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Abstract

This study presents a mathematical model for optimal vaccination strategies in interconnected metropoli-
tan areas, considering commuting patterns. It is a compartmental model with a vaccination rate for each city,
acting as a control function. The commuting patterns are incorporated through a weighted adjacency matrix
and a parameter that selects day and night periods. The optimal control problem is formulated to minimize
a functional cost that balances the number of hospitalizations and vaccines, including restrictions of a weekly
availability cap and an application capacity of vaccines per unit of time. The key findings of this work are
bounds for the basic reproduction number, particularly in the case of a metropolitan area, and the study of
the optimal control problem. Theoretical analysis and numerical simulations provide insights into disease
dynamics and the effectiveness of control measures. The research highlights the importance of prioritizing
vaccination in the capital to better control the disease spread, as we depicted in our numerical simulations.
This model serves as a tool to improve resource allocation in epidemic control across metropolitan regions.

Keywords: Optimal Control; Epidemiology; Vaccination Protocols; Commuting Patterns; Metropolitan
Areas.

1 Introduction

Metropolitan areas consist of a densely populated urban core, such as a capital city, along with its surrounding
territories that share social, economic, and infrastructural ties. One defining characteristic of these regions is
commuting: the routine movement of individuals between their city of residence and the city of the workplace.
For instance, in the Rio de Janeiro Metropolitan Area, over two million people commute daily, in a 13-million
inhabitants region [34]. Such mobility creates a complex network of interconnected cities, where the links
are weighted by the flux of people. The recent global health outbreaks, such as the Zika virus epidemic and
the COVID-19 pandemic, have shown how these dense and interconnected urban areas can amplify disease
transmissibility. Therefore, devising strategies that efficiently reduce the impact of outbreaks is essential, and
mathematical modeling serves as an indispensable tool to perform this rigorously.

Mathematical Epidemiology has been instrumental in understanding how social interactions and human
mobility influence outbreaks. The main tool in this field is compartmental models, which divide the population
into groups based on their disease status (e.g., susceptible, infectious, recovered) with differential equations
representing the dynamics. They can integrate various real-life factors, including age, spatial effects, etc. The
inclusion of spatial effects is particularly relevant as the transmission of infectious diseases often depends on
proximity and movement patterns of individuals. The spatial aspect can be approached in either continuous or
discrete ways. The latter, known as the patch or metapopulation model, first divides the population into distinct
subpopulations, then further into compartments, resulting in a large set of equations, one for each compartment.
Introduced in ecology to study competitive species [19], this approach gained prominence in epidemiology after
the work of Rvachev and Longini Jr. (1985), who used the airplane network to predict the spread of influenza,
focusing on the 1968 Hong Kong epidemic [31].

Building on this foundational work, Sattenspiel and Dietz (1995) and Arino and Van den Driessche (2003)
discussed the integration of mobility between regions into epidemic models, with the latter arguing in favor
of space-discrete models and obtaining inequalities for the basic reproduction number R0 [1, 32]. Extending
the approaches into epidemic propagation, Takeuchi et al. (2006) analyzed the impact of transport-related
infections on the disease transmission, being followed by Liu et al. [21, 22]. Considering the structure of the
graph associated with the city’s connectivity, Colizza and Vespignani [9, 10] calculated a global threshold for
disease invasion and provided extensive Monte Carlo simulations to verify their findings. They also analyzed
the effect of the topology of the graph on the phase diagram in metapopulation models. The works of Pastor-
Satorras et al. [27, 28, 29] were also prominent in understanding infectious diseases in networks of individuals.
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We refer the reader to [41] to see the combination of metapopulation and agent-based models for two cities.
Stolerman et al. (2015) introduced an SIR-network model to understand the impact of infection rates on R0,
inferring that nodes with higher infection rates are the most important drivers of outbreaks [36].

To effectively tame the epidemic’s outbreak, optimal control theory has shown to be useful for theoretical
basis and practical solutions [7, 18, 35]. In optimal control formulations, one usually aims at minimizing the
number of infections, deaths, or other epidemic-related quantity, at the expense of some control measure, such as
quarantine, testing, treatment, and/or vaccination. Several works came in this sense, such as Behncke (2000) [5]
who proved that the optimal strategy is to vaccinate as many people as possible as quickly as possible, subject
to the resources. See also [13, 24] for other related references. The interplay of optimal control theory with
metapopulation models in epidemiology has contributions from Ögren and Martin (2002), Asano et al. (2008),
Rowthorn et al. (2009), with increasing traction after the COVID-19 pandemic. The focus of these studies was
to improve vaccination strategies, especially in urbanized, mobile populations, and provide solutions tailored to
economic constraints and quarantined settings [2, 26, 30].

However, most optimal control applications in epidemiology involved only simple constraints, while the
interest in including real-world restrictions has grown. Hansen and Day (2011) notably included resource
constraints in their SIR models. These advancements in constrained optimal control problems were studied by
Biswas et al. (2014) and De Pinho et al. (2015). The COVID-19 pandemic accelerated these developments, with
research like that of Avram et al. (2022) integrating constraints to simulate the capacity of intensive care units.
Lemaitre et al. (2022) [17] developed a method that combines distributed direct multiple shooting, automatic
differentiation, and large-scale nonlinear programming to optimally allocate COVID-19 vaccines, considering
both supply and logistic constraints. When applying their approach to cities in Italy, they used a SEPIAHQRD-
V model. They specified that individuals in certain compartments do not commute and accounted for mobility
fluxes and infection forces that depend on each region. Another work that emerged to deal with coronavirus
was the Robot Dance platform, developed by Nonato et al. (2022). This platform is a computational tool aiding
policymakers in curating response strategies tailored to regional nuances, intercity commuting mobility, and
hospital capacities, applied to the state of São Paulo, Brazil [25].

In this work, we delve into the intricate dynamics of epidemic spread in metropolitan areas, emphasizing
the role of commuting patterns and vaccination strategies. We derive tight bounds for the basic reproduction
number, for both a general network of cities and one associated with a metropolitan area. Utilizing optimal
control theory, we devise efficient strategies for disease control in metropolitan areas, which we illustrate through
a series of numerical experiments that corroborate our findings.

1.1 Contributions

In this work, we study a mathematical model that combines commuting and vaccination in a constrained
optimal control problem to manage the propagation of infectious diseases within metropolitan areas, provid-
ing a more realistic representation of disease transmission and an efficient strategy to control it. Our main
contributions are three-fold:

• Analysis of a mathematical model for epidemics that considers commuting dynamics in metropolitan areas
and derivation of upper and lower bounds for the basic reproduction number.

• Formulation of a constrained control-affine optimization problem for finding optimal vaccination strategies
in a network of cities.

• Extensive numerical simulations, illustrating various situations and validating the theoretical results.

2 Methods

The formulation of the vaccination model and the associated optimal control problem is composed of three
elements: (I) the epidemiological model that combines a compartmental SIR model and commuting patterns
to describe the transmission dynamics; (II) an objective function to be minimized, which contemplates the
number of infections and applied vaccines; (III) a set of constraints on the state and control variables that
ensure resource limitations for the production, distribution, and application of the vaccines.

2.1 Epidemiological modeling

Consider a directed graph G = (V,E), where the set of nodes V corresponds to K interconnected cities, and
the set of ordered pairs E indicates connectivity between cities. Each link (i, j) has a weight pij denoting the
fraction of the population of city i that commutes daily to the city j. This forms a weighted adjacency matrix
[P ]ij = pij , with P being a right stochastic matrix, e.g. the elements of each row sum up 1. Each city i has a
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total population ni divided into three compartments representing the proportion of susceptible (Si), infectious
(Ii), and recovered (Ri) individuals, satisfying:

Si(t) + Ii(t) +Ri(t) = 1,

for all t ≥ 0 and all i = 1, . . . ,K.
In this model, we incorporate a birth rate µ and a natural death rate µ for each compartment in each city.

The rates are chosen such that the total population of each city remains constant over time. We also introduce
α, a daily periodic function, such that α(t) = 0 during daytime and α(t) = 1 at night. For instance, a realistic
setting for α could be α(t) = 0 for t ∈ (k + 1/4, k + 3/4), and α(t) = 1 for t /∈ (k + 1/4, k + 3/4), for each day
k = 0, 1, . . . , T . During nighttime, the evolution of the system is not influenced by mobility, leading to the SIR
model:

dSi

dt
(t) = µ− βiSiIi − µSi,

dIi
dt

(t) = βiSiIi − γIi − µIi,

dRi

dt
(t) = γIi − µRi,

where βi represents city i’s infection rate, which is directly affected by the population density and the probability
of infection given contact, and γ−1 refers to the average infection period.

During the day, commuting changes the infection dynamics. We model this feature using the same approach
as Nonato et al. (2022) [25]. The effective population in city i during working hours is given by

P eff
i =

K∑

j=1

pjinj ,

which sums over the parcels of the populations that travel from any city j to i. The proportion of susceptible
workers from city i that get exposed to the infectious individuals in city j is pijSiI

eff
j , where Ieffj is the effective

proportion of infectious people in city j during the day and it is defined by

Ieffj =
1

P eff
j

K∑

k=1

pkjIknk.

