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We investigate the impacts of an imaginary transverse field on the dynamics of magnetic domain
walls in a quantum Ising chain. We show that an imaginary field plays a similar role as a real
transverse field in forming a low-lying Wannier-Stark ladder. However, analytical and numerical
calculations of the time evolutions in both systems show that the corresponding Bloch oscillations
exhibit totally different patterns for the same initial states. These findings reveal the nontrivial
effect of non-Hermiticity on quantum spin dynamics.

I. INTRODUCTION

Bloch oscillation (BO) describes the periodic motion
of a wave packet subjected to an external force in a lat-
tice. This phenomenon was first noted by Bloch and
Zener when they studied the electrical properties of crys-
tals [1, 2]. When an external electric field is applied to
a perfect crystal lattice, the localized eigenstates with
a ladder-like energy spectrum emerge, known as the
Wannier-Stark (WS) ladder [3]. These states are closely
related to the BOs, which can be understood as the pe-
riodic motion of a wave packet within the WS ladder,
as an external field causes the wave packet to transi-
tion between different WS states and exhibit oscillatory
behavior in terms of position and velocity. Experimen-
tally, BOs were observed in a semiconductor superlattice
[4], ultracold atoms in the optical lattice [5–8] and many
other systems sequentially [9–13]. It turns out that BO is
a universal wave phenomenon. In the magnetic systems,
BOs appear in the form of the magnetic domain-wall os-
cillations. As a nonequilibrium dynamic phenomenon
in quantum many-body systems, magnetic BOs in the
quantum spin chains have attracted much attention from
researchers [13–21]. Notably, inelastic neutron scatter-
ing experiments have provided evidence for the existence
of magnetic BOs in the magnetically identical material
CoCl2 · 2D2O [13].
In recent years, non-Hermitian physics have attracted

much attention from various research areas [22–33], and
BOs have been investigated in a range of non-Hermitian
systems, including photonic lattices with gain or loss
[22, 34, 35], tight-binding chains with an imaginary gauge
field [36–38], and non-Hermitian frequency lattices in-
duced by complex photonic gauge fields [26]. Classi-
cal systems such as photonics, mechanics and electri-
cal circuits can be used to simulate non-Hermitian wave
physics at the single-particle level, while in the quan-
tum systems non-Hermitian Hamiltonians are mainly ex-
plained as the effective descriptions of open quantum sys-
tems [27], and have been experimentally realized in the
systems of superconducting quantum circuits [39, 40],
nitrogen-vacancy centers in diamonds [29, 41] and ul-
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tracold atoms [42, 43]. Moreover, it was proposed that
an imaginary field in a spin chain can be implemented
by a scheme similar to heralded entanglement protocols
[24]. More recently, researchers have shown that complex
fields in quantum spin models have unique impacts on
the physical properties of the systems [44–53], for exam-
ple, by driving a quantum phase transition and altering
the phase diagram of the system. However, to the best
of our knowledge, the BO in a non-Hermitian quantum
spin chain has not yet been explored.

In this paper, we investigate the BOs of magnetic do-
main walls in a non-Hermitian quantum Ising chain. The
model considered is a quantum Ising chain with real lon-
gitudinal and imaginary transverse fields. We show that
in the small-field region, i. e., when the strengths of two
fields are much smaller than the Ising coupling, as well
as in the PT -symmetric parameters region that guaran-
tees a full real spectrum, the low-energy dynamics of the
magnetic domain walls are captured by a single-particle
effective Hamiltonian, through which the physical mecha-
nism of magnetic BOs is revealed. For real and imaginary
transverse fields, the eigenstates of the effective Hamil-
tonian are both localized states with ladder-like energy
spectra, forming the WS ladders. Analytical analysis and
numerical calculation of the time evolutions show the oc-
currence of magnetic breathing and BO modes in the
non-Hermitian quantum Ising chain by appropriately se-
lecting the initial states. It is shown that for the non-
Hermitian quantum Ising chain, the dynamics for the
Kronecker delta initial state is a breathing mode, while
the Gaussian state remains stationary, which is totally
different from the oscillation of the domain wall in a Her-
mitian quantum Ising chain. Interestingly, for the Bessel
initial state, the BO mode appears, and the amplitude
can be modulated by the strength of the imaginary trans-
verse field and the localization length of the initial state.

