arXiv:2402.00292v1 [cs.DB] 1 Feb 2024

Effective Bug Detection in Graph Database Engines: An
LLM-based Approach

Jiayi Wu
Beijing Institute of Technology
Beijing, China
wjybit97@outlook.com

Hongchao Qin
Beijing Institute of Technology
Beijing, China
ghc.neu@gmail.com

ABSTRACT

Graph database engines play a pivotal role in efficiently storing
and managing graph data across various domains, including bioin-
formatics, knowledge graphs, and recommender systems. Ensur-
ing data accuracy within graph database engines is paramount,
as inaccuracies can yield unreliable analytical outcomes. Current
bug-detection approaches are confined to specific graph query lan-
guages, limiting their applicabilities when handling graph database
engines that use various graph query languages across various
domains. Moreover, they require extensive prior knowledge to gen-
erate queries for detecting bugs. To address these challenges, we
introduces DGDB, a novel paradigm harnessing large language
models(LLM), such as ChatGPT, for comprehensive bug detection
in graph database engines. DGDB leverages ChatGPT to generate
high-quality queries for different graph query languages. It sub-
sequently employs differential testing to identify bugs in graph
database engines. We applied this paradigm to graph database en-
gines using the Gremlin query language and those using the Cypher
query language, generating approximately 4,000 queries each. In
the latest versions of Neo4j, Agensgraph, and JanusGraph databases,
we detected 2, 5, and 3 wrong-result bugs, respectively.

PVLDB Reference Format:

Jiayi Wu, Zhengyu Wu, Rong-Hua Li, Hongchao Qin, and Guoren Wang.
Effective Bug Detection in Graph Database Engines: An LLM-based
Approach. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://anonymous.4open.science/r/A- ChatGPT-based-paradigm-for- detecting-
bugs-in-graph-database-engines-3C56/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Zhengyu Wu
Beijing Institute of Technology
Beijing, China
jeremywzy96@outlook.com

Rong-Hua Li
Beijing Institute of Technology
Beijing, China
lironghuabit@126.com

Guoren Wang
Beijing Institute of Technology
Beijing, China
wanggrbit@gmail.com

1 INTRODUCTION

In the contemporary information age, a vast volume of data is
generated and accrued, frequently characterized by intricate rela-
tionships and connections, and such data are often represented as
graph structures. While relational databases are designed based
on a tabular model[9] with Schema Rigidity, making it difficult to
handle complex graph data. In response to this constraint, graph
database engines have been designed to facilitate the storage and
retrieval of graph data. They use the structure of nodes and edges to
efficiently represent and process semi-structured data such as vari-
ous relationships and networks[4, 33, 39]. Graph database engines
like Neo4j[22], JanusGraph[2], AgensGraph[21], TinkerGraph[15],
OrientDB[12], and HugeGraph[14], which rank prominently in the
DB-Engine Ranking list[44], are widely utilized across various do-
mains. For instance, on social media platforms such as Facebook and
Twitter, graph database engines are employed to manage and ana-
lyze social relationships and behavioral patterns among users, aid-
ing in the detection of fake users and online fraudulent activities[34].
In recommender systems, the utilization of graph database engines
can dynamically generate real-time recommended content based
on users’ most recent actions and social connections[26, 42]. In the
field of logistics and freight transportation, graph database engines
can be harnessed to determine optimal delivery routes, thereby
reducing costs and enhancing efficiency[11, 18].

As shown in Table 1, existing methods for detecting bugs in
graph database engines can be broadly divided into two categories:
methods for utilizng various queries to detect bugs within the
same graph database engines, methods applying the same query
on various graph database engines. The former typically involves
detecting bugs in graph database engines by generating equivalent
queries[5] or utilizing predicate partitioning[23, 24, 37]. The lat-
ter approach entails running the same queries on different graph
database engines and identifying bugs based on discrepancies in
query results[20, 50]. The former method demands users with sub-
stantial prior knowledge on the graph model and query objectives
when generating equivalent queries to identify bugs in the graph
database engine[5]. In the predicate partitioning approach for de-
tecting graph database engine bugs[24], it starts by constructing
queries based on a top-down expression generator[35], and then ap-
ply Ternary Logic Partitioning techniques to create correspondent
queries, namely the "True, False or Null" queries, for running on
graph database engine. Such a method assess whether the subset

https://doi.org/XX.XX/XXX.XX
https://anonymous.4open.science/r/A-ChatGPT-based-paradigm-for-detecting-bugs-in-graph-database-engines-3C56/
https://anonymous.4open.science/r/A-ChatGPT-based-paradigm-for-detecting-bugs-in-graph-database-engines-3C56/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Table 1: Comparison of the proposed DGDB with closely related works.

. . High proportion of
Method Category Language Not require large prior knowledge non-empty-result queries
Grand[50] the met_hod applying the same query gremlin X X
on various graph database engines
GDSmith[20] the method applying the same query cypher X
on various graph database engines
PP-DB[24] the meth'od'for utilizng various queries to QCteCt bugs all X X
within the same graph database engines
DGDB the method applying the same query all
on various graph database engines
of the final query results intersect to detect graph database en- 1. User \
gine bugs. While this approach successfully identifies some logical Al ;
. . e . . ame : Alice
bugs, its effectiveness is limited due to the lower quality of queries N K
generation and the manual need for reducing test samples.

Most current research focuses on the latter approach and the
most widely adopted method is running randomly generated queries
[3, 35, 43] on different graph database engines for bug detection.
However, the generated queries often return empty results in many
samples, which compromise the efficiency for bug detection. To
address this issue, Grand[50] proposed a method based on traversal
models to generate gremlin queries[40], significantly increasing the
non-empty-result query ratio. However, this method is only appli-
cable to gremlin-based graph database engines and requires users
to master the gremlin API[41]. GDsmith[20] proposed a method
to generate cypher queries[16] based on the guidance of property
graphs. This method first generates a cypher skeleton, then cre-
ates patterns based on graph information, and ensures, through
static query analysis, that the generated queries have high non-
empty-result query ratios, thereby improving the efficiency of bug
detection. However, this method is only applicable to cypher-based
graph database engines and requires proficient mastery of cypher
language.

Large language models(LLM)[49], as one of the most popular
research directions in the field of artificial intelligence, are trained
on massive text data, enabling models to understand and gener-
ate diverse text content, fostering innovation in many domains.
For instance, OpenAl’s ChatGPT model[31], which is currently the
most widely used large language model, is used in the recommenda-
tion domain to enhance text content, combining text with original
content to improve the effectiveness of recommendation[28]; in
the financial domain, it is used to infer network structures from
text data and then integrate them with graph neural networks[47]
to effectively predict stock trends[8]. Meta proposed the SAM
model[25, 29], which can output specified image regions based
on prompt information and has been applied in the fields of med-
ical image segmentation and video object segmentation. Peking
University’s AIGC Lab introduced the ChatLaw model[10], which
not only provides legal consulting services to the general public
but also serves as an assistant to professional lawyers.

Based on ChatGPT’s natural language understanding and natu-
ral language generation capabilities, we propose a simple paradigm
for detecting bugs in graph database engines. Compared to existing
bug detection methods, this paradigm does not require extensive

5. Purchase
Date: 2023-10-20

6. Purchase
Date: 2023-05-25

/3- Product \< 8. Make friends with >/4 Pmducl\
| Name : phone Since: 2021 | Name : computer |
W 14500 Price : 7500

7. Purchase
Date: 2023-09-14

>/z. User \
{)
\\Name :y
Figure 1: An example of labeled property graph

prior knowledge but can automatically detect bugs in graph data-
base engines using different graph query languages, demonstrating
extremely high applicability. Additionally, benefiting from the di-
verse and complex queries generated by this paradigm, it can detect
wrong-result bugs in the latest versions of graph database engines
that prove challenging for existing bug detection methods to iden-
tify. Specifically, we start by randomly generating a property graph,
then input the graph data, query generation instructions, and query
generation constraints into ChatGPT to generate queries that meet
these conditions. Finally, we run the queries on different graph
database engines and detect bugs based on the discrepancies in
query results.
This paper has made the following contributions:

e We designed a prompt template that helps ChatGPT generate
a high proportion of non-empty result queries and enhances
the diversity of generated queries, improving the efficiency of
detecting bugs.

e We proposed a simple paradigm for detecting bugs based on
ChatGPT, which does not require a significant amount of prior
knowledge and can be applied to graph database engines using
different graph query languages.

o We applied this paradigm to graph database engines using Cypher
and Gremlin languages, effectively detecting 7 and 3 wrong-
result bugs, respectively, demonstrating the effectiveness and
applicability of the proposed paradigm.

