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The application of first-principles calculations for predicting lattice thermal conductivity (LTC) in
crystalline materials, in conjunction with the linearized phonon Boltzmann equation, has gained in-
creasing popularity. In this calculation, the determination of force constants through first-principles
calculations is critical for accurate LTC predictions. For material exploration, performing first-
principles LTC calculations in a high-throughput manner is now expected, although it requires sig-
nificant computational resources. To reduce computational demands while preserving accuracy mod-
erately, we integrated polynomial machine learning potentials on-the-fly during the first-principles
LTC calculations. This paper presents a systematic approach to first-principles LTC calculations.
We designed and optimized an efficient workflow that integrates multiple modular software pack-
ages. We applied this approach to calculate LTCs for 103 compounds of the wurtzite, zincblende,
and rocksalt types to evaluate the performance of the polynomial machine learning potentials in
LTC calculations. We demonstrate a significant reduction in the computational resources required
for the LTC predictions, while maintaining reasonable accuracy.

I. INTRODUCTION

Calculations of lattice thermal conductivity (LTC)
based on first-principles calculations and the linearized
phonon Boltzmann equation1–4 have become increasingly
popular in recent years. This is because sufficiently ac-
curate LTC values can be systematically predicted for
a wide variety of crystals using available computer sim-
ulation packages.5–10 These computational tools are ex-
pected to be applied in materials discovery within a high-
throughput calculation environment. However, since
first-principles LTC calculations are still computationally
intensive, there is a need for the development of method-
ologies to reduce the computational demands.

We conventionally employ a supercell approach com-
bined with the finite displacement method for first-
principles LTC calculations. Random or systematic dis-
placements are introduced to the supercells, and the
forces on atoms are calculated using first-principles calcu-
lations. Subsequently, supercell force constants are com-
puted from the dataset composed of the displacements
and forces, and the LTC values are calculated from these
supercell force constants. Many supercells with different
displacement configurations are often required to popu-
late the tensor elements of the supercell force constants.

The accuracy of predicting LTCs relies on the use of
first-principles calculations to obtain the displacement-
force dataset. However, this approach is computation-
ally intensive. In order to achieve precise LTC predic-
tions with lower computational resources, compressive
sensing force constants calculation methods were devel-
oped, as reported in Refs. 11 and 12. These methods em-
ploy regularized linear regression techniques to eliminate
certain tensor elements of the supercell force constants,
thereby reducing the required size of the displacement-
force dataset.

In this study, we introduce another approach to re-
duce the computational demands of first-principles LTC
calculations. We incorporate polynomial machine learn-
ing potentials (MLPs)13,14 into an intermediate stage
of the LTC calculation process. The polynomial MLPs
are trained using a small dataset of displacement-force
pairs and energies derived from first-principles calcula-
tions. Subsequently, the polynomial MLPs generate a
large displacement-force dataset to calculate supercell
force constants with significantly lower computational
demands than those required by first-principles calcula-
tions.

The computational procedure is illustrated in Fig. 1.
Initially, a set of supercells with random displacements
of atoms is prepared. Forces on atoms and energies in
the supercells are calculated using first-principles calcu-
lations. The dataset, consisting of displacement-force
pairs and energies, is employed to train the polynomial
MLPs. Forces on atoms in another set of supercells with
random displacements of atoms are calculated using the
trained polynomial MLPs. Supercell force constants are
then calculated from the displacement-force dataset ob-
tained through the polynomial MLPs. Finally, the LTC
values are calculated using the supercell force constants
obtained. Crystal symmetry plays an important role in
reducing the computational demands and improving the
numerical accuracy.

The goal of the methodological and software develop-
ments presented in this study is to reduce the computa-
tional demands of first-principles LTC calculations, with
the aim of high-throughput LTC calculations. At the
same time, we prioritize user convenience, considering
factors such as calculation time and required memory.
We have designed the workflow and software to make the
use of the polynomial MLPs appear straightforward from
the user’s perspective. This study explores the feasibility
of employing polynomial MLPs as an intermediate stage
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in the calculation of third-order supercell force constants
for first-principles LTC calculations.

