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In this study, we analyze the vacuum stability of the economical 331 model at the one-loop

level using the renormalization group equations and a single-scale renormalization method.

By integrating these equations, we determine stability conditions up to the Planck scale,

incorporating constraints from recent experimental data on new Higgs-like bosons, charged

scalars, and charged and neutral gauge bosons. Our analysis uncovers intriguing relations

between the mass of the heaviest scalar and the masses of exotic quarks, in order to ensure

stability of the model up to the Planck scale. For the 331 energy scale used in this work,

18 TeV, we find an upper bound on the heaviest quark mass of the model, which is not so

distant from future LHC runs, serving as bounds to be searched. Additionally, we explore

relations between the scalar couplings coming stability and perturbativity conditions. These

impose unprecedented constraints on the economical 331 model.

I. INTRODUCTION

It is widely recognized that the Standard Model (SM) is unable to provide explanations to some observed

phenomena, such as the extensive evidence supporting the existence of dark matter [1, 2], the neutrinos

masses and their mixing [3–8], and baryonic asymmetry [9, 10]. In addition to these issues, the recent

measurement of the Higgs mass [11, 12] places the SM near the metastability and stability boundaries

[13–15]. In these studies, the SM is extrapolated to the Planck scale using the two-loop effective potential

to analyze the quartic coupling and its beta function in the proximity of this high-energy regime. For the

Higgs mass value of mh = 125.25±0.17 GeV [16–18], the authors identified an instability scale significantly

below Planckian physics, approximately at 1011 GeV. According to their interpretation, this finding could

be an indicative of the presence of new physics around this scale.

In the context of the SM, classical stability is mostly examined through the quartic terms of the Higgs

∗ Correspondence email address: glauber@fisica.ufmg.br
† Correspondence email address: alvarolouzi@ufmg.br
‡ Correspondence email address: bruce@fisica.ufmg.br
§ Correspondence email address: arthurcesar@ufmg.br

ar
X

iv
:2

40
2.

00
15

5v
1 

 [
he

p-
ph

] 
 3

1 
Ja

n 
20

24

mailto:glauber@fisica.ufmg.br
mailto:alvarolouzi@ufmg.br
mailto:bruce@fisica.ufmg.br
mailto:arthurcesar@ufmg.br


2

field, h, which for very large values of h takes the form

V (h) ≈ λ

4
h4.

Therefore, in this form, the classical potential is stable (bounded from below, BFB) if λ > 0. As shown

in ref. [19], λ could not be greater than 4π, since perturbative theory would break down, nor be very small,

since radiative corrections become important. However, the classical potential is found to be insufficient

for analyzing the stability of the SM across diverse energy scales since quantum corrections are typically

relevant. To address this limitation, the effective potential is employed. As pointed out in ref. [20], one

can always define an effective potential for the SM up to two loops such that, for h ≫ v, it assumes the

form

Veff.(h) =
λeff(h)

4
h4.

This approximation is valid as the instability scale occurs at energies much larger than the electroweak

scale. Given that the effective potential shares the same form as the classical potential, one concludes

the effective potential stability is realized for λeff > 0. In conclusion, the examination of the stability of

the SM is comparatively straightforward, given that both the classical and effective potentials, up to the

second loop order, must satisfy an explicit condition (namely λ > 0 or λeff > 0) that are easily fulfilled.

On the other hand, models beyond Standard Model (BSM) exhibit a more intricate potential [21–28].

Typically, these models contain additional scalar fields that interact among themselves increasing the

amount of quartic terms, rendering it difficult to determine classical stability conditions, as well as the

analytical mass eigenvalues. The situation is aggravated when attempting to study the corresponding

effective potential. The logarithm terms coming from the one-loop corrections depend on ratios of mass

eigenvalues, obtained from the Hessian matrix of the tree level potential, and the renormalization scale.

In a situation where the mass values are very different, it is not possible to define a single renormalization

scale that maintains all logarithmic terms under perturbative control. Such effective potentials are referred

to in the literature as multiscale [29–33].

The determination of classical stability conditions for multiscale potentials has been extensively ex-

plored, as documented in refs. [29–33]. Generally, for analytical determination, a simplifying condition is

commonly imposed to ensure that the quartic terms of the scalar potential take the form λijϕ
2
iϕ

2
j , making

them essentially biquadratic. Therefore, requiring that the scalar potential be bounded from below as

the fields approach infinity amounts to ensuring that the matrix λij is copositive (conditionally positive).
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Furthermore, the use of the orbital space method [34] is a common practice to reduce the number of

variables, thus increasing the tractability of the problem.

For the multiscale effective potential, some methods were employed in refs. [35–39]. These methods

introduce different scales of renormalization and, therefore, one must work with partial renormalization

group equations. Due to this technical complication, the authors in ref. [40] developed a method to

improve the effective potential for any order, using the renormalization group equations with a single

renormalization scale. Notably, it has been applied to analyze the extremum structure of scale-invariant

effective potentials in a previous work [41]. An interesting feature of this method is that it allows assessment

of improved effective potential using tree-level potential, provided that the parameters remain perturbative.

The method involves solving the renormalization group equations for the effective potential, choosing the

boundary condition on the hypersurface so that the quantum corrections disappear. Thus, tree-level

stability criteria are applicable to the improved effective potential. In other words, it allows us to replace

the quartic couplings under classical tree-level stability conditions by the running couplings obtained from

solving the equations of the renormalization group. Therefore, it is possible to study the quantum stability

conditions for any model, using the copositivity criteria and the single scale renormalization to multiscale

effective potential.

We are interested in applying these methods to the economical 331 model [42, 43], belonging to a class

of models known as 331 models. The name arises as an abbreviation of the semi-simple gauge group

SU(3)C × SU(3)L × U(1)N . The electric charge operator is defined as Q = T3 − bT8 + N13×3, where

T3,8 are the SU(3)L diagonal generators and N is the charge associated with the abelian group U(1).

The allowed values for b are
√
3 or 1/

√
3. The economical 331 model belongs to the latter value of b.

