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In recent years, there has been an increasing recognition that when machine learning (ML) algorithms are used to automate decisions,

they may mistreat individuals or groups, with legal, ethical, or economic implications. Recommender systems are prominent examples

of these machine learning (ML) systems that aid users in making decisions. The majority of past literature research on RS fairness treats

user and item fairness concerns independently, ignoring the fact that recommender systems function in a two-sided marketplace. In

this paper, we propose CP-FairRank, an optimization-based re-ranking algorithm that seamlessly integrates fairness constraints from

both the consumer and producer side in a joint objective framework. The framework is generalizable and may take into account varied

fairness settings based on group segmentation, recommendation model selection, and domain, which is one of its key characteristics.

For instance, we demonstrate that the system may jointly increase consumer and producer fairness when (un)protected consumer

groups are defined on the basis of their activity level and main-streamness, while producer groups are defined according to their

popularity level. For empirical validation, through large-scale on eight datasets and four mainstream collaborative filtering (CF)

recommendation models, we demonstrate that our proposed strategy is able to improve both consumer and producer fairness without

compromising or very little overall recommendation quality, demonstrating the role algorithms may play in avoiding data biases.

Our results on different group segmentation also indicate that the amount of improvement can vary and is dependent on group

segmentation, indicating that the amount of bias produced and how much the algorithm can improve it depend on the protected group

definition, a factor that, to our knowledge, has not been examined in great depth in previous studies but rather is highlighted by the

results discovered in this study.
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1 INTRODUCTION

Recommender systems are ubiquitous and support high-stakes decisions in a variety of application contexts such as

online marketing, music discovery, and high-stake tasks (e.g., job search, candidate screening, and loan applications). By

delivering personalized suggestions, these systems have a major impact on the content we consume online, our beliefs

and decisions, and the success of businesses. Recently, there has been a growing awareness about the fairness of machine

learning (ML) models in automated decision-making tasks, such as classification [7, 37, 38, 49], and ranking/filtering
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Fig. 1. (a) The percentage of the research studied different aspects of fairness in recommender systems. (b) N (Fairness-unaware), C
(user-oriented), P (item-oriented), and CP (two-sided fairness-performance) of recommendation algorithms on the accuracy, novelty,
and fairness performance. Consumer fairness evaluation (DCF) and producer fairness evaluation (DPF) are the two metrics that make
up the mCPF. Note that CP represents the core of our contribution. The results on each bar show the average of 32 experiments
across datasets and baseline CF models. ↑ means the higher the better while ↓ means the lower the better. Acc., Nov., and mCPF refer
to accuracy, novelty, and consumer-producer fairness evaluation, respectively.

tasks [11, 13], with recommender systems serving as a notable example of the latter. However, unlike classification,

fairness in recommender systems (RS) is a multi-faceted subject, depending on stakeholder, type of benefit, context,

morality, and time among others [9, 17, 24, 45, 53].

A recurring theme in the fairness recommendation literature is that computing research is often focused on a particular

aspect of fairness, framing the problem as a building algorithm that fulfills a specific criterion, such as optimizing for

producer fairness [22, 58, 60] or consumer fairness [23, 30]. However, this strategy may appear oversimplified, requiring

more nuanced and multidisciplinary approaches to research recommendation fairness.

One overarching aspect that may help to unify studies on fairness in multi-stakeholder settings is distinguishing

the (i) benefit type (exposure vs. relevance), and (ii) the main stakeholders involved in the recommendation setting

(consumers vs. producers). Exposure refers to how evenly items or groups of items are exposed to users or groups

of users. Relevance (effectiveness) determines to what extent the items exposition is effective, i.e., matches with the

user’s taste. The second level of the taxonomy is stakeholder. Almost every online platform we interact with (e.g.,

Spotify, Amazon) serves as a marketplace connecting consumers and item producers/service providers, making them

the primary end-beneficiaries and stakeholders in RS. From the consumers’ perspective, fairness is about distributing

effectiveness evenly among users, whereas producers and item providers seeking increased visibility are primarily

concerned with exposure fairness.

Fig. 1a illustrates the distribution of research on various aspects of fairness in recommender systems.
1
We may

observe a division/split in the research on fairness-aware recommendation algorithms, with around 49.1% of articles

focusing on consumer fairness and somewhat fewer on producer fairness (41.8%). Few studies (less than 10%) address

consumer and producer fairness concerns simultaneously. However, the underlying user-item interaction coexists on

1
The figures are based on 120 publications retrieved from DBLP using the keywords “fair/biased recommendation”, “re-ranking”, and “collaborative

filtering”.
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(and can impact) both sides of beneficiary stakeholders. For example, there may be disparities in the consumption

of item groups (defined by protected attributes) between active and inactive users in specific domains. Active users

of Point-of-Interest (POI) may want to visit a variety of popular and less popular locations, whilst less active users

may want to visit mainly the most popular locations. Prior research on unilateral fairness optimization raises various

questions, including whether optimizing for one party’s advantages, such as consumers, may ensure/protect the interests

of other parties (i.e., producers) and vice versa? Furthermore, how does optimizing for one stakeholder’s benefits

(e.g., consumers’ relevance) affect overall system accuracy? Are there ways to explain the key interplay and trade-offs

between fairness restrictions (user relevance, item exposure) and overall system accuracy in various recommendation

scenarios? Are there ways to explain the key interplay and trade-offs between fairness restrictions (user relevance, item

exposure) and overall system accuracy in various recommendation scenarios?

In response to the questions raised, this study concentrates on fairness within a multi-stakeholder setting. Our goal

is to harmonize two facets of fairness: fairness towards consumers and providers. To achieve this, we introduce a

model-agnostic re-ranking methodology. This approach is designed to optimize marketplace objectives effectively. It

ensures equitable exposure for producers’ items and minimizes unequal treatment of different consumer groups, all

while maintaining the overall accuracy of the recommender system.

To better illustrate the capabilities of our proposed system, in Fig. 1b, we compare the performance of various

recommendation algorithms against unilateral (or single-sided) fairness objectives according to the perspectives of

different beneficiary stakeholders.

