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Motivated by the structure of the Swanson oscillator, which is a well-known example of a non-
hermitian quantum system consisting of a general representation of a quadratic Hamiltonian, we
propose a fermionic extension of such a scheme which incorporates two fermionic oscillators, together
with bilinear-coupling terms that do not conserve particle number. We determine the eigenvalues
and eigenvectors, and expose the appearance of exceptional points where two of the eigenstates
coalesce with the corresponding eigenvectors exhibiting the self-orthogonality relation. We compute
the entanglement spectrum and entanglement entropy of the ground state in two different ways,
with one of them being via the Gelfand-Naimark-Segal construction. In addition to the approach
involving the usual bi-normalization of the eigenvectors of the non-hermitian Hamiltonian, we also
discuss the case where the eigenvectors are normalized with respect to the Dirac norms. It is found
that the model exhibits a quantum phase transition due to the presence of a ground-state crossing.

I. INTRODUCTION

In recent times, the study of non-hermitian systems
in quantum mechanics has evinced a lot of inter-
est due to its relevance in open quantum systems
[1–6]. Parity-time-symmetric Hamiltonians, where
the parity operator P is defined by the operations
(i, x, p) → (i,−x,−p) and the time-reversal operator T
by the ones (i, x, p) → (−i, x,−p), form a distinct sub-
class of a wider branch of non-hermitian Hamiltonians.
Such Hamiltonians have drawn considerable attention
because a system featuring unbroken PT −symmetry
generally preserves the reality of the corresponding
bound-state eigenvalues, unless PT be broken when the
eigenvectors cease to be simultaneous eigenfunctions of
the joint PT operator, and as a result, complex eigen-
values spontaneously appear in conjugate pairs [7–10].
The last two decades have witnessed the relevance of
PT −symmetry in optics [11], including non-hermitian
photonics [12, 13], wherein balancing gain and loss
provides a powerful toolbox towards the exploration of
new types of light-matter interaction [14].

A remarkable feature associated with many non-
hermitian systems is the unique presence of exceptional
points, which are singular points in the parameter
space at which two or more eigenstates (eigenvalues and
eigenstates) coalesce [15–20]. Such points, including
the existence of their higher orders [21], are of great
interest especially in the context of optics [22–25], as
well as while going for the experimental observations
in thermal atomic ensembles [26]. It is worthwhile
noting that a non-hermitian operator (even with real
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eigenvalues) admits distinct left and right eigenvectors;
at the exceptional point, the coalescing eigenvectors
become orthogonal to each other, i.e., they exhibit
the so-called self-orthogonality condition in which the
inner product between the corresponding left and right
eigenvectors becomes zero [15]. This result has found
interesting physical implications such as stopping of
light in PT -symmetric optical waveguides, as reported
in Ref. [27].

A particularly simple yet interesting example of a non-
hermitian system is the Swanson oscillator [28–31], being
described by the Hamiltonian (we take ℏ = kB = 1)

H = ωa†a+ α(a†)2 + βa2, (1)

where ω, α, β ∈ R, with ω > 0 and α ̸= β; the
latter condition ensures that the Hamiltonian is non-
hermitian. The Hamiltonian is PT −symmetric and also
pseudo-hermitian [32–34], thereby holding a real and
positive spectrum for a certain range of the parameter
values. The remarkable feature of the Swanson model
is the existence of the terms (a†)2 and a2, which are
not ‘number conserving’, respectively leading to the
transitions |n⟩ 7→ |n + 2⟩ and |n⟩ 7→ |n − 2⟩. Excep-
tional points arising from a situation involving coupled
oscillators where each mode is described by a Swanson-
like Hamiltonian have been reported recently in Ref. [35].

In this paper, we present a formalism that addresses a
fermionic extension of the Swanson oscillator [Sec. (II)].
In particular, we demonstrate the existence of excep-
tional points in the parameter space describing the sys-
tem; at such points, two of the eigenstates coalesce with
the eigenvectors conforming to the self-orthogonality con-
dition [Sec. (III)]. Employing the so-called bi-orthogonal
approach to non-hermitian quantum mechanics (details
to be explained later), we compute the ground-state en-
tanglement entropy of the model [Sec. (IV)], placing par-
ticular emphasis on the algebraic approach to quantum
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mechanics based on the Gelfand-Naimark-Segal (GNS)
construction [Sec. (IVB)]. This is followed by the com-
putation of the entanglement spectrum based on the pre-
scription of Dirac normalization of the eigenvectors of the
non-hermitian Hamiltonian [Sec. (V)]. We conclude the
paper in Sec. (VI).