The complete model is

dSi

dt
(t) = µ− α(t)βiSiIi − (1− α(t))Si

K∑

j=1

βjpijI
eff
j − µSi,

dIi
dt

(t) = α(t)βiSiIi + (1− α(t))Si

K∑

j=1

βjpijI
eff
j − γIi − µIi,

dRi

dt
(t) = γIi − µRi,

(1)

for i = 1, . . . ,K, subject to the initial conditions Si(0) = Si0, Ii(0) = Ii0 and Ri(0) = Ri0, for i = 1, . . . , k.
We use the following vector notations S(t) = (S1(t), . . . , SK(t)) ∈ RK , I(t) = (I1(t), . . . , IK(t)) ∈ RK and
R(t) = (R1(t), . . . , RK(t)) ∈ RK . Figure 1 represents this model graphically.

Remark 2.1. In this study, we do not consider disease-specific mortality. This decision is based on two obser-
vations: firstly, including an additional mortality rate due to the disease does not change the disease dynamics.
Secondly, our primary focus lies in analyzing the impact of vaccination strategies during the initial months of the
epidemic, a period where the relative impact of disease-specific mortality on the outcomes is usually minimal.
Our main objective is to control the rate of new infections, which is not influenced by the mortality rate.

It can be proved that

C := {X ∈ RK×3
≥0 : Xi1 +Xi2 +Xi3 = 1, for i = 1, . . . ,K}

is invariant under system (1). The complete statement and its proof are in Appendix B.

2.2 The basic reproduction number

Following the method developed by Van den Driessche and Watmough [39], we derive the basic reproduction
number using the formula R0 = ρ(FV −1). Here F and V are matrices associated with the Jacobian of the
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Si Ii Ri

βiIi γ

µ

µ µ µ

Si Ii Ri

∑K
j=1 βjpijI

eff
j γ

µ

µ µ µ

Night period Day period

α + (1 − α)

Figure 1: Graphical representation of city interactions and the SIR model.
The cities are connected composing a network, pij being the proportion of individuals from city i who work
during the day at j. At night, cities do not interact, and the epidemic follows a standard SIR dynamic. During
the day, some individuals commute, interact with infected individuals in the destination city, and may transport
the infection.
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dynamics at the disease-free equilibrium (DFE). The detailed definitions are included in the Appendix A and the
derivation is given in Subsection A.1. Given the problem’s dimension, we could not obtain an explicit expression
for R0. However, we obtained in Theorem 2.1, Corollary 2.1 and Theorem 2.2 below, sharp inequalities for R0

in terms of simple expressions involving the parameters.
Let Ri

0 be the basic reproduction number of city i if the cities were isolated. This is given by the well-known
formula

Ri
0 =

βi

γ + µ
. (2)

We get the following result, the proof of which is in Appendix B .

Theorem 2.1. The basic reproduction number R0 for system (1) satisfies the following inequalities

min
1≤i≤K

αRi
0 + (1− α)

K∑

k=1

pikRk
0 ≤ R0 ≤ max

1≤i≤K
αRi

0 + (1− α)

K∑

k=1

pikRk
0 . (3)

The inequality in (3) can be written as

min
1≤i≤K

wi ≤ R0 ≤ max
1≤i≤K

wi, where w :=
(αI + (1− α)P )β

γ + µ
∈ RK ,

in which β = (β1, . . . , βK). The matrix αI + (1 − α)P is right stochastic and balances the static state, where
people are in their residence cities, with probability α, and the transition matrix P, that represents commuting,
with probability 1 − α. Therefore, the entry wi represents the expected basic reproduction number for city
i, calculated as the average of Rj

0 values for all cities j, with the weights determined by the probability of
individuals from city i work in city j.

Corollary 2.1. The following inequality holds:

min
1≤i≤K

Ri
0 ≤ R0 ≤ max

1≤i≤K
Ri

0.

In particular, if we consider, without loss of generality, that β1 = max
1≤i≤K

βi, we have that R0 ≤ R1
0.

The proof is in Appendix B.
From now on, unless indicated, we make the following assumption, which summarizes the idea that com-

muting majorly occurs between the capital and the other cities as illustrated by Figure 2.

Figure 2: Version of Figure 1 considering a metropolitan area and Assumption 2.1.
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Assumption 2.1 (Metropolitan area structure). In a metropolitan area, there is a capital, which is a big city with
a higher population density and a larger number of inhabitants, along with other connected cities. We assume
that individuals residing in the capital city both stay and work there, while people in other cities either commute
to the capital or work in their home city. We further enumerate the cities according to their populations in
decreasing order of population size. Consequently, matrix P reduces to the form:

P =




1 0 0 · · · 0
p21 p22 0 · · · 0
p31 0 p33 · · · 0
...

...
...

. . .
...

pK1 0 0 · · · pKK



.

The above assumption adjusts to the reality of several regions. For instance, Figure 3 shows the matrix P of
the Rio de Janeiro metropolitan area through a heatmap. A similar mobility structure is present in the Buenos
Aires metropolitan region [15]. Other patterns of mobility may occur in different regions. For instance, in
Île-de-France, Paris metropolitan area, a portion of individuals from the capital work in the surroundings [11].
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á

M
ar

ic
á
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Figure 3: Transition matrix of the Rio de Janeiro metropolitan area.
A heatmap showing the matrix P in the case of the Rio de Janeiro metropolitan area (mobility data taken
from [34]).

When applying the specific structure of Assumption 2.1 to the dynamics described in equation (1), we derive
a different inequality for the reproductive number R0 (the proof is in Appendix B).

Theorem 2.2 (Inequalities for R0 under Assumption 2.1). The basic reproduction number R0 for system (1)
under Assumption 2.1, satisfies the following inequalities

ξ

γ + µ
≤ R0 ≤ 1

γ + µ

(
ξ + (1− α)

β1

P eff
1

K∑

i=1

nip
2
i1

)
, (4)

where ξ = max
1≤i≤K

αβi + (1− α)piiβi(1− δi1), where δij is the Kronecker function.

Under Assumption 2.1, calculating R0 reduces to a problem of finding the spectral radius of a diagonal plus
a rank-one matrix. As far as we know, there is no closed-form expression for it, and obtaining tighter bounds
is an open question in the field of Matrix Perturbation Theory [20].

Remark 2.2. Higher values of γ correspond to faster recovery rates and lower values of R0. As α balances
day and night periods, when it approaches 1, the night period becomes more relevant, and R0 tends to the
maximum of Ri

0, for i = 1, . . . ,K, meaning that infections in the residence city governed the dynamics. The
parameters βi directly amplify R0. Through numerical experiments, we observed that the highest value among
the βi parameters is the most significant driver (see e.g. Figure 7). Finally, although the individual population
sizes ni do not directly influence eigenvalue behaviors, the ratios ni/n1 offer a subdued effect, predominantly
guided by (1− α) max

1≤i≤K
βi.
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2.3 Vaccination and optimal control problem

We implement vaccination as a control policy by introducing a time-dependent vaccination rate ui in each
city i. We consider that susceptible individuals can receive the vaccine and immediately move to compartment
Ri. Once vaccinated, these individuals no longer contribute to the spread of the disease during the period under
consideration. We could also suppose other sets of hypotheses or model formulations, as we did in [23]. The
introduction of vaccination leads to a modified SIR epidemiological model, to which we add a vaccine counter
Vi, resulting in the following set of equations:

dSi

dt
= µ− αβiSiIi − (1− α)Si

K∑

j=1

βjpijI
eff
j − uiSi − µSi,

dIi
dt

= αβiSiIi + (1− α)Si

K∑

j=1

βjpijI
eff
j − γIi − µIi,

dRi

dt
= uiSi + γIi − µRi,

dVi

dt
= uiSi.

(5)

This framework assumes that infected individuals are recognizable and do not receive the vaccine. This as-
sumption can be challenging in real-life scenarios, but we believe that vaccinating infectious and/or recovered
individuals would not change the qualitative results of this work. In Appendix D we discuss a variant of this
model, considering vaccination in the workplace.

For the control system (5), it can be shown that the set

C = {X ∈ RK×4
≥0 : Xi1 +Xi2 +Xi3 = 1, for i = 1, . . . ,K}

is positively invariant under the flow of system (5), for each measurable function u. For details, see Appendix B.
Following the steps of Subsection A.1, we can calculate the basic reproduction number Rvac

0 for the model
(5) with constant vaccination. Although Rvac

0 does not have a closed-form expression, the vaccination rate
inversely impacts Rvac

0 . The inequality presented in equation (3) of Theorem 2.1 can be adapted for this
context by replacing Ri

0 with a modified version Rvac,i
0 , where

Rvac,i
0 =

µ

µ+ ui
Ri

0 =
µ

µ+ ui

βi

γ + µ
.

Building upon the formulation of the dynamics, we develop an optimal control problem in which we vaccinate
the population of the metropolitan area while considering the cost of vaccination and the cost of hospitalization
of infected individuals. The number of applied doses in city i until time t is

ni

∫ t

0

ui(t)Si(t) dt = niVi(t).