This model, when compared to others 331 models, as in refs. [21, 22], can accommodate a simple scalar

structure consisting of three scalar triplets χ, ρ, η without exotic electric charge. In addition, it is also

able to accommodate a right-handed neutrino in the leptonic triplet since the b = 1/
√
3 value allows two

electrically neutral components. This property allows massive neutrinos at tree level, although quantum

corrections are necessary to make them agree with the experiments data [44]. Another interesting feature

is the implementation of the Peccei-Quinn mechanism in order to solve strong CP-problem [45] and the

existence of axion dark matter [46, 47].

Our objective is to extend the investigation into vacuum stability initiated in ref. [48]. In that work, the

authors introduced a Z2 discrete symmetry to the model, facilitating the expression of the classical quartic

scalar potential in a biquadratic form. This formulation enables the application of copositivity criteria
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[32–34], leading to the derivation of seventeen classical stability conditions. Solving these conditions, in

conjunction with constraints derived from the first and second derivative tests for the potential minima,

has, for the first time, allowed the establishment of analytical constraints for the coupling constants.

In order to improve these constrains, a quantum analysis of the vacuum stability within the 331

economical model becomes imperative. In our approach, we employ the previously mentioned single-scale

renormalization method [40] to address the effective potential in the context of the renormalization group

equations. Given the elevated complexity of the model, we employ the Mathematica RGBeta package,

as outlined in ref. [49], to compute all required beta functions. Subsequently, we numerically solve the

eighteen coupled nonlinear differential equations. This process is essential for identifying the new allowed

region for the quartic couplings, ensuring that the effective potential remains bounded from below to the

Planck scale. As elaborated in Sec. IV, our findings reveal a significantly diminished region for the allowed

values of the coupling constants in comparison to the outcomes presented in ref. [48]. Moreover, we will

explore the interplay among the masses of the exotic quarks and the heaviest scalar.

The rest of the paper is organized as follows. In Sec. II we present the generalities of the model with

an imposed Z2 symmetry, bringing simplicity and allowing the scalar potential to be biquadratic in the

fields norms. In Sec. III, we present the mass spectrum of the model in order to determine or constrain

the couplings, such as quartic, gauge and Yukawa couplings. Specifically, the expressions for the CP-even

masses will be important to study the stability of the model. Moreover, by incorporating complementary

information from the Z − Z ′ mixing angle, the lower bound on a new charged gauge boson, and the

hierarchy of vacuum expectation values in the model, we have determined the minimum value of the first

symmetry breaking parameter, vχ. In Sec. IV, by applying the tree level stability criteria in the improved

effective potential, we obtain interesting regions on the quark-Higgs plane and, in the quartic couplings

parameter space. Finally, we present our conclusions in Sec. V.

II. THE GENERALITIES OF THE MODEL

An appealing aspect of 331 models is the partial explanation provided for the number of families, a

feature absent in the SM. This distinction arises from the fact that, in the SM, the cancellation of gauge

anomalies takes place generation by generation. In contrast, in 331 models, the condition for anomaly

cancellation implies that the number of families is either three or a multiple of three.

In the present context of the economical 331 model, requiring absence of gauge anomaly dictates that
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the fermionic field content must be

Leptons: LaL = (νa, ea, N
c
a)

T
L ∼ (1,3, −1/3) , (1)

Quarks: QL = (u1, d1, u4)
T
L ∼ (3, 3, 1/3) ,

QbL = (db, ub, db+2)
T
L ∼ (3, 3̄, 0) , (2)

for the left-handed fields, whereas for the right-handed fields

Leptons: eaR ∼ (1, 1, −1) , (3)

Quarks: usR ∼ (3, 1, 2/3) , dtR ∼ (3, 1, −1/3) , (4)

where a = 1, 2, 3, b = 2, 3, s = 1, . . . , 4, t = 1, . . . , 5 and “∼” means the transformation properties under

the local gauge group.

In order to completely break the gauge symmetry down to U (1)Q and, at the same time, to give the

phenomenologically appropriate masses for all particles, it is necessary to include three scalar triplets in

the fundamental representation [50],

ρ =
(
ρ+1 , ρ

0
2, ρ

+
3

)T ∼ (1, 3, 2/3) , η =
(
η01, η

−
2 , η

0
3

)T ∼ (1, 3, −1/3) , (5)

χ =
(
χ0
1, χ

−
2 , χ

0
3

)T ∼ (1, 3, −1/3) . (6)

The introduction of a Z2 discrete symmetry, acting on fields as χ → −χ, u4R → −u4R, and d(4,5)R →

−d(4,5)R, while leaving the other fields unaffected, not only simplifies the model but also mitigates FCNC

problems [51]. Additionally, it facilitates the implementation of the PQ mechanism [45] and, in certain

scenarios, contributes to the stabilization of potential dark matter candidates [46, 52, 53].

Taking into consideration all the fermionic and bosonic fields and their symmetries, the most general

renormalizable Yukawa Lagrangian reads

LYuk = Lρ + Lη + Lχ, (7)

with

−Lρ = αaQ̄LdaRρ+ αbaQ̄bLuaRρ
∗ + Yaa′εijk

(
L̄aL

)
i
(La′L)

c
j (ρ

∗)k + Y′
aa′L̄aLea′Rρ+

H.c., (8)

−Lη = βaQ̄LuaRη + βbaQ̄bLdaRη
∗ + H.c., (9)

−Lχ = γ4Q̄Lu4Rχ+ γb(b+2)Q̄bLd(b+2)Rχ
∗ + H.c. , (10)
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where ϵijk is the Levi-Civita symbol and a′, i, j, k = 1, 2, 3 and a, b, s, t are in the same range as in eqs. (1-

4). Additionally, it is noteworthy that the u4R and d(4,5)R quarks exclusively couple to the χ triplet.

This distinction allows us to identify the χ field as the responsible for the initial spontaneous symmetry

breaking, whereas η and ρ will play a role in the subsequent breaking, as we will soon elucidate.

