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The dielectric properties of thin films are of paramount important in a variety of technologi-
cal applications, and of fundamental importance for solid state research. In spite of this, there
is currently no theoretical understanding of the dependence of the dielectric permittivity on the
thickness of thin films. We develop a confinement model within the Lorentz-field framework for
the microscopic Langevin-equation description of dielectric response in terms of the atomic-scale
vibrational modes of the solid. Based on this, we derive analytical expressions for the dielectric
permittivity as a function of thin film thickness, in excellent agreement with experimental data of
Barium-Strontium-Titanate (BST) thin films of different stoichiometry. The theory shows that the
decrease of dielectric permittivity with decreasing thickness is directly caused by the restriction in
k-space of the available eigenmodes for field-induced alignment of ions and charged groups.

I. INTRODUCTION

The physical properties of thin films are crucial for a
variety of technological applications, ranging from opti-
cal mirrors to solar cells [1, 2], and of fundamental inter-
est in physics. In particular, understanding the dielec-
tric properties of solid thin films is vital in optics, e.g.
dielectric (Bragg) mirrors, thin-film interference (anti-
reflective coatings), optical and protective coatings, mi-
crowave devices, memory devices and 5G wireless com-
munication. Dielectric and electrical properties may
strongly depend on thin film thickness, which is a prob-
lem of both fundamental and technological interest [3–5].
In particular, size effects give rise to changes in the elec-
trical performance of thin film capacitors and field-effect
transistors, including issues such as depolarization fields
in the dielectric sandwiched between semiconductors [6],
and polarization screening in metal-dielectric-metal thin-
film capacitors [7]. Finally, thin films are known to have
enhanced or ultra-high dielectric strength, which is an-
other important thickness-dependent effect [8]. In spite
of these tremendous technological implications, there ex-
ists currently no quantitative theoretical description of
the dependence of dielectric properties on film thickness.
This is also due to the intrinsic limitations of ab initio
methods which cannot simulate thicknesses of more than
a few nanometers [9, 10]. We provide here for the first
time a microscopic theory able to quantitatively describe
this effect.

II. THEORY

A. Langevin equation framework for lattice ions

We describe the dynamics of charged groups (ions),
and of partially-charged groups, in a solid material by
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means of a generalized Langevin equation (GLE) [11, 12].
Since we are interested in determining the dielectric re-
sponse of the material, we have to use a GLE that
contains the appropriate Lorentz force term due to the
external oscillating electric field, and which contains a
stochastic force term that obeys a suitable fluctuation-
dissipation theorem. Denoting the mass-rescaled tagged-
particle displacement s = Q

√
M where M is the mass of

the ion (or of the partially charged group) and Q the dis-
placement vector, the resulting equation of motion, reads
as [12]

s̈ = −U ′(s)−
∫ t

0

ν(t− t′)
ds

dt′
dt′ + F (t) + zE(t), (1)

where U(s) denotes the local force field, ν is the mi-
croscopic friction due to the long-range non-local anhar-
monic interactions with the thermal bath represented by
all other atoms and ions present in the system. Further-
more, F (t) is the stochastic force representing the ther-
mal noise, and the last term on the RHS is the Lorentz
force term relating to the system’s response to the exter-
nal AC electric field, where the charge z has been rede-
fined to be the mass-scaled charge. In order to determine
the dependence of the polarisation and of the dielectric
function on the frequency of the field in 3D space, we
have to describe the displacement s of each charged par-
ticle from its own equilibrium position under the applied
AC field E(t). Upon treating the dynamics classically,
the equation of motion for a charge I under forces com-
ing from interactions with other atoms in the system and
from the applied AC electric field is given by

s̈µI = −
∑
Jν

Hµν
IJ s

ν
J−
∫ t

0

ν(t−t′)
dsµI
dt′

dt′+Fµ
I (t)+zIE

µ(t).

(2)
under the assumption of pairwise interactions and the
Greek index µ denotes space components of a vector.
The next step is to take the Fourier transform, sµI (t) →

s̃µI (ω), leading to

−ω2s̃µI (ω)+ iων̃(ω)s̃µI (ω)+Hµν
IJ s̃

µ
J(ω) = F̃µ

I + zIẼµ (3)
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where the tilde is used to indicate Fourier-transformed
quantities. Hence, ν̃(ω) denotes the Fourier transform of
ν(t). Since the Hessian matrixHµν

IJ is real and symmetric
and its eigenvectors provide a basis set in Hilbert space,
we can apply normal-mode decomposition by project-
ing the 3N -dimensional Fourier-transformed displace-
ment vector s̃ onto the 3N -dimensional eigenvectors of
the Hessian: ˆ̃sm(ω) = s̃(ω) · em. Here the hat is used to
denote the coefficient of the projected quantity, em rep-
resent orthonormal eigenvectors of the Hessian matrix,
and m runs from 1 to 3N . Then we obtain