In this study, a systematic calculation of LTCs at 300
K was performed for the same set of the 103 compounds
of wurtzite, zincblende, and rocksalt types reported in
Ref. 15. The computational workflow-design and details
that we reached after struggling to achieve accuracy are
presented in Secs. II and III. While most of the theo-
retical and methodological background is covered in the
referenced articles, those relevant to this paper are de-
scribed in Sec. III. The results of the LTC calculations
are summarized in Sec. IV.

II. DESIGN OF COMPUTATIONAL

WORKFLOW

As shown in Fig. 1, our study utilized a specific ap-
proach for LTC calculations. This approach consists
of specialized modules for each calculation step. These
modules are interconnected through a local file system
and data communication, including computer-network
file transfers and application program interfaces (APIs).

In the LTC calculation process, we generate two dis-
tinct sets of supercells with random displacements of
atoms. This occurs in steps (a) and (d), as illustrated
in Fig. 1. In step (b), we conduct energy and force calcu-
lations for the first set of supercells using first-principles
calculations. This is the most computationally demand-
ing step. The outputs of step (b) form a dataset used
to train polynomial MLPs in step (c). In step (e), we
calculate forces for the second set of supercells using the
trained polynomial MLPs. In step (f), third-order super-
cell force constants are computed using the displacement-
force dataset from step (e). Finally in step (g), LTC is
calculated from the supercell force constants. Use of crys-
tal symmetry is important in steps (f) and (g) for the
computational efficiency and numerical accuracy. The
computational demand from step (c) to the end is negli-
gible compared to step (b).

Our computational workflow is specifically designed
to optimize high-throughput LTC calculations, balanc-
ing efficiency and convenience. This workflow is divided
into two main parts: dataset preparation and calcula-
tions using this dataset. The dataset preparation stage
involves a bunch of energy and force calculations us-
ing first-principles calculations, which are normally dis-
tributed over computer nodes to conduct the calculations
in parallel. After completing these calculations, we ex-
tract the necessary data from the output files of the first-
principles calculations. This data is then saved for trans-
fer via computer-network communication. In the subse-
quent steps, calculations are performed on a single com-
puter. Depending on the operational requirements, data
transfer between the modules is facilitated either through
APIs or via the local computer file system for ease of use.

(a) Phonopy/Pypolymlp

(f) Symfc

(c) Pypolymlp

(g) Phonopy & Phono3py

Spglib

Displacements generation

Crystal symmetry finding Force constants calculation

Machine learning potential training

Force calculation

Lattice thermal conductivity calculation

(b) VASP

Energy and force calculation

(e) Pypolymlp

Spglib

Crystal symmetry finding

AiiDA & AiiDA-VASP

Automation

API

API

File

API

File

API

File

(d) Phonopy/Pypolymlp

Displacements generation

File/API

FIG. 1. Schematic illustration of workflow employed in this
study for LTC calculations. Each calculation step is repre-
sented by a box, within which the name of the software pack-
age and the type of calculation are described. The arrows
roughly indicate flow of data. The data were passed via APIs
or computer files. The steps are as follows: Step (a): Gen-
eration of a modest number of supercells with random dis-
placements. Step (b): Calculation of energies and forces in
the supercells generated in step (a) by first-principles calcu-
lations. The submission of a large number of computational
jobs is automated using a workflow system. Step (c): Training
of polynomial MLPs using the energies and forces in the su-
percells obtained in step (b). Step (d): Generation of a large
number of supercells with random displacements. Step (e):
Calculation of forces in the supercells generated in step (d)
using the trained polynomial MLPs. Step (f): Calculation of
force constants from the displacement-force dataset calculated
in step (e). Step (g): Calculation of LTC using the supercell
force constants obtained in step (f). This study introduces
steps (c), (d), and (e) to the workflow. Conventionally, the
dataset from step (b) is used directly in step (f). This con-
ventional approach is computationally demanding due to the
necessity of a large dataset in step (b).