II. THE FERMIONIC EXTENSION:
HAMILTONIAN AND HILBERT SPACE

Towards this end we consider a quadratic (oscilla-
tor) Hamiltonian, but incorporate additional terms that
do not lead to conservation of particle number. Since
for fermionic operators, say c and c†, the properties
c2 = (c†)2 = 0 need to be satisfied, a straightforward
generalization of Eq. (1) would be quite unfeasible. One
could however, resort to a situation with two fermionic

sets of operators (c1, c
†
1) and (c2, c

†
2), defining a Hamilto-

nian that goes as

H = ω1c
†
1c1 + ω2c

†
2c2 + αc†1c

†
2 + βc2c1, α ̸= β, (2)

where ω1,2, α, β ∈ R, with ω1,2 > 0. One has the usual
anti-commutation relations, i.e.,

{cj , c†k} = δj,k, {cj , ck} = 0 = {c†j , c
†
k}, j, k = 1, 2.(3)

It may be speculated that such a non-hermitian system
may emerge from the interaction of two uncoupled
fermionic oscillators with some external agent whose
effect is to ensure that a transition from the zero-particle
state to the two-particle state happens with a different
weight as compared to the reverse transition, i.e., one of
these transitions is favored over the other. A schematic
diagram is shown in Fig. (1) wherein one has a pair
of single-occupancy quantum dots with external biases
(denoted with arrows) corresponding to the terms in
the Hamiltonian with coefficients α and β. With Eq.
(2) as the candidate for the fermionic extension of the
Swanson oscillator, we now proceed to investigate the
associated exceptional points, which are basically the
fingerprints signifying the character of a non-hermitian
system. A similar quadratic and non-hermitian model
with number-conserving interactions may also be studied
as presented in Appendix (A). It may be pointed out
that the indices ‘1’ and ‘2’ can be looked upon as serving
internal indices (like spin, color, etc.), in which case the
above Hamiltonian describes a system with a single site
which can accommodate two different types of fermions,
labeled by ‘1’ and ‘2’. Arguably, this interpretation
bears a closer resemblance to the bosonic Swanson
oscillator. However, as far as our analysis is concerned,
such interpretations do not play a role; thus we continue
to treat the indices ‘1’ and ‘2’ as different position labels
throughout the rest of the work.

For the fermionic system at hand, the complete Hilbert
space can be decomposed as

H = H0 ⊕H1 ⊕H2, (4)

FIG. 1: Schematic setup showing two single-occupancy quan-
tum dots with external biases (denoted with arrows) corre-
sponding to the non-number-conserving interactions with co-
efficients α and β.

where H0 and H2 are one-dimensional (each) and are

spanned by the vectors |Ω⟩ and c†1c
†
2|Ω⟩, respectively; H1

is two-dimensional and is spanned by c†1|Ω⟩ and c†2|Ω⟩.
Here |Ω⟩ is the zero-particle (vacuum) state. We relabel

the basis vectors as |1⟩ := |Ω⟩, |2⟩ := c†1|Ω⟩, |3⟩ := c†2|Ω⟩,
and |4⟩ := c†1c

†
2|Ω⟩. In this (natural) basis, the Hamilto-

nian is expressible as a 4×4 matrix which reads (we pick
ω1 = ω and ω2 = 1− ω, with ω ∈ (0, 1))

H =

 0 0 0 α
0 ω 0 0
0 0 (1− ω) 0
β 0 0 1

 . (5)

It should be remarked that just as the (bosonic) Swanson
oscillator, the fermionic extension is pseudo-hermitian for
a certain range of the parameter values, i.e., one can
find some matrix η, such that h = η−1Hη is hermitian.
Explicitly, for αβ > 0, we have

η =

 1 0 0 (α−
√
αβ)

0 1 0 0
0 0 1 0

(
√
αβ − β) 0 0 1

 , (6)

giving

h =

 0 0 0
√
αβ

0 ω 0 0
0 0 (1− ω) 0√
αβ 0 0 1

 , (7)

which is hermitian. It may be remarked that the system
is pseudo-hermitian for 4αβ + 1 ≥ 0 [Sec. (III B)], which
ensures the reality of the spectrum [32], although the
explicit forms of the matrices η and h given above for
the purpose of illustration are specific to the region in
the parameter space for which αβ > 0 (h ceases to be
hermitian for αβ < 0). In what follows, we explore the
existence of exceptional points associated with H.
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III. EIGENSTATES, PARAMETER SPACE, AND
EXCEPTIONAL POINTS