In addition, the most general and renormalizable scalar potential invariant under the gauge and Z2

symmetries is

V (η, ρ, χ) = −µ2
1η

†η − µ2
2ρ

†ρ− µ2
3χ

†χ

+λ1

(
η†η

)2
+ λ2

(
ρ†ρ

)2
+ λ3

(
χ†χ

)2
+ λ4

(
χ†χ

)(
η†η

)
+λ5

(
χ†χ

)(
ρ†ρ

)
+ λ6

(
η†η

)(
ρ†ρ

)
+ λ7

(
χ†η

)(
η†χ

)
+λ8

(
χ†ρ

)(
ρ†χ

)
+ λ9

(
η†ρ

)(
ρ†η

)
+ λ10

(
χ†η

)2

−λ15√
2
ϵijkηiρjχk + H.c. . (11)

Note that the term λ15ϵijkηiρjχk effectively breaks the Z2 symmetry, but must be included. Its absence

would lead to the emergence of a QCD axion with a small decay constant, 11.5 keV ≤ fa ≤ 246 GeV [54],

already ruled out by experiments [55]. Furthermore, we use the freedom of definition of scalar fields to

make λ10 and λ15 positive real numbers.

III. MASS SPECTRUM

To study the vacuum stability at the one-loop level, we must first determine the mass spectrum. For

this reason, in this section we find the analytical expression, at tree level, for particle masses in the model.

The minimal conditions for giving mass to all particles is that the scalar fields gain the following vacuum

expectation values (VEVs)

⟨ρ⟩ = 1√
2
(0, vρ, 0)

T, ⟨η⟩ = 1√
2
(vη, 0, 0)

T, ⟨χ⟩ = 1√
2
(0, 0, vχ)

T. (12)

The first step of the spontaneous symmetry breaking is done by vχ, whilst the second is realized by vρ

and vη, that is,

SU(3)L ⊗ U(1)N
vχ−→ SU(2)L ⊗ U(1)Y

vη , vρ−−−→ U(1)Q.

The starting point of our analysis will be the gauge sector, because, besides being the simplest, it will

allow us to estimate VEVs and gauge couplings. Following standard procedures, we define the covariant
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derivatives as Dµ = ∂µ− igLW a
µ λa/2− igNN Bµ, where λa are the Gell-Mann matrices and gL and gN are

the gauge couplings of the SU(3)L and U(1)N groups, respectively. After some straighforward calculations,

we find that the non-hermitian charged gauge bosons and their respective masses are 1

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), X0(∗)

µ =
1√
2
(W 4

µ ∓ iW 5
µ), Y ±

µ =
1√
2
(W 6

µ ± iW 7
µ), (13)

M2
W± =

g2L
4
(v2η + v2ρ), M2

X0(∗) =
g2L
4
(v2η + v2χ), M2

Y ± =
g2L
4
(v2ρ + v2χ). (14)

Note that the new gauge bosons X
0(∗)
µ and Y ±

µ gain masses at the first step of spontaneous symmetry

breaking, and a mass correction coming from the second step. From the experimental value for the SM

W gauge boson, MW± = 80.377± 0.012 GeV [56, 57], we calculate that v2SM ≡ v2η + v2ρ = (246 GeV)2 and

gL ≃ 0.66.

Note that to determine the masses of the X
0(∗)
µ and Y ±

µ gauge bosons, knowledge of the value of vχ

is essential. To estimate this value, we consider the mixing angle between Z and Z ′ gauge bosons. To

achieve this, we first calculate the masses and eigenstates of the hermitian neutral bosons. In addition to

the photon mass, Mγ = 0, and its eigenstate Aµ = 1
Nγ

(2
√
3Bµ +

√
3gL gN W 3

µ − gN W 8
µ) (where Nγ is the

normalization constant), it is possible to write analytical masses for the other two neutral bosons, Z1 and

Z2, as

M2
Z1
, M2

Z2
=

1

2

[
M2

Z +M2
Z′ ∓

√
(M2

Z −M2
Z′)2 + (2M2

ZZ′)2
]
, (15)

where

M2
Z =

g2L
4 cos2 θW

v2SM,

M2
Z′ =

g2L
12(1− 1

3 tan
2 θW )

[
(1 + tan2 θW )2v2SM − 4 tan2 θW v2η + 4v2χ

]
,

M2
ZZ′ = −

g2L
4 cos2 θW

v2SM − 2 cos2 θW v2η√
3− 4 sin2 θW

. (16)

The angle θW in eq. (16) is the Weinberg angle, measured as sin2 θW = 0.23121± 0.00004 in the MS-bar

scheme [58]. The change of basis from Z1 −Z2 to Z −Z ′ is realized by an SO(2) transformation, with an

angle defined as θZ = 1
2 tan

−1

(
2M2

ZZ′
M2

Z−M2
Z′

)
. To estimate the values of vη and vχ, we begin by noting that

MZ , the mass of the SM gauge neutral boson, is measured to be 91.1876± 0.0021 GeV [59]. The mixing

1 Note the different signs appearing in the definitions of Y ± and W±.
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angle θZ is constrained to −3.98× 10−3 <∼ θZ <∼ 1.31× 10−4 [60]. With this information, we identify the

allowed region for vη and vχ, as depicted in Fig. 1.

Further considerations involve the lower bound on the mass of a new charged gauge boson, set at 6

TeV at a 95% C.L. according to experimental searches [61, 62]. In this current context, the mass of the

Y ± boson defined in eq. (14) can be approximated as M2
Y ± ≈ g2L v2χ/4, assuming vχ ≫ vη, which is natural

in this model. Finally, employing the previously calculated value of gL = 0.66 and the approximate M2
Y ±

expression, we can estimate vχ >∼ 18.1 TeV. Finally, it is noteworthy that for values of vχ above or equal to

18.1 TeV, there are no restrictions on the value of vη. For the sake of concreteness, we consider the value

of vη that sets θZ = 0, in other words, the value of vη that sets M2
ZZ′ to zero in eq. (16). Consequently,

we set vη ≈ 197.5 GeV, and as a result, vρ ≈ 147 GeV.

