis-
fied.

Conditions for the inverse power law potential. Now we apply the
short time expansion to the special case of the inverse power law potential.
This is done by checking in which regime (B.1) and (B.5) are satisfied.

For the part of the Fermi surf near the edge of the gas (see Fig. 3) we
parametrize the Fermi surf as

xs = x̄xedge, (B.6)

ps =
√
2µ(1− x̄−γ),
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where we recall that xedge = ( cµ)
1/γ . With this scaling, the conditions (B.1),

and (B.5) lead to

pstN
xs

≃ (
√
ωx̄γ−1)1/3 ≪ 1, (B.7)

ℏtN
x2s

≃ (ω2x̄γ−4)1/3 ≪ 1,

t2NV
′′(xs) ≃

( ω

x̄γ+2

)1/3
≪ 1,

ℏV ′′′′(xs)t
3
N ≃ ω

x̄2
≪ 1,

where ω = ℏ2

µ
γ−2
γ c

2
γ

such that near the gas edge (that is x̄ of order one),

the expansion of Eq. (3.12) and hence the Airy scaling is valid if the single
condition

ω =
ℏ2

µ
2−γ
γ c

2
γ

≪ 1, (B.8)

is satisfied, which yields (2.9). The main commentary to do here is that we
need either ℏ to be small or, if γ > 2, we need µ to be large.

Now, we examine the part of the Fermi surf, away from the edge of the
gas (see Fig. 3), that is for p ∼ √

mµ and xs as large as we want. First
taking x̄→ ∞ in (B.7) we see that the third and fourth line of (B.7) which
corresponds to (B.5) are always satisfied. Therefore, we can focus on the
two first lines of (B.7), that is on (B.1). This yields

pstN
xs

≃

(
ℏµ1/2xγ−1

s

c

)1/3

≪ 1, (B.9)

ℏtN
x2s

≃

(
ℏ4xγ−4

s

cµ

)1/3

≪ 1.

Because the first condition is more restrictive than the second one, in the
limits of interest (ℏ → 0 or µ→ ∞ with xs large), the Airy scaling is correct
only if the second condition is satisfied

ℏ√µxγ−1
s

c
≪ 1, (B.10)

which is (2.11). The conclusion is that µ → ∞ cannot satisfy the required
condition for the emergence of the Airy scaling (2.3). However, this is pos-
sible at small ℏ, if γ < 1 on the complete Fermi surf, and if γ > 1 only for
xs < ℏ1/(1−γ).
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preprint solv-int/9901004 (1999). doi: https://doi.org/10.48550/
arXiv.solv-int/9901004.

[64] B De Bruyne, DS Dean, P Le Doussal, SN Majumdar, and G Schehr.
“In preparation”.

32

https://doi.org/https://doi.org/10.21468/SciPostPhys.8.3.036
https://doi.org/https://doi.org/10.1088/1751-8121/accabf
https://doi.org/https://doi.org/10.1088/1751-8121/accabf
https://doi.org/10.1088/1751-8121/ac83fb
https://doi.org/10.1209/0295-5075/accec7
https://doi.org/10.1209/0295-5075/accec7
https://doi.org/https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/https://doi.org/10.1103/PhysRevE.71.036102
https://doi.org/https://doi.org/10.1088/1742-5468/ab1dd6
https://doi.org/https://doi.org/10.1088/1742-5468/ab1dd6
https://doi.org/https://doi.org/10.1016/0550-3213(93)90126-A
https://doi.org/https://doi.org/10.1016/0550-3213(93)90126-A
https://doi.org/https://doi.org/10.1007/BF02100489
https://doi.org/https://doi.org/10.48550/arXiv.solv-int/9901004
https://doi.org/https://doi.org/10.48550/arXiv.solv-int/9901004


[65] Y Castin. “Basic theory tools for degenerate Fermi gases”. In: Ultra-
cold Fermi gases. IOS Press, 2007, pp. 289–349. doi: https://doi.
org/10.48550/arXiv.cond-mat/0612613.

[66] V Olivier and S Manuel. Airy functions and applications to physics.
World Scientific, 2010.

[67] B Lacroix-A-Chez-Toine, P Le Doussal, SN Majumdar, and G Schehr.
“Non-interacting fermions in hard-edge potentials”. In: Journal of Sta-
tistical Mechanics: Theory and Experiment 2018.12 (2018), p. 123103.
doi: https://doi.org/10.1088/1742-5468/aaeda0.

[68] B Øksendal. Stochastic differential equations. Springer, 2003.

[69] P Le Doussal, SN Majumdar, and G Schehr. “Multicritical edge statis-
tics for the momenta of fermions in nonharmonic traps”. In: Physical
review letters 121.3 (2018), p. 030603. doi: https://doi.org/10.
1103/PhysRevLett.121.030603.

[70] N Makri and WH Miller. “Exponential power series expansion for the
quantum time evolution operator”. In: The Journal of chemical physics
90.2 (1989), pp. 904–911. doi: https://doi.org/10.1063/1.456116.

[71] KV Bhagwat and SV Lawande. “A new derivation of the Feynman
propagator for the inverse square potential”. In: Physics Letters A
141.7 (1989), pp. 321–325. doi: https://doi.org/10.1016/0375-
9601(89)90057-1.

[72] LI Lolle, CG Gray, JD Poll, and AG Basile. “Improved short-time
propagator for repulsive inverse-power-law potentials”. In: Chemical
physics letters 177.1 (1991), pp. 64–72. doi: https://doi.org/10.
1016/0009-2614(91)90177-B.

33

https://doi.org/https://doi.org/10.48550/arXiv.cond-mat/0612613
https://doi.org/https://doi.org/10.48550/arXiv.cond-mat/0612613
https://doi.org/https://doi.org/10.1088/1742-5468/aaeda0
https://doi.org/https://doi.org/10.1103/PhysRevLett.121.030603
https://doi.org/https://doi.org/10.1103/PhysRevLett.121.030603
https://doi.org/https://doi.org/10.1063/1.456116
https://doi.org/https://doi.org/10.1016/0375-9601(89)90057-1
https://doi.org/https://doi.org/10.1016/0375-9601(89)90057-1
https://doi.org/https://doi.org/10.1016/0009-2614(91)90177-B
https://doi.org/https://doi.org/10.1016/0009-2614(91)90177-B

	Introduction
	Main results
	The Wigner function and the inverse power law potential
	Airy kernel at the edge of the propagating front

	Airy statistics and the Wigner function
	Wigner function
	Short time expansion of the propagator and the semiclassical Limit
	The Inverse Repulsive Power Law Potential Lg

	Airy kernel at the quantum front
	Discussion
	Appendix A: The inverse squared potential Lg
	Appendix B: Short time propagator expansion
	References