For ease of demonstration, we go for the choice ω1 = ω
and ω2 = 1 − ω, with ω ∈ (0, 1). The four-dimensional
problem admits four eigenstates. Two of the right eigen-
vectors in the {|1⟩, |2⟩, |3⟩, |4⟩} basis are

|ψI
R⟩ =


−

√
4αβ+1+1

2α
0
0
1

 , |ψII
R⟩ =


− 1−

√
4αβ+1
2α
0
0
1

 ,

(8)
with respective eigenvalues EI,II = 1

2

(
1∓

√
4αβ + 1

)
.

The other two eigenvectors are

|ψIII
R ⟩ =

0
1
0
0

 , |ψIV
R ⟩ =

0
0
1
0

 , (9)

with respective eigenvalues EIII,IV = ω, 1− ω.

A. Exceptional points

The states described by |ψIII,IV
R ⟩ are independent of

the ‘non-Hermiticity’ parameters α and β, and therefore
cannot be made to coalesce by tuning the parameters
α and β. On the other hand, it is clear that the states

described by |ψI,II
R ⟩ depend upon α and β rather strongly.

The corresponding left eigenvectors read

⟨ψI
L| =


−

√
4αβ+1+1

2β

0
0
1


T

, ⟨ψII
L | =


− 1−

√
4αβ+1
2β

0
0
1


T

.

(10)
At an exceptional point, it is expected that both the
eigenvalues and the eigenvectors coalesce. For the present
case, it is found to happen for 1 + 4αβ = 0, for which
EI = EII = 1

2 and |ψI
R⟩ = |ψII

R⟩; quite naturally then,

one also has ⟨ψI
L| = ⟨ψII

L |, which gives

⟨ψI,II
L |ψI,II

R ⟩ = 1

4αβ
+ 1 = 0, (11)

confirming the self-orthogonality condition [15]. On the
αβ-parameter space, the rectangular hyperbola 4αβ +
1 = 0 describes the set of points (infinitely many) for
which the eigenvalues and eigenvectors coalesce. Thus,
the condition 4αβ+1 = 0 may be interpreted as pointing
to the ‘exceptional curve’.

B. αβ-parameter space

Let us comment on the parameter space which is in-
duced by the parameters α and β (assuming α, β ̸= 0).

FIG. 2: Region in the αβ-parameter space conforming to
4αβ + 1 > 0 (light and dark gray) and αβ > 0 (dark gray).
The black-dashed curve is 4αβ + 1 = 0.

Since we are looking for real eigenvalues, we restrict our
attention to the points for which 4αβ + 1 ≥ 0. We note
that the norm of the states ‘I’ and ‘II’ can be determined
to be

⟨ψI
L|ψI

R⟩ = 1 +
(1 +

√
4αβ + 1)2

4αβ
, (12)

⟨ψII
L |ψII

R⟩ = 1 +
(1−

√
4αβ + 1)2

4αβ
. (13)

Although the norms coalesce and vanish at exceptional
points for which 4αβ + 1 = 0, demanding that they are
to be positive furnishes the additional condition αβ > 0.
In Fig. (2), the region shaded in dark gray (the first and
third quadrants excluding the lines α = 0 and β = 0) are
where the following two conditions hold: (a) spectrum is
real, (b) norms are positive. The region shaded in light
gray contains those points for which the norms ⟨ψI

L|ψI
R⟩

and ⟨ψII
L |ψII

R⟩ are not positive definite, although the spec-
trum is still real. The exceptional curve 4αβ + 1 = 0 is
shown as the dashed curve, on which the norms vanish.

IV. GROUND-STATE ENTANGLEMENT
SPECTRUM AND ENTANGLEMENT ENTROPY

Let us now evaluate the entanglement spectrum of the
ground state. We adopt two distinct ways to approach
the problem; the first one is based on the bi-orthogonal
interpretation of non-hermitian quantum mechanics
[36], while the second one uses a Dirac-normalization
scheme (see for instance, Ref. [37]) to produce right and
left (reduced) density matrices [38]. Below, we briefly
digress upon the two above-mentioned schemes.
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In the bi-orthogonal scheme, for a generic eigenstate
with right and left eigenvectors |ψR⟩ and ⟨ψL|, respec-
tively, one forms the norm as ||ψ|| =