This paper is organized as follows. In Sec. II, we start
by introducing the Hamiltonian of the quantum Ising
chain with an imaginary transverse field, and derive the
effective Hamiltonian and its solution. In Sec. III, we an-
alyze the dynamics of BOs for three types of initial states
on the basis of the effective Hamiltonian, while Sec. IV
presents the numerical results of the dynamics for the
quantum spin chain. Finally, we conclude our findings in
Sec. V.
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II. MODEL AND EFFECTIVE HAMILTONIAN

The model we consider is a quantum spin chain of
length N with the Hamiltonian

H = H0 +H ′, (1)

where

H0 = −J
N−1∑

j=1

σz
jσ

z
j+1 − hz

N∑

j=1

σz
j (2)

represents a spin chain in longitudinal magnetic field
−hz, and with ferromagnetic Ising coupling −J . For sim-
plicity, we set J = 1 in the following discussion. Here σα

j

(α = x, y, z) are the Pauli operators on site j, while

H ′ = −g
N∑

j=1

σx
j (3)

is a transverse magnetic field term. In this paper, we
consider both the Hermitian and non-Hermitian systems,
when the transverse fields g are taken as real and imag-
inary, respectively. We would like to point out that the
Hamiltonian H is different from that of the Yang-Lee
Ising spin model, which exhibits Lee-Yang zeros [54–60];
in this model, the longitudinal field is imaginary, and
the transverse field is real instead. When hz = 0, the
HamiltonianH reduces to the transverse field Ising chain,
which is exactly solvable through the Jordan-Wigner
transformation when the periodic boundary condition is
applied, and serves as a unique paradigm for understand-
ing the quantum phase transition [61]. A nonzero lon-
gitudinal field term involves nonlocal operators in the
fermion representation, and thus breaks the solvability
of the model.

Imaginary fields in quantum spin systems have been
discussed in many experimental and theoretical works
[24, 29, 41–43, 62–64]. In the framework of open quantum
system dynamics, the imaginary transverse field g arises
in the no-click limit of the stochastic quantum jump tra-
jectories when (1 + σx

j )/2 is measured [62–64], and |g|
can be interpreted as either dissipation or measurement
rate. In this case, the resulted non-Hermitian Hamil-
tonian H respects PT symmetry, that is, [PT , H] = 0,

with P =
∏N

j=1 σ
z
j being the parity operator, and T being

the complex conjugation operator. This guarantees a full
real spectrum in a certain region of system parameters
[57, 65–67], which is the so-called PT -symmetric region
where the eigenstates remain unchanged under the ac-
tion of the PT operator. Beyond this region, the eigen-
values occur in complex conjugate pairs and the corre-
sponding eigenstates change under the action of the PT
operator. Due to the lack of solvability in the model,
the phase boundary of these two regions cannot be ob-
tained analytically. Nevertheless, it is expected that the
system possesses a full real spectrum when |g| is small
compared to other system parameters. In Fig. 1, we

0 0.5 1
hz

0
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g

PT -broken

PT -symmetric

FIG. 1. Schematic of PT -symmetric (gray) and PT -broken
(white) regions in the hz-g plane. The result is obtained by
numerical exact diagonalization for a Hamiltonian H with
J = 1 and N = 10.

presented the numerical result of the phase diagram of
broken and unbroken PT symmetry for a finite-size sys-
tem. The PT -symmetric region is determined by condi-

tion
∑2N

n=1 |Im (εn)| /2N < 0.01, where εn is the energy
level of system H.

In this paper, we are concerned with the dynamics in
the low-energy subspace as well as in the PT -symmetric
parameters region of the model. Thus, we content our-
selves with a perturbation solution through seeking for
an effective Hamiltonian describing the low-energy dy-
namics. To proceed, we concentrate on the weak-field
situation with hz, |g| ≪ J , and treat the transverse field
term H ′ as a perturbation in the following discussion.