−ω2 ˆ̃sm + iων̃(ω)ˆ̃sm + ω2
m
ˆ̃sm = ˆ̃Fm + (z ˆ̃E)m. (4)

The equation is solved by

ˆ̃sm(ω) = −
ˆ̃Fm + (z ˆ̃E)m

ω2 − iων̃(ω)− ω2
m

. (5)

Upon transforming back to a vector equation for the
Fourier-transformed displacement of charge I, we have:∑

I

s̃I(ω) =
∑
m

− F̃+ zẼ

ω2 − iων̃(ω)− ω2
m

, (6)

where F̃ and Ẽ are average values.

B. Polarization and dielectric function

Each charged particle contributes to the polarisation
a moment pI = zIsI . In order to evaluate the macro-
scopic polarisation, we add together the averaged contri-
butions from all microscopic degrees of freedom in the
system, P =

∑
I pI . In order to do this analytically, we

use the fact that the ensemble average of the noise for
an oscillating system vanishes upon averaging over many
cycles, as demonstrated also numerically in Ref. [13].
We thus employ the sum over all contributions of the
type given by Eq. (6), to obtain the averaged polarisa-
tion. We also perform the standard procedure of replac-
ing the discrete sum over the total degrees of freedom
of the solid with the continuous integral over the eigen-
frequencies ωm,

∑
m ... →

∫
g(ωp)...dωp, where g(ωp) is

the vibrational density of states (VDOS). This gives the
following sum rule for the electric polarisation [14]:

P̃(ω) ∝ −
[∫ ωD

0

g(ωp)

ω2 − iων̃(ω)− ω2
p

dωp

]
Ẽ(ω) (7)

Here, ωD is the cutoff Debye frequency arising from
the normalisation of the VDOS (i.e. the highest eigen-
frequency in the vibrational spectrum). Furthermore,
we have defined a 3N -dimensional vector z⃗ such that
ẑm = z⃗ · em is a scalar factor, arising from Eq. (6) [15],
which is later going to be absorbed into the prefactor A
and therefore is no longer shown in the above relation.

Note that we have taken an ensemble average over the
system. The complex dielectric permittivity ϵ is defined

as ϵ = 1+ 4πχe, where χe is the dielectric susceptibility,
which relates polarisation and electric field via P = χeE
[16].
Within this model [14], the dielectric function is finally

expressed as a frequency integral as [14]

ϵ(ω) = 1−A

∫ ωD

0

g(ωp)

ω2 − iων̃(ω)− ω2
p

dωp (8)

where A is an arbitrary positive constant, whose numeri-
cal value has to be matched with experiments. Clearly, if
g(ωp) were given by a Dirac delta, one would recover the
standard simple-exponential Debye relaxation [14, 17].
This approach can be extended to deal with atoms and
molecules that have stronger inner polarisability by re-
placing the external field field E with the local electric
field Eloc, which is known as the Lorentz cavity model
or Lorentz field [17, 18]. In condensed matter, the net
electric field that acts on a molecule locally is equal to
the external field only for vanishing polarisability of the
molecule. This is a well-known effect, whereby the field
in the medium is influenced (typically, diminished) by
the local alignment of the nearby polarised molecules.
The simple Lorentz cavity model works well in materials
where the building blocks are not pathologically shaped
or too anisotropic. In order to keep the treatment analyt-
ical, we focus on the case of constant friction, ν = const.
The derivation of the local field or Lorentz field can be
found in many textbooks [17, 18] and gives

Eloc = E+
4π

3
P. (9)

Therefore, E is replaced with the Lorentz field Eloc, and
the equation of motion becomes:

s̃′I(ω) =
zI

ω2 − iων − ω2
p

(
Ẽ(ω) +

4π

3
P̃(ω)

)
. (10)

Combining the above relations and summing over all
contributions from all the ions and charged groups, we
obtain

P =

(∑
I

qIsI + αEloc

)
; ϵ(ω) = 1 + 4π

χ(ω)

1− 4π
3 χ(ω)

,

χ(ω) =

∫ ωD

0

Ag(ωp)

ω2 − ω2
p + iων

dωp + α (11)

where α is the microscopic electronic polarisability and
we used the definition of electric displacement vector,
D = ϵE = E+ 4πP [19]. Furthermore, in the expression
of χ we have incorporated the factor z2 into the rescaling
coefficient A. This microscopic theory of the dielectric
response has been previously applied to describe experi-
mental data of supercooled glycerol in Ref. [14] and was
able to explain the non-Debye asymmetric excess wing
of the dielectric loss ϵ′′(ω) as due to the excess of low-
energy vibrational modes that characterizes the vibra-
tional spectra of supercooled liquids and glasses.
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C. Thin film confinement and thickness-dependent
permittivity