√
⟨ψL|ψR⟩, while

the expectation value of some operator O reads as
⟨ψL|O|ψR⟩. The states can be bi-normalized by redefin-

ing |ψNR ⟩ = |ψR⟩√
⟨ψL|ψR⟩

and ⟨ψNL | = ⟨ψL|√
⟨ψL|ψR⟩

, such that

⟨ψNL |ψNR ⟩ = 1. This produces reliable results, especially
for the reduced density matrix that is described subse-
quently, provided that ⟨ψL|ψR⟩ > 0 for non-trivial eigen-
vectors. This however, cannot be guaranteed in gen-
eral; for instance, the norms given in Eqs. (12) and
(13) are positive definite only for parameter choices sat-
isfying αβ > 0. For the other cases where the norms
are not positive definite, one can resort to the so-called
Dirac norms ⟨ψL|ψL⟩ and ⟨ψR|ψR⟩, which are guaran-
teed to be positive definite for non-trivial eigenvectors.
One then has either left or right normalization, which
can produce positive-semidefinite (reduced) density ma-
trices. In this section, we compute the ground-state en-
tanglement spectrum and entanglement entropy via the
normalization scheme based on the bi-orthogonal inter-
pretation of non-hermitian quantum mechanics (we call
it bi-normalization) and deal with Dirac normalization
later in Sec. (V).

A. Density matrix from bi-normalization

We consider the situation where Eqs. (12) and (13)
describe positive-definite norms, i.e., we consider param-
eter values from the region shaded in dark gray in Fig.
(2). It is equivalent to the condition αβ > 0, for which in
the {|1⟩, |2⟩, |3⟩, |4⟩} basis, the ground state is described
by

|GR⟩ =


−

√
4αβ+1+1

2α
0
0
1

 , ⟨GL| =


−

√
4αβ+1+1

2β

0
0
1


T

.

(14)
For constructing the (reduced) density matrix, we bi-
normalize them as

|GNR ⟩ := |GR⟩√
⟨GL|GR⟩

, ⟨GNL | := ⟨GL|√
⟨GL|GR⟩

, (15)

where ⟨GL|GR⟩ = 1+ (1+
√
4αβ+1)2

4αβ . The ground state can

equivalently be described by the global density matrix
that is defined as

ϱ = |GNR ⟩⟨GNL |. (16)

To compute the entanglement entropy of, say, the first
fermion (index ‘1’), we now need to find the reduced den-
sity matrix for the first particle (call it ρ1), from where
we can compute the von Neumann entropy as

S(ρ1) = −Tr1[ρ1lnρ1]. (17)

The usual way to obtain the reduced density matrix de-
scribing a particular subsystem demands performing a
partial trace on the global density matrix over the rest
of the system. Although this a sensible operation to per-
form on a system with non-identical particles, the case
of identical and indistinguishable particles requires more
careful treatment; this is because when one works with
a system of indistinguishable particles, the Hilbert space
usually has a richer structure as compared to that of
a system with non-identical constituents. For example,
a system of two non-identical particles is described by
the Hilbert space H1 ⊗ H2, where ‘1’ and ‘2’ label the
two particles. However, if the particles obey a specific
statistics, like Bose or Fermi statistics, the correspond-
ing Hilbert space is not the whole of H1⊗H2, but rather
the symmetric and antisymmetric subspaces of H1 ⊗H2,
respectively. This induces intrinsic correlations between
different subsystems, which arise purely due to the indis-
tinguishability and the statistics of the particles. Taking
this important issue into account, Balachandran et al.
proposed the algebraic framework [39, 40] for comput-
ing the entanglement entropy, which we intend to follow
in this work. However, before that, we demonstrate a
relatively-easier method to obtain the entanglement en-
tropy for our present setting.

1. Reduced density matrix for fermion ‘1’

The strategy towards finding the reduced density ma-
trix for one of the fermions, say, fermion ‘1’ is as follows
(see [41] for some related discussions). The local Hilbert

space is spanned by |1⟩ := |Ω⟩ and |2⟩ := c†1|Ω⟩. Thus
any local operator is expressible as

Oa0,a1,a2,a3 = a0I+ a1c1 + a2c
†
1 + a3c

†
1c1. (18)

However, the parity-superselection rule [42] insists that
the density matrix must have the following form [39]:

ρ1 = aI+ bc†1c1, (19)

for some coefficients {a, b}. Now, for a generic local ob-
servable O, one must have