2 A SIMPLE PARADIGM FOR DETECTING
GRAPH DATABASE ENGINE BUGS

In this section, we introduced a simple paradigm, DGDB, that uti-
lizes a large language model for automatically detecting bugs in
graph database engines. As depicted in Figure 2, this paradigm
mainly consists of three stages. In the first stage, graph data used
for testing bugs is generated based on randomly generated graph
schema. In the second stage, the graph data, instructions for gener-
ating queries, and constraints for query generation are input into
a large language model (such as ChatGPT) to generate queries for
testing bugs. In the third stage, after inputting generated queries
into different graph database engines, detecting the presence of
bugs is based on the comparison of consistency of the query results.
We choose the most popular ChatGPT as the large language model
used in the paradigm.

2.1 GRAPH DATA GENERATION

Graph databases utilize various graph models to store graph data,
with the most commonly used being the labeled property graph
model[46] and the Resource Description Framework (RDF) graph
model[1].

In the Labeled Property Graph Model, both nodes and edges
in the graph are endowed with labels and properties. Labels rep-
resent the type of nodes or edges, while properties describe the
characteristics of nodes or edges in the form of key-value pairs.
As shown in Figure 1, this labeled property graph contains two
nodes labeled as "user", two nodes labeled as "product", three edges
labeled as "purchase”, and one edge labeled as "make friends with".
The numbers to the left of the labels represent IDs. Nodes labeled
as "user" have a "name" property, while nodes labeled as "product"
have "name" and "price" properties. Edges labeled as "purchase"
have a "date" property representing the purchase date, and edges
labeled as "make friends with" have a "since" property indicating
the date when the friendship with the user was established. The
Labeled Property Graph Model provides a flexible and intuitive
alternative for data modeling, precisely capturing and expressing
the intricate relationships between nodes.

The RDF graph model utilizes triples to describe relationships be-
tween resources, with each triple consisting of a subject, predicate,
and object. The subject represents a resource, typically depicted as
a node or edge in graph data. The object signifies information or
values related to the subject, often represented as nodes, edges, or
actual values in graph data. The predicate denotes the relationship
between the subject and object. For example, the RDF triple de-
scribing node 1 in Figure 1 can be represented as: (subject: node 1,
predicate: type, object: User), (subject: node 1, predicate: name, ob-
ject: Alice). The RDF graph model benefits from its triple structure,
providing stronger semantic expressiveness, and is widely applied
in the field of knowledge graphs. However, when dealing with
large-scale graph data, using triples requires more storage space
and complex indexing structures, resulting in decreased query ef-
ficiency. Therefore, we opt for the labeled property graph model
to generate a graph database for testing bugs. Specifically, we ran-
domly generate the graph schema of the labeled property graph
and, based on this schema, randomly generate graph data in the
graph database engine.

Algorithm 1 Graph data generation

Input: NodeLabelSet, EdgelabelSet, PropertySet, the number of
nodes M, the number of edges N, the property key-value pair
generation distribution p.

cv_set «— 0,e set — 0

cfori=1,2,...,Mdo

v « create a new node.

v.label « random.choice (VerLabelSet)

v.properties < generate the properties according to p and

PropertySet.

v_set «— v_set Uv

: end for

. forj=1,2,...,Ndo

v1 <« random.choice (v_set).

10: vg « random.choice (v_set —v1)

11: e « create a new edge with v1 as the incoming node and v

as the outgoing node.

12: e.label «— random.choice (EdgeLabelSet).

13: e.properties « generate the properties according to p and

1S I N N

0 % N

PropertySet.
14: e_set «— e_set Ue.
15: end for

Graph schema generation. The graph schemas generated in
the labeled property graph should include node label set NodeLabel
Set, edge label set EdgeLabelSet, and property set PropertySet.
where NodeTypeSet, EdgeLabelSet, and PropertySet represent the
sets of node labels, edge labels, and properties of nodes and edges
that appear in the graph, respectively. In our experiment, we let
NodeLabelSet = {nty, nt1, ntz, nt3}, EdgeLabelSet ={ eto, et1, ety,
et3}, PropertySet = {name, po, p1, ..., po}. In order to ensure diver-
sity in graph data within the graph database engine, we use name
within PropertySet to represent the unique name of nodes or edges,
while the remaining property keys correspond to different types
of property values, including Integer, Float, String, and Boolean.
Additionally, a node or edge can simultaneously contain multiple
different property key-value pairs.

Graph data generation. Based on the above graph schema,
we generate graph data stored in the graph database engine. The
algorithm for generating graph data is shown as Algorithm 1 and
consists of two parts. In the first part (Lines 1-7), for any generated
node v, we first randomly select any label from NodeLabelSet as
the label for that node. Then, based on the p distribution, we select
single or multiple properties from PropertySet as the properties
for that node and generate property values of consistent types
randomly. In the second part (Lines 8-15), we first randomly select
two different nodes from v_set as the in-node and out-node of an
edge. We then randomly select any label from EdgeLabelSet as the
label for that edge. Similarly, based on the p distribution, we select
single or multiple properties from PropertySet as the properties
for that edge and generate property values of consistent types
randomly. We set the p distribution to [0.8, 0.1, 0.05, 0.05], and the
corresponding numbers of property key-value pairs for nodes or
edges are [1, 2, 3, 4]. Note that the name property key-value pairs
are not included in this count.

Graph Schema Generation

NodeLabelSet : ntynt,,....nt, , hame:u; }
ety {py:69.7 , name:e, }

nty {ps:True, name:ugg}

nt; {ps:"Lm", name:u, }
1

EdgeLabelSet : etyet,,...,et,

PropertySet
Name : string value
Py : inetger value nt, {ps:False . name:ug}
P, : float value

P, : boolean value

nt, {ps:"Lm", name:u, }
ety {ps:True . name:e, }
1
s

nt; {pi:" V", name:uyy

Graph Data Generation
,,,,, ph ata Leneration Stage 1
nty {ps:"TF" Graph Database Engines

> ety {py:11.89 , name:e, } Write—P

Stage 3
3 Compare in
i meaning

Validation

v,
<%

Execute

Instruction

'
) (o)(

Input text i [

Constraints]

1 . E—
L 1

LLM » queries

Figure 2: Overview of DGDB

2.2 QUERY GENERATION

Traditional methods for generating queries[20, 24, 50] often require
designing complex algorithms and an extensive prior knowledge to
achieve a high non-empty-result query ratio. In contrast, ChatGPT
simplifies this process. With its demonstrated ability in zero-shot
in-context learning across various text generation tasks, ChatGPT
can achieve high non-empty-result query ratio by simply receiving
the appropriate instructions alone[6, 32, 48].

Instruction: Your task is to generate queries in the Graph
database according to the nodes and relationships in the men-
tioned graph. The edges in the graph are represented as (node
type attribute key value pairs)-(relationship type attribute
key value pairs)->(node type attribute key value pairs). For ex-
ample, (nt0 p5: "IF",name: "ul")-(et2 name: "e1",p9: 69.7]->(nt0
p3: true,name: "u88") indicates that there exists a directed
edge of type et2 from a node named "ul" to a node named
"u88".

The following is the graph data in the Graph database
engine, which contains 100 nodes and 200 edges:

(nt0 p5: "IF",name: "ul")-(et2 name: "e1",p9: 69.7)->(nt0 p3:
true,name: "u88").

(nt0 p5: "IF",name: "ul")-(et0 p6: "7W",name: "e0")->(nt0 p1:

non

a".name: "u21").