0 50 100 150 200

5

10

15

20

Figure 1. The allowed values for vη and vχ are determined by considering M2
ZZ′ , M2

Z , and M2
Z′ as functions of these

VEVs. It is important to note that, for values of vχ >∼ 16.71 TeV, there are no restrictions on the values of vη.

In the scalar sector, it is essential to note that the three scalar triplets possess eighteen degrees of

freedom. Eight of these correspond to would-be Nambu-Goldstone bosons, which were gauged away to

give mass to eight gauge bosons. Thus, we anticipate the presence of ten physical scalar bosons in the

mass spectrum. Specifically, the physical scalar spectrum consists of four charged scalars, H±
1 , H±

2 , four

CP-even scalars called h (the 125 GeV SM-like scalar), H0, H and H ′, and two CP-odd scalars H3 and H5.
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Some of the analytical expressions for the masses are relatively straightforward to calculate, as outlined

below:

M2
H0

=
v2η + v2χ
2vηvχ

(vρλ15 + vηvχ(λ7 + 2λ10)), (17)

M2
H±

1
=

v2SM
2vηvρ

(λ15vχ + λ9vηvρ), M2
H±

2
=

v2ρ + v2χ
2vρvχ

(λ15vη + λ8vρvχ), (18)

M2
H3

=
v2η + v2χ
2vηvχ

(vρλ15 + vηvχ(λ7 − 2λ10)), (19)

M2
H5

=
λ15

2vηvρvχ
(v2ηv

2
ρ + v2SMv2χ). (20)

In this study, we will assume λ10 = 0. It is important to highlight that this condition not only simplifies

the model significantly but also induces a mass degeneracy between H0 and H3. Under this assumption,

H0 and H3 serve as the real and imaginary components of a complex neutral scalar, respectively.

Concerning the other CP-even scalars (h, H, and H ′), obtaining exact analytical expressions for their

masses proves to be overly intricate and not particularly practical. However, we can take advantage of the

hierarchy vχ ≫ vρ, vη to determine approximate analytical expressions by using a perturbative approach

[63]. To achieve this, we express λ15 as κ vχ, where κ ≪ 1, considering that λ15 is a small and dimensionful

coupling constant.

More specifically, these CP-even scalars reside in the subspace with basis (Re η01, Re ρ02,Reχ0
3), and

their squared masses are determined by the matrix

M2
CP-even =


2λ1v

2
η + κ

vρv2χ
2vη

λ6vηvρ − κ
v2χ
2 λ4vηvχ − κ

vρvχ
2

λ6vηvρ − κ
v2χ
2 2λ2v

2
ρ + κ

vηv2χ
2vρ

λ5vρvχ − κ
vηvχ
2

λ4vηvχ − κ
vρvχ
2 λ5vρvχ − κ

vηvχ
2 2λ3v

2
χ + κ

vηvρ
2

 . (21)

The key point is to notice that the exact matrix in eq. (21), when applied to the VEV hierarchy, can be

decomposed into

M2
CP-Even/v

2
χ = M2

0 +M2
1 +M2

2 , (22)

where

M2
0 =


κ vρ
2vη

−κ
2 0

−κ
2

κ vη
2vρ

0

0 0 2λ3

 , M2
1 =


0 0 λ4ε2 − κ

2ε1

0 0 λ5ε1 − κ
2ε2

λ4ε2 − κ
2ε1 λ5ε1 − κ

2ε2 0

 , (23)
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M2
2 =


2λ1ε

2
2 λ6ε1ε2 0

λ6ε1ε2 2λ2ε
2
1 0

0 0 κ
2ε1ε2

 , (24)

with ε1 =
vρ
vχ

≪ 1 and ε2 =
vη
vχ

≪ 1. By straightforwardly applying standard perturbation theory up to

the order of ε21 and ε22, we derive the following analytical expressions for the masses:

m2
h ≈ 2

v2SM
(λ1v

4
η + λ2v

4
ρ + λ6v

2
ηv

2
ρ)−

1

2λ3v2SM

(
λ4v

2
η + λ5v

2
ρ −

λ15vηvρ
vχ

)2

, (25)

m2
H ≈

λ15v
2
SMvχ

2vηvρ
+

2v2ηv
2
ρ

v2SM
(λ1 + λ2 − λ6)

+
vηvρ

[
2 (λ4 − λ5) vηvρvχ + λ15

(
v2η − v2ρ

)]2
2v2SMvχ

(
λ15v2SM − 4λ3vηvρvχ

) , (26)

m2
H′ ≈ 2λ3v

2
χ +

λ15vηvρ
2vχ

−
λ2
4λ15v

4
ηv

2
χ

A
−

λ2
5λ15v

4
ρv

2
χ

A

+
v3ηvρvχ

[
4λ3λ

2
4v

2
χ + (λ3 + 2λ4)λ

2
15

]
A

+
vηv

3
ρvχ

[
4λ3λ

2
5v

2
χ + (λ3 + 2λ5)λ

2
15

]
A

−
λ15v

2
ηv

2
ρ

[
(λ4λ5 + 2λ3λ4 + 2λ3λ5) 2v

2
χ + λ2

15

]
A

, (27)

where A is defined as

A = 2λ3v
2
χ(4λ3vηvρvχ − λ15v

2
SM).

These approximate expressions in eqs. (25)-(27) exhibit only a 3% relative error when compared to

the exact masses in a numerical analysis, which is sufficient for our purposes. Additionally, note that

mH′ > mH > mh due to the hierarchy between the vacuum expectation values and λ3 > λ15/vχ.

Another important point is that, at this level of approximation, the SM-like Higgs h and H are given

by

h = cos θ (Re ρ02) + sin θ (Re η01), (28)

H = − sin θ (Re ρ02) + cos θ (Re η01), (29)

where sin θ = vη/vSM and cos θ = vρ/vSM. This implies that the coupling between h and the SM leptons,

originating from Y′
aa′LaLρea′R in eq. (8), can be expressed, after rewriting the symmetry eigenstates Re ρ02
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and Re η01 in terms of the mass eigenstates h and H, as

Lρ ⊃ cos θ
h

vρ
(meee+mµµµ+mτττ)

⊃ vSM cos θ

vρ

h

vSM
(meee+mµµµ+mτττ)

⊃ h

vSM
(meee+mµµµ+mτττ) . (30)

Therefore, we can conclude that the h scalar actually behaves, at this level of the approximation, as the

SM Higgs.