In particular, we consider four distinct variants of recommendation algorithms. The first, denoted as N, is a baseline

recommendation algorithm that operates without any explicit fairness considerations. The subsequent three, labeled

as C, P, and CP, are specific adaptations of our proposed methodology, each addressing a unique fairness objective.

These objectives focus on consumer-side fairness in the case of C, provider-side fairness for P, and both objectives

simultaneously for CP. The C variant is closely modeled on the approach put forth by Li et al. [34], albeit with a key

modification in our rendition: the parity objectives of users are incorporated directly into the system’s framework as an

unconstrained optimization problem. To yield an optimal solution within a polynomial timeframe, we have chosen to

employ a suitably efficient greedy algorithm.

Fig. 1b represents the average results of the 128 experimental cases examined in this work, i.e., 8 (datasets) ×
4 (CF baselines) × 4 (fairness constraints type). One may observe the drawbacks of unilateral fairness optimization,

in which DCF and DPF are used to measure unfairness (biases) on the consumer and supplier sides, respectively

(cf. Section 4.1). For example, user-oriented fairness optimization (C-fairness) can enhance both consumer fairness

(i.e., reducing DCF) and total system accuracy. However, this creates a huge bias against suppliers. Producer-fairness

optimization, on the other hand, can improve novelty and producer fairness (i.e., reducing DPF), indicating that users’

recommendation lists contain a greater number of long-tail items. However, this comes at the cost of a considerable

reduction in overall accuracy (from 0.2832 to 0.2756) and worsening of DCF (from 0.3280 to 0.3234). The proposed

consumer-provider fairness optimization (CP-fairness) in the present work combines the benefits of previous system

variants, enhancing both producer and consumer fairness, resulting in increased accuracy (from 0.2832 to 0.2868) and

even increased novelty (due to recommendation of more long-tail items). To summarize, the key contributions of this

work are as follows:

• Motivatingmulti-stakeholder fairness inRS.Wemotivate the importance ofmulti-sided fairness optimization

by demonstrating how inherent biases in underlying data may impact both consumer and producer fairness
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constraints, as well as the overall system’s objectives, i.e., accuracy and novelty (cf. Section 3); these biases

and imbalances if left unchecked, could lead to stereotypes, polarization of political opinions, and the loss of

emerging business.

• CP-Fairness modeling. Our research builds on and expands earlier work [34], in several dimensions: (i) we

considermulti-stakeholder objectives including both consumers’ and producers’ fairness aspects; (ii) we formalize

the re-ranking problem as an integer programming method without enforcing the fairness objectives as a

constraint that is susceptible to reduction in overall accuracy in amarketplace; (iii) we propose an efficient greedy

algorithm capable of achieving an optimal trade-off within multi-stakeholder objectives in a polynomial-time

(cf. Section 4). In summary, this makes the proposed contribution more versatile and applicable to various

recommendation models and settings irrespective of their learning criteria and their recommendation list size.

• Experiments.We conduct extensive experimental evaluations on 8 real-world datasets from diverse domains

(e.g., Music, Movies, E-commerce), utilizing implicit and explicit feedback preferences (cf. Section 5); this,

combined with four recommendation algorithm baseline amount the number of experiments carried out to 128

recommendation simulation.

Contributions and enhancements beyond the original version of this work. This work builds upon our previous

research presented in SIGIR 2022 [40], and extends it in the following ways:

(1) Revisiting User Group Definitions in Recommender Systems: Building on our previous research in SIGIR

2022 [40], this work introduces a novel perspective on the grouping of the users, based on the quality of user

activity in terms of product popularity. We put forth the notion that users consuming more mainstream popular

products rather than a diverse range can influence collaborative filtering (CF) models to favor popular items. For

instance, if a user predominantly interacts with mainstream, popular products, this preference could inadvertently

bias collaborative filtering (CF) models towards suggesting more popular items. This introduces a new dimension

of unfairness in recommendation outcomes, which may vary in magnitude and proportion depending on the

number and type of activities a user engages in. Consequently, we have reanalyzed all experiments from

our SIGIR’22 submission, introducing new fairness scenarios that differentiate between mainstream and non-

mainstream users. The objective is to determine if these groups are provided with better recommendation quality

and to evaluate if our methods can effectively enhance fairness in these scenarios.

(2) Enhanced Generalizability and New Statistical Insights: To increase the applicability of our findings,

additional analyses have been incorporated, including correlation plots and fairness-accuracy trade-off evaluations

for two distinct user groups (refer to Table 5 and Table 6). These new statistical measures provide a better

representation of the generality of our findings across various domains.

2 BACKGROUND AND RELATEDWORK

A promising approach to classifying the literature in recommendation fairness is according to the beneficiary stake-

holder [1, 24, 50]. Based on a recent survey screening results on papers published in fairness during the past years [19],

only 9.1% of publications in the field deal with multi-sided fairness, with even a less percentage of 3.6% proposing an

actual two-sided fairness-aware algorithm, as pursued in our current study.

C-fairness Methods. Dwork et al. [23] introduces a framework for individual fairness by including all users in the

protected group. Abdollahpouri et al. [3] and Naghiaei et al. [39] investigate a user-centered evaluation of popularity

bias that accounts for different levels of interest among users toward popular items in movies and book domain.
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Abdollahpouri et al. [4] propose a regularization-based framework to mitigate this bias from the user perspective. Li

et al. [34] address the C-fairness problem in e-commerce recommendation from a group fairness perspective, i.e., a

requirement that protected groups should be treated similarly to the advantaged group or total population [44]. Several

recent studies have indicated that an exclusively consumer-centric design approach, in which customers’ satisfaction is

prioritized over producers’ interests, may result in a reduction of the system’s overall utility [43, 52]. As a result, we

include the producer fairness perspectives in our proposed framework as the second objective in this work.

P-fairness Methods. Several works have studied recommendation fairness from the producer’s perspective [57, 58].

Gómez et al. [26] assess recommender system algorithms disparate exposure based on producers’ continent of production

in movie and book recommendation domain and propose an equity-based approach to regulate the exposure of items

produced in a continent. Dong et al. [22] set a constraint to limit the maximum times an item can be recommended

among all users proportional to its popularity to enhance the item exposure fairness. In contrast, Ge et al. [25] investigate

fairness in a dynamic setting where item popularity changes over time in the recommendation process and models the

recommendation problem as a constrained Markov Decision Process with a dynamic policy toward fairness.

