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Abstract

This paper introduces an innovative dataset specifically crafted for
challenging agricultural settings (a greenhouse), where achieving pre-
cise localization is of paramount importance. The dataset was gath-
ered using a mobile platform equipped with a set of sensors typi-
cally used in mobile robots, as it was moved through all the cor-
ridors of a typical Mediterranean greenhouse featuring tomato crop.
This dataset presents a unique opportunity for constructing detailed
3D models of plants in such indoor-like space, with potential appli-
cations such as robotized spraying. For the first time to the best
knowledge of authors, a dataset suitable to put at test Simultaneous
Localization and Mapping (SLAM) methods is presented in a green-
house environment, which poses unique challenges. The suitability
of the dataset for such goal is assessed by presenting SLAM results
with state-of-the-art algorithms. The dataset is available online in
https://arm.ual.es/arm-group/dataset-greenhouse-2024/.

1 Introduction

In recent years, the use of technology in agriculture has experienced signifi-
cant growth, driven by improved productivity and optimization of resources
[1]. Technology is crucial in reducing the use of fertilizers, pesticides, and
efficient water management [2]. Agricultural activities benefit considerably
from technology, ranging from the application of micronutrients to the esti-
mation of fruit quality and quantity, as well as the mechanical or electromag-
netic removal of weeds [3]. Robots are presented as autonomous platforms
with the ability to carry out these tasks and can also be used for example
to collect a large amount of crop data continuously [4].

Central to carrying out these tasks is providing a robot with autonomous
navigation capabilities in an agricultural environment. In the particular case
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Figure 1: Mapping of the complete greenhouse, orthogonal view with
Velodyne VLP16. See discussion on section 5.1.

of a greenhouse, localization requires excellent accuracy and estimation of
odometry, which is almost impossible to install in greenhouses [5]. This
environment presents particularly challenging features, such as repetitive
patterns due to the lack of unique and consistent visual attributes of the
vegetation, which poses unique challenges for closed-loop detection algo-
rithms. In addition, these natural environments present unique computer
vision challenges due to subtle human-caused movements, extreme light vari-
ability due to the closed environment, and seasonal crop changes due to crop
management (pruning, harvesting,...) and weather variability.

Large and open datasets are crucial for developing data-driven solutions
and benchmarks in a new era of deep learning-based algorithms. In the
literature, there are abundant datasets for urban environments (e.g., [6, 7])
and, to the authors’ knowledge, the most extensive datasets currently avail-
able for agricultural environments are the Rosario Dataset [8], the Sugar
Beets Dataset [9] and the MAGRO Dataset [10], for an apple orchard field.
However, these datasets are focused on open field agricultural environments
where, on the one hand, localization and orientation may be less complex
and, on the other hand, the permissible error is greater than in closed en-
vironments such as greenhouses, in particular Mediterranean greenhouses,
which accounts for 92% of the total greenhouse area worldwide [11, 12],
characterized for being structured in irregular and narrow corridors (90-100
cm) with sandy soil (80% of farms).

This paper presents an innovative and dynamic framework for data col-
lection and a dataset collected throughout the growing season in a typical
Mediterranean greenhouse using a sensor-equipped forklift. The data col-
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lected include images from a stereo camera pointing forward, an IMU and
two 3D LIDARs. This dataset provides valuable information to advance
the development of visual odometry. Notably, the data were acquired in
a typical Mediterranean greenhouse with a tomato crop, which offers the
opportunity to develop 3D models for the plants that can be specially use-
ful, for example, for robotized spraying tasks, where the amount of plant
protection product is applied while coordinating the relationship between
the displacement speed of the robot and the spray speed [13, 14]. It is im-
portant to remark that the tomato is one of the most important crops in
South-Eastern Spain, occupying 17% of the greenhouse area in the province
of Almeŕıa alone and accounting for 20% of its total crop production during
the 20/21 season [15].