III. COMPUTATIONAL METHODS

A. LTC calculation

LTCs were computed by solving the Peierls-Boltzmann
equation within the relaxation time approximation
(RTA)1,2,16 using the phono3py code.9,17 To simplify the
methodological investigation in this study, we consid-
ered only phonon-phonon scattering for determining the
phonon relaxation times. Imaginary parts of phonon self-
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energies corresponding to the bubble diagram were calcu-
lated from supercell force constants, and their reciprocals
were used as the relaxation times. Computational details
on the calculation of the supercell force constants are
provided in the subsequent sections. Phonon group ve-
locities, mode heat capacities, frequencies, and eigenvec-
tors were obtained from dynamical matrices constructed
using second-order supercell force constants. Addition-
ally, a non-analytical term correction18–20 was applied to
the dynamical matrices to account for long-range dipole-
dipole interactions in the harmonic phonon calculation.
For the wurtzite-type compounds, reciprocal spaces were
sampled using a 19× 19× 10 mesh, while a 19× 19× 19
mesh was employed for the zincblende-type and rocksalt-
type compounds.

B. Supercell force constants calculation

Force constants required for predicting LTCs are de-
termined as the coefficients Φlκα,... in the Taylor expan-
sion of the potential energy V with respect to atomic
displacements ulκα:

V = Φ0 +
∑

lκα

Φlκαulκα

+
1

2

∑

lκα,l′κ′α′

Φlκα,l′κ′α′ulκαul′κ′α′

+
1

3!

∑

lκα,l′κ′α′,l′′κ′′α′′

Φlκα,l′κ′α′,l′′κ′′α′′ulκαul′κ′α′ul′′κ′′α′′ + · · · , (1)

where l, κ, and α represent the unit cell, atom index
within the unit cell, and Cartesian coordinate, respec-
tively. By differentiating both sides of Eq. (1) with re-
spect to ulκα, we obtain

−flκα =Φlκα +
∑

l′κ′α′

Φlκα,l′κ′α′ul′κ′α′

+
1

2

∑

l′κ′α′,l′′κ′′α′′

Φlκα,l′κ′α′,l′′κ′′α′′ul′κ′α′ul′′κ′′α′′

+ · · · , (2)

where flκα represents the α-component of the force on
atom lκ. In this study, we obtain these coefficients by
fitting a dataset consisting of finite displacements and
forces of atoms in supercells approximating Eq. (2). The
equation that we employ for fitting the third-order su-
percell force constants is written as

−Flκα =
∑

l′κ′α′

ΦSC
lκα,l′κ′α′Ul′κ′α′

+
1

2

∑

l′κ′α′,l′′κ′′α′′

ΦSC
lκα,l′κ′α′,l′′κ′′α′′Ul′κ′α′Ul′′κ′′α′′ ,

(3)

where Flκα and Ulκα represent the forces and displace-
ments of atoms in supercells, respectively. ΦSC

lκα,l′κ′α′

and ΦSC
lκα,l′κ′α′,l′′κ′′α′′ denote the second- and third-order

supercell force constants, respectively. Here we assume
ΦSC

lκα = 0.
Higher-order terms are effectively included in

ΦSC
lκα,l′κ′α′ and ΦSC

lκα,l′κ′α′,l′′κ′′α′′ . In Eq. (3), the con-
tributions from higher-order terms are expected to
become negligible as the displacements become smaller.
However, use of smaller displacements can make the
computation of supercell force constants more suscepti-
ble to numerical errors of forces. To find a compromise
between these conflicting requirements, a modest inclu-
sion of higher-order contributions is commonly adopted.
Higher-order terms also introduce additional degrees
of freedom. To average over them in the third-order
supercell force constants, a larger displacement-force
dataset is required to achieve convergence in LTC values.
The linear regression method was employed to calcu-

late supercell force constants from the displacement-force
dataset. In this method, forces acting on atoms, which
were randomly displaced from their equilibrium positions
in supercells, were computed either using the polynomial
MLPs in our current approach or through first-principles
calculations in the conventional approach. Tensor ele-
ments of supercell force constants were projected onto the
subspace defined by symmetry projection operators of to-
tally symmetric irreducible representations of the space
group, index permutation, and translational invariance.
In addition, detailed techniques were developed to en-
hance the efficiency of this computational process. This
process is implemented in the symfc code.21? The crys-
tallographic symmetries were determined using the spglib
code.22