We suppose that a rate rh of infected individuals are hospitalized with a daily unity cost of ch, and we assume
that the unity cost of vaccination is cv. Therefore, we define the cost functional

J [u1, . . . , uK ] :=

K∑

i=1

cvni

∫ T

0

ui(t)Si(t) dt+ chrhni

∫ T

0

Ii(t) dt. (6)

Due to limitations of resources of the health system, a limited number of people can be vaccinated at each time
t, so we impose the (mixed control-state) constraint on the vaccination rate

ui(t)Si(t) ≤ vmax
i , for t ∈ [0, T ] and i = 1, . . . ,K, (7)

which implies the following constraint on the daily cap

∫ d+1

d

ui(t)Si(t) dt ≤ vmax
i , for d = 0, . . . , T − 1.

Through the latter constraint, we indirectly ensure that a proportion of at most q individuals can be immunized
by setting

K∑

i=1

niv
max
i ≤ q

K∑

i=1

ni,
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for some q ∈ (0, 1).
We consider a scenario where cities receive weekly vaccine shipments from a centralized authority. We use

V max
w to denote the number of vaccines to be received at week w = 0, . . . , T/7 − 1. From this, we define the

function of cumulative vaccine shipments by

D(t) :=





w−1∑

n=0

V max
n + V max

w (t− 7w), t ∈ [7w, 7w + 1],

w∑

n=0

V max
n , t ∈ [7w + 1, 7(w + 1)],

for w = 0, 1, . . . , T/7−1 and T a multiple of 7 for simplicity. The function D is piecewise linear non-decreasing.
Note that, to account for the delay in delivering vaccines across cities and healthcare centers, D increases
linearly on the first day of each week, after which it remains constant for the rest of the week. This induces the
following constraint:

K∑

i=1

ni

∫ t

0

ui(t)Si(t) dt =

K∑

i=1

niVi(t) ≤ D(t). (8)

Observe that any unused vaccines can be employed over the subsequent weeks. Figure 4 illustrates an example
of this function.

0 1 7 8 14 15 21 22 28

Time (days)

0

10

20

30

40

50

D
(t

)

Plot of D(t)

Figure 4: Example of the function of delivered vaccines.

Aggregating the dynamics in (5), the cost function in (6), the constraints in (7), (8) and ui ≥ 0, we get the
following optimal control problem with u taken in the set of measurable functions from [0, T ] to RK ,

min

K∑

i=1

cvni

∫ T

0

ui(t)Si(t) dt+ chrhni

∫ T

0

Ii(t) dt,

s.t. Ṡi = µ− αβiSiIi − (1− α)Si

K∑

j=1

βjpijI
eff
j − uiSi − µSi

İi = αβiSiIi + (1− α)Si

K∑

j=1

βjpijI
eff
j − γIi − µIi

Ṙi = uiSi + γIi − µRi

V̇i = uiSi

K∑

i=1

niVi(t) ≤ D(t), a.e. t ∈ [0, T ]

ui(t)Si(t) ≤ vmax
i , a.e. t ∈ [0, T ]

ui(t) ≥ 0, a.e. t ∈ [0, T ]

Si(0) = si0, Ii(0) = ii0, Ri(0) = ri0, Vi(0) = 0.

(9)

Remark 2.3. In most of the studies involving vaccination and optimal control, a quadratic cost on the control
is considered. That assumption guarantees the existence of a solution, stability of numerical methods, and
direct application of Pontryagin’s Maximum Principle to get a feedback expression for the optimal control.
Nevertheless, we believe that a linear cost in this context is a more realistic representation of operational costs,
since it computes the total amount of vaccines or hospitalizations, for instance. In particular, the cost of
vaccination should be linear or concave with respect to the quantity of vaccines; a strongly convex assumption
does not accurately mirror practical aspects.
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3 Results

The core objective of our study is to analyze the effects of different vaccination strategies on the spread of
infectious diseases in a metropolitan region modeled by model (5). We have carried out a series of experiments
that provide a practical platform to evaluate the efficacy of these strategies under controlled conditions. We
start by presenting simulations that delineate the behavior of the basic reproduction number. This is followed
by exploring the impact of constant vaccination rates on the disease dynamics. We then optimize vaccination
strategies, by solving the optimal control problem (9). Lastly, we assess the performance of a practical feedback
solution, which we develop by considering a modified problem.

For solving differential equations, we use the explicit Runge-Kutta method of order 5(4) (‘rk45’), using the
SciPy Python library [40]. For the optimal control solution, we adopt a first discretize, then optimize approach
facilitated by the Gekko Python library [4], which uses IPOPT for non-linear optimization. All experiments
were performed on a Linux PC equipped with an AMD Ryzen 9 5950X processor (16 cores) and 128 GB of
memory. The computer code to reproduce the experiments and implement the proposed models is available
under a license at https://github.com/lucasmoschen/network-controllability.

3.1 Simulations for the basic reproduction number

Before we introduce vaccination, we examine the impact of the parameters on the basic reproduction number
R0, as described in Methods and the bounds for R0 provided by the aforementioned Theorems 2.1 and 2.2. For
all the simulations throughout this article, we fix γ to 1/7, which means that the recovery time from infection
is on average 7 days, and µ = 3.6 · 10−5 to represent approximately the average life expectancy of 75 years.

To open the discussion, we analyze the simpler situation of two cities, where the parameter p21, the proportion
of individuals that reside in city 2 and work in city 1, uniquely determines the transition matrix P . Let us set
n2 = 1 since only the ratio ni/n1 is relevant to R0, not the magnitude. Figure 5 presents the dynamics of the
epidemic in two different scenarios for β, considering a single infected initial individual in the population of the
first city. Notice that higher values of R0 give higher and faster epidemic peaks.

0 100 200 300 400

Time (days)

0.0

0.5

1.0
β1 = 0.3, β2 = 0.2, R0 = 2.09

S1

S2

I1

I2

0 100 200 300 400

Time (days)

β1 = 0.2, β2 = 0.18, R0 = 1.39

S1

S2

I1

I2

Figure 5: Dynamics of the Epidemic in Two Cities.
Epidemic dynamics in two cities under two different scenarios. The settings are α = 0.64, p21 = 0.2 and n1 = 10.
The proportion of susceptible individuals is plotted in blue, and the proportion of infectious individuals in orange.
The larger city is represented by a solid line, while the smaller city is represented by a dashed line.

In Figure 6 we show the level curves of R0 when p21, n1/n2 and α vary. For the chosen parameters β, γ and
µ, we have R1

0 > 1 and R2
0 < 1, which represents a situation for which Corollary 2.1 cannot determine whether

R0 is greater or smaller than 1. Looking at Figure 6, we notice that higher values of α increase the value of R0.
The impact of p21 is nonlinear and complex, but its behavior is similar to a quadratic function in R0. On the
other hand, the impact of p21 and α is small when the population proportion n1/n2 increases. Additionally, see
the histogram of Figure C.21, which illustrates the situation where R1

0 is close to 1.
In Figure 7, we analyze the bounds for R0 provided by Theorem 2.1 and Theorem 2.2. We mainly observe

that R0 is primarily driven by β1, the highest effective transmission rate, while α, p21, and β2 have little impact.
Higher values of α improve the bounds of Theorem 2.2, depicted in orange, mainly due to the term factor of
(1−α) appearing on the right-hand side of (4). However, the fourth graph (where β2 varies) illustrates the fact
that ρ(αB + (1 − α)Λ) remains constant until αβ2 + (1 − α)β2p22 < αβ1, beyond which the upper bound (in
orange dashed line) gets worse.

In the context of multiple cities, we consider a scenario ofK = 5 cities. We first examine five distinct mobility
scenarios: (I) metropolitan area where 10% of the residents of each city work in the capital; (II) metropolitan
area where 40% of each city works in the capital; (III) all cities are interconnected, where 60% of the residents
work in their city, while the remaining are distributed evenly across the other four cities; (IV) a variant of the
metropolitan area where 30% of each city’s residents work in the capital and 10% of the capital’s workforce is
employed in the other cities; (V) no commuting between cities.
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Figure 6: Basic reproduction number as function of α and p21 for two cities.
Contour plot of the values of R0 for different values of α ∈ (0, 1), p21 ∈ (0, 0.9) and n1/n2 = (1, 2, 5, 10)
considering β = (0.4, 0.1).
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Our findings, summarized in Table C.2 and illustrated in Figure 8, reveal that in the capital city – compared
to the other cities – the peak size is higher, the peak day occurs earlier, the outbreak (period between t = 0
and the time at which the proportion of infectious individuals falls below 10−5) lasts less and the attack rate
is larger. Additionally, higher commuting rates correlate with a shorter epidemic span, as scenarios (II) and
(III) exhibit and the capital’s peak day tends to dictate the overall trajectory of the disease spread across the
network. Further, the outcomes of scenarios (II) and (III) are similar, which indicates that depending on the
structure of the network, we may approximate it using the metropolitan hypothesis in Assumption 2.1.
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Figure 8: Simulation results for different structures of the transition matrix.
Comparison of Peak Size (maximum proportion of infectious individuals), Peak Day (day of the peak size),
Duration (time from epidemic onset to the day when the proportion of infectious individuals achieves 10−5),
and Attack Rate (proportion of individuals who contract the disease during 350 days of the epidemic) across
different mobility scenarios. The aggregated data is the weighted average, considering their population size,
from cities 2 to 5. For this experiment, β = (0.4, 0.25, 0.2, 0.15, 0.1), α = 0.64, and the population sizes are
105 ·(50, 10, 10, 1, 1). Lastly, the initial conditions are I1(0) = I2(0) = I3(0) = 10−4 and no recovered individuals.