Finally, additional constraints on the λi couplings can be derived from the positivity of the squared

scalar masses in eqs. (17)-(20) and from the lower bound obtained in the search for charged scalars which

defines mH± > 155 GeV [64]. This information allows us to establish lower bounds for λ7, λ8 and λ9,

λ7 ≥ −λ15vρ
vηvχ

, λ8 ≥
2m2

H±

v2ρ + v2χ
− λ15vη

vρvχ
, λ9 ≥

2m2
H±

v2SM
− λ15vχ

vηvρ
. (31)

Regarding the quark sector, the exact mass matrices are

Mu =
1√
2



β1vη β2vη β3vη 0

α21vρ α22vρ α23vρ 0

α31vρ α32vρ α33vρ 0

0 0 0 γ4vχ


, Md =

1√
2



α1vρ α2vρ α3vρ 0 0

β21vη β22vη β23vη 0 0

β31vη β32vη β33vη 0 0

0 0 0 γ24vχ 0

0 0 0 0 γ35vχ


.

Observe that the 3 × 3 sub-matrix pertains to the SM quark sector in both cases, whereas the exotic

quarks, within the lower sub-matrix, are diagonal due to Z2 symmetry. In a general context, determining

α and β angles involves considering quark masses and their mixings in concordance with experimental

data, specifically the measured masses and VCKM angles. For the sake of completeness, we provide these

values below obtained from ref. [58]

mu = 2.16 +0.49
−0.26 MeV, md = 4.67 +0.48

−0.17 MeV, ms = 93.4 +8.6
−3.4 MeV, (32)

mc = 1.27± 0.02 GeV, mb = 4.18+0.03
−0.02 GeV, mt = 172.69± 0.30 GeV (33)

θ12 = 13.00◦ ± 0.04◦, θ23 = 2.40◦+0.05◦

−0.04◦, θ13 = 0.211◦ ± 0.006◦, (34)

δ = 65.5◦ ± 1.5◦. (35)



12

As evident from eqs. (34)-(35), the mixing angles are small, implying an approximate equality between

mass and symmetry states. Consequently, in this work, we assume that the matrices are diagonal. Notably,

the relatively large mass of the top quark justifies the consideration of its Yukawa coupling as the only one

significant within the SM quark sector, as it is common practice. A similar scenario happens in the SM

lepton sector, i.e. there are no leptonic Yukawa couplings that can significantly modify the renormalization

group equations.

After analyzing the mass spectrum of the model, we can now proceed to the study of the stability of

the scalar potential at the one-loop level, which we will undertake in next section.

IV. VACUUM STABILITY AT ONE-LOOP LEVEL

To investigate the stability of the model at the one-loop level, it is important to revisit the tree level

analysis, namely the classical vacuum stability. In the study presented in ref. [48], classical conditions to

guarantee the lower bound of the scalar potential were derived using the method of orbit space along with

the copositivity conditions, as detailed in refs. [32–34]. In summary, this method involves formulating

invariants as functions of the fields and their norms, represented by the orbit space parameters θ =

fijklϕ
∗
i ϕjϕ

∗
kϕl

|ϕ∗
aϕa|2 , where a sum over repeated indices is implied. Therefore, all the requisite information to

determine the potential minima is encapsulated within these parameters. Consequently, to determine the

scalar potential minima for all possible directions in the field space, especially in the large field limit, it

suffices to focus on the quartic terms, which is

V4 = λ1|η|4 + λ2|ρ|4 + λ3|χ|4 + (λ4 + λ7θ1 + |λ10|θ4)|η|2|χ|2

+ (λ5 + λ8θ2)|ρ|2|χ|2 + (λ6 + λ9θ3)|η|2|ρ|2, (36)

where the orbit space parameters are

θ1(η̂, χ̂) = χ̂∗
j η̂j η̂

∗
i χ̂i = |θ1|, θ2(ρ̂, χ̂) = χ̂∗

j ρ̂j ρ̂
∗
i χ̂i = |θ2|, (37)

θ3(η̂, ρ̂) = η̂∗i ρ̂iρ̂
∗
j η̂j = |θ3|, θ4(η̂, χ̂) = 2|θ1| cosωθ1 = −2|θ1|. (38)

Note that for θ4 we used ωθ1 = π, which is the correct value for the vacuum. One can think of the θ

frontier as a cube with edge length equal to one. However, as pointed out in [48], the θ frontier is given
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by

0 ≤ |θ1| ≤ 1, 0 ≤ |θ2| ≤ 1,

max
[
0,

√
|θ1||θ2| −

√
(1− |θ1|) (1− |θ2|)

]2
≤ |θ3| ≤

[√
|θ1||θ2|+

√
(1− |θ1|) (1− |θ2|)

]2
. (39)

Notice that V4 can be expressed in a biquadratic form involving the norms of the fields, represented as

hTΛh, where hT = (|η|2, |ρ|2, |χ|2) ≥ 0 and, the matrix Λ is

Λ =


λ1 (λ6 + λ9θ3)/2 (λ4 + λ7θ1 − 2λ10θ1)/2

⋆ λ2 (λ5 + λ8θ2)/2

⋆ ⋆ λ3

 . (40)

Therefore, the scalar potential is bounded from below, if the symmetric matrix Λ is strictly copositive. The

use of strong stability requirement, V4 > 0, is essential to accommodate the λ15 term, as the requirement

in the marginal sense, V ≥ 0, forbids cubic terms.