For the zincblende- and rocksalt-type compounds, we
utilized supercells with 2×2×2 and 4×4×4 expansions
of the conventional unit cells to calculate third-order and
second-order supercell force constants, respectively. In
the case of the wurtzite-type compounds, supercells with
3× 3× 2 and 5× 5× 3 expansions of the unit cells were
employed for third-order and second-order supercell force
constants calculations, respectively.
To compute the second-order supercell force constants,

we employed the finite difference method as imple-
mented in the phonopy code.15,17 We used the same
displacement-force datasets as those in Ref. 15, where
the forces in these datasets had been computed through
first-principles calculations. The number of supercells in
the datasets were six, two, and two for the wurtzite-,
zincblende-, and rocksalt-type compounds, respectively.
Third-order supercell force constants were calculated

from the displacement-force datasets using the symfc
code.21 The numbers of symmetrically independent force
constant elements were 7752, 1536, and 758 for the
wurtzite-, zincblende-, and rocksalt-type compounds, re-
spectively. These values were determined based on the
forces acting on atoms, which were inferred using the
polynomial MLPs implemented in the pypolymlp code.14
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C. Polynomial MLPs

The polynomial MLPs were trained using the dataset
composed of forces and displacements of atoms and en-
ergies in supercells. These energies and forces were com-
puted through first-principles calculations. The perfor-
mance of the polynomial MLPs in the LTC calculation
via the third-order supercell force constants is discussed
in Section IV.
For the 103 compounds, we trained the polynomial

MLPs using the pypolymlp code.14 In this training,
Gaussian-type radial functions were employed, and the
functional form fn(r) is given as

fn(r) = exp
[

−βn(r − rn)
2
]

fc(r), (4)

fc(r) =

{

[cos(πr/rc) + 1]/2 (r ≤ rc),

0 (r > rc).
(5)

where r represents the distance from the center of each
atom, and rc is the cutoff distance. βn and rn are the
parameters, respectively. Radial functions with rc = 8.0
Å and βn = 1.0 Å−2 and rn = (n − 1)(rc − 1.0)/11
for n = 1, . . . , 12 were used. We considered polyno-
mial invariants up to third order characterizing neigh-
boring atomic density based on spherical harmonics with
the maximum angular numbers of spherical harmonics

l
(2)
max = l

(3)
max = 8. The polynomial models were then

constructed by the polynomial functions of the pair in-
variants and linear polynomial function of the polyno-
mial invariants. We considered polynomial functions up
to second order. The model coefficients were estimated
from electronic total energies and forces by the linear
ridge regression method.

D. First-principles calculation

For the first-principles calculations, we employed
the plane-wave basis projector augmented wave (PAW)
method23 within the framework of DFT as implemented
in the VASP code.24–26 The generalized gradient approx-
imation (GGA) of Perdew, Burke, and Ernzerhof revised
for solids (PBEsol)27 was used as the exchange corre-
lation potential. To ensure high numerical accuracy in
computing atomic forces, the projection operators were
applied in reciprocal spaces and additional support grids
were employed for the evaluation of the augmentation
charges. Static dielectric constants and Born effective
charges were calculated with the conventional unit cells
from density functional perturbation theory (DFPT) as
implemented in the VASP code.28,29

A plane-wave energy cutoff of 520 eV was employed
for the supercell force calculations and 676 eV for the
DFPT calculations. Reciprocal spaces of the zincblende-
and rocksalt-type compounds were sampled by the half-
shifted 2×2×2meshes for the 2×2×2 supercells, the half-
shifted 1×1×1 meshes for the 4×4×4 supercells, and the

half-shifted 8×8×8 meshes for the conventional unit cells.
Reciprocal spaces of the wurtzite-type compounds were
sampled by the 2×2×2 meshes that are half-shifted along
the c∗ axis for the 3×3×2 supercells, the 1×1×2 meshes
that are half-shifted along the c∗ axis for the 5 × 5 × 3
supercells, and the 12×12×8 meshes that are half-shifted
along the c∗ axis for the unit cells.