Tr1[ρ1O] = ⟨GNL |O|GNR ⟩, (20)

where Tr1[·] is evaluated on the basis |Ω⟩ and c†1|Ω⟩. This
serves as a consistency condition allowing one to deter-
mine the constants {a, b}. A straightforward computa-
tion leads to

ρ1 =

( χ
1+χ 0

0 1
1+χ

)
, (21)

where χ =
(
√
4αβ+1+1)

2

4αβ . Notice that Tr1[ρ] = 1, as an-

ticipated. Moreover, for consistency, one requires χ ≥ 0,
which is equivalent to the restriction αβ > 0. In Fig.
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FIG. 3: (ρ1)11 (red) and (ρ1)22 (black) as functions of αβ,
justifying the choice of parameters for which αβ > 0.
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S(ρ1)

FIG. 4: Ground-state entanglement entropy as a function of
αβ. The dashed line corresponds to ln 2.

(3), we have plotted the ground-state entanglement spec-
trum, i.e., the elements (ρ1)11 and (ρ1)22 as functions of
αβ, from which one clearly sees that (ρ1)22 becomes nega-
tive for αβ < 0, although one still has (ρ1)11+(ρ1)22 = 1.
We may now easily compute the ground-state entangle-
ment entropy from the standard representation:

S(ρ1) = −Tr1[ρ1 ln ρ1], (22)

which is plotted in Fig. (4) as a function of αβ. It is
found that it is nearly zero for αβ ≈ 0 and increases as
αβ is increased, approaching finally towards ln 2, which
is the maximum entropy of a two-state system.

B. Algebraic approach to ground-state
entanglement entropy

We now demonstrate the computation of the ground-
state entanglement entropy of our model based on the al-
gebraic approach to quantum mechanics à la the Gelfand-
Naimark-Segal or GNS construction. We have already
emphasized how important it is to use this specific ap-
proach. But there is more good reason to choose this
course of action. The traditional approach towards en-
tanglement relies rather heavily on the notion of separa-
bility of the concerned state. Although here we work with

two fermionic degrees of freedom, the separability of the
ground state itself is not so transparent; as one can see
from Eq. (14), the ground state is a linear superposition
of the vacuum state and a two-particle state. This ren-
ders a conceptual difficulty for the analysis of entangle-
ment. Nevertheless, one can tacitly avoid the debate over
whether the given state is separable or not and still get an
answer for the entanglement entropy. Here, adopting the
prescriptions provided by the algebraic approach quan-
tum mechanics based on the GNS construction [43, 44],
we demonstrate that indeed the aforementioned state is
entangled. In this framework, the entanglement of a sub-
system depends on how the Hilbert space of the subsys-
tem, which results from the restriction of the quantum
state to the algebra generated by the observables par-
ticular to the subsystem, decomposes into different irre-
ducible spaces [39, 40].

1. Basic framework

Let us briefly review the fundamental ideas behind this
approach [43, 44]. The observables of a quantum system
generate a non-abelian C∗-algebra (call it A); a state Ω
of the system is a positive linear functional on it, i.e.,
∀α, β ∈ A (not to be confused with the α and β param-
eters of the Swanson Hamiltonian), one has

Ω(α) ∈ C, Ω(α+ β) = Ω(α) + Ω(β), Ω(α∗α) ≥ 0.
(23)

One then considers the vector space Â with the elements
α ∈ A and label them as |α⟩, such that the observables
act on them as β|α⟩ = |βα⟩. Introducing the inner prod-
uct as ⟨α|β⟩ = Ω(α∗β), one further constructs the null

space as N̂Ω = {α ∈ Â
∣∣⟨α|α⟩ = 0}. From Schwarz in-

equality it follows then that ⟨a|α⟩ = 0, ∀a ∈ A, α ∈ NΩ.
The GNS Hilbert space HΩ is then identified with the
space Â/N̂Ω, whose elements |[α]⟩ are the equivalence

classes |[α]⟩ = |α + N̂Ω⟩, completed with respect to the
inner product. This also induces the representation πΩ
of A on HΩ as πΩ(α)|[β]⟩ = |[αβ]⟩. An important feature
of this representation is that it is irreducible if and only
if Ω is pure.