By applying the copositivity conditions to the Λ matrix2, one determines seventeen inequalities that

serve to constrain the allowed values of λi couplings,

λ1 > 0, λ2 > 0, λ3 > 0, (41)

λ4 + 2
√
λ1λ3 > 0, λ4 + λ7 − 2|λ10|+ 2

√
λ1λ3 > 0, (42)

λ5 + 2
√

λ2λ3 > 0, λ5 + λ8 + 2
√
λ2λ3 > 0, (43)

λ6 + 2
√
λ1λ2 > 0, λ6 + λ9 + 2

√
λ1λ2 > 0, (44)

C1

√
λ2 + C2

√
λ1 + C3

√
λ3 + 2

√
λ1λ2λ3 +

√
C1C2C3 > 0, (45)

where C1 = {λ4, λ4 + λ7 − 2|λ10|}, C2 = {λ5, λ5 + λ8}, C3 = {λ6, λ6 + λ9}, C1 = C1 + 2
√
λ1λ3,

C2 = C2 + 2
√
λ2λ3 and C3 = C3 + 2

√
λ1λ2.

Now, our attention shifts to the examination of model stability at the one-loop level. It is well-

established that, at this order, numerous interactions not present in the original Lagrangian may manifest,

giving rise to substantial modifications in the stability characteristics of the model. Not only that, but at

one-loop level, the parameters acquire an energy scale-dependence, as a consequence of the renormalization

procedure, and the parameters are referred to as running couplings. This procedure generates first order

differential equations known as Renormalization Group Equations, or RGE, for short. It could tell us how

the parameters change, when a change in scale is made.

2 The completed calculation and details can be see in [48].
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For models like the SM and extensions, such as 331 models, it is not an easy task to determine

and solve the RGE, due to the large number of Feynman diagrams associated to the large number of

parameters. Fortunately, there are numerous softwares to compute these one loop diagrams and the RGE,

see for instance ref. [49, 65, 66]. In our analysis, we have used RGBeta [49]. This package can provide

calculations up to four-loop order for the gauge couplings and up to the three-loop order for the remaining

parameters. Nevertheless, for the current work, a calculation at the one-loop level is more than sufficient

to illustrate the primary behavior of the model at the quantum level.

The renormalization group equations take on a generic form at the one-loop level, expressed as dX
dt ≡

βX/(4π)2 (where t is a real parameter defined as t = logµ/µ0, and in this work, we use µ0 = mZ), with X

representing a generic coupling. Using RGBeta, we derive the following expressions for the β-functions:

βgN =
26

3
g3N , βgL = −13

2
g3L, βg3 = −5g33, (46)

βα33 = α33

(
−4

3
g2N − 4g2L − 8g23 + 5α2

33 +
1

2
γ235

)
, (47)

βγ4 = γ4

(
−5

3
g2N − 4g2L − 8g23 + 5γ24 + 3γ224 + 3γ235

)
(48)

βγ24 = γ24

(
−1

3
g2N − 4g2L − 8g23 + 3γ24 + 5γ224 + 3γ235

)
, (49)

βγ35 = γ35

(
−1

3
g2N − 4g2L − 8g23 +

1

2
α2
33 + 3γ24 + 3γ224 + 5γ235

)
, (50)

βλ1 =
2

27
g4N +

4

9
g2Ng2L +

13

6
g4L −

(
4

3
g2N + 16g2L

)
λ1 + 28λ2

1 + 4λ2
10

+ 3λ2
4 + 3λ2

6 + 2λ4λ7 + λ2
7 + 2λ6λ9 + λ2

9, (51)

βλ2 =
32

27
g4N +

16

9
g2Ng2L +

13

6
g4L −

(
16

3
g2N + 16g2L

)
λ2 + 28λ2

2 + 3λ2
5

+ 3λ2
6 + 2λ5λ8 + λ2

8 + 2λ6λ9 + λ2
9 − 6α4

33 + 12α2
33λ2, (52)

βλ3 =
2

27
g4N +

4

9
g2Ng2L +

13

6
g4L −

(
4

3
g2N + 16g2L

)
λ3 + 28λ2

3 + 3λ2
4

+ 3λ2
5 + 2λ4λ7 + λ2

7 + 2λ5λ8 + λ2
8 − 6γ44 − 6γ424 − 6γ435

+ 12
(
γ24 + γ224 + γ235

)
λ3 + 4λ2

10, (53)
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βλ4 =
4

27
g4N − 4

9
g2Ng2L +

11

6
g4L −

(
4

3
g2N + 16g2L

)
λ4 + 8λ2

10 + 16λ1λ4

+ 16λ3λ4 + 4λ2
4 + 6λ5λ6 + 4λ1λ7 + 4λ3λ7 + 2λ2

7 + 2λ6λ8

+ 2λ5λ9 + 6
(
γ24 + γ224 + γ235

)
λ4, (54)

βλ5 =
16

27
g4N +

8

9
g2Ng2L +

11

6
g4L −

(
10

3
g2N + 16g2L

)
λ5 + λ2λ5 + 16λ3λ5

+ 4λ2
5 + 6λ4λ6 + 2λ6λ7 + 4λ2λ8 + 4λ3λ8 + 2λ2

8 + 2λ4λ9

+ 6
(
α2
33 + γ24 + γ224 + γ235

)
λ5, (55)

βλ6 =
16

27
g4N +

8

9
g2Ng2L +

11

6
g4L −

(
10

3
g2N + 16g2L

)
λ6 + 6λ4λ5 + 16λ1λ6

+ 16λ2λ6 + 4λ2
6 + 2λ5λ7 + 2λ4λ8 + 4λ1λ9 + 4λ2λ9 + 2λ2

9 + 6α2
33λ6, (56)

βλ7 =
4

3
g2Ng2L +

5

2
g4L −

(
4

2
g2N + 16g2L

)
λ7 + 40λ+

104λ1λ7 + 4λ3λ7

+ 8λ4λ7 + 6λ2
7 + 2λ8λ9 + 6

(
γ24 + γ224 + γ235

)
λ7, (57)

βλ8 =− 8

3
g2Ng2L +

5

2
g4L −

(
10

3
g2N + 16g2L

)
λ8 + 4λ2λ8 + 4λ3λ8 + 8λ5λ8

+ 6λ2
8 + 2λ7λ9 + 6

(
α2
33 + γ24 + γ224 + γ235

)
λ8 − 12γ235α

2
33, (58)