In Figure 9, we vary the infection rate β. We consider an experiment of four different scenarios in five cities
and depict only three cities to better exhibit the results. When comparing scenarios (I) and (II), both have
R0 greater than 1. However, a minor adjustment in β1 from 0.2 to 0.15 results in a nearly 100-fold decrease
in peak size, changing the entire aspect of the epidemic. Interestingly, we observed that even if Ri

0 < 1, for
i = 2, . . . , 5, the epidemic still manages to spread in these cities. Turning our attention to scenario (III), this
setting represents a situation where R0 < 1, achieved by modifying the city with the highest transmissibility
rate: from the capital to the city 3, the second largest city. This implies that the capital, being the main hub of
mobility, plays a significant role in accelerating the spread of the disease. Finally, scenario (IV) fixes the same
infection rate for all cities. Notice in this case that the behavior of the epidemic is very similar for all cities and
mobility does not play a big role in the capital.

3.2 Constant vaccination rates

We now turn our attention to the analysis of the vaccination policy considering a constant rate ui for each
city i, as outlined by the equations in (5).

In this scenario, we consider an ongoing epidemic that is subject to a vaccination strategy to control it,
starting on a specified day s. In the two-city scenario, we set β = (0.5, 0.3) to ensure that R1

0 > 1 and R2
0 > 1.

The vaccination rates are varied within the range u = (u1, u2) ∈ [10−6, 10−3]
2
to generate Figure 10, which is

presented on the log-log scale. For this setting, the basic reproduction number without vaccination is R0 ≈ 3.48.
Numerically, by a fitting method, we observe that

Rvac
0 (u1, u2) ≈

R0

1 + u1 · b(u2)
, (10)

where b is approximately a constant function of u2, as we observe in Figure 10. By this figure and by equation
(10), we infer that the vaccination rate of the capital city governs Rvac

0 .
To analyze the significance of vaccinating the capital, we perform a simplified version of the optimal control

problem introduced in equation (9) only considering the constant vaccination strategies. We use a constant
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Figure 9: Infectious curves for different scenarios of β.
Curves of infectious individuals from cities 1, 3, and 5 under four scenarios of the β specification. Here α =
0.64, pi1 = 0.2 for i ≥ 2 and n1 = 5n2 = 5n3 = 50n4 = 50n5 = 5 · 106. The four scenarios considered are (I)
β = (0.2, 0.1, 0.1, 0.1, 0.1), indicating R1

0 > 1 and Ri
0 < 1 for i ̸= 1; (II) β = (0.15, 0.1, 0.1, 0.1, 0.1), a situation

similar to (I), but with a slower transmissibility rate, even though R0 > 1; (III) β = (0.1, 0.1, 0.15, 0.1, 0.1), a
situation similar to (II), but with the highest transmissibility rate not in the capital. This scenario results in
R0 < 1; (IV) β = (0.2, 0.2, 0.2, 0.2, 0.2), where all cities have the same transmissibility rate.
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0 in the vaccination model.
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cities. The settings are: β = (0.5, 0.3), α = 0.64, p21 = 0.2 and the ratio n1/n2 = 10. Both axes u1 and u2 are
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vector u ∈ [0, 0.05]
K

as the decision variable. In this constant vaccination case, we can simplify the constraints
and consider the following:

K∑

k=1

Vk(T )nk ≤ 0.8

K∑

k=1

nk

to ensure that the total number of vaccinated individuals at the final time T is at most 80% of the population.
We set T = 8×7 = 56 days, the hospitalization rate rh = 0.1 and the hospitalization cost ch = 1000. Vaccination
starts at the 70th day after the first infection in the capital. Finally, we consider three different scenarios for
the parameter β and three specifications of the unity cost of a vaccine cv. As we can see in Table 1, it is
evident that in all scenarios, the capital city not only receives the majority of vaccines but also achieves the
highest vaccination rate, particularly reaching the upper bound in β(2) and β(3) scenarios. In the first scenario,
which is characterized by a uniform infection rate across the cities, vaccine distribution is more equitable, yet
the capital still maintains an advantage. The behavior is similar when uj is allowed to vary up to 0.1 for each
city j. However, it is important to note that the relevance of vaccinating the capital can diminish in scenarios
where the susceptible population decreases rapidly, as vaccine allocation depends significantly on the size of the
available population.

β cv Capital City 2 City 3 City 4 City 5

β(1)
c1v 4.26 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2

c2v 4.26 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2

c3v 4.26 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2 3.41 · 10−2

β(2)
c1v 5.00 · 10−2 5.00 · 10−2 9.63 · 10−3 9.63 · 10−3 3.42 · 10−8

c2v 5.00 · 10−2 5.00 · 10−2 9.63 · 10−3 9.63 · 10−3 3.02 · 10−7

c3v 5.00 · 10−2 1.38 · 10−2 1.65 · 10−8 1.70 · 10−7 1.62 · 10−7

β(3)
c1v 5.00 · 10−2 5.00 · 10−2 1.06 · 10−2 1.54 · 10−7 5.01 · 10−8

c2v 5.00 · 10−2 5.00 · 10−2 1.06 · 10−2 1.76 · 10−7 3.36 · 10−8

c3v 5.00 · 10−2 7.65 · 10−9 7.65 · 10−9 7.91 · 10−8 6.20 · 10−8

Table 1: Optimal constant vaccination rates across cities for different parameter settings: vacci-
nation rates in five different cities under nine parameter settings combining three values for β and three for
cv. We set β(1) = (0.3, 0.3, 0.3, 0.3, 0.3); β(2) = (0.3, 0.2, 0.12, 0.12, 0.1); and β(3) = (0.3, 0.12, 0.12, 0.1, 0.05),
and c1v = 0.001; c2v = 0.1; and c3v = 10. Each row corresponds to a different combination of β and cv values,
representing different scenarios of disease transmission rate and vaccination cost. For each row, in bold, we
highlight the highest rate.

As seen in Table 1, when the first day of vaccination is determined by the number of infectious individuals,
for instance, the day on which 1% of the total population is infected, all scenarios indicate that the capital should
receive vaccines at the highest rate, regardless of cv. The same result is obtained when the initial susceptible
population is uniform across the cities. This analysis showcases that it is preferable to vaccinate the capital at
a higher rate.

3.3 Performance of time-variable vaccination strategies

In this section, we perform numerical simulations that incorporate vaccination as a time-variable control
function. By integrating vaccination strategies into our metropolitan area model, the goal is to provide a
comprehensive understanding of disease dynamics and control measures. We start by examining the interaction
between two cities, as shown in Figure 11. This figure illustrates the optimal trajectory and control for a capital
city with a population 10 times greater than the second city and a higher infection rate. Vaccination begins on
the 100th day following the arrival of the first infected individual in the capital.

Notably, during the initial two weeks, the optimal solution allocates all vaccines to the capital, administering
them at the maximum possible rate according to the weekly cap. Subsequently, as the susceptible population in
the capital decreases to around 60%, it becomes advantageous to start vaccinating the second city, which has a
lower daily cap. The fourth graph illustrates the bang-bang [33] behavior of the effective vaccination rate uiSi,
this is, in which u∗

i (t)S
∗
i (t) ∈ {0, vmax

i } holds for i = 1, 2, along the whole interval [0, T ]. The gap of the weekly
cap constraint is depicted in Figure 12. We assign a high unity cost to hospitalization ch = 1000 in contrast to a
relatively low unity cost for vaccination, with cv = 0.01 to reflect the burden of hospitalization. Both healthcare
resources and patient well-being are comparatively way more expensive than the minor inconvenience and price
of vaccination. Furthermore, the benefits of vaccination are amplified when administered on a large scale. This
simulation took around 33 seconds to run.
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Figure 11: Optimal trajectories and control for two-city interaction.
Optimal trajectory of the proportion of susceptible and infectious individuals in two cities, the capital in orange
and the second city in blue. The fourth subplot illustrates the variables ui(t)Si(t) ∈ {0, vmax

i }, i = 1, 2. The
settings for this experiment are: β = (0.25, 0.18), α = 0.64, p21 = 0.2, n1 = 106 and n2 = 105. For the optimal
control problem, cv = 0.01, ch = 1000, vmax

1 = vmax
2 = 0.8/42 and a weekly cap allowing the vaccination of at

most 1/13 of the population per week.
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Figure 12: Weekly constraint analysis.
Function D(t)−∑K

k=1 nkVk(t) for the experiment presented in Figure 11.
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When we equalize the infection rates of the two cities, setting β1 = β2 = 0.25, while keeping the other
parameters fixed, we obtain the solution in Figure 13. One can see that the behavior of the solution is similar
to that of the previous experiment but with a uniform optimal solution across both cities. This suggests that
the transmission rate β is the most important driver when deciding vaccination strategies. Our prior conclusion
about the importance of the susceptible population in deciding which city retains the vaccination is also evident
in the figure.
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Figure 13: Optimal trajectories and control for two-city interaction for uniform infection rates.
Optimal trajectory of the proportion of susceptible and infectious individuals in two cities and the optimal
control using the same settings as Figure 11 except β = (0.25, 0.25).