A common observation in C-fairness and P-Fairness research is the type of attributes used to segment the groups on

the consumer and provider side. These attributes could be internal, e.g., determined via user-item interactions [2, 31, 34]

or provided externally, e.g., protected attributes such as gender, age, or geographical location [8, 26]. In this work, we

segmented the groups by internal attributes and based on the number of interactions for both consumers and providers.

CP-fairness Methods. Considering both consumers’ and providers’ perspectives, Chakraborty et al. [12] present

mechanisms for CP-fairness in matching platforms such as Airbnb and Uber. Rahmani et al. [46] studied the interplays

and tradeoffs between consumer and producer fairness in Point-of-Interest recommendations. Patro et al. [43] map fair

recommendation problem to the constrained version of the fair allocation problem with indivisible goods and propose

an algorithm to recommend top-K items by accounting for producer fairness aspects. Wu et al. [56] focus on two-sided

fairness from an individual-based perspective, where fairness is defined as the same exposure to all producers and the

same normalized Discounted Cumulative Gain (nDCG) to all consumers involved.

Do et al. [21] define the notion of fairness in increasing the utility of the worse-off individuals following the concept

of distributive justice and proposed an algorithm based on maximizing concave welfare functions using the Frank-Wolfe

algorithm. Lin et al. [36] investigate sentiment bias, the bias where recommendation models provide more relevant

recommendations on user/item groups with more positive feedback, and its effect on both consumers and producers.

Numerous research studies have also concentrated on assessing both consumer and producer fairness [6, 17], as

exemplified by [6] for graph CF models.

The inner layer of the circle in Fig. 1a presents approaches for recommendation fairness that could be classified

according to 1) developing metrics to quantify fairness, 2) developing frameworks for producing fair models (according

to the desired notion of fairness). Contrary to the works surveyed, we develop a fairness-aware algorithm that

simultaneously addresses user groups and item group fairness objectives jointly via an efficient optimization algorithm

capable of increasing the system’s overall accuracy.

3 MOTIVATING CP-FAIRNESS CONCERNS

In this section, we intend to motivate the need of having two-sided fairness (i.e., user and item) by undertaking both

data and algorithm analysis. We analyze the distribution and properties of two well-known real-world recommendation
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Table 1. Percentage of users and items located at a different number of interaction thresholds (as 𝑛 and 𝑟 represents, respectively) in
the training set of the datasets.

Dataset 𝑛 ≥ 10 𝑛 ≥ 20 𝑛 ≥ 50 𝑛 ≥ 100 𝑟 ≥ 10 𝑟 ≥ 20 𝑟 ≥ 50 𝑟 ≥ 100

MovieLens 100% 82.08% 46.98% 26.09% 77.39% 60.49% 34.54% 16.46%

Epinion 99.85% 56.60% 8.11% 1.57% 99.81% 63.83% 17.33% 4.61%

Gowalla 100% 86.11% 25.40% 4.87% 100% 84.44% 20.10% 3.95%

LastFM 96.33% 72,73% 0.00% 0.00% 73.99% 37.36% 15.00% 4.48%
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Fig. 2. The difference between short-head and long-tail item groups on item exposure and novelty.

datasets, i.e., Epinion and Gowalla, with their details summarized in Table 2. We observed similar patterns on the other

datasets as shown in Fig. 5 baseline (N) models.

In Table 1, we show the distribution of users and items with different numbers of interactions in the datasets. As

the values show, most users are concentrated in areas with less interaction with the items. We can also note that the

majority of items have received fewer interactions from the users (i.e., long-tail items), and a small percentage of

items (i.e., popular items) are recommended frequently. This motivates the need to expand the long-tail coverage of

recommendation lists while encouraging users with fewer interactions to engage with the system.

In our next step, we evaluate the recommendation quality of fairness-unaware baseline algorithms on two datasets for

both user and item groups. Figs. 2 and 3 showcase the min-max normalized values of the recommendation algorithms’

quality across the MovieLens, Epinion, LastFM, and BookCrossing datasets. Fig. 2 plots the number of short-head and

long-tail items recommended to users, as well as the novelty of the recommendations. Our results show that despite the

small number of items in the short-head group compared to the long-tail group, a large proportion of recommended

items are popular items, implying a higher degree of unfairness in the recommendation from the provider’s perspective

(measured in terms of exposure). Moreover, Fig. 3 plots the accuracy (i.e., nDCG@10) for all users, active users, inactive

users, mainstream users, and non-mainstream user groups. In Section 6, we present a detailed analysis of the experiment

results in Table 3. Our findings reveal that the active user group, which represents a small fraction of total users,

receives significantly higher recommendation quality than the inactive user group (similarly for mainstream and

non-mainstream). This demonstrates that commercial recommendation engines tend to overlook the majority of users.

For instance, from Fig. 3b, we observe that NeuMF and VAECF achieve almost the best performance (1.0) in the active

user group, while for the inactive user group, the performance is around 0.6. This degradation in overall performance,

which is only slightly above the inactive group at 0.6 for both recommendation algorithms, highlights the need for

fairness in recommendations. In conclusion, our findings highlight the importance of fairness in recommendations
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Fig. 3. Figures (a) and (d) show the difference between active and inactive user groups and Figures (e) and (d) indicate the difference
between mainstream and non-mainstream user groups on normalized nDCG@10.

from both the consumers’ and providers’ perspectives, and thus developing techniques that better serve disadvantaged

users and item groups is necessary.

4 PROPOSED CP-FAIRNESS ALGORITHM

In this section, we first define fairness in a multi-sided platform based on deviation from the parity from consumers’

and producers’ perspectives. Then we propose a mixed-integer linear programming re-ranking algorithm to generate a

fair list of recommendations for each user given a traditional unfair recommendation list.