E. Automation of dataset preparation

Performing a large number of first-principles calcu-
lations can be computationally intensive and may re-
quire high-performance computing resources. This stage
consumes a significant amount of computational power
throughout the LTC calculation process. It is virtually
inevitable that some of these calculations fail for vari-
ous reasons, such as reaching the maximum number of
electronic structure convergence iterations or encounter-
ing issues related to computer networks and hardware.
Although the proportion of failed calculations was rela-
tively low, we have not yet fully automated error recovery
for all possible cases.
We systematically identified calculation failures and re-

executed those calculations semi-manually with the as-
sistance of the workflow system instead of attempting to
fully automate all processes. After completing all the su-
percell calculations using first-principles calculations, the
dataset for each compound required for the subsequent
LTC calculation process was composed into a single com-
puter file in a structured format.
For the systematic calculations of energies and forces

in supercells using first-principles calculations, we uti-
lized the AiiDA environment30–32 in conjunction with the
AiiDA-VASP plugin.33 The advantage of using the work-
flow automation system was not only the automation of
submitting calculation jobs to high-performance comput-
ers, but also the automated data storing of the calcula-
tion results in a database systematically. The computed
data, stored within the AiiDA database, could be conve-
niently accessed through the Python programming lan-
guage. By writing a concise Python script, we were able
to extract supercell energies, forces, and displacements
from the AiiDA database on demand and convert this
data into the structured format required for immediate
use by the phono3py code.9,17

F. Parameters for 103 binary compounds

33 compounds for the wurtzite- and zincblende-type
and 37 compounds for the rocksalt-type were used to
evaluate the LCT calculation approach proposed in this
study, and their chemical compositions are listed in Ta-
bles I and II. Crystal structures of the wurtzite and
zincblende types are similar, though their stacking or-
ders are different, much like the relationship between
face-centered-cubic and hexagonal-close-packed structure
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types. Since it is of interest to explore their similarities
and differences in calculations, as also studied in Ref. 9,
the compounds with the same chemical compositions for
the wurtzite and zincblende types were calculated. The
tables also provide information on lattice parameters, the
choices of PAW datasets from the VASP package, and
electronic total energies of the elements that were sub-
tracted from the total energies of the compounds used to
train the polynomial MLPs.

TABLE I. Lattice parameters, names of the VASP PAW-PBE
datasets, electronic total energies of the atoms used in this
study for 33 wurtzite- and zincblende-type compounds. w-
a, w-c, and z-a denote the lattice parameters a and c of the
wurtzite-type compounds, and a of the zincblende-type com-
pounds, respectively.

w-a w-c z-a energy (eV) energy (eV)