βλ9 =− 8

3
g2Ng2L +

5

2
g2L −

(
10

3
g2N + 16g2L

)
λ9 + 2λ7λ8 + 4λ1λ9 + 4λ2λ9

+ 8λ6λ9 + 6λ2
9 + 6α2

33λ9, (59)

βλ10 =λ10

[
−4

3
g2N − 16g2L + 4λ3 + 8λ4 + 4λ1 + 16λ7 + 6

(
γ24 + γ224 + γ235

)]
. (60)

βλ15 = λ15[−2g2N − 12g2L + 3(γ224 + γ225 + γ24 + α2
33) + 2(λ4 + λ5 + λ6 − λ7 − λ8 − λ9)] (61)

As discussed in the previous section, when we adopt λ10 = 0, a new symmetry emerges. This can also be

seen from eq. (60), which vanishes for this choice. Notice that a similar situation occurs for λ15, which is

a U(1)PQ symmetry studied in [54], of which the well-known Z2 symmetry is a discrete subgroup.
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Now, we focus on the issue of the loss of perturbativity in the effective potential at the one-loop

level. To do this, let us recall that the effective potential contains logarithmic terms of the ratios of the

mass eigenvalues to the renormalization scale. In other words, the effective potential at one-loop level is

generically written as:

Veff(µ, λ, ϕ) = V (λ, ϕ) +
ℏ

64π2

∑
i

nim
4
i (λ, ϕ)

(
ln

m2
i (λ, ϕ)

µ2
+ ζi

)
, (62)

where ℏ indicates the one-loop level. The i index runs over all particle species. The ni is the number

of degrees of freedom associated to the field, and mi is its mass eigenvalue. In addition, ζi is a constant

that depends on the renormalization scheme, having different values depending on the nature of the field.

Moreover, we are considering λ and ϕ as a collection of quartic couplings and fields, respectively.

In order to maintain perturbativity, the mass scales can not be very different when the energy scale µ

increases, since the large logarithms would spoil perturbativity. However, as we have seen in the previous

section, the masses of the SM sector have very distinct values to those of the new particles arising from the

economical 331 model. This may create a significant problem related to the perturbativity in the current

case. For this reason, we use the method in ref. [40] which improves the effective potential using a single

renormalization scale. The key point of this method is to choose a renormalization scale µ = µ∗ where µ∗

is on the hypersurface where the one-loop contributions to the effective potential vanishes, that is, that the

effective potential in eq. (62) is equal to the classical potential evaluated in the running coupling λ(µ∗),

Veff.(µ
∗, λ, ϕ) = V (λ(µ∗), ϕ(µ∗)). (63)

This choice is motivated by the fact that, while it is not possible to individually suppress all logarithms

with a single renormalization scale, it is possible to suppress them altogether when evaluating on this

hypersurface. One important consequence of this method is the ability to use classical stability conditions

to the improved effective potential. In practice, by solving the RGEs, we can substitute the λ on the

tree-level stability criteria, eqs. (41)-(45), by their respective running couplings λ(µ∗).

With everything settled, our goal is to identify constraints on the masses of the new particles introduced

by the model. Specifically, we choose to show bounds as functions of the exotic quark mass and the heaviest

scalar, mH′ , since these particles gain masses predominantly at the 331 scale. Additionally, we aim to

uncover the allowed values among the quartic couplings in the parameter space that ensure the stability of

the scalar potential at high energies. In order to achieve this, one needs to solve the eighteen RGEs, which

are non-linear and coupled, considering a set of initial conditions suitable for the model parameters, which
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are capable of evolving the entire parameter space up to the Planck scale ≈ 1019 GeV. Certain parameters of

the economical 331 model have already been determined in Sec. III through additional constraints. These

constraints include, for example, ensuring the positivity of squared masses for the scalars, considering

the Z − Z ′ mixing, and taking into account searches for new charged gauge bosons and charged scalars.

However, other initial parameters, especially the scalar couplings λs, are less restricted and need to be

chosen through trial and error, ensuring that they at least satisfy the constraints in eqs. (41)-(45). A set

of parameters that satisfies all the aforementioned constraints and allows the economical 331 model to

have stable regions up to the Planck scale is as follows:

gN = 0.374, gL = 0.664, g3 = 1.22, (64)

vη = 197.52 GeV, vρ = 147 GeV, vχ = 18.1 TeV, (65)

λ1 = 0.1, λ2 = 0.15, λ4 = 0.032, λ5 = −0.055, λ7 = 0, (66)

λ8 = 0, λ9 = −0.5, λ10 = 0, λ15 = 25 GeV, α33 = 0.5, (67)

where g3 =
√
4παs, with αs = 0.1180±0.009 [58]. Furthermore, by using the relation tan θW = −

√
3 sin θX ,

where θX is the rotation angle associated to the first symmetry breaking, we find θX = −18◦. With this

value, we are able to use the relation e = gN cos θX cos θW , where e is the elementary charge associated

with the U(1)Q symmetry, in order to obtain gN = 0.374.

The exotic Yukawa couplings (which we assume to be equal in this work because we have no a priori

reason to make the exotic quark masses, mqi , different) and λ3 are variables in this analysis, since we use

them to change the exotic quark mass and the heaviest scalar, mH′ . As a consequence of this parametriza-

tion, we choose the λ6 coupling to become a function of λ3 in order to fix the Higgs mass in eq. (25) to be

the measured value. Hence, by applying the tree-level stability criteria, from eqs. (41)-(45), up to Planck

scale ≈ 1019 GeV, we obtain the region in the mq −mH′ plane, shown in Fig. 2.

To understand the boundaries shown in Fig. 2, we need to resort to the RGEs, more specifically to

the βλ3 function in eq. (53). There are negative contributions coming from the quartic terms of the exotic

Yukawa quark couplings, i.e. γ44 , γ424, and γ435 terms, and positive contributions coming from λ3 and λ2
3

terms. As mH′ increases, λ3 also increases due to its natural positive contribution. However, as the exotic

Yukawa quark couplings increase, mq increases, leading to a decrease in the βλ3 function.