From a robotics perspective, recent advancements have introduced sev-
eral robotic solutions for agriculture automation. Most of these develop-
ments are not technologically mature, however some important companies
in the agriculture machinery sector, such as John Deere, New Holland and
Case, and other emerging companies with applications in this sector, such
as Näıo and DJI, have commercial products or one step away from commer-
cialization. However all of these developments have been conceived to work
in open field. For greenhouses, robot prototypes performing different tasks
such as weeding, harvesting, pruning, spraying, pest and disease monitoring,
etc. have been also developed [16, 17]. Since 1987 many researchers have
worked on the development of robots for greenhouses, studying the different
problems involved [18]. The AURORA project [19], for instance, introduced
a resilient and cost-effective robot designed for greenhouse operations. This
robot demonstrates the ability to navigate autonomously through diverse
greenhouse environments. Another notable greenhouse automation initia-
tive is [20], featuring a mobile robot equipped with a stereo vision system
and a six-degree-of-freedom arm specifically designed for tomato cultivation
in greenhouses. In addition, a service robot for sanitary control and localized
dispensing of pesticides and fertilizers to plants in greenhouses using RGB-D
cameras is presented in [21]. Other projects in Japan [22] have also received
funding, contributing to the ongoing exploration and development of robotic
solutions for greenhouse applications. It’s important to notice that the au-
thors of this paper have worked in three projects directly related to the use
of mobile robots in greenhouses. In particular, [23] presents the implementa-
tion and testing of navigation algorithms on the FITOROBOT mobile robot
[13]. In INVERSOS project [14], a multi-functional mobile robot is devel-
oped taking as basis the experience provided by the FITOROBOT project,
and in the AGRICOBIOT [24] project another mobile robot for greenhouses
is developed, but with the particular characteristic of working in a collabo-
rative way close to humans.

The need for this dataset is demonstrated by the fact that there are
a multitude of robots that can improve the navigation task. The sensor-
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equipped platform used in this paper travels the same route in different
conditions and on different days, capturing data with variations in light-
ing, weather, and crop state. Along with the sensors data, details on the
calibration of intrinsic and extrinsic sensors parameters and tools for data
processing are provided.

The main contributions of this work are summarised as follows: (i) a
novel dataset on an unexplored environment with rich and challenging fea-
tures is presented; to the best knowledge of the authors, this is the first study
on a dataset for mapping and navigation by mobile robots in greenhouses;
(ii) an open-source data collection pipeline is developed and published, which
will be used to augment and extend the dataset periodically, and (iii) the
suitability of the proposed dataset is validated by running a state-of-the-art
SLAM algorithm on it. The dataset, its download guide, and the tools to
process it are publicly available in the dataset repository 1.

The rest of the paper is organized as follows. Section 2 presents a litera-
ture review, discussing the most relevant articles and focusing on works with
application to agriculture. Section 3 presents the sensor-equipped platform
and the sensors calibration. Section 4 presents how the data were acquired
and the data structure. In Section 5, the dataset is evaluated with a novel
algorithm to validate its quality, and finally, Section 6 ends with conclusions
and future work.

2 Related work

Datasets tailored to mobile robotics are of great importance for tasks such
as image-based localization, LIDAR odometry, and SLAM, among others.
Datasets can be classified according to whether they are synthetic (simula-
tion of textures, objects, lighting, etc., from a virtual environment) or real
(images or videos, point clouds, etc from a real environment), and according
to the type of scene. Table 1 summarizes the related datasets discussed in
the rest of this section.

2.1 Synthetic datasets

Starting from the works related to rural environments, [25] proposes a
dataset based on a photorealistic environment where they evaluate many
SLAM techniques, even going into interiors. In the same line, [26] develops
a dataset based on urban photos, building an urban 3D environment and,
following the same technique, [27] focuses on mountainous environments.
However, for works related to agricultural environments, [28] presents a
synthetic dataset that evaluates different SLAM techniques with different

1University of Almeŕıa dataset ”GREENBOT”: https://arm.ual.es/arm-group/

dataset-greenhouse-2024/

4

https://arm.ual.es/arm-group/dataset-greenhouse-2024/
https://arm.ual.es/arm-group/dataset-greenhouse-2024/