Finally, we consider four different scenarios: first infection in the second city (Scenario (I)), uniform initial
conditions for the control problem (Scenario (II)), and two that express higher transmissibility in the capital,
but a lower vaccination rate limitation (Scenarios (III) and (IV)). The result is shown in Figure 14. It establishes
that the vaccination always starts in the capital in all scenarios, even with the infection starting in the second
city. Moreover, Scenarios (III) and (IV) confirm that this behavior does not come from the maximum effective
vaccination rate, highlighting that even though we can vaccinate more rapidly in the second city, the capital
starts first.
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Figure 14: Optimal effective vaccination rate for two-city interaction.
Scenario (I) considers the same setting as Figure 11 except for the first infection happening in the second city and
vmax
1 = 0.9/42 (while vmax

2 = 0.8/42). Scenario (II) considers I1(0) = I2(0) = 0.05 and R1(0) = R2(0) = 0.02.
Scenarios (III) and (IV) fix the same parameters of Figure 11 but with different maximum rates vmax

1 and vmax
2 .

In (III), we set vmax
1 = 0.8/42 < vmax

2 = 0.9/42, while in (IV), vmax
1 = 0.6/42 < vmax

2 = 0.9/42.

Having considered the simplified two-city case, we extend our analysis to more cities in the metropolitan area.
We first observe that the dimensionality of the problem escalates quickly, which makes efficient implementations
a challenging aspect yet to be addressed in the literature. Lemaitre et al. (2022) [17] consider a similar optimal
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Figure 15: Optimal trajectories and control functions for 5 cities.
Optimal trajectories and controls for a problem involving 5 cities. The settings mirror those in Figure C.22,
with the following specifications: cv = 0.01, ch = 1000, and rh = 0.1. The model allows for a weekly vaccination
of up to 1/20 of the susceptible population. The maximum rate of vaccinated individuals is set at vmax

1 = · · · =
vmax
5 = 0.8/42.

control problem and offer a viable solution, which we could further explore in future research.
For a simulation with K = 5 cities, refer to Figure 15. The results contained in the image are parallel to

those in the two-city scenario in which the vaccines are preferentially allocated to the capital in contrast to other
cities, vaccinating as fast as possible saturating the constraints. During the fourth week, when the susceptible
population is reduced to less than 60% in the capital, the vaccination expands to the second city, which has the
second highest transmission rate. The behavior of the control function aligns again with the bang-bang type of
solution. In total, the experiment required approximately 3 minutes and 31 iterations.

In addition to the analysis of the optimal control problem in multi-city interaction, we introduce a compar-
ative visualization depicted in Figure 16. This figure presents a dual-bar plot comparison between the impact
of two distinct vaccination strategies on the total number of infections across varying transmission rates of the
capital city. The transmission rate of the capital was chosen as a comparison factor since it drives most of
the epidemic. The bars in blue correspond to the application of the optimal control strategy as the solution
of problem (9). In orange, we consider a constant vaccination approach, where the vaccination rate is uniform
in different cities and over time. This comparison highlights that following the optimal strategy leads to fewer
people having the disease during the epidemic. Additionally, the higher the transmission rate in the capital,
the greater the impact of the optimal solution.

3.4 Performance of feedback practical solution

We bring to attention the fact that the optimal solution is hard to implement in real-world applications
since the exact number of susceptible, infected, and recovered individuals is difficult to estimate. Because of
this, we propose a numerical simulation that substitutes the constraint ui(t)Si(t) ≤ vmax

i by

ui(t)(1− Vi(t)) ≤ vmax
i

which also leads to a bang-bang type of solution where we get u∗
i (t)(1 − V ∗

i (t)) ∈ {0, vmax
i } for t ∈ [0, T ]. If

µ = 0 (which is a reasonable approximation for short horizons), this solution is an admissible control to the
original problem since

d

dt
(Vi + Si + Ii) = µRi − γIi ≤ 0,

which implies
Vi(t) + Si(t) ≤ Vi(t) + Si(t) + Ii(t) ≤ Vi(0) + Si(0) + Ii(0) ≤ 1
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Figure 16: Comparison between optimal and constant vaccination strategies for different values of
β1.
Comparison among the total number of infections in the metropolitan area, which is calculated by integrating
the new infections and taking the mean over the cities, for two scenarios. The first, in blue, solves the optimal
control problem (9), and the second, in orange, chooses the best constant vaccination rate across all cities.

and, therefore,
ui(t)(1− Vi(t)) ≥ ui(t)Si(t).

Moreover, it is possible to apply in a real-world scenario, because Vi(t) is naturally known by the Health System.
Figure 17 shows that this solution yields very similar results regarding the optimal trajectories since the curves
of susceptible and infectious individuals end very closely. The difference appears in the optimal vaccination
policy since fewer vaccines can be administrated daily, but these are compensated by vaccinating during more
days in the week.
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Figure 17: Comparison between optimal and practical solution in the metropolitan area.
Optimal trajectories and effective vaccination rate for the metropolitan area considering the settings of Figure 15.
It compares the optimal solution with a more practicable solution, which is only based on the knowledge of
vaccinated individuals. We observe that the effective vaccination rate here is the daily proportion of vaccinated
individuals in the metropolitan area as a whole.

3.5 Evaluating Vaccination Strategies in the Rio de Janeiro Metropolitan Area

The last section of the numerical experiments considers real data on commuting patterns and population
dynamics within the Rio de Janeiro metropolitan area [34]. We examine the mobility matrix P , as depicted
in Figure 3. Despite the similarity of this matrix and the metropolitan structure outlined in Assumption 2.1,
the differences warrant further analysis. Figure 18 shows a comparative study of the optimal vaccination
strategies derived from both the actual matrix P and its approximation considering the metropolitan hypothesis
of Assumption 2.1. This comparison reveals that the metropolitan structure approximation of the matrix P
yields an optimal solution that is closely similar to the one obtained using the original matrix.

Remark 3.1. The parameter β is proportional to the average contact rate of a random person. It is generally an
increasing function of the population density. Given the heterogeneous density in Rio de Janeiro’s metropolitan
area, which includes large green spaces like the Tijuca Forest in the capital city, it would not be enough only to
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Figure 18: Comparative Analysis of Optimal Vaccination Strategies in the Rio de Janeiro
Metropolitan Area.
Optimal vaccination strategies for Rio de Janeiro, through both the original and approximated P matrices.
The settings are α = 0.64, a maximum vaccination rate of 0.6/56 per city, and weekly vaccine shipments for
vaccinating up to 1/20 of the total susceptible population. The transmission rate β is randomly chosen between
0 and 0.3, and sorted by city population size. Vaccination starts when the susceptible population falls below
95% following the initial infection in the capital. The approximation of P in a metropolitan context is calculated
by normalizing pi1 and pii by its sum.

consider β as proportional to the average density of each city. For this reason, we consider random values for
β and sort them by population size.

Vaccination in the capital and the other cities is compared in Figure 19. This analysis tracks on a daily
basis the number of cities that vaccinate while the capital is not, i.e., u1(t) = 0 and some ui(t) ̸= 0 for i ≥ 2.
We notice that most of the time, either the capital is vaccinating or none of the cities are. The first deviation
from this fact happens when the susceptible population is less than 60%, which corroborates our findings on
the behavior of the optimal control function.
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Figure 19: Analysis of Effective Vaccination Rates in the Rio de Janeiro Metropolitan Area.
The red graph represents the proportion of susceptible individuals in Rio de Janeiro city, while the gray bars
show the number of cities vaccinating when the capital is not. The settings of this experiment are identical to
those in Figure 18.

We conclude this section by presenting the evolution of the disease across the Rio de Janeiro metropolitan
area in Figure 20. This figure compares three scenarios: the optimal solution of problem (9), a uniform
vaccination strategy across all cities and over time, and a scenario with no vaccination. We verify that the
optimal solution induces a lower incidence of infections over the period. Moreover, it brings attention to the
fact that smaller cities, such as Maricá, exhibit a higher proportion of infections under the optimal solution
(23% over 56 days) compared to the uniform vaccination strategy (18%), due to the weighting of population
sizes in the cost function (6).

4 Discussion

Our research has led to significant advances in comprehending how epidemics behave within a metropolitan
area, especially in relation to the most effective vaccination strategies. The key achievement of our study is
the theoretical analysis of a mathematical model that combines commuting patterns with constrained optimal
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Figure 20: Disease Progression in the Rio de Janeiro Metropolitan Area under Various Vaccination
Scenarios.
Cumulative proportion of infections via a heatmap, with the framework established in Figure 18. Data sourced
from Brazilian Institute of Geography and Statistics (IBGE).
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control to mimic and manage the propagation of infectious diseases. The study here presented aims to offer a
realistic representation of disease transmission within densely populated urban regions.