(nt1 p3: false,name: "u99")-(et0 p0: 69.37,name: "e199")-
>(:nt0 pO: 64.66,p1: "gL",name: "u30",p8: 51.93).

Query: Based on the instruction and graph data, Please
generate generate a specific number of queries with the dif-
ferent operators (eg. some operators used in a specific graph
query language.) and meet the following conditions: (Some
constraints.)

To utilize ChatGPT for generating meaningful queries, we start
by giving ChatGPT a specific task through Instructions. Next, we
explain the specific constructions of graph data to it using exam-
ples. This step is crucial to offer ChatGPT an unbiased perception
of the graph data. Then we input the graph data into ChatGPT,
based on which allows it to understand the complex structure and
semantic relationship of graph data. Finally, we ask ChatGPT to
generate corresponding query statements. To enhance the diversity
of queries and improve the ratio of non-empty -result query, we set
various constraints in the query formulation process.

Listing 1: An example of a query that is consistent in meaning
but not entirely consistent in return results.

1. Query: MATCH (n) WHERE n.name = 'ul6’ RETURN n;

2. Neo4j: [Node(’'nt0’, name="u16’, p4=False, p7=True, p9=41.96)].
3. Agensgraph: ('nt0[4.4]{"p4": false, "p7": true, "p9": 41.96, "name":
"u16"y)).

2.3 BUG DETECTION

The differential testing method[30], is widely used to detect bugs
and errors in software programs due to its ability to discover new
problems, facilitate continuous improvements, and be applied uni-
versally. Therefore, we use the differential testing method to detect
bugs in the graph database engine. Specifically, our process begins
by selecting graph databse queries generated by ChatGPT as initial
test samples. Subsequently, we refine selected queries by filtering
out those that either yield random query results or alter the original
graph data to form our final set of test samples. Following that, we
execute the same test samples on different graph database engines.
Ultimately, we compare the outputs of different graph database en-
gines. Since different graph database engines handle nodes or edges
differently, requiring completely consistent query results may lead
to discrepancies that not necessary reflect the existence of bugs. As
shown in listing 1, the query results are not completely consistent,

but they all represent node 'u16’. Therefore, in order to improve
the efficiency of bug detection, we believe that if the query results
of different database engines are consistent in meaning, then the
test sample passes; otherwise, a bug may have occurred.

3 DGDB EXAMPLES

In this section, we provide two examples demonstrating how to use
DGDB to detect bugs in graph database engines: DGDB-Cypher
for detecting bugs in graph database engines using Cypher query
language and DGDB-Gremlin for detecting bugs in graph database
engines using Gremlin query language.

3.1 DGDB-CYPHER

For the bug detection in graph database engines based on the
Cypher query language, we selected Neo4j and AgensGraph as
the target databases. Neo4j[22] is a high-performance open-source
graph database engine designed for storing, querying, and ana-
lyzing graph data. It is widely used due to its efficient execution
of complex graph queries and the capability to handle large-scale
graph data. AgensGraph[21] is a multi-model graph database en-
gine known for its flexibility in handling different types of data,
including graph data and relational data, making it widely utilized.

DGDB-Cypher first constructs corresponding graph data in Neo4;j
and AgensGraph, ensuring that the node types, node properties,
edge types and edge properties are identical. The constructed graph
data is then inserted into the instruction, fed into ChatGPT, and
used to generate Cypher queries. The text inputted into ChatGPT
is as follows:

Instruction: Your task is to generate queries in the Graph
database according to the nodes and relationships in the
mentioned graph. The edges in the graph are represented as
| (: node type attribute key value pairs)| (: relationship type
attribute key value pairs)| (: node type attribute key value
pairs)|. For example, | (: nt8 p6: false, name: "u97") | (: et11
p8: true) | (: nt6 p17: false, name: "u33") | Indicates that there
exists a directed edge of type et11 from a node named "u97"
to a node named "u33".

The following is the graph data in the Graph database
engine, which contains 100 nodes and 200 edges:

|(:nt0 p5: "IF",name: "ul")|(:et2 name: "e1",p9: 69.7)|(:nt0 p3:
true,name: "u88")|

|(:nt0 p5: "IF",;name: "ul")|(:et0 p6: "7W",name: "e0")|(:nt0
pl: "a",name: "u21")|

|(:nt2 p6: "Lm",name: "u2")|(:et0 p1: "Glo",name: "e4",p9:
11.89)|(:nt0 p3: false,name: "u60")|

|(:nt1 p3: false,name: "u99")|(:et0 p0: 69.37,name: "e199")|(:nt0
pO: 64.66,p1: "gL"name: "u30",p8: 51.93)|

Based on the instruction and graph database, Please gen-
erate twenty cypher queries with the different operators(eg.
MATCH, OPTIONAL MATCH, WHERE, Aggregation, FORE-
ACH, RETURN, ORDER BY, WITH, UNWIND, UNION, UNION
ALL, collect, predicate, coalesce, length, type, keys, labels,

startNode, endNode, nodes, relationships, reduce, shortest-
Path) and meet the following conditions:

1. Please make sure the queried data is the node or link
mentioned earlier.

2. Please ensure that the values in the attribute key value
pairs of the constraint exist.

3. If you want to generate a query with relationships,
please pay attention to the direction of the query relation-
ships in the generated query statement.

4. Please ensure that the generated queries use different
keywords as much as possible.

5. Please ensure that the generated query statement will
not change the data of the Graph database(eg. Do not use the
create operators).

In the above text, the modified parts are highlighted in gray. It
can be observed that we mainly made changes to the types, quantity,
operators and constraints of generated queries.

e Types and quantity: We stipulate the generation of Cypher
queries; and due to the token limit of ChatGPT, we set the quan-
tity of generated Cypher queries to 20.

e Operators: We hope that ChatGPT uses different operators
when generating queries to avoid situations where the generated
queries are highly similar, as shown in Listing 2, and to improve
detection efficiency.

o Constraints: We have set a total of five constraints. The first
two points indicate that we hope ChatGPT can generate as many
non-empty-result queries as possible. The third constraint is to
ensure that ChatGPT considers the direction of edges when gen-
erating query statements because we found that without this
constraint, ChatGPT tends to ignore the direction of arrows in
most generated query statements. The fourth constraint is to en-
sure that ChatGPT can generate more complex query statements.
The fifth constraint is to ensure consistency in graph data across
different graph database engines.

Listing 2: An example of generating highly similar queries,
where only the types of nodes or edges that they belong to
are changed in the queries.

1. MATCH (n:nt1)-[:et1]->(m:nt3) RETURN n, m;
2. MATCH (n:nt1)-[:et1]->(m:nt2) RETURN n, m;

The above modifications were mostly made to generate high-
quality Cypher query statements, improving the efficiency of de-
tecting bugs. We iterated a total of 200 times, generating 4000
query statements. We then filtered out queries containing opera-
tors that produce random results, such as queries including the skip
or limit keywords. The remaining query statements were executed
on Neo4j and AgensGraph graph database engines, and the query
results were compared. Due to discrepancies in internal implemen-
tation, data storage structure, and performance optimization among
different graph database engines, there may be variations in query
results. As shown in Listing 3, the returned results consist of lists
containing nodes such as u1, u3, but their presentation may differ.
Compared to using a mapping table for data transformation, which

introduces some additional computational and storage costs[50],
our method utilizes regular expressions[27] to directly extract infor-
mation about corresponding nodes from query results, enhancing
the efficiency of bug detection. Finally, we compare this informa-
tion, and if discrepancies arise, it indicates that the graph database
engine may have a bug in executing this query statement.

Listing 3: An example of using regular expressions to extract
information from cypher query results.

1. Query: MATCH (n:nt0) WITH collect(n) as n RETURN DIS-
TINCT n;

2. Neo4j: [Node('nt0’, name="ul’, p5="IF’), Node('nt0’, name="u3’,
p4=True, p6="9’)...] - regular expression -> [{name : "ul’, p5 : ’IF’},
{name : *u3’, p4 : True, p6 : ’97}...].