The above form of the dielectric function is derived for
a bulk material. In the case of a thin film, the confine-
ment along the vertical direction imposes a constraint
on the wavelength of the vibrational excitations that are
allowed to propagate [20]. As shown mathematically in
Ref. [21], and verified against MD simulations and exper-
iments for real thin solid films in [22], the thin-film con-
finement imposes a low-frequency cut-off on the wavevec-
tor of vibrational modes equal to kmin = 2π cos θ

L . Here
L is the film thickness and θ is the polar angle with the
vertical z-axis, see Fig. 1. The condition kmin = 2π cos θ

L
identifies two spheres of forbidden states inside the Debye
sphere.

Figure 1. Panel (a) shows the thin film geometry in real space
(confined along the z-axis but unconfined along the x and y
axis), with the maximum wavelength that corresponds to a
certain polar angle θ. Panel (b) shows the corresponding ge-
ometry of k-space, where the outer Debye sphere (of radius
kD) contains two symmetric spheres of forbidden states, i.e.
states in k-space that remain unoccupied due to confinement
along the z-axis See Ref. [21] for a detailed mathematical
derivation of this result. Panel (c) shows an illustrative calcu-
lation of the dielectric permittivity using the confined model,
with typical values of speed of sound (in the order of kHz
and of microscopic friction ν and Debye frequency both in
the order of 1013 Hz. Panels (a) and (b) have been adapted
from Ref. [21], with permission from the American Physical
Society.

As demonstrated in Ref. [22], this lower cut-off
wavevector corresponds to a minimum frequency of the
allowed vibrational modes given by ωmin = c kmin, where
c is a characteristic speed of sound (independent of L).
For example, c can be taken as the average speed of
sound c used in Debye’s theory, defined as 3

c3 = 1
c3L

+ 2
c3T

,

where cL and cT are the longitudinal and the trans-
verse speed of sound, respectively Since the minimum
wavevector depends on the polar angle θ, we can take
a spherical average over the solid angle that gives the
average minimum wavevector k̄min = π

L , and a mini-
mum frequency ω̄min = cπ

L . Upon implementing this
confinement-induced cut-off in the susceptibility integral
we get:

ϵ(ω) = 1 + 4π
χ(ω)

1− 4π
3 χ(ω)

,

χ(ω) = α+

∫ ωD

cπ
L

Ag(ωp)

ω2 − ω2
p + iων

dωp. (12)

As a sanity check, we plot in Fig. 1(c) a typical be-
haviour of the dielectric permittivity ϵ′(ω) computed us-
ing Eq. (12) for realistic values of frequencies encoun-
tered in solid materials. The resulting curve still presents
all the typical features of dielectric permittivity as a func-
tion of frequency, with a low-frequency plateau followed
by a drop (dielectric relaxation) in the frequency range
108−109 Hz typically measured in dielectric spectroscopy
[23].
In order to understand the effect of film thickness L

on the permittivity ϵ′, the integral in Eq. (12) has to
evaluated. Using a Debye law for the vibrational den-
sity of states, g(ωp) ∼ ω2

p, as appropriate for a solid, the
integral cannot be evaluated analytically. Nevertheless,
we can approximate the integral for low-to-intermediate
frequencies ω since this is the regime of interest for mea-
surements of dielectric permittivity of thin solid films.
Using the approximation ωp ≫ ω, for the real part of the
integral we obtain:∫

ω4
p

ω4
p + ω2ν2

dωp ≈ ωp −
√

ν ω

2
arctan

(√
2ωp√
ν ω

)
. (13)

With the integration limits set in Eq. (12), and ne-
glecting nonlinear contributions to the susceptibility,
this leads to the following expression for the thickness-
dependent dielectric permittivity:

ϵ′(ω) = ϵ∞ + 4πA
(ωD − cπ

L ) +
√

ν ω
2 arctan

( √
2√

ν ω
cπ
L

)
−B

1− 4π
3 A(ωD − cπ

L +
√

ν ω
2 arctan

( √
2√

ν ω
cπ
L

)
−B)

,

B =

√
ν ω

2
arctan

(√
2ωD√
ν ω

)
. (14)
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We note that, in the limit L → ∞, the above expres-
sion correctly tends to a constant value independent of
L, which represents the bulk value at a given frequency
ω. The above expression Eq. (14) can be Taylor ex-
panded in L to study the leading terms that control the
thickness-dependent dielectric permittivity of thin films.
To second order in L we thus obtain:

ϵ′(ω) = ϵ∞ +K1 L−K2 L
2 +O(L3). (15)

where

K1 ≈ 9− 3B

A′ , K2 ≈ 4π A2
√
νω ωD

A′2 , (16)

where A′ ≡ 4π2Ac has units of length, which is reassur-
ing because then in Eq. (15) all terms are dimensionless,
as they should.