Problem Formulation. LetU and I be the set of consumers and items with size 𝑛 and𝑚, respectively. In a traditional

recommender system application, a user, 𝑢 ∈ U, is provided a list of top-N items, 𝐿𝑁 (𝑢) according to some relevance

scores, 𝑠 ∈ 𝑆𝑛×𝑁 . The goal is to compute a new fair ordered list, 𝐿𝐹
𝐾
(𝑢) from the original unfair baseline recommended

items 𝐿𝑁 (𝑢) where 𝐿𝐹𝐾 (𝑢) ⊂ 𝐿𝑁 (𝑢) 𝑤ℎ𝑒𝑟𝑒 𝐾 ≤ 𝑁 such that the new list would be more appealing to the system as a

whole considering the relevance score to the user 𝑢 and fairness objectives jointly.

Formally, item 𝐼𝑥 is presented ahead of item 𝐼𝑦 in 𝐿𝑁 (𝑢) if 𝑠𝑢𝑥 > 𝑠𝑢𝑦 . Recommending the items to users based

solely on the relevance score is designed to help improve the overall system recommendation accuracy regardless

of the fairness measures in a multi-sided platform. We define a binary decision matrix 𝐴 = [𝐴𝑢𝑖 ]𝑛×𝑁 with value 1

when the item ranked 𝑖 in 𝐿𝑁 (𝑢) is recommended to user 𝑢 in the new fairness-aware recommendation list, i.e., 𝐿𝐹
𝐾
(𝑢)

and 0 otherwise. Hence, the fair top-K recommendation list to user 𝑢, can be represented as [𝐴𝑢1, 𝐴𝑢2, ..., 𝐴𝑢𝑁 ] when∑𝑁
𝑖=1𝐴𝑢𝑖 = 𝐾 , 𝐾 ≤ 𝑁 . We discuss below an optimization framework to calculate optimal values for matrix 𝐴 and

re-rank original unfair recommendation list.
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4.1 Marketplace Fairness Objectives

The fairness representation target, i.e., the ideal distribution of exposure or relevance among groups, is the first step to

designing a fair recommendation model that should be decided based on the application and by the system designers.

Kırnap et al. [33] classified the fairness notions commonly used in IR literature into three groups based on their

ideal target representation, (1) parity between groups; (2) proportionality in exposure in groups according to the

group/catalog size; and (3) proportionality to the relevance size to the recommended groups. This work focuses on the

notion of fairness defined based on a “parity-oriented” target representation, leaving other concepts of fairness for

future investigations.

4.1.1 Fairness constraint on producer side. On the producer side, fairness may be quantified in terms of two distinct

types of benefit functions: exposure and relevance, both of which can be binary or graded [26]. Given that suppliers’

primary objective is their products’ visibility, this study focuses its attention exclusively on the (binary) exposure

dimension, leaving the other producer fairness constraints for future work. To measure the exposure parity, we divide

items into two categories of short-head I1 and long-tail I2 defined based on their popularity score where I1 ∩ I2 = ∅.
We define the notation ofMP as a metric that quantifies item groups’ exposition in the recommendation list decision,

𝐴. In our experiments, we used the item group exposure count to quantify this. Deviation from Producer Fairness (DPF)

is the metric that defines the deviation from parity exposition defined by:

DPF(𝐴,I1,I2) = E [MP(𝑖, 𝐴) |𝑖 ∈ I1] − E [MP(𝑖, 𝐴) |𝑖 ∈ I2] (1)

4.1.2 Fairness constraint on the consumer side. We divide users into two groups of frequent users,U1, and less-frequent

users,U2 based on their activity level. The notationMC is a metric that can evaluate the recommendation relevance

in each group given the recommendation list decision matrix, 𝐴. In our experiments, we assessed the relevance using

group 𝑛𝐷𝐶𝐺 calculated on the training dataset. The ideal fair recommendation would recommend items based on

the user’s known preference regardless of their activity level and the quality of recommendation on frequent and

less-frequent users should not get amplified by the recommendation algorithm. We define the deviation from consumer

fairness parity as:

DCF(𝐴,U1,U2 ) = E [MC(𝑢,𝐴) |𝑢 ∈ U1 ] − E [MC(𝑢,𝐴) |𝑢 ∈ U2 ] (2)

Note that when the values of 𝐷𝑃𝐹 → 0 or 𝐷𝐶𝐹 → 0, it shows parity between the advantaged and disadvantaged

user and item groups. However, this may suggest a reduction in the overall system accuracy. The sign of 𝐷𝐶𝐹 and 𝐷𝑃𝐹

shows the direction of disparity among the two groups, which we decided to keep in this work. It is noteworthy that

the proposed metrics 𝐷𝑃𝐹 and 𝐷𝐶𝐹 , due to their linear nature with respect to the binary decision matrix 𝐴, present

computational efficiency over metrics that necessitate non-linear optimization approaches, thereby simplifying the

integration into existing recommendation system frameworks.

Note on Fairness Evaluation Metrics Selection. Our study employs DCF and DPF metrics that encapsulate consumer

effectiveness and producer exposure, aligning with fairness concepts prevalent in recommender systems literature

[19]. While these metrics offer a focused lens on recommendation fairness, we acknowledge the broader ecosystem of

fairness metrics and prioritize a deeper cross-metric analysis in future work to understand their interdependencies and

collective impact on recommendation ecosystems.
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4.2 Proposed Algorithm

In this section, we will use the top-N recommendation list and relevance scores provided by traditional unfair recommen-

dation algorithm as baseline. We apply a re-ranking post-hoc algorithm to maximize the total sum of relevance scores

while minimizing the deviation from fairness on the producer and consumer perspective, DCF and DPF respectively.

We can formulate the fairness aware optimization problem given the binary decision matrix, A, as:

max

𝐴𝑢𝑖

∑︁
𝑢∈U

𝑁∑︁
𝑖=1

𝑆𝑢𝑖 .𝐴𝑢𝑖 − 𝜆1 × DCF(𝐴,U1,U2 ) − 𝜆2 × DPF(𝐴, I1, I2 )

s.t.