This intricate interplay between the couplings persists until the scalar potential becomes unstable,

reaching a maximum value of approximately 14 TeV for mH′ and 11 TeV for mq. The relation between

these couplings is further illustrated in Fig. 3, where the behaviour of mq as function of log(µ/GeV) is
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Figure 2. The economical 331 model vacuum stability for the allowed values of mH′ and mq. The non-perturbativity

region is defined by values for which λi > 4π. The border (black line) between the three regions occurs on the

Planck scale 1019 GeV. In contrast to the non-perturbative scenario, the stability-instability border exhibits a more

rapid convergence of scales. Notably, the non-perturbative boundary diminishes with decreasing scale.

presented. It is clear that for different values of mH′ , mq reaches different maximum values. For instance,

when mH′ = 12 TeV, the maximum value of mq is approximately 11 TeV, maintaining it constant for

energy scales >∼ 108 GeV, a detail that may not be immediately apparent from Fig. 2.

Another way to utilize vacuum stability and ensure perturbativity up to the Planck scale to constrain

the model is to directly examine the couplings. This approach is particularly relevant as one of these

parameters can reflect the intensity of a portal between the SM sector and the new 331 sector. An example

of this is observed in dark matter studies through the Higgs portal within the real singlet scalar model

[67–69]. With this motivation in mind, we conducted an analysis of the parameter space defined by λ4−λ5

and λ4 − λ7 to impose additional constraints on the allowed region within this domain. In our studies,

we observed that if the masses of exotic quarks are below 9 TeV, the one-loop region depicted is nearly

identical to the classical one. Therefore, for this particular analysis, we set mq = 9 TeV. Furthermore, in

this scenario, the dependence of mh on λ4 demands the variation of λ6, similar to the approach adopted

previously for Fig. 2. Consequently, stability is not observed at the Planck scale but only for energy values
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Figure 3. The maximum mass value for the exotic quark masses mq as function of mH′ and the energy scale µ.

Note that as µ approaches to mZ , which is the renormalization subtraction point, mq has arbitrarily large values.

This is to be expected, since the vacuum is classically stable regardless of mq. Hence, as the effective couplings

begin to evolve, so does mq, eventually approaching a stable value.
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Figure 4. The dashed line represents the classical region frontier. The lighter green region depicts the allowed values

to the potential be stable up to 1012 GeV, while the darker green one the potential is stable up to 1016 GeV. Note

that the stability up to Planck scale, 1019 GeV, is not possible within this scenario.

below 1016 GeV. Another interesting feature of our analysis is the constraint imposed on λ7. In a prior

study in ref. [48], the authors established the maximum and minimum allowed values on the λ4−λ7 plane

in the classical case. Our findings indicate that, to uphold the positivity of mass square at the one-loop
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level, λ7 must be greater than or equal to zero, otherwise, M2
H0

and M2
H3

assume a negative value. It is

also interesting to compare the vacuum stability region of the economical 331 model at the one-loop level

to the classical region obtained in ref. [48]. Fig. 4 clearly shows a significant reduction in the vacuum

stability region in the quantum case.

V. CONCLUSIONS

In this work, we study vacuum stability at one-loop of the economical 331 model by resumming the

renormalization group equations (RGE) into the tree level potential which are obtained from the Mathe-

matica package RGEBeta [49]. We apply the method of single scale renormalization for multiscale effective

potential developed in [40], allowing us to integrate the RGE and substitute the solutions into the tree

level stability criteria determined in ref. [48]. The method allows any boundaries conditions, as long as the

one loop potential vanishes on it. Therefore, one may choose arbitrary conditions for the couplings and

vary them on a grid, requiring stability up to any scale. For our purposes, the Planck scale is more than

enough, in order to compare to the SM or its extensions. The latest fit data for new Higgs-like bosons,

charged scalars, charged and neutral gauge bosons are used to set constraints on the model parameters,

namely, the symmetry breaking scale vχ, for which we determine a minimum value of ≈ 18.1 TeV. We also

assume a zero mixing angle between Z − Z ′ allowing us to determine the values of vη, vρ.

In the scalar sector, we assumed a global U(1) symmetry emerging when setting the λ10 coupling to zero.

Similar observations have also been noted in the two Higgs doublet model [70, 71]. For the CP-even scalars,

we derived more precise expressions for the scalar masses than those shown in [48]. These expressions

were obtained by applying traditional non-degenerate perturbation theory, and their formulations align

with those in [72] for the first few terms.

We select an appropriate set of parameters for the λi couplings, perform numerical solutions of the

RGE up to the Planck scale, and thereby unravel, for the first time, intricate relations between the mass of

the heaviest scalar, mH′ , and the masses of the exotic quarks, mq, ensuring the stability of the economical

331 model up to the Planck scale, shown in Fig. 2. These regions looks similar to the one shown in [13],

depicting Higgs-top mass plane in the SM context. Remarkably, a very interesting limit for the heaviest

exotic quark mass appears in Fig. 2, and more detailed in Fig. 3. The first figure illustrates the maximum

values of mq, mH′ where the model remains stable and perturbative. The latter figure shows an interesting

phenomenon: the maximum value for the exotic quark mass stabilizes way before the Planck scale. A
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similar situation occurs in the analysis of the quark top mass in ref. [13], stabilizing near 1012 GeV, whereas

in our case the upper limit on the heaviest exotic quark stabilizes near 108 GeV. Hence, we have determined

an upper bound for the heaviest quark mass within the model, which is not so distant from future LHC

runs, serving as bounds to be searched.

Finally, we explore interesting relations between the λi couplings emerging from the vacuum stability

and the perturbativity conditions. In particular, we choose to illustrate the different regions of stability in

the λ4−λ5 and λ4−λ7 planes, see Fig. 4. Although, at a first glance, these λi parameters are not directly

related to a physical observable, the allowed region from this figure is useful to constrain the large set of

parameters of the economical 331 model.
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