3. Agensgraph: [{id’: ’4.1’, ’tid’: *(0,1)’, ’properties’: {p5’: 'IF’,
‘name’: "ul’}}, {’id’: ’4.2°; ’tid’: ’(0,2)’, properties’: {p4’: True, 'p6’:
’9’, ’name’: 'u3’}}...] - regular expression -> [{name : "ul’, p5 : ’IF’},
{name : *u3’, p4 : True, p6: ’9’}...].

3.2 DGDB-GREMLIN

For the bug detection in graph database engines based on the Grem-
lin query language, we selected JanusGraph and TinkerGraph as
the target database engines. JanusGraph[2] is a high-performance
distributed graph database and widely used for handling large-scale
graph data and complex graph queries. TinkerGraph[15] is a light-
weight database in the TinkerPop graph computing framework,
widely applied in prototype development for small-scale projects
due to its superior read and write performance storing data in
memory.

DGDB-gremlin first constructs graph data in JanusGraph and
TinkerGraph separately, ensuring consistency in the stored graph
data between the two graph database engines. The constructed
graph data is then converted into the context, which is then fed
into ChatGPT to generate Gremlin query statements. The specific
text input to ChatGPT is as follows:

Instruction: Your task is to generate queries in the Graph
database according to the nodes and relationships in the men-
tioned graph. The edges in the graph are represented as (node
type attribute key value pairs)-(relationship type attribute
key value pairs)->(node type attribute key value pairs). For ex-
ample, (nt0 p5: "I[F",name: "ul")-(et2 name: "e1",p9: 69.7]->(nt0
p3: true,name: "u88") Indicates that there exists a directed
edge of type et2 from a node named "ul" to a node named
"u88".

The following is the graph data in the Graph database
engine, which contains 100 nodes and 200 edges:

(nt0 {p5: "IF",name: "ul"})-(et2 {name: "e1",p9: 69.7}]->(nt0
{p3: true,name: "u8d8"})

(nt1 {p3: false,name: "u99"})-(et0 {p0: 69.37,name: "e199"})-
>(:nt0 {p0: 64.66,p1: "gL",name: "u30",p8: 51.93}).

Based on the instruction and graph database, Please gen-
erate twenty gremlin queries with the different operators(eg.

hasLabel(), hasId(), has(), hasNot(), values(), label(), id(), prop-
erties(), values(), valueMap(), select(), dedup(), local(), order().
by(), where(),filter(),match(),eq(), neq(), gt(), gte(), inside(),
outside(), group().by(), groupCount().by(), in(), out(), inE(),
outE(), inV(), outV(), both(), path(), repeat().until(), sum(),
max(), min(), mean(),contains(), choose(), union(), fold()) and
meet the following conditions:

1. Please make sure the queried data is the node or link
mentioned earlier.

2. Please ensure that the values in the attribute key value
pairs of the constraint exist.

3. If you want to generate a query with relationships,
please pay attention to the direction of the query relation-
ships in the generated query statement.

4. Please ensure that the generated queries use different
keywords as much as possible.

5. Please ensure that the generated query statement will
not change the data of the Graph database(eg. Do not use the
addV() or addE() operators).

Similar to the Instruction for generating Cypher query state-
ments, we made modifications to the types, quantity, operators, and
constraints for generating Gremlin query statements. The details
are as follows:

e Types and quantity: We set the total 20 types of generated
query statements to Gremlin.

e Operators: We select a large number of commonly used opera-
tors in Gremlin to ensure the diversity of the generated Gremlin
query statements.

e Constraints: The constraints for generating Gremlin query
statements are generally similar to those for generating Cypher
query statements. Both aim for ensuring complex structures and
high non-empty-result ratio for queries generated by ChatGPT,
thereby improving the efficiency of detecting graph database
engine bugs.

Like DGDB-CYPHER, we use the differential testing method to
detect bugs for Gremlin-based graph database engines. Notably,
both JanusGraph and TinkerGraph return results as node ID for
node querying requests. Furthermore, since JanusGragh automat-
ically generate node ID within the graph database for maximiz-
ing data consistency, it is challenging for us to directly determine
whether the query results are identical solely based on node IDs.
Our solution is to compare the query results by obtaining the cor-
respondent properties to the node IDs, as exhibited in Listing 4.

Listing 4: An example of comparing node IDs in gremlin
query results.

1. Query: g.V(). (’nt0’);

2. Janusgraph: [v[16416], v[24608], v[32800]....].

3. Tinkergraph: [v[3], v[9], v[278]....].

4. Query: g.V(). (’nt0’). 0

5. Janusgraph: [{'name’: ['ul6’], ’p9’: [41.96], 'p4’: [False], 'p7’:
[Truel}, {name’: ['u25’], ’p5’: [UR’]},...]

6. Tinkergraph: [{'p5’: ['IF’], ‘'name’: ['ul’]}, {'p4’: [True], 'p6’:
[’9’], 'name’: ["u3’]},...]

4 EVALUATIONS

To demonstrate the effectiveness of the proposed DGDB paradigm,

we compare DGDB-cypher and DGDB-gremlin respectively with

the GDSmith and Grand methods, and address the following re-

search questions:

e (RQ1) How does the quality of queries generated by ChatGPT
stand in comparison to those produced by the baseline model?

e (RQ2) Can the graph database engine bug detection methods
proposed based on the DGDB paradigm detect real-world bugs
in popular graph database engines?

4.1 EVALUATION SETUP

4.1.1 Subjects. We use listed graph database engines in Table 2
for detecting bugs, and select the latest versions in all cases since
new versions of graph database engines may have addressed bugs
presented in previous versions while detecting bugs in previous
versions might reveal issues that have already been fixed. Moreover,
detecting bugs in new versions that are more likely to be persisted
in old versions makes our tasks more meaningful.

Table 2: The graph database engines selected for testing

GDBMS Version Release date Supported languages
Neo4j 4.4.26 2023.9.20 Cypher
Agensgraph 2.13.0 2022.10.13 Cypher
Janusgraph 1.0.0 2023.10.21 Gremlin
Tinkergraph 3.7.0 2023.7.31 Gremlin

4.1.2 Baseline. To demonstrate the superiority of the proposed
paradigm, we compare two methods for graph database engine bug
detection, as follows:

e GDSmith[20]: GDSmith is a bug detection method for Cypher-
based graph database engines. It first guides the generation of
semantically valid Cypher queries based on property graphs.
Subsequently, the generated queries are executed on each graph
database engine and identify potential bugs based on discrepan-
cies of the outputs.

e Grand[50]: Grand is a bug detection method for Gremlin-based
graph database engines. It first constructs a traversal model based
on Gremlin API, based on which to generate effective Gremlin
queries. Subsequently, the generated queries are executed on
different graph database engine, and bugs are detected based on
discrepancies between the query results.

4.1.3 Implementation details. In our research, we implement DGDB-
cypher and DGDB-gremlin through Python 3.8. We use the Py2neo
package to connect to the Neo4j for operations, the Psycopg2 pack-
age to connect to the AgensGraph for operations, and the Gremlin-
python package to connect to JanusGraph and TinkerGraph for
operations. The version of the ChatGPT model is gpt-3.5-turbo-16k-
0613. The versions of each package are as shown in Table 3. The
numbers of generated nodes, edges, node types, edge types, and
property types are set to 100, 200, 4, 4, and 11, respectively. We set
the number of rounds for both DGDB-cypher and DGDB-gremlin
to 200, generating 4000 query statements respectively.