Table 1: Summary of the surveyed datasets

Dataset
Real/

synthetic
Indoor/
outdoor

Environment
Main
task

RGB Depth GPS IMU LiDAR
Ground
truth

Publicly
available

[25] Synthetic Indoor Room SLAM Yes Yes No No No No No

[26] Synthetic Outdoor Urban
Semantic

segmentation
for navigation

Yes Yes No No No Pose Yes

[27] Synthetic Outdoor Mountain SLAM No No Yes Yes Yes Pose Yes

[28] Real Outdoor Open field SLAM Yes Yes No No No
Semantic
label

No

[30] Synthetic Outdoor
Different
open field

Semantic
segmentation
for recognise

Yes Yes No No No No Yes

[7] Real Outdoor Urban SLAM Yes No Yes No Yes Pose Yes

[6] Real Outdoor Urban SLAM Yes Yes Yes Yes Yes Pose Yes

[31] Real Outdoor Urban SLAM Yes No Yes No Yes Pose Yes

[32] Real Outdoor Urban SLAM No No Yes Yes Yes Pose Yes

[33] Real Outdoor Lake and rivers Measuring No No Yes Yes Yes Pose No

[34] Real Outdoor Rivers SLAM Yes No Yes Yes No No Yes

[35] Real Outdoor
Various
open field

Semantic
segmentation
for navigation

Yes Yes No No No Pose Yes

[36] Real Outdoor Open field Pest detection Yes Yes No No No No No

[8] Real Outdoor Soybean field SLAM Yes Yes Yes Yes No Pose Yes

[9] Real Outdoor Sugar beet field Weeding Yes Yes Yes Yes Yes Pose Yes

[10] Real Outdoor Apple field SLAM Yes Yes Yes No Yes Pose Yes

[37] Real Outdoor Building SLAM No No Yes Yes Yes Pose Yes

[38] Real Indoor House SLAM Yes No No No No Pose No

[39] Real Indoor Laboratory SLAM Yes Yes No No No Pose Yes

[40] Real Outdoor
Laboratory scale

greenhouse
Navigation
techniques

Yes No No No No No No

[41] Real
Indoor/
Outdoor

Mountain and
building

SLAM Yes No Yes Yes No Pose No

GREENBOT Real Indoor
Mediterranean
greenhouse

SLAM Yes Yes No Yes Yes Pose Yes

types of plants in different camera positions, fruit labels, etc. In [29] a 3D
environment of simulated vineyard data where it evaluates different map-
ping techniques is created. In [30], authors make a synthetic dataset for
different agricultural areas divided into different plots of land for spraying
or pruning of fruit trees.

2.2 Real datasets

Within these real datasets, scenes can be classified as indoor or outdoor,
with outdoor scenes classifiable according to whether they are recording
urban locations or other types of environments.

2.2.1 Outdoors

In terms of environments, outdoor areas often present more difficulties due
to changes in lighting conditions, weather, moving objects, etc. These can
be further classified into urban or open field environments, depending on
the environment where the data were collected. The latter is particularly
interesting for the present work because, although it is carried out in a
greenhouse, which can be classified as indoor in agriculture, it is crucial to
compare it with other open field agriculture datasets, highlighting the non-
existence of datasets for indoor agriculture environments such as Mediter-
ranean greenhouses.
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• Urban environments

In [7] authors present the dataset for a university campus where data
are collected using six RGB cameras, a LiDAR, and a GPS. In [6] high-
resolution color and greyscale stereo cameras, a Velodyne 3D laser scanner,
and a high-precision GPS/IMU are used to collect data from a city. These
studies collected data using ground vehicles. In [31], data were captured
by flying at low altitudes within urban streets using an aerial micro-vehicle
equipped with high-resolution cameras, GPS, and IMU. A dataset based
on a high-resolution stereo camera at 20 Hz for 36.8 km in Málaga with a
Citroen C4 car is presented in [32].