As mentioned in the text, the application of optimal control in epidemiological models allows us to determine
the most effective strategies for mitigating the impact of disease outbreaks while satisfying resource restrictions.
By incorporating commuting patterns into the model, we could capture the complex dynamics of disease spread
in metropolitan areas. Ignoring them may lead to inaccurate predictions and ineffective control strategies.
Moreover, a strategy that does not consider several cities in its plan is doomed to failure due to mobility.

The literature review highlights the importance of integrating spatial heterogeneity and human/social be-
havior into epidemiological models. It also evidences the need for more realistic and detailed models tailored to
specific research questions.

One of the key findings of this work regards the upper and lower bounds for the basic reproduction number,
R0, in particular for the case of a metropolitan region. However, a closed-form expression for it is still an open
question since calculating the spectral radius of a diagonal plus one-rank matrix remains an open question in
linear algebra. We showed that R0 is close to R1

0 and most influenced by the infection rate in the capital city,
β1. Thus, the upper bound may serve as an estimate for R0. Efficient numerical methods for calculating R0

were discussed, but they are also open research in the field of perturbation theory.
The optimal control model possesses mixed control-state and pure-state constraints, in addition to control-

affine dynamics and cost functional. This complex structure leads to many theoretical and numerical challenges,
such as the occurrence of singular arcs, the presence of a multiplier that belongs to the space of measures, and
others. We are developing the theoretical aspects related to the optimal control model (9) in another article
(some results are already present in [23])

Our numerical simulations have provided valuable insights into the dynamics of the disease and the ef-
fectiveness of control measures. In particular, they showed that higher vaccination rates in the capital can
significantly reduce the number of infections and the overall impact of the epidemic in the whole metropolitan
area. This underscores the importance of targeted vaccination strategies in controlling disease outbreaks. We
also highlighted how the infection rate of the capital drives most of the dynamics.

In conclusion, this study has contributed to our understanding of epidemic dynamics in metropolitan areas
and the role of optimal control in mitigating disease outbreaks. It has also opened up several interesting
directions for future research. As we continue to grapple with the challenges posed by infectious diseases,
studies like this one will be crucial in guiding our response and ensuring the health and well-being of our
communities.
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A The basic reproduction number for general compartmental mod-
els

We present the calculus of R0 within the framework of a general compartmental model, following the seminal
work of Van den Driessche and Watmough (2002) [39]. They focus on autonomous systems, namely, those whose
right-hand side does not explicitly depend on t. Let x ∈ Rm+n

≥0 (real vectors with non-negative entries) be the
number (or proportion) of individuals in m + n compartments, where the first m are infected states and the
remaining n are non-infected states. The rate of new infections in the ith infected compartment is denoted by
Fi, the rate of transfer into the ith compartment (except new infections) by V+

i , and the rate of transfer out of
the ith compartment by V−

i . The net transfer is then given by Vi = V−
i −V+

i . The disease transmission model
consists of the equations

x′
i = fi(x) = Fi(x)− Vi(x), for i = 1, . . . ,m+ n.

The choice of the infected and non-infected compartments depends on the model’s interpretation.
A disease-free state is a state x ∈ Rm+n

≥0 such that xi = 0 for i = 1, . . . ,m, and a disease-free equilibrium
(DFE) is a disease-free state that is an asymptotically stable equilibrium. We ensure the model’s well-posedness
and the existence of such equilibrium, we make the following assumptions:

22

https://sebrae.com.br/Sebrae/Portal%20Sebrae/UFs/RJ/Menu%20Institucional/SEBRAE_EPG_set13_mob_urb_merc_trab_rj.pdf
https://sebrae.com.br/Sebrae/Portal%20Sebrae/UFs/RJ/Menu%20Institucional/SEBRAE_EPG_set13_mob_urb_merc_trab_rj.pdf
https://www.sciencedirect.com/science/article/pii/S0096300320304756


(A1) The transfer of individuals between compartments is non-negative: if x ∈ Rm+n
≥0 , then

Fi(x),V+
i (x),V−

i (x) ≥ 0.

(A2) There is no transfer out of an empty compartment: if x = 0, then V−
i (x) = 0.

(A3) Non-infected compartments do not receive new infections: Fi(x) = 0 for i > m.

(A4) The set of the disease-free states is invariant: if xi = 0 for i = 1, . . . ,m, then Fi(x) = V+
i (x) = 0 for

i = 1, . . . ,m.

(A5) The DFE is stable in the absence of new infections: if F(x) = 0 and x0 is a DFE, Df(x0) is a Hurwitz
matrix.

From these assumptions and if x0 is a DFE, we obtain that

DF(x0) =

[
F 0
0 0

]
, DV(x0) =

[
V 0
J3 J4

]
,

where F is non-negative, V is a non-singular M -matrix and the eigenvalues of J4 have positive real part [39,
Lemma 1]. A square matrix B is an M -matrix if it can be expressed as B = sI − P , where P is a matrix
with non-negative elements, and s is a real scalar such that s ≥ ρ(P ). If s > ρ(P ), then B is a non-singular
M -matrix. If s = ρ(P ), it is a singular M -matrix. The matrix FV −1 is named the next generation matrix for
the model and

R0 = ρ(FV −1), (11)

in which ρ(A) is the spectral radius of the matrix A. The (i, j) entry of matrix FV −1 estimates how many new
infections are expected to arise in compartment i if an infected individual is introduced into compartment j.
This definition implies that x0 is asymptotically stable if R0 < 1, but unstable if R0 > 1 [39, Theorem 2].

A.1 Computing the basic reproduction number for our model

Following the notation of Appendix A, we reorder the compartments as follows:

x = (I1, . . . , IK , S1, . . . , SK , R1, . . . , RK).

The rate of new infections is

Fi = αβiSiIi + (1− α)Si

K∑

j=1

βjpijI
eff
j , for i = 1, . . . ,K,

and zero for non-infected compartments. The rate of transfer between compartments is defined as

Vk =





(γ + µ)Ii, 1 ≤ k ≤ K, i = k,

αβiSiIi + (1− α)Si

∑K
j=1 βjpijI

eff
j + µSi − µ, K + 1 ≤ k ≤ 2K, i = k −K,

µRi − γIi, 2K + 1 ≤ k ≤ 3K, i = k − 2K.

Utilizing the auxiliary result
dIeffk
dIj

=
pjknj

P eff
k

,

we proceed to calculate matrices F and V . The elements of these matrices are given by

Fij = αβiSiIiδij + (1− α)Si

K∑

k=1

βkpikpjk
nj

P eff
k

,

Vij = γ + µ,

where δij = 1 if i = j and 0 otherwise. We can represent the matrix F as

F = αSB + (1− α)SPBE−1PTN = S
[
αB + (1− α)PBE−1PTN

]
, (12)

where S, N,B and E are diagonal matrices, such that Sii = Si, Nii = ni, Bii = βi and Eii = P eff
i . Intuitively,

the entry (i, j) of F is the rate at which infected individuals in city j contribute to new infections in city i.

Therefore, the sum
∑K

j=1 Aij quantifies the total rate of new infections in city i. Then

FV −1 =
1

γ + µ
F,

the eigenvalues of FV −1 are the eigenvalues of F divided by γ+µ, and R0 = ρ(F )/(γ+µ). We can readily see
that matrix F is equivalent to a symmetric matrix, which implies the following lemma.
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Lemma A.1. The eigenvalues of FV −1 are real.

As far as we know, there is no closed-form expression for the spectral radius of F as a function of the
parameters of the model. However, we can simplify equation (12) by applying Assumption 2.1 which defines a
specific format for P . Consequently, we calculate that

PBE−1 =




β1

P eff
1

0 0 · · · 0
β1

P eff
1

p21
β2

P eff
2

p22 0 · · · 0
β1

P eff
1

p31 0 β3

P eff
3

p33 · · · 0

...
...

...
. . .

...
β1

P eff
1

pK1 0 0 · · · βK

P eff
K

pKK




and, subsequently,

PBE−1PTN =
β1

P eff
1

p̄p̄TN + Λ,

where p̄ = (1, p21, . . . , pK1) and Λ = diag (βkpkk(1− δk1))k=1,...,K , with P eff
k = pkknk for k > 1. Therefore, we

can express the matrix F from (12) as

F = S
[
αB + (1− α)

(
β1

P eff
1

p̄p̄TN + Λ

)]
= S[αB + (1− α)Λ] + (1− α)

β1

P eff
1

(Sp̄)(p̄TN), (13)

which is a sum of a diagonal matrix and a product of vectors. The problem of finding the eigenvalues of
matrices with this structure, referred to as diagonal plus rank-one matrix, such as matrix F , is well-known
in the literature, and there are specific algorithms to solve it, such as [14, 37]. An inequality for R0 can be
computed through Weyl’s inequality by considering this structure.