AgI 4.56 7.45 6.44 (Ag pv) −0.233 (I) −0.182

AlAs 4.00 6.58 5.67 (Al) −0.282 (As d) −0.989

AlN 3.11 4.98 4.38 (Al) −0.282 (N) −1.905

AlP 3.86 6.34 5.47 (Al) −0.282 (P) −1.140

AlSb 4.35 7.16 6.17 (Al) −0.282 (Sb) −0.828

BAs 3.35 5.55 4.77 (B) −0.359 (As d) −0.989

BeO 2.70 4.38 3.80 (Be) −0.023 (O) −0.957

BeS 3.41 5.63 4.84 (Be) −0.023 (S) −0.578

BeSe 3.62 5.97 5.14 (Be) −0.023 (Se) −0.438

BeTe 3.95 6.53 5.61 (Be) −0.023 (Te) −0.359

BN 2.54 4.20 3.61 (B) −0.359 (N) −1.905

BP 3.18 5.27 4.52 (B) −0.359 (P) −1.140

CdS 4.13 6.72 5.84 (Cd) −0.021 (S) −0.578

CdSe 4.31 7.03 6.09 (Cd) −0.021 (Se) −0.438

CdTe 4.59 7.52 6.50 (Cd) −0.021 (Te) −0.359

CuBr 3.92 6.48 5.56 (Cu pv) −0.274 (Br) −0.225

CuCl 3.70 6.17 5.27 (Cu pv) −0.274 (Cl) −0.311

CuH 2.81 4.44 3.93 (Cu pv) −0.274 (H) −0.946

CuI 4.17 6.88 5.92 (Cu pv) −0.274 (I) −0.182

GaAs 3.99 6.57 5.66 (Ga d) −0.286 (As d) −0.989

GaN 3.18 5.18 4.50 (Ga d) −0.286 (N) −1.905

GaP 3.83 6.31 5.44 (Ga d) −0.286 (P) −1.140

GaSb 4.31 7.10 6.11 (Ga d) −0.286 (Sb) −0.828

InAs 4.30 7.05 6.09 (In d) −0.264 (As d) −0.989

InN 3.54 5.71 4.99 (In d) −0.264 (N) −1.905

InP 4.15 6.81 5.88 (In d) −0.264 (P) −1.140

InSb 4.60 7.56 6.52 (In d) −0.264 (Sb) −0.828

MgTe 4.56 7.41 6.44 (Mg pv) −0.009 (Te) −0.359

SiC 3.08 5.05 4.36 (Si) −0.522 (C) −1.340

ZnO 3.24 5.23 4.56 (Zn) −0.016 (O) −0.957

ZnS 3.79 6.21 5.36 (Zn) −0.016 (S) −0.578

ZnSe 3.98 6.54 5.64 (Zn) −0.016 (Se) −0.438

ZnTe 4.28 7.05 6.07 (Zn) −0.016 (Te) −0.359

TABLE II. Lattice parameters a, names of the VASP PAW-
PBE datasets, and electronic total energies of the atoms used
in this study for 37 rocksalt-type compounds.

a energy (eV) energy (eV)

AgBr 5.67 (Ag pv) −0.233 (Br) −0.225

AgCl 5.44 (Ag pv) −0.233 (Cl) −0.311

BaO 5.53 (Ba sv) −0.035 (O) −0.957

BaS 6.36 (Ba sv) −0.035 (S) −0.578

BaSe 6.58 (Ba sv) −0.035 (Se) −0.438

BaTe 6.97 (Ba sv) −0.035 (Te) −0.359

CaO 4.77 (Ca pv) −0.010 (O) −0.957

CaS 5.63 (Ca pv) −0.010 (S) −0.578

CaSe 5.87 (Ca pv) −0.010 (Se) −0.438

CaTe 6.30 (Ca pv) −0.010 (Te) −0.359

CdO 4.71 (Cd) −0.021 (O) −0.957

CsF 5.96 (Cs sv) −0.166 (F) −0.556

KBr 6.59 (K pv) −0.182 (Br) −0.225

KCl 6.29 (K pv) −0.182 (Cl) −0.311

KF 5.37 (K pv) −0.182 (F) −0.556

KH 5.63 (K pv) −0.182 (H) −0.946

KI 7.05 (K pv) −0.182 (I) −0.182

LiBr 5.41 (Li sv) −0.286 (Br) −0.225

LiCl 5.06 (Li sv) −0.286 (Cl) −0.311

LiF 4.00 (Li sv) −0.286 (F) −0.556

LiH 3.97 (Li sv) −0.286 (H) −0.946

LiI 5.90 (Li sv) −0.286 (I) −0.182

MgO 4.22 (Mg pv) −0.009 (O) −0.957

NaBr 5.93 (Na pv) −0.246 (Br) −0.225

NaCl 5.60 (Na pv) −0.246 (Cl) −0.311

NaF 4.63 (Na pv) −0.246 (F) −0.556

NaH 4.79 (Na pv) −0.246 (H) −0.946

NaI 6.41 (Na pv) −0.246 (I) −0.182

PbS 5.90 (Pb d) −0.374 (S) −0.578

PbSe 6.10 (Pb d) −0.374 (Se) −0.438

PbTe 6.44 (Pb d) −0.374 (Te) −0.359

RbBr 6.88 (Rb pv) −0.168 (Br) −0.225

RbCl 6.58 (Rb pv) −0.168 (Cl) −0.311

RbF 5.66 (Rb pv) −0.168 (F) −0.556

RbH 5.95 (Rb pv) −0.168 (H) −0.946

RbI 7.32 (Rb pv) −0.168 (I) −0.182

SrO 5.13 (Sr sv) −0.032 (O) −0.957

IV. RESULTS

A. Choice of displacements and number of

supercells

For each compound, two distinct displacement-force
datasets that share the same supercell basis vectors were
employed to calculate LTCs. Energies and forces of the
supercells in the first dataset were computed using first-
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principles calculations, while the polynomial MLPs were
utilized for calculating forces in the second dataset. The
first dataset was used to train the polynomial MLPs. The
second dataset was employed to compute third-order su-
percell force constants by fitting.