We note that all the eigenstates ofH0 can be written in
the tensor product form with fixed numbers of spins that
are parallel or antiparallel to the z direction. The ground

state of H0 is |⇑⟩ = ∏N
j=1 |↑⟩j with energy EG = −N(J+

hz) + J . We focus on the low-energy subspace {|ϕ±m⟩}
that consists of states having one magnetic domain wall.
Here |ϕ±m⟩ represent two types of domain-wall states:

∣∣ϕ+m
〉
=

∏

l⩽m

σ−
l |⇑⟩ ,

∣∣ϕ−m
〉
=

∏

l>m

σ−
l |⇑⟩ , (4)

with σ−
j = (σx

j − iσy
j )/2 the lowering operator, and m =

1, 2, ..., N−1 the spatial position of the domain wall. The
corresponding energy is E±

m = −N(J ± hz) + 3J ± 2mhz.
The action of H on this basis yields

H
∣∣ϕ±m

〉
= [−N(J ± hz) + 3J ± 2mhz]

∣∣ϕ±m
〉

−g
∣∣ϕ±m+1

〉
− g

∣∣ϕ±m−1

〉
− g (...) . (5)

Here the ellipsis dots “...” represent the terms containing
the basis states with more than one domain wall, which
have at least 2J energy difference compared to the states
in {|ϕ±m⟩}. Thus, we are able to adiabatically eliminate
these states and project the Hamiltonian H into the sub-
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space {|ϕ±m⟩}. The effective Hamiltonian is given by [68]

Heff = PHP − PHQ
1

QHQ
QHP, (6)

where the projectors are defined as P =
∑

m,± |ϕ±m⟩ ⟨ϕ±m|
and Q = 1− P . The second term in Eq. (6) that is pro-
portional to g2 is discarded, considering the solvability of
the effective Hamiltonian and |g| is a small quantity. Up
to first order, the effective Hamiltonian has the explicit
form

Heff = −g
∑

λ=±

N−2∑

m=1

(∣∣ϕλm
〉 〈
ϕλm+1

∣∣+
∣∣ϕλm+1

〉 〈
ϕλm

∣∣) (7)

+
∑

λ=±

N−1∑

m=1

[−N(J + λhz) + 3J + 2λmhz]
∣∣ϕλm

〉 〈
ϕλm

∣∣ .

This indicates that the transverse field −g acts as a
hopping coefficient for the magnetic domain wall, while
the strength of the longitudinal field hz plays the role of
a skew potential. Next, we investigate the dynamics in
{|ϕ+m⟩} subspace, and denote |ϕm⟩ = |ϕ+m⟩ for simplicity.
The analysis is similar for that of {|ϕ−m⟩} subspace. In
the absence of the skew potential hz, the k-periodic spec-
trum is E(k) = −2g cos(k) + const. for the Bloch wave

of magnetic excitation |ϕ (k)⟩ = (2π)
−1/2 ∑

m eimk |ϕm⟩.
For a real g, the semiclassical picture of BOs has been
well understood [1, 2]. However, for an imaginary g, the
semiclassical picture should be understood in the frame-
work of a modified equation of motion for expectation
values, and the acceleration theorem holds only on aver-
age in time [37, 38].

The eigenstate of the Hamiltonian Heff can be ex-

panded as |ψn⟩ =
∑

m C
(n)
m |ϕm⟩, and the stationary

Schrödinger equation Heff |ψn⟩ = En |ψn⟩ gives the re-
cursive relation for the expansion coefficients

C
(n)
m+1 + C

(n)
m−1 =

2αm

z
C(n)

m , (8)

with αm = (3J −NJ − En) /(2hz) +m − N/2 and z =

g/hz. The boundary condition is C
(n)
0 = C

(n)
N = 0. We

identify that Eq. (8) is the recursive formula of the Bessel
function. Since the boundary effect is not involved in the
dynamics that we will investigate in the next section, we
assume an infinite chain in the following analytical anal-
ysis for convenience. Then the solution can be written
as