• Open field environments

With the help of human-operated vehicles, [33] collected data of the river
and lake vicinity over three years equipped with a 2D LiDAR, RGB camera,
GPS, and IMU. Similarly, [34] managed to gather data from the Sangamon
River using a canoe equipped with an RGB camera, IMU, and GPS. Focusing
on agriculture in open fields, [35] classified the data obtained through an
agricultural robot in a beet plantation for three months, acquiring data from
an RGB-D camera, IMU, GPS, and LiDAR. Moreover, there are also articles
addressing agricultural tasks unrelated to odometry, mapping, or navigation.
In [36], a dataset for pest or harmful insect detection is presented, as well
as fruit and plant detection [42], among others. The related existing works
with the most impact in agriculture focus on the dataset collected in Rosario
[8] and in the Sugar Beets [9], where, with the help of mobile robots, they
can map by blending techniques based on georeferenced images and SLAM
algorithms. These works are focused on weed detection, mapping of different
types of crops, etc. Finally, in [10], a dataset is presented using a robot with
autonomous navigation, displaying images with RGB-D cameras and 3D
LiDAR on a row of apple trees, closing the control loop through a SLAM
algorithm.

2.2.2 Indoors

Although most datasets focus their work on outdoors, numerous studies on
indoors datasets exist. In this work, after conducting an exhaustive search,
they will be divided into buildings and greenhouses. However, as mentioned
above, few works discuss datasets within greenhouses. In particular for
Mediterranean greenhouses, to the authors’ knowledge, there is none.

• Building environments

Depending on the scheme to be recorded, these datasets can adopt dif-
ferent types of complexity. If the data are recorded in indoor environments
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such as rooms, they are usually easier to recompile and process as they do
not experience changes in lighting or significant differences related to sea-
sonal changes. In addition, these environments are fabricated by objects
that the user can easily place. In this case, there are a multitude of datasets
that recompile authentic interiors as, for example, for a regular house, in
[38], a SLAM technique based on RGB cameras using different robotic plat-
forms is presented; in [37], a drone equipped with a stereo camera and an
IMU acquires data from the interior of an industrial building. However, the
variation of light, natural light, or the need to know the whole environment
can lead to a disorientation of the robot, producing an erroneous map. In
this case, in [39] authors contemplate the different casuistics that a service
robot can experience when it navigates in interiors.

• Agriculture environments

Localization by means of GNSS is fundamental for navigation with mo-
bile robots [43], although weak signal reception inside greenhouses leads to
many methods exploiting alternatives such as rail-based location [44], or
beacons, such as QR codes [45]. To date, most of the work on robots in
greenhouses has been focused on (i) weed inspection and spraying and (ii)
vegetable harvesting tasks. Regarding datasets, in [40], a small ROS dataset
is presented for data collection and mapping using different techniques with
RGB cameras, with an unpublished proprietary dataset. Similarly, semantic
mapping is performed in [46] to address contextual navigation in a labora-
tory scale greenhouse with agricultural robots, using the CamVid dataset
[41]. Other recent datasets focus on detailed point clouds for phenotyping
plants [47].

These works do not provide a detailed dataset that can be used to evalu-
ate different SLAM techniques. The proposed work is entirely novel as there
is no dataset using two widely used LiDAR models and cameras navigating
through different crop rows inside a greenhouse.

3 Platform description

The platform used to record this dataset was designed at the University of
Almeŕıa 2 (Figure 2). It has a base sized 900 x 500 x 700 mm with a load
capacity of 180 kg, equipped with four wheels and two handles for manual
operation. The sensors are mounted on top of it, taking into account the
specific constraints of each sensor:

2With the support of the Regional Ministry of Economic Transformation, Industry,
Knowledge and Universities and the European Regional Development Fund (FEDER)
with the projects UAL2020-TEP-A1991 and PY2020 007-A1991.
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• Stereo camera 3: It has two lenses for capturing synchronized stereo
images. It connects to the PC through a FireWire IEEE 1394 interface,
providing a data transmission speed of 800 Mb/s. The stored data has
a resolution of 1032 x 776 pixels. The field of view is 97◦ horizontally
and 66◦ vertically within a range of 0.3 m to 20 m. Recording was
done at 10 Hz, with a maximum frame rate of 20 fps. This camera is
placed on the front so that the images captured are ideal for obstacle
identification for a robot.

• Velodyne VLP16 LiDAR 4: Velodyne’s LiDAR VLP16 with a maxi-
mum range of 100 m, a 360◦ horizontal and 30◦ vertical field of view
is used. It is placed at the top of the runway to have the whole field
of view available, except for the operator. It was recorded with a
frequency of 10 Hz.