𝑁∑︁
𝑖=1

𝐴𝑢𝑖 = 𝐾,𝐴𝑢𝑖 ∈ {0, 1}

(3)

The solution to the above optimization problem would recommend exactly 𝐾 items to each user while maximizing

the summation of preference scores and penalizing deviation from fairness. 0 ≤ 𝜆1, 𝜆2 ≤ 1 are hyperparameters that

would be selected based on the application and would assign how much weight is given to each fairness deviation

concern. A complete user-oriented one-sided system could assign high weight to DCF and 0 to DPF, and vice versa for

a provider-oriented system. Note that if the value of 𝜆1, 𝜆2 are both equal to 0 then the optimal solution will be the

same as the baseline recommendation system list, that is, 𝐿𝐹
𝐾
(𝑢) = 𝐿𝐾 (𝑢). The effect of different values for 𝜆1 and 𝜆2

are studied in the ablation study section. Parity between groups is defined as the ideal representation of the fairness

in the model but is not enforced as a constraint in our optimization to avoid resulting in diminishing the total model

accuracy in a significant way.

The optimization problem above is a mixed-integer linear programming (MILP) and a known NP-hard problem.

Although MILP cannot be generally solved optimally in polynomial time, there exists many fast heuristic algorithms

and industrial optimization solvers that would provide a good feasible solution in practice
2
. The MILP proposed

optimization at Equation 3 can be reduced to a special case of Knapsack problem where the goal is to select items

for each user that would maximize the total score in which each item has a weight equal to 1 and the total weight

is constrained by fixed size K. Since each item has the same weight in this instance of Knapsack problem, we can

solve it optimally by a greedy algorithm in polynomial time. Now we are ready to propose the Fair Re-ranking Greedy

algorithm (Algorithm 2) that would give the optimal solution for the optimization problem in Equation 3. Alternatively,

we can relax the binary constraint of variables to fractional variables with boundary constraints i.e., 0 ≤ 𝐴𝑢𝑖 ≤ 1

and solve the relaxed optimization problem in polynomial time. The algorithm based on optimization is presented in

Algorithm 1. The algorithm based on optimization, Algorithm 1, is designed to solve the relaxed optimization problem,

converting the MILP problem to a standard linear programming problem. In this relaxed problem, we use a simplex

algorithm, a standard method for numerically solving such linear programming problems. The simplex algorithm is an

iterative method that navigates the corners of the feasible region defined by the problem constraints to find the optimal

solution, which maximizes the objective function. This approach allows us to find the best solution that satisfies all

the constraints in polynomial time, making it a practical choice for the type of problems we are addressing in this

study. However, the solution obtained may be fractional and not necessarily integral, due to the relaxation of the binary

constraints.

On the other hand, the proposed Fair Re-ranking Greedy Algorithm aims to re-rank a list of recommendations in a

way that ameliorates biases, particularly for underrepresented or protected groups. This is accomplished by modifying

2
e.g., Gurobi solver at https://www.gurobi.com
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Algorithm 1: The Fair Re-ranking Optimization

Input :U,I, 𝜆1, 𝜆2, 𝐾
Output : Item recommendation matrix 𝐴∗

/* 𝐴∗ is a 𝑛 × 𝑁 binary matrix with elements 1 when the item is recommended to the user and

0 otherwise. */

1 S← Run baseline algorithm and store the relevance score matrix for top-N items for each user

/* 𝑆 is a 𝑛 × 𝑁 matrix representing the predicted relevance score generated by unfair

baseline algorithms for each user-item pair */

2 Formulate the Optimization Problem as an Integer Programming following equation 3

3 Solve Relaxed Linear Programming with added boundary constraint 0 ≤ 𝐴𝑢𝑖 ≤ 1, ∀𝑢 ∈ U,∀𝑖 ∈ {1, 2, ..., 𝑁 }
4 return 𝐴∗

Algorithm 2: The Fair Re-ranking Greedy Algorithm

Input :U,I, 𝜆1, 𝜆2, 𝐾
Output :Fair top-K recommendation list 𝐿𝐹

𝐾

1 S← Run baseline algorithm and store the relevance score matrix for top-N items for each user

2 𝑈𝐺𝑢 ← Binary vector with elements of 1 when user 𝑢 ∈ U is in the protected group and −1 otherwise
3 𝑃𝐺𝑖 ← Binary vector with elements of 1 when item ranked 𝑖 in the traditional top-N recommendation list,

𝐿𝑁 (𝑢), is in the protected group and −1 otherwise
/* Protected groups are the underrepresented groups in baseline algorithms such as

unpopular items */

4 foreach 𝑢 ∈ U do
5 foreach 𝑖 ∈ {1, 2, ..., 𝑁 } do
6 𝐶𝐹𝑢𝑖 ← 𝑈𝐺𝑢 ×MC(𝑢, 𝑖)
7 𝑃𝐹𝑢𝑖 ← 𝑃𝐺𝑖 ×MP(𝑢, 𝑖)
8 𝑆𝑢𝑖 ← 𝑆𝑢𝑖 + 𝜆1𝐶𝐹𝑢𝑖 + 𝜆2𝑃𝐹𝑢𝑖
9 end

10 end
11 𝐿𝐹

𝐾
(𝑢) ← Sort matrix 𝑆 along the rows axis and select top-𝐾 items for recommendation to each users, ∀ 𝑢 ∈ U

12 return 𝐿𝐹
𝐾
(𝑢)

the traditional relevance scores with additional terms that account for user and item group memberships. In the

Algorithm 2, for each user 𝑢 ∈ U and item 𝑖 ∈ {1, 2, ..., 𝑁 }, the terms 𝐶𝐹𝑢𝑖 and 𝑃𝐹𝑢𝑖 are computed. These terms are

indicators of whether a user or item belongs to a protected group. They are multiplied by 𝜆1 and 𝜆2 respectively, which

serve as fairness hyperparameters controlling the extent of the fairness adjustments. If 𝜆1 and 𝜆2 are chosen judiciously,

these adjustments can help rectify biases in the original relevance scores.

The algorithm then proceeds to re-rank items based on the adjusted scores, 𝑆𝑢𝑖 . The top-𝐾 items from this re-ranked

list are selected for recommendation. This ensures that the final list of recommendations is not solely based on the

original relevance scores, but also takes fairness considerations into account. Theoretically, if the original relevance

scores exhibit biases against certain user or item groups, our algorithm is designed to rectify those biases, yielding a

fairer ranking. This is because it explicitly incorporates fairness adjustments into the scores and re-ranks items based

on these adjusted scores. Further empirical studies are planned to corroborate this theoretical analysis and provide

concrete evidence of the algorithm’s effectiveness on various datasets.