Table 3: The version of each package we used

Package Version

Py2neo 2021.2.3
Psycopg2 2.9.7
Gremlin-python 3.2.6

Openai 0.27.10

4.2 PERFORMANCE COMPARISON (RQ1)

Grand[50], as the first method proposed for detecting graph data-
base engine bugs, utilizes the differential testing method to de-
tect bugs in graph database engines using the gremlin query lan-
guage. The method ran for 2400 seconds, generating a total of
15,000 queries. It successfully detects a total of 21 bugs across six
graph database engines, with most of the bugs already being fixed.
However, this method often detects a significant number of discrep-
ancies, as evidenced by the 709 discrepancies found among 15,000
generated queries in the original study and the 615 discrepancies
observed in 10,000 generated queries when Grand is used to detect
bugs in Janusgraph, TinkerGraph and HugeGraph, as mentioned
in [24]. These discrepancies are largely attributed to variations in
handing exceptions by different graph database engines rather than
detecting actual bugs in graph database engines !. GDSmith[20] is
the first graph database bug detection method based on the Cypher
query language. It ran for 12 hours in neo4j, redisgraph, and mem-
graph, discovering a total of 11,275 discrepancies and identifying
28 bugs from these discrepancies, with the majority of them al-
ready fixed. It can be observed that both methods mentioned above
have discovered a significant number of discrepancies. However,
a large number of discovered discrepancies may merely indicate
the presence of numerous duplicated bugs or results from different
internal implementations of various graph database engines, lead-
ing to different outputs. Furthermore, analyzing each discrepancy
can result into substantial time cost, and naturally compromise the
efficiency of bug detection. Therefore, we believe that the quantity
of discrepancies should not be used as a benchmark for the per-
formance of graph database engine bug detection. Moreover, since
most of the bugs detected by the two methods mentioned above
have already been fixed through the version updates, we cannot
simply compare the performance of graph database engine bug
detection methods based solely on the number of detected bugs.
Our methods DGDB-cypher and DGDB-gremlin each ran for about
4200 seconds, generated 4000 queries, and collectively detected 10
unfixed bugs in the four latest versions of popular graph database
engines, which exclude the solved bugs, and therefore, offer more
convincing evidences for demonstrating the effectiveness of our
methods.

DGDB-cypher, DGDB-gremlin, Grand, and GDSmith all use the
differential testing method to detect graph database engine bugs,
where the quality of generated queries determines the performance
of differential testing methods. Therefore, we analyzed the quality
of queries generated by these four methods. We believe that high-
quality queries should possess two essential criteria: it should be

!https://github.com/choeoe/Grand/issues/1

diversified and have a high non-empty-result query ratio. Specifi-
cally, diverse queries can comprehensively detect potential graph
database bugs introduced by different operators, and high non-
empty-result queries can significantly improve the efficiency of bug
detection.

Listing 5: An example of a query on search paths.

1. MATCH p=shortestPath((n1)-[:et0*]-(n2:nt0)) WHERE n1 <>
n2 RETURN nl, n2;

o Diversity. The Grand method constructs a traversal model to
generate queries, including three types of operations: filter, pred-
icate, and aggregate. However, due to the limitations of this
traversal model, the generated queries may not include certain
operators such as repeat(), until(), path(), fold(), etc., which
hinder the detection of bugs associated with these operators.
The GDSmith method firstly constructs a Cypher skeleton, then
generates subgraphs that match the property graph to complete
the pattern of the Cypher skeleton. Finally, based on static query
analysis, the conditional expressions of the Cypher skeleton are
completed to obtain the generated queries. However, this method
only queries elements in the matching subgraphs and cannot
generate statements for searching paths, as shown in Listing 5. It
can be seen that, due to limitations in the methods of generating
queries, Grand and GDSmith cannot generate more comprehen-
sive queries. If one wants to increase the diversity of generated
queries, extensive expert knowledge is required to make com-
plex modifications to existing methods, resulting in excessive
manual cost. Comparably, DGDB-cypher and DGDB-gremlin
exhibit advantages in utilizing more flexible and convenient op-
erators in the form of textual input to ChatGPT. For example,
in DGDB-gremlin, "Please generate twenty gremlin queries
with different types of methods (e.g., hasLabel(), hasId(),
has(), hasNot(), values(), [operators])", we only need to re-
place the [operators] with the operators we want to use in the
generated queries to ensure that the generated queries include
that operator, creating diverse queries for a more comprehensive
detection of bugs in the graph database engine.
Non-empty-result query ratio. As shown in Table 4, we com-
pared the non-empty-result query ratios generated by DGDB-
cypher, DGDB-gremlin, Grand, and GDSmith. It can be observed
that the non-empty-result query ratio of queries generated by
DGDB-cypher and DGDB-gremlin is higher than those by GD-
Smith and Grand. This indicates that ChatGPT can understand
graph data well and generate high-quality queries based on con-
straints. Additionally, the non-empty-result query ratio of Grand
is much lower than GDSmith. This is because Grand is a ran-
dom differential testing method, while GDSmith improves the
non-empty-result query ratio by using graph-guided pattern
generation and data-guided condition generation.

In summary, compared to existing methods for detecting bugs
in graph database engines, utilizing the DGDB paradigm allows
for a more comprehensive and efficient detection of bugs in graph
database engines.

Table 4: The non-empty-result query ratio of DGDB and two

baselines
Approach Language Non-empty-result Query Ratio
DGDB-cypher ~ Cypher 79.06%
GDSmith Cypher 73.66%
DGDB-gremlin ~ Gremlin 80.33%
Grand Gremlin 40.30%

4.3 DETECTED WRONG-RESULT BUGS (RQ2)

Bugs detected using differential testing mainly fall into two cat-
egories: crash bugs[17] and wrong-result bugs[20]. Crash bugs
occur when users run certain commands and do not receive the
expected results; instead, it causes the graph database engine to
crash. Since users cannot obtain the expected results, they become
aware of the bug. Grand and GDSmith detect many bugs of this
type. Wrong-result bugs are refereed to the incorrect results ob-
tained based on users’ running commands. These erroneous results
often resemble with correct ones, making it challenging for users
to identify manually and, consequently, leading to greater risks
compared to the crash bugs. Therefore, our primary focus is on
detecting wrong-result bugs.

Table 5: Bugs that we found in the tested graph database

engines
Graph database Number of wrong-result
Approach engine bugs detected
DGDB-cypher Neo4j 2
DGDB-cypher Agensgraph 5
DGDB-gremlin Janusgraph 3
DGDB-gremlin ~ Tinkergraph 0

Table 5 indicates the number of bugs detected using DGDB-
cypher and DGDB-gremlin, and we present the specific bugs in the
subsequent content. Notably, we choose to maximize the clarity
for our readers by presenting the succinct yet illustrative examples
in the following content instead of the original queries that are
implemented to discover the bugs since the original queries are
typically too complex to be faithfully showcased in this paper.

Listing 6: Cypher queries that trigger a wrong-result bug in
Neo4j 4.4.26.

1. Query 1: MATCH (n:nt3) RETURN count(n), avg(n.p8);
2. Neo4j: [3, 25.78666666666667] X

3. Agensgraph: (24, 25.786666666666665) ¥/

4. Query 2: MATCH (n:nt3) RETURN count(n);

5. Neo4j: [26] vV

6. Agensgraph: (26,) v/

As shown in listing 6, query 1 returns the number of nodes
of type "nt3" and the mean value of the "p8" property value for
nodes of that type. It can be observed that Neo4j and AgensGraph

return different node counts. However, the node count returned
by query 2 is the same. Therefore, we believe the reason for the
bug is that Neo4j, when simultaneously returning the node count
and node property values, first considers whether the "p8" property
value exists in the properties of nodes of type "nt3". If it exists, it is
counted; otherwise, it is not counted, leading to the bug.

Listing 7: Cypher queries that trigger a wrong-result bug in
Neo4j 4.4.26.

1. Query: MATCH (n:nt1)-[r]-() RETURN n.name AS Name,
sum(r.p8) AS TotalP8;

2. Neodj: [['u5’, 0], ['u6’, 17.01], ['u7’, 17.02],...[u22’, 84.84]] X
3. Agensgraph: [("u5’, None), ('u6’, 17.01), (Cu7’, 17.02),...,Cu22’,
84.84)] v/

As shown in listing 7, this query returns the names of nodes of
type "nt1" and the sum of the "p8" property values for their respec-
tive edge sets. It can be observed that there is a difference between
the sum of property values returned by Neo4j and AgensGraph.
When AgensGraph returns with the "none" result, it indicates that
the "p8" property does not exist in the edge set of the node. However,
when Neo4j returns its result as "0", it might lead to the miscon-
ception that the sum of "p8" property values in the edge set of the
node is 0, suggesting that "p8" exists in the edge set of the node.
We believe this bug may be due to Neo4;j’s inadequate handling of
exceptional values.