The unique disease-free equilibrium of system (1) sets Si = 1 and Ii = Ri = 0 for all cities i = 1, . . . ,K,
which simplifies S to the identity matrix. In the modified model (5) with a constant vaccination rate in the
population, the dynamics of compartments Ii are unchanged, which leads to the same calculation of the basic
reproduction number. However, the disease-free equilibrium is redefined as

µ− µSi − uiSi = 0 =⇒ Si =
µ

µ+ ui
and Ri =

ui

µ+ ui
,

besides Ii = 0. Therefore the only change is on the diagonal matrix S.

B Proofs

This section includes all the proofs of results given throughout the text.

Proposition B.1 (Positive Invariance). The set

C := {X ∈ RK×3
≥0 : Xi1 +Xi2 +Xi3 = 1, for i = 1, . . . ,K}

is positively invariant under the flow of system (1).

Proof. Firstly, by the smoothness of the system, existence and uniqueness of solution [S(t), I(t),R(t)] in [0, T ]
such that [S(0), I(0),R(0)] ∈ C is guaranteed. By the uniqueness, since Ĩ(t) = R̃(t) = 0 is also a solution over
[0, T ], we have Ii(t), Ri(t) ≥ 0 for all i = 1, . . . ,K. Moreover, notice that

S′
i(t) ≥ −Si(t)


αβiIi + (1− α)

K∑

j=1

βjpijI
eff
j + µ


 ,

which implies, by Gronwall’s Inequality, that

−Si(t) ≤ −Si(0) exp



−

∫ T

0

αβiIi(s) + (1− α)

K∑

j=1

βjpijI
eff
j (s) ds− µ



 ≤ 0.

This proves the non-negativity of the solution. Finally it is straightforward that for each i, S′
i(t)+I ′i(t)+R′

i(t) =
0, which implies that Si(t) + Ii(t) + Ri(t) = Si(0) + Ii(0) + Ri(0) = 1 for all t ∈ [0, T ]. If we consider the
parameter α as a constant by parts function, notice that the result is proven by induction in each interval in
which α(·) is constant.
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Proof of Theorem 2.1. Formula (2) is derived from the basic reproduction number from a simple SIR model.
By considering the expression (12) for matrix F , for each 1 ≤ i, j ≤ K,

Fij = Si

[
αβiδij + (1− α)

(
PBE−1PTN

)
ij

]

= Si

[
αβiδij + (1− α)

K∑

k=1

(
PBE−1

)
ik

(
PTN

)
kj

]

= Si

[
αβiδij + (1− α)

K∑

k=1

pikβkpjknj/P
eff
k

]
,

where δij = 1 ⇐⇒ i = j and δij = 0 otherwise. Assuming α > 0 and that for all cities Si > 0 and βi > 0,
we infer that Fij > 0. This means that F is a positive matrix and satisfies Perron-Frobenius’s theorem. We
conclude that there is r > 0 such that r is an eigenvalue of F and ρ(F ) = r. Furthermore,

min
i

K∑

j=1

Fij ≤ r ≤ max
i

K∑

j=1

Fij .

Calculating,

K∑

j=1

Fij = Si


αβi + (1− α)

K∑

j=1

K∑

k=1

pikβk/P
eff
k pjknj




= Si


αβi + (1− α)

K∑

k=1

pikβk/P
eff
k

K∑

j=1

pjknj




= Si

[
αβi + (1− α)

K∑

k=1

pikβk

]
,

which implies that

min
i

Si

[
αβi + (1− α)

K∑

k=1

pikβk

]
≤ ρ(F ) ≤ max

i
Si

[
αβi + (1− α)

K∑

k=1

pikβk

]
.

At the DFE, where Si = 1 for all cities i, we conclude that

mini αβi + (1− α)
∑K

k=1 pikβk

γ + µ
≤ R0 ≤ maxi αβi + (1− α)

∑K
k=1 pikβk

γ + µ

or, in terms of the basic reproduction numbers of the isolated cities,

min
i

αRi
0 + (1− α)

K∑

k=1

pikRk
0 ≤ R0 ≤ max

i
αRi

0 + (1− α)

K∑

k=1

pikRk
0 .

Proof of Corollary 2.1. Immediate since α + (1 − α)
∑K

k=1 pik = 1 and, therefore, wi is a convex combination
of R1

0, . . . ,RK
0 .

Proof of Theorem 2.2. Following the expression (13), rewrite the matrix F as

F = N−1/2S1/2[αSB + (1− α)SΛ + (1− α)
β1

P eff
1

S1/2N1/2p̄p̄TN1/2S1/2]S−1/2N1/2,

which is similar, and therefore has the same eigenvalues, to

F̄ = αSB + (1− α)SΛ + (1− α)
β1

P eff
1

S1/2N1/2p̄
(
S1/2N1/2p̄

)T
.

By setting S as the identity matrix (DFE) and utilizing the symmetry of the matrices, we can apply Weyl’s
inequality to obtain

ρ(αB + (1− α)Λ) ≤ ρ(F ) ≤ ρ(αB + (1− α)Λ) + (1− α)
β1

P eff
1

(N1/2p̄)
T
N1/2p̄,

since the only non-zero eigenvalue of a matrix vvT is vT v. We finally set ξ = ρ(αB + (1 − α)Λ) and calculate

(N1/2p̄)
T
N1/2p̄ =

∑K
i=1 nip

2
i1.
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Proposition B.2 (Positive Invariance with control). The region

C = {X ∈ RK×4
≥0 : Xi1 +Xi2 +Xi3 = 1, for i = 1, . . . ,K}

is positively invariant under the flow of system (5), for each measurable function u.

Proof. Let u be a measurable function in [0, T ] and suppose it assumes values on a compact set U . Since the
dynamic is smooth, there is a unique solution [S(t), I(t),R(t),V (t)] for t ∈ [0, T ] [8]. As similarly proven for
Proposition B.1,

−Si(t) ≤ −Si(0) exp



−

∫ T

0

αβiIi(s) + (1− α)

K∑

j=1

βjpijI
eff
j (s) + ui(s) ds− µ



 ≤ 0, (14)

for each i = 1, . . . ,K. By uniqueness, Ii(t) ≥ 0 for each i = 1, . . . ,K since the solution cannot cross the solution
with no infections. Moreover, R′

i(t) ≥ −µRi(t), which results, by Gronwall’s Inequality, in

−Ri(t) ≤ −Ri(0)e
−µt ≤ 0.

Finally V ′
i (t) ≥ 0 for every t ∈ [0, T ], which implies Vi(t) ≥ Vi(0) = 0 for every t ∈ [0, T ]. We conclude by

observing that
d(Si + Ii +Ri)

dt
= 0 =⇒ (Si + Ii +Ri)(t) = (Si + Ii +Ri)(0) = 1,

for all t > 0 and i = 1, . . . ,K. Supposing that U is compact was without loss of generality because we impose
that ui(t)Si(t) ≤ vmax

i for each i and each t. Therefore,

vmax
i ≥ ui(t)Si(t) ≥ ui(t) min

t∈[0,T ]
Si(t) =⇒ 0 ≤ ui(t) ≤ vmax

i / min
t∈[0,T ]

Si(t)

and mint∈[0,T ] Si(t) > 0 ⇐⇒ Si(0) > 0 by inequality (14).

Proof of Lemma A.1. The matrix F can be rewritten as

F = N−1/2S1/2[αBS + (1− α)S1/2N1/2PBE−1PTN1/2S1/2]S−1/2N1/2,

which is similar, in the sense of matrices, to αBS + (1 − α)S1/2N1/2PBE−1PTN1/2S1/2. The matrix BS
is diagonal, while S1/2N1/2PBE−1PTN1/2S1/2 is symmetric. Therefore F is similar to a symmetric matrix
and, consequently, it is symmetric. Consequently, the eigenvalues of F are real and so are the eigenvalues of
FV −1.

C Additional simulations and figures

In this section, we present additional results that are less central to the overall work but may be of interest
to the audience.

C.1 On the effect of some parameters in R0

Throughout the text, we have observed that the transmission rate primarily influences the spread of the
disease in the population. Considering a scenario involving a metropolitan area with two cities, Figure C.21
illustrates the impact of parameters α and p21 on R0. The histogram displays possible values of R0 as a function
of random combinations of these parameters. Notably, it reveals that higher values of the ratio n1/n2 shrink
the distribution, as a byproduct of the fact that as n1/n2 approaches infinity, R0 converges to R1

0. By setting
β1 close to γ, then R0 ≈ 1, we observe that for smaller values of the ratio n1/n2, the mobility parameters may
affect the threshold R0 > 1, changing the behavior of the disease.

C.2 Epidemic values for different structures of the transition matrix

In the context of multiple cities, we consider a scenario ofK = 5 cities. We first examine five distinct mobility
scenarios: (I) metropolitan area where 10% of the residents of each city work in the capital; (II) metropolitan
area where 40% of each city works in the capital; (III) all cities are interconnected, where 60% of the residents
work in their city, while the remaining are distributed evenly across the other four cities; (IV) a variant of a
metropolitan area where 30% of each city’s residents work in the capital and 10% of the capital’s workforce is
employed in the other cities; (V) no commuting between cities. Our findings are summarized in Table C.2.
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Figure C.21: Histogram of the possible values of R0 as function of α and p21 for two cities: histogram
of the values of R0 generated by randomly selecting α ∈ (0, 1) and p21 ∈ (0, 0.9). We consider four scenarios
for the ratio n1/n2, (1, 2, 5, 10). The other parameters are β1 = 0.15, γ = 1/7 and µ = 3.6 · 10−5, the same as
in Figure 6.