10
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Table 2. Statistics of the datasets

Dataset Users Items Interactions Sparsity

MovieLens 943 1,349 99,287 92.19%

Epinion 2,677 2,060 103,567 98.12%

Gowalla 1,130 1,189 66,245 95.06%

LastFM 1,797 1,507 62,376 97.69%

BookCrossing 1,136 1,019 20,522 98.22 %

Foursquare 1,568 1,461 42,678 98.13%

AmazonToy 2,170 1,733 32,852 99.12%

AmazonOffice 2,448 1,596 36,841 99.05%

We finally discuss the time complexity of the Fair Re-ranking Greedy algorithm.

Lemma 4.1. The time complexity of the proposed re-ranking algorithm has a worst-case bound of O(𝑛 × 𝑁 )

Proof. The first 3 lines of the algorithm will store the traditional relevance score matrix for Top-N items and store

the protected groups in consumers and providers which can be done in linear time O(𝑛 +𝑚). The second part in

line 4-10 is to re-score all elements in the original relevance matrix by accounting for fairness measures which needs

O(𝑛 × 𝑁 ) operations in constant time. Lastly, we will sort the new relevance matrix for all users and select top-K items

for recommendation. Using max-heap the worst case time complexity is O(𝑁 +𝐾 log(𝐾)). Hence, considering 𝑁 and 𝐾

are much smaller than 𝑛, the total time complexity is O(𝑛 × 𝑁 ) □

5 EXPERIMENTAL METHODOLOGY

In this section, we first briefly describe the datasets, baselines and experimental setup used for experiments. All source

code and dataset of this project has been released publicly. To foster the reproducibility of our study, we evaluate all

recommendations with the Python-based open-source recommendation toolkit Cornac
3
[48, 51], and we have made our

codes open source.
4

Datasets.Weuse eight public datasets from different domains such asMovie, Point-of-Interest, Music, Book, E-commerce,

and Opinion with different types of feedback (i.e., explicit or implicit) and characteristics, including MovieLens, Epinion,

Gowalla, and LastFM. We apply 𝑘-core pre-processing (i.e., each training user/item has at least 𝑘 ratings) on the datasets

to make sure each user/item has sufficient feedback. Table 2 shows the statistics of all datasets. We remind that the size

of the datasets employed in our study was deliberately kept modest to ensure computational efficiency. Despite this,
the robustness of our reranking model is evident across various datasets, underlining its adaptability to different data

volumes and characteristics.

Evaluation Method. For the experiments, we randomly split each dataset into train, validation, and test sets in 70%,

10%, and 20% respectively, and all the baseline models share these datasets for training and evaluation. We define

Consumer-Producer fairness evaluation (mCPF) metric to evaluate the overall performance of models w.r.t. two-sided

fairness. mCPF computes the weighted average deviation of provider fairness (DPF) and deviation of consumer fairness

(DCF), i.e.,𝑚𝐶𝑃𝐹 (𝑤) = 𝑤 · 𝐷𝑃𝐹 + (1 −𝑤) · 𝐷𝐶𝐹 , where𝑤 is a weighting parameter that can be selected by the system

designer depending on the application or priority for each fairness aspect of themarketplace. DCF and DPF are defined in
3
https://cornac.preferred.ai/

4
https://github.com/rahmanidashti/CPFairRank
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Equations 1 and 2, respectively, and the lowest value for mCPF shows the fairest model. To select the model parameters,

𝜆1 and 𝜆2, we treat them as a hyperparameter and set them to the value that maximizes the average values of mCPF

and overall nDCG for each dataset and model.

Base Ranker Methods. We compare the performance of our fairness method on several recommendation approaches,

from traditional to deep recommendation models, as suggested by Dacrema et al. [14]. Therefore, we include two

traditional methods (PF and WMF) as well as two deep recommendation models (NeuMF and VAECF). We also include

two baselines approaches, Random and MostPop, for further investigation of the results. The introduction of baselines

are as the following:

• PF [27]: This method is a variant of probabilistic matrix factorization where the weights of each user and item

latent features are positive and modeled using the Poisson distribution.

• WMF [29, 42]: This method assigns smaller wights to negative samples and assumes that for two items their

latent features are independent.

• NeuMF [28]: This algorithm learns user and item features using multi-layer perceptron (MLP) on one side and

matrix factorization (MF) from another side, then applies non-linear activation functions to train the mapping

between users and items features that are concatenated from MLP and MF layers.

• VAECF [35]: This method is based on variational autoencoders which introduce a generative model with

multinomial likelihood and use Bayesian inference for parameter estimation.

Evaluation Settings. We adopt the baseline algorithms with the default parameter settings, suggested in their original

paper. We set the embedding size for users and items to 50 for all baseline algorithms. For NeuMF, we set the size of

the MLP with 32, 16, 8 and we apply hyperbolic tangent (TanH) non-linear activation function between layers. We set

the learning rate to 0.001. Early stopping is applied and the best models are selected based on the performance on the

validation set. We apply Adam [32] as the optimization algorithm to update the model parameters.

5.1 Fairness Group Assumption

The protected groups usually are treated as the advantaged groups in group fairness [44]. The group of users and items

can be divided under different requirements for different tasks [3, 34]. In this work, we examine two different user

grouping methods and one item grouping method. Specifically, we group users based on the level of activity of users

and the consumption of popular items in the user profiles. We also group items according to the ratio of their popularity.

Hence, we define users and items groups as follows:

Definition 5.1. The level of item popularity (IG): Following [3, 10], we select the top 20% of items according to the

number of interactions they received from the training set as the popular items (i.e., short-head items), and the rest

as the unpopular items or long-tail items. We apply this grouping strategy to our study to highlight and evaluate the

fairness of the recommendation system in terms of how well it can balance the recommendations between popular and

unpopular items. In addition, this metric can also be used to evaluate the effectiveness of different recommendation

algorithms in terms of their ability to recommend long-tail items.