• Ouster OS0 LiDAR 5: Data are also collected from the Ouster model
OS0. This is a 32-channel LiDAR with 360◦ horizontal and 90◦ vertical
field of view, ranging between 0.3 m and 50 m. The data rate is also
left at the default value of 10 Hz, including the onboard 6-axis IMU.
This sensor is placed in a structure 20 cm lower than the Velodyne,
obstructing its view and hence only collecting data with an effective
horizontal field of view of 275◦.

A NovAtel GNSS, model IMU-IGM-A1 6, is also installed with the an-
tenna ANTCOM 42G1215 7. In this dataset, GNSS was only used for times-
tamp synchronization.

3.1 Computing platform

Greenhouses often have hard environmental conditions, with high tempera-
ture and humidity [48]. Additionally, power for sensors and computer must
be supplied from a battery that balances versatility and space. Taking all
this into account, the platform is equipped with a HISTTON computer fea-
turing an Intel i7 - 8550U processor (4 GHz), an Intel UHD 620 graphics card
with 24 CUDA cores, and 32 GB of DDR4 RAM. This equipment was se-
lected for its operating temperature range of 0 - 70 ºC and humidity range
between 0 and 85%. It only consumes 15 W, resulting in minimal power
consumption to consider for battery capacity. This computer was equipped
with two disk partitions to use both, Ubuntu 20.04 with ROS Noetic, and
Ubuntu 22.04 with ROS 2 Humble, providing the opportunity to work with
both versions.

3Bumbleblee BB2-08S2 (website).
4Velodyne VLP16 (website).
5Ouster OS0 (website).
6NovAtel (website).
7ANTCOM (website).

8

https://www.flir.com/support/products/bumblebee2-firewire/
https://velodynelidar.com/products/puck/
https://ouster.com/products/hardware/os0-lidar-sensor
https://novatel.com/support/span-gnss-inertial-navigation-systems/span-combined-systems/span-igm-a1
https://novatel.com/products/gps-gnss-antennas/compact-small-gnss-antennas/42g1215a-xt-1


Figure 2: Sensor-equipped platform used to acquire data, equipped
with a Bumblebee stereo camera, Novatel GNSS, ANTCOM 45G1215,
a Velodyne VLP16 3D LiDAR, and an Ouster OS0 LiDAR with IMU.
Also, map of reference local systems for platform sensors. The x-axis
is represented in red, the y-axis in green, and the z-axis in blue.

3.2 Calibration

3.2.1 Intrinsic parameters

The intrinsics of the stereo camera have been determined with the kinect-stereo-calib
application from the Mobile Robot Programming Toolkit (MRPT) [49], in-
cluding the focal lengths (fx, fy), the optical centers (cx, xy), the pin-hole
distortion parameters (k1, k2, p1, p2), and the left-to-right relative pose. Cal-
ibration was done using a 7x10 classic checkerboard target pattern, capturing
20 pairs of images. The calibration file is available online. An example of
the calibration tool, showing the result, is shown in Figure 3.
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Figure 3: Screenshot of the intrinsic calibration application used for
the stereo camera [49].

3.2.2 Extrinsic parameters

Extrinsic parameters define the relative poses of the different sensor frames
of reference. The origin of coordinates is defined at the Velodyne, from
which the other sensor poses are defined, as shown in Figure 2:

• Stereo camera: x = right, y = down, z = forward.

• LIDARs: x = forward, y = left, z = up.

The Velodyne sensor is taken as a local frame of reference for the plat-
form.

4 GREENBOT dataset

This section describes the environment, data acquisition procedure, down-
load method, and usage instructions.

4.1 Greenhouse and crop

The experiments took place at the Agroconnect facilities (which has received
cofunding from the Ministry of Science, Innovation, and Universities in col-
laboration with the European Regional Development Fund (FEDER) under
the grant program for acquiring cutting-edge scientific and technological
equipment (2019)) in the Municipal District of La Cañada de San Urbano,
Almeŕıa, located at 36°50’ N and 2°24’ W, with an elevation of 3 meters
above sea level and a slope in the terrain of 1 % in the North direction (see
Figure 4).
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Figure 4: IFAPA experimental greenhouse.