2. Computing ground-state entanglement entropy

For our purposes, let us take the state Ω to be pure.
Now, if one considers a subsystem whose observables
form a subalgebra A0 ⊂ A, the restriction of the state Ω
on A to A0, dubbed as Ω0, may or may not be pure. In
general, it can be expressed as a density matrix ρ0, sat-
isfying TrHΩ0

(ρ0πΩ0
(α0)) = Ω(α0), with α0 ∈ A0. Here

HΩ0
is the Hilbert space of the subsystem, obtained by

applying the GNS construction to (A0,Ω0) and πΩ0
is

the induced representation on it. If Ω0 is not pure, HΩ0

decomposes as HΩ0
= ⊕iHi. Following [39, 40], let us

denote the orthogonal projectors Pi : HΩ0
→ Hi. This
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finally leads to the entanglement entropy as

SΩ0
= −

∑
i

σi lnσi, (24)

where σi =
∣∣∣∣Pi|[IA]⟩∣∣∣∣2, with IA being the identity

element of the algebra A and as a consequence, of A0

too.

Let us take our subsystem to be the first fermion for

which the subalgebra A0 is generated by I and c†1c1.
Then, Ω is given by

Ω(α) = ⟨GLN |α|GRN ⟩. (25)

A general element is expressible as xI+ yc†1c1. If an ele-
ment (x, y) qualifies to be a null vector, it should satisfy

Ω
(
(xI+ yc†1c1)

†(xI+ yc†1c1)
)
= 0, which implies

1

1 + χ

(
|x|2χ+ |x+ y|2

)
= 0, (26)

where χ is the parameter defined below Eq. (21). For
χ > 0, there is no null state and the GNS Hilbert space

HΩ0
is spanned by |[I]⟩ and |[c†1c1]⟩. Further, one can also

show thatHΩ0 = H1⊕H2, withH1 spanned by |[I−c†1c1]⟩
and H2 spanned by |[c†1c1]⟩. The identity element can be

decomposed as |[I]⟩ = |[I−c†1c1]⟩+ |[c†1c1]⟩, leading to the
entanglement entropy which reads

SΩ0 = − 1

1 + χ
ln

[
1

1 + χ

]
− χ

1 + χ
ln

[
χ

1 + χ

]
, (27)

and which exactly agrees with the result of Sec. (IVA). It
may be remarked that although for illustrative purpose,
we focused on defining states via the bi-normalization
scheme as discussed in Sec. (IVA), it is straightforward
to perform analogous computations using the scheme of
Dirac normalization which will be presented in Sec. (V).

C. An observation

To this end, we obtained the reduced matrix and
computed the entanglement entropy, opting the bi-
normalization prescription. Let us end this discussion by
discussing an intriguing observation. Consider a modified
form of the same Hamiltonian

H = ωc†1c1 + (1− ω)c†2c2 + αc†1c
†
2 +

Λ

α
c2c1, (28)

with Λ = αβ. Let us denote the Hamiltonian by
H(ω,Λ, α). The spectrum is found to be independent of
α and so is the reduced density matrix for a single parti-
cle. However, the parent density matrix ϱ = |GRN ⟩⟨GLN |,
which describes the state of the full system, explicitly de-
pends on the parameter α. This has to do with the fact

that when one considers only a single fermion, the corre-
sponding subalgebra has no non-hermitian element that
has a non-zero expectation value. However, when the full
system is considered, there exist certain non-hermitian

operators like c†1c
†
2 and c2c1, which have non-vanishing

expectation values in this state.

V. GROUND-STATE ENTANGLEMENT
ENTROPY FROM DIRAC NORMALIZATION

Notice that in the preceding discussion, we considered
αβ > 0, thereby excluding parameters from the region
shaded in light gray in Fig. (2), for which the spectrum
is real but Eqs. (12) and (13) are not positive definite
and coalesce to zero for 4αβ + 1 = 0. Thus, we can no
longer rely on the bi-normalization procedure as given
in Eq. (15) to produce a reduced density matrix that is
positive semidefinite. Instead, we may normalize using
the Dirac norms [37] ⟨GR|GR⟩ and ⟨GL|GL⟩, which lead
to right and left (reduced) density matrices, respectively
(see [38] and references therein). Below, we focus on the
right density matrix.

Let us analyze the special case for which ω ≤ 1
2 , and

then ground-state energy reads

EG = ω, −1

4
< αβ < ω2 − ω,

=
1

2

(
1−

√
4αβ + 1

)
, αβ > ω2 − ω. (29)

For the purpose of illustration, we have plotted all the
four eigenvalues as a function of αβ in Fig. (5) for the
choice ω = 1/4, and one can observe a ground-state cross-
ing. The ground state reads as

|GR⟩ =

0
1
0
0

 , (30)

for − 1
4 < αβ < ω2 − ω, and

|GR⟩ =


−

√
4αβ+1+1

2α
0
0
1

 , (31)

for αβ > ω2 − ω. We denote the corresponding reduced
density matrix for the fermion ‘1’ as ρ1, such that

Tr1[ρ1O] =
⟨GR|O|GR⟩
⟨GR|GR⟩

. (32)

It then simply follows that

ρ1 =

(
0 0
0 1

)
, (33)
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-1 1 2 3 4
αβ

-1

1

2

E

FIG. 5: Energy eigenvalues EI (green), EII (orange), EIII

(yellow), and EIV (blue), as a function of αβ. We have chosen
ω = 1/4.