Definition 5.2. The level of user activity (UG1): In order to investigate potential unfairness in recommendation

systems, we adopt a user grouping strategy similar to that used by Li et al. [34]. This strategy involves separating

users into two groups based on their level of activity. The top 5% of users, ranked by the number of interactions, are

labelled as the active group, and the remaining users are labelled as the inactive group. By comparing the performance

12
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of recommendation algorithms for these two groups, we aim to evaluate the fairness of the system and any potential

bias towards active users.

Definition 5.3. The consumption of popular items in user profile (UG2): To further evaluate the fairness of

recommendation systems, we use a user grouping strategy similar to that described by [3]. This strategy involves

separating users into two groups based on the number of popular items in their profiles. Popular items are defined

as those with popularity values that fall within the top 20% of item popularity. The top 20% of users, ranked by the

number of popular items in their profiles, are labelled as the mainstream group, and the remaining users are labelled as

the non-mainstream group. This approach allows us to investigate any potential bias in the recommendations towards

users who have a higher consumption of popular items.

The reason for exploring these two methods is that we believe the difference between user interactions and popular

consumption will reflect their different activity from both quantitative and qualitative positives and thus in a more

reasonable manner.

6 RESULTS AND DISCUSSION

6.1 Statements of examined research questions

To gain a better understanding of the merits of the proposed CP fairness optimization framework, through the course

of experiments, we intend to answer the following evaluation questions:

RQ1: In this research question, we wish to investigate whether there is a trade-off between the three evaluation

objectives <Acc, DCF, DPF> in the baseline CF models (i.e., the rows denoted with ‘N’ indicating potentially

unfair models), where trade-off may be a result of underlying data biases and may require algorithmic intervention.

RQ2: In the second research question, we seek to determine whether the popular uni-sided fairness focused on

C-Fairness or P-Fairness intervention is sufficient to reduce unfairness on both the consumer- and producer-sides,

or whether biases persist in one side. This will motivate the potential necessity of two-sided fairness intervention.

RQ3. This research question investigates whether or not the proposed CP-fairness algorithm based on MIP in

this work satisfies the requirements for fairness on both the consumer and supplier sides concurrently, and

whether or not this compromises the overall accuracy of the system.

We will now proceed to the next section to describe the answers to these research questions in further detail.

6.2 Answers to the RQs and Discussion

The result of applying our proposed CP-FairRank optimization algorithm in detail are presented in Table 3 (for activity-

level user segmentation) and Table 4 (for mainstream-based user segmentation – main. vs. non-main.), where both

tables employ the same popularity-based segmentation on the item side. In both experimental settings, neural models

NeuMF and VAEFCF tend to achieve the highest levels of accuracy. As a result, we focus on these models when

describing fairness performance, as it would be pointless to analyze fairness for models with relatively poor performance.

Answers to RQ1 and RQ2. “Bias inherent in the data of unfair models and the effect of applying one-sided fairness

optimization on evaluation objectives <Acc, DCF, DPF>”.
13
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Table 3. The recommendation performance of all, and different user and item groups of our re-ranking method and corresponding
baselines on Epinion and LastFM datasets. All re-ranking results here are obtained under the fairness constraint on nDCG. The
evaluation metrics here are calculated based on the top-10 predictions in the test set. Our best results are highlighted in bold. Δ
values denote the percentage of relative improvement in𝑚𝐶𝑃𝐹 compared to fairness-unaware recommendation algorithm (N). The
reported results for𝑚𝐶𝑃𝐹 are based on 𝑤 = 0.5. Note that the implementation of C is aligned with [34] used as baseline here.

Model Type

User Relevance (nDCG) Item Exposure Both

All Active Inactive DCF ↓ Nov. Cov. Short. Long. DPF ↓ mCPF ↓ 𝑚𝐶𝑃𝐹
𝐴𝑙𝑙

↓ |Δ(%)| ↑
Epinion

PF N 0.0321 0.0751 0.0298 0.0453 4.9602 0.5073 0.8281 0.1719 0.6562 0.3588 11.1845 0.0

PF C 0.0337 0.0732 0.0316 0.0415 4.9754 0.5083 0.8243 0.1757 0.6486 0.3524 10.4539 1.7837

PF P 0.0304 0.0757 0.0280 0.0477 5.3172 0.5325 0.6153 0.3847 0.2306 0.1476 4.8553 58.8629

PF CP 0.0313 0.0740 0.0290 0.0450 5.3302 0.5345 0.6113 0.3887 0.2226 0.1418 4.5332 60.4794
WMF N 0.0235 0.0577 0.0217 0.0360 4.9483 0.2913 0.9423 0.0577 0.8846 0.4667 19.868 0.0

WMF C 0.0236 0.0565 0.0219 0.0346 4.9481 0.2898 0.9423 0.0577 0.8846 0.4658 19.754 0.1928

WMF P 0.0234 0.0577 0.0215 0.0361 4.9626 0.3019 0.9322 0.0678 0.8644 0.4567 19.5505 2.1427

WMF CP 0.0234 0.0565 0.0217 0.0348 4.9623 0.3010 0.9322 0.0678 0.8644 0.4558 19.4454 2.3355
NeuMF N 0.0447 0.0840 0.0427 0.0414 3.8733 0.1223 0.9914 0.0086 0.9828 0.5195 11.6089 0.0

NeuMF C 0.0456 0.0770 0.0440 0.0330 3.8745 0.1223 0.9913 0.0087 0.9826 0.5137 11.2555 1.1165

NeuMF P 0.0448 0.0846 0.0427 0.0420 3.8801 0.1262 0.9849 0.0151 0.9698 0.5134 11.4675 1.1742

NeuMF CP 0.0455 0.0749 0.0439 0.0310 3.8816 0.1262 0.9851 0.0149 0.9702 0.5061 11.1255 2.5794
VAECF N 0.0444 0.0801 0.0425 0.0376 4.4061 0.3107 0.9190 0.0810 0.8380 0.4445 10.009 0.0

VAECF C 0.0443 0.0735 0.04280 0.0308 4.4080 0.3102 0.9184 0.0816 0.8368 0.4393 9.9142 1.1699

VAECF P 0.0438 0.0789 0.0420 0.0369 4.4349 0.3218 0.8946 0.1054 0.7892 0.4196 9.5777 5.6018

VAECF CP 0.0439 0.0739 0.0423 0.0316 4.4366 0.3204 0.8943 0.1057 0.7886 0.4157 9.4628 6.4792

LastFM
PF N 0.0372 0.0259 0.0378 -0.0119 5.0905 0.6682 0.6945 0.3055 0.3890 0.1885 5.0699 0.0