C(n)
m = Jm−n (z) , (9)

which is the Bessel function of the first kind. Notably,
the argument z is imaginary for a non-Hermitian system.
These eigenstates can be related by the spatial transla-
tion operation, that is, T |ψn⟩ = |ψn+1⟩ with the trans-
lation operator T defined as T |ϕm⟩ = |ϕm+1⟩. Then the
eigenstates for the Hamiltonian Heff are

|ψn⟩ =
∑

m

Jm−n (z) |ϕm⟩ , (10)

10−2 10−1 100 101

hz/ |g|

100

101

102
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Imag

FIG. 2. Numerical results of the localization length ξ defined
in Eq. (14) as a function of hz (in units of |g|). The black and
red lines represent the data for the real g and imaginary g,
respectively. The horizontal and vertical axes are both on a
logarithmic scale. The other parameters are set as N = 104,
J = 1, and n = N/2.

with energy En = −N (J + hz) + 3J + 2nhz, which is
equally spaced and independent of g.

Similarly, the eigenstate of the Hamiltonian H†
eff with

energy En is

|φn⟩ =
∑

m

Jm−n (z
∗) |ϕm⟩ , (11)

which establishes a biorthonormal basis set satisfying

⟨φn′ |ψn⟩ = δn′,n, (12)
∑

n

|ψn⟩ ⟨φn| = 1. (13)

It is well known that the eigenstates are localized for
a Hermitian WS ladder [69]. Thus, it can be reasonably
inferred that this is also the case for an imaginary g.
This can be confirmed by the localization length for the
eigenstate, which is defined as [19, 70]

ξ =

[∑
m |Jm−n(z)|2

]2

∑
m |Jm−n(z)|4

. (14)

For an infinite system, ξ is independent of energy. Also,
ξ of the localized state is independent of N when N is
large enough. In Fig. 2, we present the numerical results
of the localization length ξ of the eigenstates for the real
and imaginary fields g, respectively. We can see that for
both cases, a nonzero longitudinal hz field induces the
localization of the eigenstates, which is more pronounced
for an imaginary g. The localization of eigenstates is
crucial for the upcoming discussion.
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III. ANALYSES FOR THE OSCILLATION
DYNAMICS

In this section, we investigate the dynamics of mag-
netic BOs in a non-Hermitian quantum spin chain
through an analytical analysis of the effective Hamilto-
nian. The characteristics of eigenstate localization and
equal spacing of energy levels are both crucial for the con-
struction of the initial excitation of the magnetic BOs.

We consider the initial states

|Ψ(0)⟩ =
∑

m

fm(0)
∏

l⩽m

σ−
l |⇑⟩ =

∑

m

fm(0) |ϕm⟩ (15)

with three types of distributions representing the domain

wall localized at site m0: (i) the delta function f
(1)
m (0)

= δm,m0
; (ii) the broad Gaussian distribution f

(2)
m (0)

= N−1e−α2(m−m0)
2+ik0m where N is a normalization co-

efficient, α characterizes the width of the distribution,
and k0 is the wavevector; and (iii) the Bessel distribu-

tion f
(3)
m (0) = Ω−1Jm0−m (κ) with a complex argument

κ. According to the Schrödinger equation, the evolved
state can be formally written as

|Ψ(t)⟩ =
∑

m

fm(t) |ϕm⟩

=
∑

m,m′

Km,m′(t)fm′(0) |ϕm⟩ . (16)

From the solution in Eqs. (10)-(13), the propagator
Km,m′(t) under the biorthonormal basis can be computed
as follows:

Km,m′(t) =
∑

n

e−iEnt ⟨m |ψn⟩ ⟨φn| m′⟩

=
∑

n

e−iEntJm−n (z) J
∗
m′−n (z

∗) , (17)

and then using Graf’s addition theorem [71, 72] for the
Bessel functions in the summation of index n, we arrive
at

Km,m′(t) = ei(π/2−hzt)(m−m′)−i2m′hztJm−m′

[
2g sin (hzt)

hz

]
.

(18)
Here, a m,m′-independent overall phase factor is dis-
carded. Obviously, the propagator is periodic with a
Bloch period T = π/hz.