III. COMPARISON WITH EXPERIMENTAL
DATA

For thin film oxides at low to intermediate frequencies
ω = 1 − 10 kHz, one has ϵ′ ∼ 10 − 100 from experi-
mental measurements. Then it is clear that the rescal-
ing constant A, which, in the above, multiplies the De-
bye frequency ωD ∼ 1013 Hz, must be in the order of
A ∼ 10−12, hence, in general, a small number. From
the first one of Eqs. (16), it follows that K1 > 0 al-
ways, provided that: 9

A > 3B
A = 3

√
νω. This is always

true because, for realistic values of experimental systems,
one has

√
νω ∼ 108 − 109 Hz, which is orders of magni-

tude smaller than 3
A ∼ 1012 Hz. We thus conclude that

K1 is always positive, and therefore the leading term in
the expansion is such that the dielectric permittivity in-
creases with increasing L. This means that, overall, the
confinement acts as to lower the dielectric permittivity.
The above microscopic theory explains that, physically,
this is due to the cutting-off of low-frequency vibration
eigenmodes at the atomic level due to the confinement,
which, in turn, leads to more limited possibilities for the
ions and charged groups to rearrange spatially (”align”)
in response to the local electric field.

The second term in the expansion is, instead, negative
and acts as to level off the initial increase as a func-
tion of thickness L. Furthermore, with realistic values of
the physical parameters as declared above, we have that
K2 ∼ 107, since

√
νω ∼ 108 Hz and c ∼ 104 m/s, while

K1 ∼ 1010, and thus K2/K1 ∼ 0.001.
This observation then leaves just one non-trivial fitting

parameter in the comparison between Eq. (15) and the
experimental data, which is reported in Fig. 2 below.
The non-trivial fitting parameter is ϵ∞, which represents
the infinite-frequency limit of the dielectric permittivity
and is thus controlled by the atomic-scale physics.

Furthermore, the value of ϵ∞ is also constrained to be
reasonable and much smaller than the bulk value at kHz
frequencies, which is indeed the case in the fitting shown
in Fig. 2. This further consideration reflects the fact that
the above fitting is physically meaningful and reliable.

Figure 2. Comparison between the theoretical prediction
given by Eq. (15), continuous line, and experimental data
(circles). The latter are in arbitrary physical units, as cus-
tomary for dielectric spectroscopy measurements. The upper
curve refers to experimental data of dielectric permittivity
of (Ba0.7, Sr0.3)TiO3 (BST) thin films measured at ω = 4
kHz from Ref. [3], fitted by Eq. (15) with K1 = 1.5 and
K2 = 0.001, and ϵ∞ = 100. The lower curve refers to exper-
imental data of dielectric permittivity of (Ba0.5, Sr0.5)TiO3

thin films averaged between ω = 400 Hz and ω = 10 kHz from
Ref. [24], fitted by Eq. (15) with K1 = 1.2 and K2 = 0.0015,
and ϵ∞ = 10. All experimental measures were made at room
temperature.

IV. CONCLUSION

In summary, we have developed a microscopic the-
ory of dielectric response of thin solid films starting
from a Langevin equation for the motion of charged and
partially-charged atoms in the solid layer. Using a re-
cent wave-confinement model, we have adapted the the-
ory to the case of thin films, by implementing a cut-
off in momentum space reflecting the fact that a signif-
icant population of large-wavelength vibrational modes
become forbidden due to the thin-film confinement. In
turn, this reduces the possibilities for atomic-scale rear-
rangements/alignements under the applied field, leading
to a lower permittivity for thinner films. The theory leads
to an analytical expression for the dielectric permittivity
as a function of applied field frequency and film thickness,
in excellent agreement with experimental data with just
one non-trivial fitting parameter (ϵ∞), which, however,
is constrained to be in a reasonable range by the material
physics. In future work, this theory can be extended to
nano-confined liquid films, including nano-confined wa-
ter [25, 26]. To this aim, it may be useful to provide a
formulation of the above theory also for off-diagonal ten-
sor components. It can also be extended to ultra-thin
films (with thickness on the order of few nanometers or
lower), where the vibrational density of states features a
low-energy ω3 behaviour, instead of Debye’s ω2 law [22].
In the future, this theory can open up new ways of tuning
and optimizing the electrical performance of thin film de-
vices, ranging from photovoltaics to 5G technology, and
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of understanding and modelling the ultra-high dielectric
strength of thin films [8].
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