The greenhouse is in one of the most common styles in the region (Almeŕıa’s
”raspa y amagado”), expands over 1850 square meters, and features a sturdy
steel frame and a polyethylene covering. The greenhouse is arranged in an
East-West ridge configuration to benefit from the natural ventilation from
those two predominant wind directions in the region. A 2-meter wide cen-
tral pathway in the greenhouse serves as the main road and leads to eleven
aisles on each side. The aisles on the North side are 2 meters wide and 12.5
meters long, while the aisles on the South side are 2 meters wide and 22.5
meters long. Radiating from this central aisle are narrower secondary path-
ways, each only one meter wide, facilitating the smooth movement of mobile
robotic units. The facility has two sections with various advanced systems
tailored for precise crop management. These systems include natural venti-
lation from above (zenithal) and along the sides (lateral), an integrated air
heating and cooling network, infrastructure for CO2 enrichment, cutting-
edge equipment for humidification and dehumidification, an advanced ir-
rigation and fertilization system, as well as energy-efficient LED artificial
lighting.

The greenhouse crop is tomato (Lycopersicon esculentum), and the plants
are grown in coir bags, in rows oriented from north to south with a slope of
1%, as shown in Figure 5.
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Figure 5: Example of two images acquired at the same position with
different crop stages: the first one (left) after one month of plantation
and the second one (right) after three months

4.2 Data acquisition

The trajectory that has been followed through the crop is shown in Figure
6. In order to distinguish the longer corridors from the shorter ones, the
greenhouse is segmented into two sections, dividing it by the central corridor.

12



Figure 6: Trajectory taken during the data collection campaign in
the greenhouse of the IFAPA centre, Almeŕıa. The red dot indicates
the start and end of the route.

The platform is driven by the operator at an average velocity of 0.83
[m/s], who makes one pass until the end of each aisle and another pass on the
way back, then switching to the next row. It should be noted that the ninth
row in section B did not have plants at the time of recording this dataset.
In order to carry out this data collection, the point cloud provided by the
Velodyne and the Ouster LIDARs, the Ouster IMU, and the stereo images
from the Bumblebee camera are stored in ROS 1 bag format. In the aisles
located to the east and west, it has not been possible to make passes due to
the impossibility of passing through the greenhouse’s supporting pillars.

In terms of data structure, there are a total of nine sequences, recorded
between October 5th, 2022 and December, 1st 2022. Weekly recordings
were made, subjected to different environmental conditions, lighting, ground
changes, etc. The first two data files contain information from section B only
(refere to Figure 6, as section A was temporarily inoperative). The third
sequence contains section A, separated from section B. Finally, the remaining
datasets contain a single rosbag that stores the entire greenhouse. Table 2
shows detailed and summarised information about the stored data, providing
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information about the weather on the day of recording and the height of a
pilot plant measured manually. The path length of each sequence is obtained
from the SLAM-based reconstructions detailed later on, using the evo traj

tool [50]. Finally, the climatological variables of air temperature, humidity,
and irradiance inside the greenhouse during the navigation, are extracted
from a database of the University of Almeŕıa and also incorporated to the
dataset.

Table 2: Description of each recorded segment

Sequence
Length
[m]

Duration
[s]

Section
Greenhouse
condition

Description

2022 10 05 459.25 696 B
Temp: 27.01 [ºC]
Hum: 62.72 [%]

Ir: 106.7 [W/mˆ2]

Sunny, morning
plant height
0.96 [m]

2022 10 14 457.36 701 B
Temp: 23.78 [ºC]
Hum: 63.12 [%]
Ir: 79.0 [W/mˆ2]

Cloudy, morning
plant height
1.05 [m]

2022 10 19 1321.21 1432 A & B
Temp: 25.21 [ºC]
Hum: 75.83 [%]
Ir: 87.9 [W/mˆ2]

Sunny, morning
plant height
1.12 [m]

2022 10 26 1432.08 1463 A & B
Temp: 23.22 [ºC]
Hum: 60.09 [%]
Ir: 66.4 [W/mˆ2]

Cloudy, morning
plant height
1.35 [m]

2022 11 02 1233.87 1486 A & B
Temp: 15.84 [ºC]
Hum: 72.35 [%]
Ir: 70 .7 [W/mˆ2]