Listing 8: Cypher queries that trigger a wrong-result bug in
Agensgraph 2.13.0.

1. Query 1: MATCH (n)-[r]->() UNWIND n.p6 AS values, RE-
TURN values;

2.Neo4j: [['Lm’], [GOvy’], ['5Y2’],....[RK’]] v/

3. Agensgraph: [] X

4. Query 2: MATCH (n)-[r]->() RETURN n.p6;

5. Neo4j: [[None], [Lm’], [GOvy’], [None],...,[Rk’]] v/

6. Agensgraph: [(None,), CLm’,), CGOvy’,), (None,),..., (Rk’,)] v/

7. Query 3: MATCH (n)-[r]->() WITH n.p6 AS values, RETURN
values;

8. Neo4j: [[None], [Lm’], GOvy’], [None]...,['Rk’]] ¢/

9. Agensgraph: [(None,), CLm’,), CGOvy’,), (None,),..., CRK’,)] ¥/

As shown in listing 8, query 1 unfolds the "p6" property values
of nodes with outgoing relationships into separated rows. It can be
observed that neo4j returns the correct results, while Agensgraph
returns an empty set. Query 2 aims for checking if the data retrival
functions properly by returning the "p6" property values of nodes
with outgoing relationships, and the consistent results required
from neo4j and Agensgraph confirm them being functional. Query
3 replaces the "unwind" keyword with "with" to check if other
operators are causing the issue, and the results from neo4j and
Agensgraph are also identical. Therefore, we suspect that there
may be a bug in Agensgraph when using the "unwind" keyword to
unfold property values.

Listing 9: Cypher queries that trigger a wrong-result bug in
Agensgraph 2.13.0.

1. Query 1: MATCH (n:nt3 {p5: ’Ce’})-[:et3]->(m) RETURN n,
COLLECT(m);

2. Neo4j: [Node(’nt3’, name="u4’, p5="Ce’), [Node('nt1’,name =
’u85’, p3=True), Node('nt2’, name="u84’, p9=44.79)]] v/

3. Agensgraph: [('nt3[3.2]{"p5": "Ce", "name": "u4"}, [{’id’: ’5.20’,
’tid’: None, "properties’: None}, {’id’: ’6.24’, ’tid’: None, ’properties’:
None}])] ¥

4. Query 2: MATCH (n:nt3 {p5: ’Ce’})-[:et3]->(m) RETURN n,
m;

5. Neo4j: [Node(’nt3’, name="u4’, p5="Ce’), Node('nt1’, name =
'u85’, p3=True)], [Node('nt3’, name="u4’, p5="Ce’), Node('nt2’,
name="u84’, p9=44.79)] v/

6. Agensgraph: ("nt3[3.2]{"p5": "Ce", "name": "u4"}, ‘nt2[5.20]{"p9":
44.79, "name": "u84"}’), ('nt3[3.2]{"p5": "Ce", "name": "u4'},
‘nt1[6.24]{"p3": true, "name": "ud5"}’) v/

As shown in listing 9, Query 1 first retrieves nodes with the
label "nt3" and the property "p5" value ’Ce’, then obtains nodes
reached along the "et3" relationship from these nodes, and finally
aggregates them into a list. Neo4j returns the correct results, while
Agensgraph fails to retrieve the node’s key-value pairs. Query 2,
after removing the "collect” keyword, yields consistent results in
both neo4j and Agensgraph. This bug is similar to the one in listing
8, so we suspect that Agensgraph may have a bug when using the
"collect” keyword to gather nodes into a list.

Listing 10: Cypher queries that trigger a wrong-result bug in
Agensgraph 2.13.0.

1. Query 1: MATCH (n) WHERE n.p2 > 50 RETURN n.name;
2.Neod4j: [] vV

3. Agensgraph: [('ul9’), (u56’,), (u96’,), (u33’,), (udd’), (ud7’,),
(u86’), (ul7’,), Cus7’), (u9l’,)] X

4. Query 2: MATCH (n) RETURN n.name, n.p2;

5. Neodj: [["ul7’, False], ['u19’, True]...., ['u99’, None]] ¢/

6. Agensgraph: [(ul7’, False), (ul9’, True),..., (u99’, None)]v/

As shown in listing 10, query 1 returns the names of all nodes
with the property "p2" greater than 50. Neo4j returns an empty set,
while Agensgraph returns the names of some nodes. Query 2 returns
the names and "p2" property values of all nodes. We can see that the
type of the "p2" property value is a boolean constant, and it cannot
be compared with an integer constant. However, Agensgraph still
returns results. Therefore, we suspect that Agensgraph may have a
bug in setting the priority of boolean constant higher than integer
constants when comparing values of different types.

As shown in listing 11, query 1 aims to return the count of
all nodes going out through the "et0" relationship and returning
through the "et3" relationship. Neo4j returns 28, while Agensgraph
strangely returns a very large value, 2695, because the total number
of nodes in the graph is only 100. Query 2 returns the count of nodes
going out through the "et0" relationship, and query 3 returns the

count of nodes returning through the "et3" relationship. The results
of these two queries on both graph database engines are consistent,
but we found that the product of the results of queries 2 and 3 equals
the result of query 1. From this, we can infer that Agensgraph,
when using the above pattern to match multiple relationships, does
not consider these relationships simultaneously but matches them
separately. Finally, it returns the results in a manner similar to a
Cartesian product[19], leading to a bug.

Listing 11: Cypher queries that trigger a wrong-result bug in
Agensgraph 2.13.0.

1. Query 1: MATCH (n)-[:et0]->(), ()-[:et3]->(n) RETURN count
(n);

2. Neo4j: [28] vV Agensgraph: (2695,) X

3. Query 2: MATCH (n)-[:et0]->() RETURN count (n);

4. Neodj: [55] v/ Agensgraph: (55) v/
5. Query 3: MATCH ()-[:et3]->(n) RETURN count (n);

6. Neodj: [49] vV Agensgraph: (49,) v/

Listing 12: Cypher queries that trigger a wrong-result bug in
Agensgraph 2.13.0.

1. Query 1: MATCH (n1)-[r]->(n2:nt0) WHERE nl.name = "u9’
RETURN COLLECT(DISTINCT n2.p2) AS distinct_values;
2. Neod4j: [[False]] v/ Agensgraph: ([False, None],) X

As shown in listing12, this query first matches nodes connected
to the 'u9’ node with the type "nt0" and then returns the unique
set of p2 property values for these nodes. The result returned by
Neo4] is 'False’, while Agensgraph returns ‘False’ and 'None’. This
is because in Agensgraph, None indicates the absence, meaning
that some nodes in the matched nodes may lack the p2 property,
resulting in the presence of none. However, Distinct is meant to
return unique elements, and after using distinct, None values should
be removed to avoid potential user confusion.

Listing 13: Gremlin queries that trigger a wrong-result bug
in Janusgraph 1.0.0.

1. Query 1: g.E().has(p2’, ('GhR)). 0;
2. Janusgraph:[9] X Tinkergraph:[23] v/
3. Query 2: g.E().has(’p2’). 0;

4. Janusgraph:[23] v/ Tinkergraph:[23] v/
5. Query 3: g.E().has(’p2’, (CGhR’)). (); 6.Janus-
graph: [{'name’: ’e16’, 'p2’: True}, {'p2’: True, 'name’: ’e13’, 'p9’:
55.07},....{ name’: ’e180’, 'p2’: True}] X

7. Tinkergraph: [{'p2’: False, 'name’: e5’}, {'p1’: ’5k’, ’p2’: False,
‘p4’: False, ‘'name’: ’e9’}, {'p2’: True, ‘name’: ’e16’},...{'p2’: True,
‘name’: ’e13’, ’p9’: 55.07}] v/

As shown in listing 13, query 1 returns the number of edges
that have the "p2" property and the "p2" property value does not
contain ’GhR’. It can be seen that Janusgraph and tinkergraph return
different values. Query 2 returns the number of edges that have
the "p2" property, and it is observed that the results of the two

graph database engines are consistent. Therefore, we believe that
there is an issue with the use of the without operator. Subsequently,
we use query 3 to return the property key-value pairs of edges
that have the "p2" attribute, and the "p2" property value does not
contain 'GhR’. We found that Janusgraph only returns edges with
"p2" attribute value as True. It can be inferred that Janusgraph has
a bug when using the without operator to handle property values
of different types.