A. Kronecker delta initial state

Then, for the initial state f
(1)
m (0) = δm,m0

, the evolved
state is simply

f (1)m (t) =
∑

m′

Km,m′(t)δm′,m0
(19)

= ei(π/2−hzt)(m−m0)−i2m0hztJm−m0

[
2g sin (hzt)

hz

]
.

0 20 40 60
Time t

45

50

55

M
(t

)
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Imag

1st

FIG. 3. Numerical results of the center of the wave packet
as a function of time defined in Eq. (29) for different fields:
g = 0.1 and 0.1i for the black and red lines, respectively. In
addition, the orange dashed line represents the data obtained
from Eq. (28) with a first-order approximation for the case
of g = 0.1i. A comparison with the red line confirms the
validity of the approximation. Other parameters are taken as
κ = 10− 0.5i, N = 100, m0 = 50, and hz = 0.2.

According to the properties of Bessel functions, the
width of the domain wall periodically widens and nar-
rows within the range

|m−m0| ≲
∣∣∣∣
2g sin (hzt)

hz

∣∣∣∣ , (20)

for both real and imaginary field g with period T = π/hz,
which is the Bloch breathing mode. The profile of the
evolved state here is independent of the particular value
of initial position m0.

B. Gaussian initial state

The evaluation of the time evolution for the initial
state with Gaussian distribution is not straightforward.
Some approximations are needed. To do this, we first

Fourier transform the time-evolution equation f
(2)
m (t) =∑

m′ Km,m′(t)f
(2)
m′ (0) into k space:

f
(2)
k (t) = N−1

∑

m,m′

e−ikmKm,m′(t)e−α2(m′−m0)
2+ik0m

′

= N−1 exp

[
2gi sin (hzt) cos(hzt+ k)

hz

]

×
∑

m′

e−α2(m′−m0)
2−i(k−k0+2hzt)m

′
. (21)

Assume that the spatial localization of the initial distri-
bution is weak, that is, α ≪ 1, so that the summation
of m′ can be approximately replaced by integration. By
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FIG. 4. Numerical simulations of the time evolutions for the three different initial states in the (a1)-(a3) Hermitian spin chain
with g = 0.1 and (b1)-(b3) non-Hermitian spin chain with g = 0.1i. In each figure, the expectation values of local spin σz

j as
functions of time are presented. The initial states in the left, middle, and right panels are taken as the Kronecker delta state,
Gaussian state with α = 0.4 and k0 = 0, and Bessel state with κ = 4 − 0.5i, respectively. Other parameters of the system:
N = 16, J = 1, and hz = 0.2.

doing this, we achieve

f
(2)
k (t) ≈

√
π

α
N−1 exp

[
2gi sin (hzt) cos(hzt+ k)

hz

]

×e−i(k−k0+2hzt)m0 exp

[
− (k − k0 + 2hzt)

2

4α2

]
. (22)

Again, since α ≪ 1 is assumed, the momentum distribu-
tion fk(t) is sharply localized around k0 − 2hzt. Then,
we can expand the factor cos(hzt + k) in the argument
of the exponential around k0− 2hzt up to the first order,
and the evolved state in real space can be obtained as

f (2)m (t) =
1

2π

∫ π

−π

eikmfk(t)dk (23)

≈ N−1 exp
{
i(k0 − 2hzt)m− iΦ(t)− α2 [m−M(t)]

2
}
,

where

Φ(t) =
g

hz
[sin(k0 − 2hzt)− sin k0] , (24)

M(t) = m0 +
g

hz
[cos(k0 − 2hzt)− cos k0] . (25)

For a real g, the center of the wave packet M(t) in real
space oscillates in the form of a cosine function with pe-

riod π/hz and amplitude g/hz, which is the BO mode.
However, for an imaginary g, the center of the wave
packet remains stationary at the initial position m0 for
any initial wavevector k0. Thus, in the following, we seek
for a new initial excitation enabling magnetic BO to oc-
cur in the non-Hermitian quantum Ising chain.