To investigate the performance of the polynomial
MLPs in predicting LTC values, 100 supercells with ran-
dom directional displacements were initially prepared as
the first dataset. Subsequently, the first 10, 20, 40, 60,
and 80 supercells were selected from the list of 100 super-
cells as subsets. Using the displacement-force pairs and
energies of these supercells, the polynomial MLPs were
trained, and the last 20 supercells were reserved as test
data to optimize their ridge regularization parameters.

For the ease of use of the software package, we de-
cided to employ a constant displacement distance, and
to obtain reasonable LTC values, we chose a constant
displacement distance of 0.03 Å. Interestingly, we found
that the polynomial MLPs performed well even with a
relatively large displacement distance, such as 0.1 Å. It
is important to note that these factors are highly de-
pendent on the specific force calculators and calculation
configurations used.

We utilized another displacement-force dataset that
consists of 400 supercells with random directional dis-
placements for the computation of third-order supercell
force constants. These supercell forces were calculated
using the trained polynomial MLPs, where the residual
forces were subtracted. The root-mean-square errors of
the polynomial MLPs trained on the 20 supercells ranged
from approximately 5.5×10−6 to 1.4×10−3 eV/Å, which
are expected to represent the same degree of numerical
errors in the displacement-force dataset.

Due to the numerical smoothness of the polynomial
MLPs for the force calculation with respect to positions
of atoms compared to the first-principles calculations em-
ployed in this study, we were able to choose a small
constant displacement distance of 0.001 Å. This bene-
fits better convergence with smaller dataset when fitting
the supercell force constants by Eq. (3). For instance,
in the case of a displacement distance of 0.03 Å, it was
necessary to employ 10000 supercells to achieve well con-
verged LTC values for the 103 compounds. This suggests
that when high-order force constants are more relevant
for specific compounds, direct calculation of third-order
supercell force constants from the the displacement-force
dataset through first-principles calculations may require
a large dataset to achieve convergence of LTC values.

For strongly anharmonic crystals, self-consistent
phonon methods, which were not considered in this study,
may have to be employed to obtain physically more
meaningful results. In such cases, the use of the polyno-
mial MLPs can also be beneficial to accelerate the LTC
calculations.

B. Calculated LTCs

In Figs. 2, 3, and 4, we present the calculated LTCs of
the 103 compounds at 300 K. We can see that datasets
with 20 supercells show good performance, at least for
estimating LTC values roughly. In particular, the LTC
values of most of the rocksalt-type compounds are well
represented by these small datasets. The wurtzite- and
zincblende-type compounds exhibit similar tendencies in
LTC values with respect to dataset size since these crystal
structures are similar. The datasets with 40 supercells
yield LTC results that are roughly converged.
LTC values at 300 K predicted by the conventional

approach, which directly uses the displacement-force
dataset obtained through first-principles calculations to
fit third-order supercell force constants, are depicted
by the horizontal dotted lines. The third-order super-
cell force constants were computed by the linear regres-
sion method as implemented in the symfc code21 from
the first datasets with 100 supercells and 0.03 Å ran-
dom directional displacements, which were those pre-
pared for training the polynomial MLPs, as explained in
Sec. IVA. In addition, LTC values with 400 supercells for
the zincblende- and rocksalt-type compounds and those
with 400 and 2000 supercells for the wurtzite-type com-
pounds were also computed. These values are depicted
as horizontal lines in Figs. 2, 3, and 4. For most of the
zincblende- and rocksalt-type compounds, LTC values
derived from datasets with 100 supercells are found to
be adequate when compared to those from 400 super-
cells. However, for the wurtzite-type compounds, even
datasets with 400 supercells are insufficient.
The LTC values predicted for the wurtzite-type com-

pounds using polynomial MLPs tend to align with those
calculated directly from 2000 supercell datasets. This
alignment emphasizes the utility and effectiveness of us-
ing polynomial MLPs in these cases.