FIG. 6: Ground-state entanglement entropy as a function of
z1 and z2. The discontinuity between the yellow and blue-
green regions indicates the phase transition.

for − 1
4 < αβ < ω2 − ω, while

ρ1 =

(
λ11 0
0 λ22

)
, (34)

for αβ > ω2 − ω. Here, λ22 =
[
1 +

(
1+

√
1+4z2
2z1

)2 ]−1
and

λ11 = 1−λ22, with α = z1, β = z2
z1
; for α ̸= 0 the transfor-

mation (α, β) → (z1, z2) is well defined and is invertible.
We have plotted the ground-state entanglement entropy
in Fig. (6) which shows a discontinuous jump between
the two regimes − 1

4 < αβ < ω2 − ω and αβ > ω2 − ω.
This seems to indicate a quantum phase transition,
being characterized by the discontinuous jump in the en-
tanglement entropy due to the ground-state crossing [45].

It should be emphasized that we have normalized
the ground state here with respect to the ‘right’ Dirac
norm ⟨GR|GR⟩, such that the reduced density matrix
so obtained turns out to be positive semidefinite. One
could have alternatively employed the ‘left’ Dirac norm
⟨GL|GL⟩ and then, the result for the reduced density
matrix and entanglement entropy would have the same
form as obtained above under the interchange α ↔ β.

The same phase transition can be observed for both the
cases, and since the ground-state crossing happens for
parameter values for which αβ < 0, no such phase transi-
tion was observed in Sec. (IVA), in which we specifically
restricted ourselves to the cases with αβ > 0.

VI. CONCLUDING REMARKS

We have proposed a fermionic extension of the
Swanson oscillator, which admits a quadratic but
non-hermitian Hamiltonian by including terms which
do not conserve particle number. We have shown that
our proposed model admits of an infinite number of
exceptional points, being given by the points residing
on the exceptional curve 4αβ + 1 = 0. Restricting to
parameter values which produce a positive norm (in the
sense of bi-normalization of left and right eigenvectors)
and a real spectrum, we have computed the entangle-
ment spectrum and entanglement entropy of the ground
state in Sec. (IV), wherein we also made use of the
approach based on the GNS construction [39, 40]. In
Sec. (V), upon adopting a different scheme which relies
on Dirac normalization rather than bi-normalization, we
were able to compute the entanglement spectrum even
in the region of the parameter space for which the norms
given in Eqs. (12) and (13) turn out to be complex,
coalescing to zero at the exceptional points. A quantum
phase transition was observed, which corresponds to the
ground-state crossing. The analogous number-preserving
case is presented in Appendix (A).
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of a Prime Minister’s Research Fellowship (ID: 1200454).
B.B. thanks Brainware University for infrastructural sup-
port.

Appendix A: Two-fermion model with
non-hermitian and number-conserving interactions

In this appendix, we consider the situation with
bilinear-coupling terms between the two fermions that
conserve particle number, i.e., we have terms that go as

c†1c2 and c†2c1. Then the Hamiltonian reads

H = ω1c
†
1c1 + ω2c

†
2c2 + γc†1c2 + δc†2c1, (A1)

where ω1,2, γ, δ ∈ R, with ω1,2 > 0 and γ ̸= δ. A
schematic diagram is shown in Fig. (7).
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FIG. 7: Schematic setup showing two single-occupancy quan-
tum dots with number-conserving interactions (denoted with
arrows) characterized by the coefficients γ and δ.