C. Bessel initial state

Finally, we compute the time evolution for the initial

Bessel distribution f
(3)
m (0) = Ω−1Jm0−m (κ) where κ is

a complex number characterizing the width of the ini-
tial distribution. Expanding this initial state with the
biorthonormal basis, the superposition coefficient is

⟨φn|Ψ(0)⟩ = Ω−1Jm0−n (κ+ g/hz) . (26)

For simplicity, we take κ = x− g/hz with a real x, then
the above coefficient ⟨φn|Ψ(0)⟩ is always real. The time
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evolution is computed as

f (3)m (t) = Ω−1
∑

m′

Km,m′(t)Jm0−m′ (x− g/hz)

= Ω−1e−i2mhzt

(
x− ze−2ihzt

x− ze2ihzt

)(m0−m)/2

×Jm0−m

(√
x2 + z2 − 2xz cos(2hzt)

)
,(27)

where z = g/hz. Utilizing the multiplication theorem
[71, 73] for the Bessel function, we obtain

f (3)m (t)

= Ω−1
∑

n

1

n!

[
ig sin (2hzt)

hz

]n
Jm0−m+n

(
x− ge−2ihzt/hz

)

≈ Ω−1Jm0−m

(
x− ge−2ihzt/hz

)

+Ω−1 ig sin (2hzt)

hz
Jm0−m+1

(
x− ge−2ihzt/hz

)
, (28)

under the condition of |g| < hz.
While the results in Eqs. (27) and (28) indicate that

this is a periodic oscillation with period T = π/hz, the
pattern is not so explicit. Nevertheless, for a finite system
size N , we introduce the center of the wave packet:

M(t) =

∑
mm

∣∣∣f (3)m (t)
∣∣∣
2

√
∑

m

∣∣∣f (3)m (t)
∣∣∣
2
. (29)

The numerical results of M(t) for different values of g
are presented in Fig. 3. The figure shows that the cen-
ter of the wave packet undergoes the BO over time, and
the amplitude is on the order of magnitude |κ| for an
imaginary g. However, for a real g, the center of the
wave packet remains near the initial position m0. This is
opposite to that in the previous Gaussian initial state.

IV. NUMERICAL SIMULATIONS

Thus far, we have analyzed the time evolutions for
three different initial excitations in the framework of the
low-energy effective Hamiltonian in Eq (7). It is worth
noting that in the non-Hermitian system, the magnetic
BO is absent for an initial Gaussian state but emerges
for an initial Bessel state, which is distinct from the Her-
mitian system. In this section, we present the numerical
simulations of the time evolutions for the three initial
states under the original Hamiltonian in Eq. (1), in or-
der to verify the previous analyses.

The initial states are taken as

|Ψ(0)⟩ =
∑

m

f (n)m (0)
∏

l⩽m

σ−
l |⇑⟩ (30)

with n = 1, 2, and 3, representing the Kronecker delta
state, Gaussian state, and Bessel state, respectively,

which are investigated in the previous section. The cen-
ters of these localized initial states are all set as m0 = 8,
i.e., at the middle of the chain, to avoid boundary effects.
The evolved state |Ψ(t)⟩ = e−iHt |Ψ(0)⟩ /|e−iHt |Ψ(0)⟩ |
is calculated under the spin Hamiltonian in Eq. (1) us-
ing the fourth-order Runge-Kutta method with 5000 time
steps of length ∆t = 0.01, with a total accumulated error
on the order of O(∆t4). The evolved state is normalized
after each time step, and the local spin expectation value〈
σz
j

〉
= ⟨Ψ(t)|σz

j |Ψ(t)⟩ is computed after each 100 time
steps. The results are presented in Fig. 4, and other pa-
rameters of the system and initial states are presented in
the caption.
The boundary of

〈
σz
j

〉
= +1 and −1 is the position

of the magnetic domain wall. For the Hermitian spin
chain, Figs. 4(a1)-(a3) show that the dynamics are mag-
netic Bloch breathing, BO, and stationary modes for the
Kronecker delta, Gaussian, and Bessel initial states, re-
spectively. With the same initial states, for the non-
Hermitian spin chain, the results in Figs. 4(b1)-(b3) in-
dicate that the dynamics are magnetic Bloch breathing,
stationary, and BO modes, respectively. For the latter
two initial states, the corresponding BOs exhibit totally
different patterns for the same initial states in the two
different systems. These numerical results are in accor-
dance with the analyses in the previous section.