C. Comparison with conventional LTC calculation

In Fig. 5, the LTC values of the 103 compounds
calculated through the polynomial MLPs trained using
the 20 supercell datasets are compared with those cal-
culated in the conventional approach using the same
finite-difference displacement-force datasets34 as those
employed in Ref. 15. These datasets share the same unit
cells and supercell sizes for each compound. The lat-
ter datasets for the wurtzite-, zincblende-, and rocksalt-
type compounds consist of 1254, 222, and 146 displace-
ments, respectively, with a displacement distance of 0.03
Å. These displacements were systematically introduced
considering crystal symmetries35 by using the phono3py
code.9,17 In all these calculations, the same version of
the phono3py code9,17 was utilized to calculate the LTCs
from the respective supercell force constants. The results
demonstrate that the LTC values obtained through the
polynomial MLPs consistently agree with those predicted
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FIG. 2. Filled circles show LTCs (κ) of the 33 wurtzite-type compounds calculated at 300 K with respect to the number of
supercells in the datasets used to train the polynomial MLPs. The LTC values are the averages of the diagonal elements, i.e.,
(2κxx + κzz)/3. The horizontal dotted, dashed-dotted, and dashed lines depict the LTC values calculated in the conventional
approach from the datasets of 100, 400, and 2000 supercells without using the polynomial MLPs, respectively.

by the conventional approach.15 D. Conclusion

To improve the efficiency of high-throughput LTC cal-
culations, we developed methodologies and modular soft-
ware packages that utilize polynomial MLPs for com-
puting LTC values based on first-principles calculation.
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FIG. 3. Filled circles show LTCs of the 33 zincblende-type compounds calculated at 300 K with respect to the number of
supercells in the datasets used to train the polynomial MLPs. The horizontal dotted and dashed-dotted lines depict the LTC
values calculated in the conventional approach from the datasets of 100 and 400 supercells without using the polynomial MLPs,
respectively.

We evaluated the feasibility of this computational ap-
proach by calculating the LTCs of 103 compounds of
wurtzite, zincblende, and rocksalt types. This approach
was benchmarked against our previously used conven-
tional approach. We found that this approach signifi-
cantly reduces computational demands while maintaining

a satisfactory accuracy level for LTC prediction. Apart
from the initial stage of generating datasets using first-
principles calculations, subsequent LTC calculation steps
require minimal computational resources. This enables
users to calculate LTCs and various related physical val-
ues on standard computers, given access to high-quality
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FIG. 4. Filled circles show LTCs of the 37 rocksalt-type compounds calculated at 300 K with respect to the number of
supercells in the datasets used to train the polynomial MLPs. The horizontal dotted and dashed-dotted lines depict the LTC
values calculated in the conventional approach from the datasets of 100 and 400 supercells without using the polynomial MLPs,
respectively.
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FIG. 5. Comparison between LTC values calculated
through the polynomial MLPs and those by the conven-
tional approach.15 To train the polynomial MLPs for each
compound, we employed displacement-force pairs and ener-
gies of 20 supercells obtained through first-principles calcu-
lations. For the latter LTCs, we used the finite-difference
displacement-force datasets34 from Ref. 15, comprising 1254,
222, and 146 supercells for the wurtzite-, zincblende-, and
rocksalt-type compounds, respectively, to fit third-order su-
percell force constants.

datasets. Our future plans include the computation and
distribution of such high-quality datasets for a wide range
of compounds.
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Phys. Rev. Lett. 113, 185501 (2014).

12 T. Tadano and S. Tsuneyuki,
Phys. Rev. B 92, 054301 (2015).

13 A. Seko, A. Togo, and I. Tanaka,
Phys. Rev. B 99, 214108 (2019).

14 A. Seko, J. Appl. Phys. 133, 011101 (2023).
15 A. Togo, J. Phys. Soc. Jpn. 92, 012001 (2023).
16 P. B. Allen and V. Perebeinos,

Phys. Rev. B 98, 085427 (2018).
17 A. Togo, L. Chaput, T. Tadano, and I. Tanaka,

J. Phys. Condens. Matter 35, 353001 (2023).
18 R. M. Pick, M. H. Cohen, and R. M. Martin,

Phys. Rev. B 1, 910 (1970).
19 X. Gonze, J.-C. Charlier, D. C. Allan, and M. P. Teter,

Phys. Rev. B 50, 13035 (1994).
20 X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
21 A. Seko and A. Togo, “Symfc,”

https://github.com/phonopy/symfc.
22 A. Togo and I. Tanaka, “Spglib: a software library for

crystal symmetry search,” (2018), arXiv:1808.01590.
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