Listing 14: Gremlin queries that trigger a wrong-result bug
in Janusgraph 1.0.0.

1. result_set = client1.submit("g. (’nt5).
). (test3’, pvifo’)")

2. nodes = list(map(lambda v: "label": g.V(v).label().toList(), "prop-
erties": g.V(v).valueMap().toList(), g.V()))

3. for node in nodes:

(p?’, 13.85

4. print("Node Properties:", node["properties"])

5. Janusgraph_Output: Node Properties: [{'p9’: [13.85], "test3’:
[pvifo']}]v/

6. Tinkergraph_Output: Node Properties: [{'test3’: ['pvifo’], 'p9’:
[{ @type’: ’gx:BigDecimal’,’@value’: 13.85}]}]v/

7. gV().drop().iterate(); g.E().drop().iterate();

8. result_set = clientl.submit("g. (nt5’).
). (test3’, 25.6)")

9. nodes = list(map(lambda v: "label": g.V(v).label().toList(), "prop-
erties": g.V(v).valueMap().toList(), g.V()))

10. for node in nodes:

(p9, 13

11. print("Node Properties:", node["properties"])

12. Janusgraph_Output: Node Properties: [{p9’: [13.0], "test3’:
['25.6’]}] X

13. Tinkergraph_Output: Node Properties: [{'test3’: [{ @type’:
’gx:BigDecimal’,’@value’: 25.6}], 'p9’: [13]}] v/

As shown in listing 14, we provide a partial code example in
Python to create graph data. Lines 1-4 create a node and return
its property key-value pairs. Line 7 deletes all nodes and edges
from the graph. Lines 8-11 create a node with the same type but
different property types and return its property key-value pairs.
From the output results in lines 5 and 6, it can be seen that the
property values of nodes constructed under different graph database
engines are the same. From the result in line 12, it can be seen that
Janusgraph creates the 'p9’ property value and ’test3’ property
value of the node with integer and float, but displays them as float
and string. Line 13 shows that Tinkergraph displays property values
in a type consistent with the input during node creation. Therefore,
we infer that even after deleting all nodes and edges from the
graph, the property value types of the nodes initially constructed
in Janusgraph will still affect the types of subsequently constructed
node property value, leading to a bug.

As shown in listing 15, query 1 returns the key-value pairs of
nodes with the ’p2’ property and ’p2’ property value not equal
to the string ’false’. The node property key-value pairs returned
by Janusgraph are far fewer than those returned by Tinkergraph.
Query 2 returns the key-value pairs of nodes with the *p2’ property

and 'p2’ property value not equal to the boolean value false, and it
can be seen that the results returned by Janusgraph and Tinkergraph
are consistent. By comparing the results of query 1 and query 2
in Janusgraph, we can conclude that Janusgraph treats the string
‘false’ property value as a boolean value false, leading to this bug.

Listing 15: Gremlin queries that trigger a wrong-result bug
in Janusgraph 1.0.0.

1. Query 1: g.V().has('p2’, (false’)). 0;

2. Janusgraph:[’p2’: [True], ‘'name’: ['u96’], 'p2’: [True], 'name’:
['u19’], ’p2’: [True], 'name’: ['ud7’]] X

3. Tinkergraph:['p2’: [False], 'name’: ['u91’], ’p2’: [True], ‘'name’:
[u96’]....’p2’: [True], ‘'name’: ['u47’]] v/

4. Query 2: g.V().has(’p2’, (false)). 0;

5. Janusgraph:[’p2’: [True], ‘'name’: ['u96’], 'p2’: [True], 'name’:
['u19’], ’p2’: [True], 'name’: ['ud7’]]
6. Tinkergraph:[’p2’: [True], 'name
[u19’], ’p2’: [True], 'name’: ["u47’]]

'u96’], ’p2’: [True], ‘name’:

r
%4
3
4

From the above bug analysis, it can be seen that bugs in graph
database engines mainly occur in the comparison of different types
of property values (e.g., Listing 10, Listing 13), the use of certain
operators (e.g., Listing 8, Listing 9), execution order under complex
queries (e.g., Listing 6), default settings for null and boolean values
(e.g., Listing 7, Listing 12, Listing 15), handling logic under complex
pattern matching (e.g., Listing 11), and incomplete execution of
some commands (e.g., Listing 14). The above-mentioned bugs have
all been submitted to the corresponding communities of the graph
database engines on github.

5 RELATED WORK

Recently, researchers have proposed various methods for detecting
bugs in relational database engines. SQLsmith[3] is a fuzz testing
method for detecting bugs in relational database engines. It first
generates SQL query randomly according to the Abstract Syntax
Tree (AST) generator, then simplifies the generated SQL query
through SQL Reducer. Finally, it determines the presence of bugs
based on whether the generated SQL query can successfully run on
the relational database engines. While this method is effective in
detecting crash bugs, it cannot identify wrong-result bugs. PQS[38]
selects a target data from randomly generated tables, generates
conditional expressions based on the target data, constructs an SQL
query with a where or join clause, and determines the presence of
bugs by checking if the result is included in the result set. While
this method can effectively detect bugs in relational database en-
gines, its applicability is limited across different relational database
engines due to variations in SQL syntax and query optimization
strategies. NoRec[36] converts the original SQL query into a non-
optimized SQL query and compares the results of these two SQL
queries for consistency. However, this method cannot detect bugs
in SQL queries with subquery structures. TLP[37] transforms ran-
domly generated original SQL queries into three different logical
queries based on the true, false, and null ternary logic. It detects
bugs in relational database engines by comparing the result sets
of the transformed three SQL queries with the original SQL query.

TQS[45] proposes a testing framework capable of detecting logi-
cal bugs arising from multi-table join queries. The authors treat
the database schema as a graph and use biased random walks to
generate SQL queries. Based on biased random walks and graph
embedding methods, high-quality SQL queries are generated to
detect numerous logical bugs in relational database engines.

In contrast to detecting bugs in relational database engines, the
identification of bugs in graph database engines is relatively less
discussed. This is due to the significantly earlier development of
relational database engines compared to graph database engines.
However, significant differences exist in data models, query lan-
guages, storage structures, etc., between relational and graph data-
base engines. As a result, bug detection methods designed for rela-
tional database engines cannot be directly applied to graph database
engines. Moreover, because graph database engines use nodes and
edges to represent entities and their relationships, the data model
of graph database engines becomes more flexible and complex. For
instance, nodes can have an arbitrary number of properties and
relationships, increasing the complexity of bug detection in graph
database engines. Furthermore, unlike relational database engines
that have a universal and standardized query language like SQL[7],
each graph database engine has its proprietary query language. For
instance, AgensGraph uses Cypher, and JanusGraph uses Gremlin,
making it challenging to design a bug detection method that is
universally applicable across different graph database engines.

The detection method for bugs in graph database engines primar-
ily employs differential testing[13]. By running identical queries
on different graph database engines or different versions of graph
database engines and comparing their query results, this type of
method can effectively identify bugs in graph database engines
based on result inconsistencies. For instance, Grand[50] constructed
a traversal model to generate syntactically correct and meaningful
Gremlin queries. These queries were then input into various graph
database engines based on the Gremlin query language, and the
results of queries across different graph database engines were com-
pared. GDSmith[20], guided by property graphs, generates Cypher
queries, inputs them into graph database engines based on the
Cypher query language, and compares the query results across
different graph database engines. In contrast to the aforementioned
methods, DGDB, based on the recently popularized large language
model ChatGPT, proposes a paradigm for detecting bugs in graph
database engines. This paradigm, without requiring extensive ex-
pert knowledge, is capable of detecting bugs in graph database
engines based on different query languages (including but not lim-
ited to Cypher, Gremlin) and can increase the non-empty-result
ratio of generated queries, significantly enhancing the efficiency of
detecting graph database engine bugs.