0.0 0.1 0.2
g

0.0

0.5

1.0

O
(g

)

(a)

delta

Gaussian

Bessel

0.0 0.1i 0.2i
g

(b)

FIG. 5. Overlap of perturbative solutions and numerically
evolved states at instant t = 10 for three different initial states
considered in the main text. (a) Overlap for the Hermitian
system as a function of real transverse field g. (b) Overlap for
the non-Hermitian system as a function of imaginary trans-
verse field g. Parameters of initial states are taken as the
same as those in Fig. 4. Other parameters of the system are
set as N = 16, J = 1, and hz = 0.2.

In order to further estimate the validity of perturbative
solutions presented in the previous section, we compare
the numerical evolved states with perturbative solutions
by the overlap

O = |⟨Ψnum. (t) |Ψana. (t)⟩| (31)

at instant t, where |Ψnum. (t)⟩ and |Ψana. (t)⟩ denote
the normalized numerical and analytical evolved states,
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respectively. The perturbative solutions |Ψana. (t)⟩ for
three initial states are taken as the form of Eq. (16) with
fm(t) being Eqs. (19), (23) and (27), respectively. In
Fig. 5, we presented the numerical results of overlap O
at instant t = 10 as a function of real and imaginary g. It
indicates that for both cases, the perturbative solutions
are in good agreement with the exact numerical results
in a small |g|, while for imaginary g the overlap drops
sharply when |g| ≳ hz/2 = 0.1 due to the PT symme-
try breaking of H that is not captured by the effective
Hamiltonian Heff.

V. SUMMARY

In summary, we demonstrate the existence of the mag-
netic BOs in a non-Hermitian quantum Ising chain. It is
shown that in the small-field region, the low-energy dy-
namics of the magnetic domain walls are captured by a
single-particle effective Hamiltonian, with the transverse
field acting as a hopping coefficient for the magnetic do-
main wall and the strength of the longitudinal field play-
ing the role of a skew potential. For real and imaginary
transverse fields, the eigenstates of the effective Hamilto-

nian are both localized states with equally spaced energy
levels, forming the WS ladders. Analytical and numerical
calculations of the time evolution for the non-Hermitian
quantum Ising chain show the following.
(i) The dynamics of the Kronecker delta initial state

follow a breathing mode.
(ii) The Gaussian state remains stationary, which is

different from the oscillation of the domain wall in a Her-
mitian quantum Ising chain.
(iii) For the Bessel initial state, the oscillation mode

appears, and the amplitude can be modulated by the
strength of the imaginary transverse field and the local-
ization length of the initial state.
The validity of perturbative solutions is estimated

by comparing them with numerical results. Our re-
sults reveal the mechanism of magnetic BOs in the non-
Hermitian quantum spin chain and pave the way for fu-
ture research on BOs in other quantum systems.
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points in tunable superconducting resonators, Phys. Rev.
B 100, 134505 (2019).

[41] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan,
X. Rong, and J. Du, Observation of parity-time symme-
try breaking in a single-spin system, Science 364, 878
(2019).

[42] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and
L. Luo, Observation of parity-time symmetry breaking
transitions in a dissipative Floquet system of ultracold
atoms, Nat. Commun. 10, 855 (2019).

[43] Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G.-
B. Jo, Chiral control of quantum states in non-Hermitian
spin–orbit-coupled fermions, Nat. Phys. 18, 385 (2022).

[44] K. L. Zhang and Z. Song, Ising chain with topological
degeneracy induced by dissipation, Phys. Rev. B 101,
245152 (2020).

[45] Y.-G. Liu, L. Xu, and Z. Li, Quantum phase transition
in a non-Hermitian XY spin chain with global complex
transverse field, J. Phys.: Condens.Matter 33, 295401
(2021).

[46] K. L. Zhang and Z. Song, Quantum phase transition in
a quantum Ising chain at nonzero temperatures, Phys.
Rev. Lett. 126, 116401 (2021).
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