Metrics Scenarios
Cities

Aggregated
1 2 3 4 5

Peak size (%)

(I) 27.0 14.1 9.3 5.7 3.7 20.5
(II) 26.3 18.4 15.3 12.5 10.2 22.5
(III) 24.2 17.3 14.7 12.5 10.2 21.0
(IV) 25.5 17.7 14.3 12.7 9.8 21.7
(V) 27.5 10.9 4.5 0.0 0.0 19.2

Peak day

(I) 39 53 55 52 49 40
(II) 40 46 47 47 47 41
(III) 44 49 50 50 50 45
(IV) 41 47 49 50 50 45
(V) 38 81 134 — — 38

Duration (days)

(I) 146 188 218 234 191 191
(II) 145 164 170 172 166 157
(III) 151 168 172 171 168 161
(IV) 147 167 175 167 164 160
(V) 137 228 350 — — 306

Attack rate (%)

(I) 91.4 72.9 58.1 37.4 20.4 82.5
(II) 91.2 77.6 69.0 58.3 47.0 85.2
(III) 89.8 75.5 67.4 58.3 47.9 83.7
(IV) 90.7 76.6 66.9 57.5 44.9 84.3
(V) 91.5 70.6 50.8 0.0 0.0 80.4

Table C.2: Simulation results for different structures of the transition matrix: presents the comparison
of Peak Size (maximum proportion of infectious individuals), Peak Day (day of the peak size), Duration (time
from epidemic onset to the day when the proportion of infectious individuals achieves 10−5), and Attack Rate
(proportion of individuals who contract the disease during 350 days of the epidemic) across different mobility
scenarios. The aggregated column represents the metrics considering all cities together. For this experiment we
β = (0.4, 0.25, 0.2, 0.15, 0.1), α = 0.64 and population sizes 105 · (50, 10, 10, 1, 1). Lastly, the initial conditions
are I1(0) = I2(0) = I3(0) = 10−4 and no recovered individuals.
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C.3 Evaluating the sharpness of the bound for R0

Considering a scenario with two cities, we perform a simulation over N = 100, 000 iterations which randomly
assigns values for β2 ∈ (0.01, 0.2), β1 ∈ (β2, 0.6), α ∈ (0, 1), p21 ∈ (0, 0.9), and n1 ∈ (1, 10) ∩ Z. The simulation
then computes the upper and lower bounds using both general (Theorem 2.1) and metropolitan (Theorem 2.2)
bounds, recording whether the latter provides a tighter bound than the former. The results reveal that the
metropolitan method offers better bounds in 50.0% of the cases. In 18.1% of the cases, the metropolitan method
provides a better upper bound but not a better lower bound, while in 31.9% of the cases, the general method
provides better bounds. In the remaining 18.0% of cases, the bounds are equal. When we assume α ≥ 0.5, the
bounds from Theorem 2.2 are better in 87.1% of the simulations and better only for the upper bounds in 4.9%
of the simulations. The general method provides better bounds in only 8.1% of the simulations.

In the five-city scenario, we perform a simulation that runs for N = 500, 000 iterations, with each iteration
randomly generating values for β ∈ (0.01, 0.6), α ∈ (0, 1), p ∈ (0, 0.9)

4
being the transition probabilities from

each of the other four cities to the capital, and n ∈ (1, 50)
5 ∩ Z the population sizes. We sort the vector n in

descending order. The code then calculates the upper and lower bounds, the same as before. The results of the
simulation indicate that the metropolitan method provides better bounds in 48.9% of the cases. In 46% of the
cases, the metropolitan method provides a better lower bound but not a better upper bound, while in 3.8% of
the cases, the general method provides better bounds. When we assume α ≥ 0.5, the bounds of Theorem 2.2
are better in 80.6% of the simulations and better only for the lower bounds in 19.4% of the simulations. No
recorded simulation had better bounds for the general method, arguing in favor of tighter bounds for K = 5
cities.

C.4 Impact of vaccination in the peak size

Although R0 provides a good understanding of the impact of vaccination on epidemic dynamics, it only
informs about the asymptotic behavior of the dynamics. For a finite time horizon, analyzing the peak size of
the epidemic provides crucial insights into the optimal vaccination strategy. This is the goal of Figure C.22a,
which presents four different scenarios under a uniform vaccination policy. We have chosen s = 42 days for this
experiment. The peak size of the baseline case, when no vaccine is introduced, is about 21% of the population.
To reduce it to around 15%, as shown in orange, over 60% of the population needs to be vaccinated. Early
vaccination can significantly reduce the peak size of the epidemic, as illustrated in Figure C.22b, which shows
the impact of the vaccination starting date on the peak size.

C.5 Evaluating the impact of the nighttime proportion α

The parameter α, representing the average proportion of the time spent in their home city, was previously
shown to not have a significant impact on R0 in a two-city model. However, in the multi-city framework, its
effect on R0 is more pronounced, as depicted in Figure C.23. Interestingly, an increase in α generates higher
values for R0 but does not lead to a higher peak size or attack rate. Another conclusion we draw is that the
intensity of the epidemic increases with a higher amount of time spent in the capital, which occurs when α is
closer to 0.

D Further remarks and possible extensions

D.1 Generalizing commuting patters

It is possible to consider different commuting times for each pair of cities αij , which is a set of data that can
be easily retrieved. One can in fact generalize this feature by taking time-dependent parameters αij , leading to
the following modified model

P eff
i (t) =

K∑

j=1

(1− αji(t))pjinj ,

Ieffj (t) =
1

P eff
j (t)

K∑

k=1

(1− αkj(t))pkjIknk.

Then, we get

dSi

dt
(t) = µ− βiSi

K∑

j=1

αji(t)pijIi − Si

K∑

j=1

βj(1− αij(t))pijI
eff
j − µSi,

This version also opens the door to considering infections during commuting.
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(a) Dynamics of infectious and vaccinated individuals in the metropolitan area
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Figure C.22: Epidemic behavior under vaccination strategies: (a) This subfigure illustrates four epidemic
scenarios under a constant vaccination strategy applied uniformly across all cities with the red line indicating
the beginning of the vaccination campaign on day s = 42. The curves represent the proportion of infectious
individuals (left) and the proportion of vaccinated individuals (right) across the entire metropolitan area. (b)
Using the same settings, this subfigure shows different starting days of the vaccine campaign for s = 21, 42, 63 as
the first day of vaccination. The parameters are: β = (0.4, 0.3, 0.15, 0.15, 0.1), α = 0.64, pk1 = 0.2 for each city
k > 1, and n = 105(50, 10, 10, 1, 1) is the vector of population sizes, starting with only one exposed individual
in the capital.
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Figure C.23: Impact of α on the epidemic: We analyze four different epidemiological quantities considering
the aggregated population, the peak size (the highest value in the infectious curve), the peak day (the day when
the peak size occurs), the attack rate (the number of individuals who contract the disease after T = 200 days),
and R0, as functions of α. The parameters used are based on the setting in Table C.2, except for matrix P ,
where we assume that 20% of each city’s population goes to the capital while the remaining population stays
in their home city.

D.2 Modeling possible vaccination in the workplace

The model presented in this paper, in particular the system (5), assumes that individuals are vaccinated
in their city of residence, leading to a vaccination rate of ui(t)Si(t) per unit of time in each city. However,
this assumption may not hold in all cases, specifically in cities like Rio de Janeiro where the health system is
universal and people can be vaccinated in any city of preference. A particular case is when the individuals are
vaccinated close to their workplace, which can be addressed as a simple modification.

To accommodate this fact, we propose an extension to our model: a proportion of individuals, denoted by q,
get vaccinated in their city of work instead of their city of residence. Therefore, the quantity qpijSi represents
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the proportion of people who live in the city i, work in the city j, and choose to be vaccinated at their workplace.
This leads to a revised effective vaccination rate, expressed as:

(1− q)uiSi + q

K∑

j=1

ujpijSi.

This adjustment yields a modified SIR model with an altered counter variable Vi represented as follows:

dSi

dt
= µ− αβiSiIi − (1− α)Si

K∑

j=1

βjpijI
eff
j − (1− q)uiSi − q

K∑

j=1

ujpijSi − µSi,

dIi
dt

= αβiSiIi + (1− α)Si

K∑

j=1

βjpijI
eff
j − γIi − µIi,

dRi

dt
= (1− q)uiSi + q

K∑

j=1

ujpijSi + γIi − µRi,

dVi

dt
= (1− q)uiSi + q

K∑

j=1

ujpijSi.

This change does not alter the paper’s results regarding the overall behavior of the solution which focuses
on the capital. Considering the role of the capital as the economic hub of the metropolitan area, this model
reinforces the importance of prioritizing the vaccine delivery to the capital. This is because more people are
there during the day and a higher vaccination rate effectively increases the vaccinated population in the capital
and, indirectly, in the other cities.
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