6 CONCLUSION

In this paper, we propose a simple paradigm DGDB for detecting
graph database engine bugs. This paradigm offers a unique per-
spective in query generation for bug detection by integrating the
cutting-edge Large Language Models with graph query languages. It
firstly leverages powerful capabilities of ChatGPT in understanding
and generating natural language to generate queries that meet spec-
ified constraints. Subsequently, it uses differential testing method
to detect graph database engine bugs. We applied the paradigm

to cypher-based graph database engines and gremlin-based graph
database engines, proposing DGDB-cypher and DGDB-gremlin to
detect bugs in graph database engines. Experimental results demon-
strate that our method is effective in discovering bugs in the latest
versions of graph database engines for both query languages.

REFERENCES

[1] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and
Panos Kalnis. 2017. Query optimizations over decentralized RDF graphs. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 139-142.

[2] DataStax Dylan Bethune-Waddell Expero Google Orion Health IBM Rafael
Fernandes Robert Dale Seeq Amazon, Aurelius. 2023. JanusGraph. https:
//janusgraph.org/.

[3] Sjoerd Mullender Andreas Seltenreich, Bo Tang. 2022. SQLsmith. https://github.
com/ansel/sglsmith.

[4] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models.
ACM Computing Surveys (CSUR) 40, 1 (2008), 1-39.

[5] Dana Angluin. 1990. Negative results for equivalence queries. Machine Learning
5(1990), 121-150.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[7] Donald D Chamberlin and Raymond F Boyce. 1974. SEQUEL: A structured
English query language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control. 249-264.

[8] Zihan Chen, Lei Nico Zheng, Cheng Lu, Jialu Yuan, and Di Zhu. 2023. ChatGPT
Informed Graph Neural Network for Stock Movement Prediction. arXiv preprint
arXiv:2306.03763 (2023).

[9] Edgar Frank Codd. 1983. A relational model of data for large shared data banks.
Commun. ACM 26, 1 (1983), 64-69.

[10] Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. 2023. Chatlaw:
Open-source legal large language model with integrated external knowledge
bases. arXiv preprint arXiv:2306.16092 (2023).

[11] Andrzej Czerepicki. 2016. Application of graph databases for transport purposes.
Bulletin of the Polish Academy of Sciences. Technical Sciences 64, 3 (2016), 457-466.

[12] SAP Enterprise. 2023. OrientDB Community Edition. http://www.orientdb.org/.

[13] Robert B Evans and Alberto Savoia. 2007. Differential testing: a new approach
to change detection. In The 6th Joint Meeting on European software engineering
conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering: Companion Papers. 549-552.

[14] Apache Software Foundation. 2023. HugeGraph. https://hugegraph.apache.org/.

[15] Apache Software Foundation. 2023. TinkerGraph. https://tinkerpop.incubator.
apache.org/.

[16] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 international conference on management of data. 1433—
1445.

[17] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong
Mei. 2015. Fixing recurring crash bugs via analyzing q&a sites (T). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 307-318.

[18] Marielet Guillermo, Maverick Rivera, Ronnie Concepcion, Robert Kerwin Bil-
lones, Argel Bandala, Edwin Sybingco, Alexis Fillone, and Elmer Dadios. 2022.
Graph Database-modelled Public Transportation Data for Geographic Insight
Web Application. In 2022 IEEE/ACIS 23rd International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD). IEEE, 2-7.

[19] Edwin Hewitt and Leonard J Savage. 1955. Symmetric measures on Cartesian
products. Trans. Amer. Math. Soc. 80, 2 (1955), 470-501.

[20] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and
Tao Xie. 2023. GDsmith: Detecting bugs in Cypher graph database engines. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA).

[21] Bitnine Global Inc. 2023. Agensgraph. https://bitnine.net/agensgraph/.

[22] Neod4j Inc. 2023. Neo4j. https://neo4j.com/.

[23] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke. 2005.
Word level predicate abstraction and refinement for verifying RTL Verilog. In
Proceedings of the 42nd annual Design Automation Conference. 445-450.

[24] Matteo Kamm. 2022. Testing Graph Databases using Predicate Partitioning. Mas-
ter’s thesis. ETH Zurich.

[25] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

[26

[27

™~
&,

[42

[43

[44

'S
&

[46]

[47]

[48

[49]

o
=

Takahiro Konno, Runhe Huang, Tao Ban, and Chuanhe Huang. 2017. Goods
recommendation based on retail knowledge in a Neo4j graph database combined
with an inference mechanism implemented in jess. In 2017 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE, 1-8.

Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan, and
Dongyan Zhao. 2018. Marrying up regular expressions with neural networks: A
case study for spoken language understanding. arXiv preprint arXiv:1805.05588
(2018).

Hanjia Lyu, Song Jiang, Hanqging Zeng, Yinglong Xia, and Jiebo Luo. 2023. Llm-
rec: Personalized recommendation via prompting large language models. arXiv
preprint arXiv:2307.15780 (2023).

Jun Ma and Bo Wang. 2023. Segment anything in medical images. arXiv preprint
arXiv:2304.12306 (2023).

William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100-107.

OpenAl 2022. ChatGPT. https://openai.com/blog/chatgpt/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730-27744.

Rob Reagan and Rob Reagan. 2018. Cosmos DB. Web Applications on Azure:
Developing for Global Scale (2018), 187-255.

Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. Ensemfdet:
An ensemble approach to fraud detection based on bipartite graph. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 2039-2044.
Manuel Rigger. 2022. SQLancer. https://github.com/sqlancer/sqlancer.

Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140-1152.

Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems
via query partitioning. Proceedings of the ACM on Programming Languages 4,
OOPSLA (2020), 1-30.

Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted
query synthesis. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 667-682.

Tan Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. 1-10.

Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. 1-10.

Sudipta Sen, Akash Mehta, Runa Ganguli, and Soumya Sen. 2021. Recommenda-
tion of influenced products using association rule mining: Neo4;j as a case study.
SN Computer Science 2 (2021), 1-17.

Donald R Slutz. 1998. Massive stochastic testing of SQL. In VLDB, Vol. 98. Citeseer,
618-622.

solid IT. 2023. DB-Engines Ranking of Graph DBMS. https://db-engines.com/
en/ranking/graph+dbms.

Xiu Tang, Sai Wu, Dongxiang Zhang, Feifei Li, and Gang Chen. 2023. Detect-
ing Logic Bugs of Join Optimizations in DBMS. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1-26.

Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An empirical
study on recent graph database systems. In Knowledge Science, Engineering and
Management: 13th International Conference, KSEM 2020, Hangzhou, China, August
28-30, 2020, Proceedings, Part I 13. Springer, 328-340.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4-24.

Jiawei Zhang. 2023. Graph-ToolFormer: To Empower LLMs with Graph Reason-
ing Ability via Prompt Augmented by ChatGPT. arXiv preprint arXiv:2304.11116
(2023).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding bugs in Gremlin-based
graph database systems via randomized differential testing. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
302-313.

https://janusgraph.org/
https://janusgraph.org/
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
http://www.orientdb.org/
https://hugegraph.apache.org/
https://tinkerpop.incubator.apache.org/
https://tinkerpop.incubator.apache.org/
https://bitnine.net/agensgraph/
https://neo4j.com/
https://openai.com/blog/chatgpt/
https://github.com/sqlancer/sqlancer
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms

	Abstract
	1 Introduction
	2 A Simple Paradigm for Detecting Graph Database Engine Bugs
	2.1 GRAPH DATA Generation
	2.2 Query Generation
	2.3 Bug Detection

	3 DGDB Examples
	3.1 DGDB-Cypher
	3.2 DGDB-Gremlin

	4 Evaluations
	4.1 Evaluation Setup
	4.2 Performance Comparison (RQ1)
	4.3 Detected Wrong-Result Bugs (RQ2)

	5 RELATED WORK
	6 CONCLUSION
	References