Cloudy, morning
plant height
1.41 [m]

2022 11 09 1293.29 1532 A & B
Temp: 16.23[ºC]
Hum: 62.7 [%]

Ir: 82.7 [W/mˆ2]

Cloudy, morning
plant height
1.53 [m]

2022 11 19 1332.58 1752 A & B
Temp: 17.45 [ºC]
Hum: 62.7 [%]

Ir: 64.36 [W/mˆ2]

Sunny, morning
plant height
1.60 [m]

2022 11 23 1428.45 1692 A & B
Temp: 15.28 [ºC]
Hum: 62.7 [%]

Ir: 69.4 [W/mˆ2]

Cloudy, morning
plant height
1.73 [m]

2022 11 30 1440.32 1730 A & B
Temp: 16.05 [ºC]
Hum: 62.7 [%]

Ir: 74.4 [W/mˆ2]

Cloudy, morning
plant height
1.85 [m]

4.3 Data structure

As already mentioned, the data are stored in rosbag format as it allows
storing the desired topics in the original format. This rosbag keeps the
ranging data from both LIDARs, the stereo images, and the IMU from the
Ouster LIDAR.

Alternatively, LIDAR data are also provided in the rawlog format8.

8Description of the rawlog format available online.
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This format can be easily parsed and published by ROS 2 packages such
as mrpt rawlog or the SLAM framework described later on.

5 SLAM suitability assesment

This section will assess the applicability of the dataset to build maps using
a LIDAR SLAM framework. In particular, we used mola lidar odometry

from the MOLA framework [51]. The approach belongs to the family of
LIDAR odometry methods (i.e. without loop closure) with voxel-based raw
point cloud representation. Experimental results from both LiDARs are
presented separately in the following subsections.

5.1 Mapping - Velodyne VLP16

Figure 7 shows the result of the greenhouse mapped with the Velodyne
VLP16 LiDAR for four different days.

(a) (b)

(c) (d)

Figure 7: 3D mapping of IFAPA greenhouse with Velodyne VLP16
for sequeces (a) 2022-10-14, (b) 2022-10-26, (c) 2022-11-09. (d)
2022-11-30.

A significant visual difference in the state of the tomato plants can be
observed in Figures 7(a)–(d), guaranteeing the systematic mapping of the
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greenhouse. At the top of each image, phony LiDAR points are visible
above the actual greenhouse top surface. These points are quite common
for the VLP-16 LiDAR, which tends to detects phony points beyond the
plastic surfaces of the greenhouse. The greenhouse soil is often uneven,
with slopes varying between 1 and 2 %, depending on the area. In this
type of mapping, being able to obtain a terrain variation model is of vital
importance for robotics [52]. As output of the SLAM module we also obtain
the estimated platform trajectory (in the the standard TUM format) which
is then analyzed using evo traj as shown in Figure 8.

(a) Velodyne tum path 2022-10-14 (b) Velodyne tum path 2022-10-26

(c) Velodyne tum path 2022-11-09 (d) Velodyne tum path 2022-11-30

Figure 8: Path followed on different days with the Velodyne VLP16

It can be seen how the movement pattern is repeated every day. It can
be seen how the pattern of movement is repeated every day. It is essential
to mention that the trials start with the same orientation, as can be seen in
Figures ??, ??, ?? and Figure ?? towards +x and +y. Each axis behaves
similarly irrespective of the day, although some exciting behaviors can be
observed along each trajectory. To analyze this, the path followed by each
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axis on November 30th, 2022 is shown in Figure 9.
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Figure 9: Trajectory estimated from the Velodyne VLP16 data for
sequence 2022 11 30.