As before, the Hilbert space is four-dimensional and
may be decomposed as H = H0 ⊕H1 ⊕H2. In terms of

the basis vectors |1⟩ := |Ω⟩, |2⟩ := c†1|Ω⟩, |3⟩ := c†2|Ω⟩,
and |4⟩ := c†1c

†
2|Ω⟩, H has the following matrix represen-

tation:

H =

0 0 0 0
0 ω1 γ 0
0 δ ω2 0
0 0 0 (ω1 + ω2)

 . (A2)

Resorting to the choice ω1 = ω and ω2 = 1 − ω, for
ω ∈ (0, 1), two of the right eigenvectors read

|ψI
R⟩ =

1
0
0
0

 , |ψII
R⟩ =

0
0
0
1

 , (A3)

with eigenvalues EI,II = 0, 1. The remaining two right
eigenvectors are

|ψIII
R ⟩ =


0

−
√

4γδ+4ω2−4ω+1−2ω+1

2δ
1
0

 , (A4)

|ψIV
R ⟩ =


0

−−
√

4γδ+4ω2−4ω+1−2ω+1

2δ
1
0

 , (A5)

with the corresponding eigenvalues EIII,IV =
1
2

(
1∓

√
4γδ + 4ω2 − 4ω + 1

)
. The reality of the

eigenvalues requires 4γδ + 4ω2 − 4ω + 1 ≥ 0, a condition
that is dependent on the choice of ω, unlike in the
previously-studied case.

1. Exceptional points

Notice that the eigenvectors |ψI,II
R ⟩ are insensitive to

the choice of the parameters γ and δ, and therefore are

1 2 3 4
γδ

-1

1

2

E

FIG. 8: Energy eigenvalues EI (yellow), EII (blue), EIII

(green), and EIV (orange), as a function of γδ. We have
chosen ω = 1/2.

not involved in coalescence at any point by tuning γ

and δ. However, the eigenvectors |ψIII,IV
R ⟩ and the corre-

sponding eigenvalues EIII,IV may coalesce for particular
values of γ and δ. Such a coalescence occurs for points on
the rectangular hyperbola 4γδ+4ω2−4ω+1 = 0, on the
γδ-parameter space (fixing ω). In a sense, therefore, one
has an exceptional curve (rather than isolated points) in

the parameter space. The left eigenvectors ⟨ψIII,IV
L | are

computed straightforwardly as

⟨ψIII
L | =


0

−
√

4γδ+4ω2−4ω+1−2ω+1

2γ

1
0


T

, (A6)

⟨ψIV
L | =


0

−−
√

4γδ+4ω2−4ω+1−2ω+1

2γ

1
0


T

. (A7)

At exceptional points, i.e., for 4γδ + 4ω2 − 4ω + 1 = 0,
one finds that |ψIII

R ⟩ = |ψIV
R ⟩ (and also ⟨ψIII

L | = ⟨ψIV
L |),

along with EIII = EIV = 1/2. Thus, it is straightforward

to verify that ⟨ψIII,IV
L |ψIII,IV

R ⟩ = 0, reproducing the self-
orthogonality relation.

2. Ground-state entanglement

Let us now describe entanglement properties of the
ground state in this model. Some intriguing features can
be exposed, for which we pick ω = 1/2. In this case, we
must restrict ourselves to parameter choices leading to
γδ > 0 to ensure that the spectrum is real. The eigen-
values corresponding to the four eigenstates are plotted
in Fig. (8) and for γδ = 1/4, one observes a ground-
state crossing. Thus, |ψI⟩ describes the ground state
for γδ < 1/4, while |ψIII⟩ describes the ground state
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
γδ

0.2

0.4

0.6

S(ρ1)

FIG. 9: Entanglement entropy of the ground state showing a
discontinuous jump at γδ = 1/4, indicative of a phase transi-
tion.

for γδ > 1/4. The corresponding reduced density ma-
trix for the fermion ‘1’ can be obtained by the procedure
described in the previous section. It reads

ρ1 =

(
1 0
0 0

)
, γδ <

1

4
, (A8)

and

ρ1 =

(
1
2 0
0 1

2

)
, γδ >

1

4
. (A9)

The entanglement entropy, i.e., S(ρ1) = −Tr1[ρ1 ln ρ1], is
0 when γδ < 1

4 and jumps to ln 2 when γδ > 1
4 . This in-

dicates a quantum phase transition, being characterized
by the discontinuous jump in the entanglement entropy
at γδ = 1/4, as shown in Fig. (9). It should be re-
marked that although we have picked ω = 1/2 to simplify
our calculations, similar discontinuous jumps can be ob-
served for other values of ω ∈ (0, 1). One could similarly
define reduced density matrices by considering the Dirac-
normalization scheme as in Sec. (V). In that case, one
still observes the phase transition due to the ground-state
crossing. We do not pursue this further as the calcula-
tions can be easily performed in the same spirit as those
presented in Sec. (V).
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