The sub-graphs corresponding to the displacement in x and y correspond
to the displacement in the 2D plane, but the graph in z shows data relevant
to the investigation. A noise is observed that comes from the deformed soil
in the greenhouse, as well as a slope corresponding to the slope of the terrain
itself, validated by the algorithm itself. Finally, Figures 1 and 10 show a final
orthogonal view and plan of the result of the mapped 3D model, observing
the dataset’s quality.
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Figure 10: Mapping of the complete greenhouse, plan view with
Velodyne VLP16

5.2 Mapping - Ouster OS0

The same SLAM algorithm has been applied to the Ouster LiDAR data,
obtaining the results shown in Figure 11. In this case, the mapping is shown
for the same days as analysed in the previous section. Similarly, Figure 12
shows the result of the trajectories recorded by the Ouster OS0.
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(a) Ouster MOLA Lidar odometry
2022-10-14

(b) Ouster MOLA Lidar odometry
2022-10-26

(c) Ouster MOLA Lidar odometry
2022-11-09

(d) Ouster MOLA Lidar odometry
2022-11-30

Figure 11: 3D mapping of IFAPA greenhouse with Ouster OS0
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(a) Ouster path 2022-10-14 (b) Ouster path 2022-10-26

(c) Ouster path 2022-11-09 (d) Ouster path 2022-11-30

Figure 12: Path followed on different days with the Ouster OS0

A higher point cloud density can be observed as this LiDAR has twice
point cloud rings than the VLP-16. In the same way, each of the segmented
axes is projected, observing the same oscillatory behavior due to the uneven
terrain.
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Figure 13: Trajectory of each axis for sequence 2022 11 30 with
Ouster OS0.

The original and plan views are presented in Figures 14 and 15, obtaining
an excellent result and exceeding the dataset expectations.

Figure 14: Mapping of the complete greenhouse, orthogonal view
with Ouster OS0
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Figure 15: Mapping of the complete greenhouse, plan view with
Ouster OS0

6 Conclusions and future work

A new dataset designed for challenging natural agricultural environments
is presented here to drive the development of autonomous robots that can
improve operations in the agricultural sector. This article details the data
collection and describes the process employed. In addition, the dataset is
validated using a novel SLAM technique to ensure its operability. The re-
sults indicate that the data quality is suitable for implementation in specific
algorithms. Providing open datasets, such as the one presented here, is
critically important to further research and implementation of autonomous
robots in agricultural applications in greenhouses, given the unique charac-
teristics of these environments, which include extreme lighting variations,
changing weather conditions, and seasonal cycles.

In particular, this dataset allows the Community to develop and test its
own SLAM algorithms in a novel agricultural environment, with particular
emphasis on intensive greenhouse cultivation. The ability to create a map
and orientate and navigate with precision is essential for all tasks a robot
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can perform in a greenhouse (e.g., transport of vegetable crates, harvesting,
spraying, data collection, etc).

The proposed framework is intended to be used as a database, which
is unique for the time being. Data will continue to be collected from the
greenhouse as all these sensors will be implemented in two robots of the
University of Almeŕıa’s own. It is important to note that it is intended to
collect data more frequently with the implementation of robots, seeking a
more extensive dataset.

Apart from installing these sensors in real robots, the possibility of in-
stalling RGB-D cameras on both sides of the robots will be explored to
obtain detailed information about the crop. The implemented cameras will
also be improved to make it more robust to sudden changes in lighting, crop
growth, etc. All this will be implemented in ROS 2 Humble, providing the
robot with the latest technology in mobile robotics. Finally, these models
can be used for other tasks, so this exciting contribution could be used to
obtain the semantic information of the crop type, determining a model of
plant growth in height and width.

This paper aims to present and share a unique dataset with the poten-
tial to assist researchers in developing new SLAM-based techniques and in
evaluating a totally novel environment such as a greenhouse. It is outside
the scope of this work to compare and analyze the performance of existing
methods. The results described in Section 5 are provided as reference that
researchers can use as starting point for future comparative evaluations.
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The following abbreviations are used in this manuscript:
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CUDA Compute Unified Device Architecture
DDR4 Double Data Rate type four Synchronous Dynamic Random-Access Memory
GPS Global Positioning System
Hum Humidity
IMU Inertial Measurement Unit
Ir Irradiance
LiDAR Light Detection And Ranging
MOLA Modular Optimization framework for Localization and mApping
MRPT Mobile Robot Programming Toolkit
RAM Random Access Memory
RGB Red, Green and Blue
RGB-D Red Green Blue Depth (color + Depth channels)
ROS Robot Operating System
SLAM Simultaneous Localization And Mapping
Temp temperature
TIFF Tagged Image File Format
UAL University of Almeŕıa
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