PF C 0.0373 0.0260 0.0379 -0.0120 5.0904 0.6689 0.6947 0.3053 0.3894 0.1887 5.0590 0.1061

PF P 0.0369 0.0250 0.0375 -0.0125 5.1208 0.6729 0.6792 0.3208 0.3584 0.1729 4.6844 8.2759

PF CP 0.0372 0.0251 0.0378 -0.0127 5.1236 0.6729 0.6784 0.3216 0.3568 0.1721 4.6263 8.7003
WMF N 0.0319 0.0498 0.0309 0.0188 5.5360 0.7804 0.4452 0.5548 -0.1096 -0.0454 -1.4236 0.0

WMF C 0.0334 0.0425 0.0329 0.0096 5.5524 0.7717 0.4406 0.5594 -0.1188 -0.0546 -1.6352 20.2643

WMF P 0.0290 0.0454 0.0282 0.0172 5.7963 0.7930 0.3313 0.6687 -0.3374 -0.1601 -5.5112 252.6432

WMF CP 0.0299 0.0422 0.0292 0.0130 5.8066 0.7877 0.3278 0.6722 -0.3444 -0.1657 -5.5455 264.978
NeuMF N 0.0415 0.0394 0.0416 -0.0022 3.7975 0.0916 0.9940 0.0060 0.9880 0.4929 11.8828 0.0

NeuMF C 0.0444 0.0348 0.0449 -0.0101 3.8015 0.0929 0.9940 0.0060 0.9880 0.4889 11.0113 0.8115

NeuMF P 0.0411 0.0391 0.0412 -0.0021 3.8122 0.0936 0.9811 0.0189 0.9622 0.4801 11.6955 2.5969

NeuMF CP 0.0436 0.0303 0.0443 -0.0140 3.8192 0.0942 0.9773 0.0227 0.9546 0.4703 10.7966 4.5851
VAECF N 0.0560 0.0651 0.0556 0.0095 4.6040 0.4293 0.7730 0.2270 0.5460 0.2777 4.9572 0.0

VAECF C 0.0598 0.0550 0.0600 -0.0050 4.6036 0.4313 0.7738 0.2262 0.5476 0.2713 4.5375 2.3046

VAECF P 0.0544 0.0589 0.0542 0.0047 4.6660 0.4340 0.7294 0.2706 0.4588 0.2317 4.2561 16.5646

VAECF CP 0.0561 0.0549 0.0562 -0.0013 4.6635 0.4360 0.7318 0.2682 0.4636 0.2311 4.1172 16.7807

• First, we show some individual examples from Table 3 and Table 4. According to Table 4, one can note the results

of the best models along < 𝐴𝑐𝑐, 𝐷𝐶𝐹, 𝐷𝑃𝐹 > for the Epinion dataset: NeuMF: < 0.0451, 0.0025, 0.9822 > and

VAECF: < 0.0444, 0.0103, 0.8458 >, while for LastFM dataset, we have NeuMF: < 0.0415, 0.00382, 0.988 > and

VAECF: < 0.0555, 0.028, 0.558 >. One immediate observation is that in at least these two datasets, these models

alter DCF and DPF inconsistently to obtain high performance on accuracy. As an illustration, in Epinion, VAECF
achieves good performance with less compromise on DPF but a higher compromise on DPF, and this trend is

reversed in LastFM. These findings imply that preexisting biases in the data may be exaggerated differently by

the baseline CF model, necessitating algorithmic intervention.

• Since Table 3, and Table 4, only represent a small subset of the total experiments conducted, in Table 5 we compute

the Pearson correlation coefficient across all eight datasets examined in this study better to comprehend the
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Table 4. The recommendation performance of all, and different user and item groups of our re-ranking method and corresponding
baselines on Epinion and LastFM datasets. All re-ranking results here are obtained under the fairness constraint on nDCG. The
evaluation metrics here are calculated based on the top-10 predictions in the test set. Our best results are highlighted in bold. Δ
values denote the percentage of relative improvement in𝑚𝐶𝑃𝐹 compared to fairness-unaware recommendation algorithm (N). The
reported results for𝑚𝐶𝑃𝐹 are based on 𝑤 = 0.5. Note that the implementation of C is aligned with [34] used as baseline here.

Model Type

User Relevance (nDCG) Item Exposure Both

All Main. Non-main. DCF ↓ Nov. Cov. Short. Long. DPF ↓ mCPF ↓ 𝑚𝐶𝑃𝐹
𝐴𝑙𝑙

↓ |Δ(%)| ↑
Epinion

PF N 0.0321 0.0369 0.0309 0.0060 4.9602 0.5073 0.8281 0.1719 0.6562 0.3399 10.5954 0.0

PF C 0.0331 0.0338 0.0330 0.0008 4.9633 0.5058 0.8265 0.1735 0.6530 0.3332 10.0513 1.9712

PF P 0.0304 0.0349 0.0293 0.0056 5.3172 0.5325 0.6153 0.3847 0.2306 0.1229 4.0428 63.8423

PF CP 0.0309 0.0323 0.0306 0.0017 5.3224 0.5325 0.6133 0.3867 0.2266 0.117 3.7876 65.5781
WMF N 0.0235 0.0167 0.0252 -0.0085 4.9484 0.2913 0.9423 0.0577 0.8846 0.4420 18.8165 0.0

WMF C 0.0236 0.0163 0.0255 -0.0092 4.9479 0.2908 0.9423 0.0577 0.8846 0.4413 18.6912 0.1584

WMF P 0.0234 0.0166 0.0250 -0.0085 4.9627 0.3019 0.9322 0.0678 0.8644 0.4317 18.4803 2.3303

WMF CP 0.0234 0.0162 0.0252 -0.0090 4.9619 0.3005 0.9323 0.0677 0.8646 0.4313 18.4316 2.4208
NeuMF N 0.0451 0.047 0.0446 0.0025 3.8923 0.1214 0.9911 0.0089 0.9822 0.5025 11.1518 0.0

NeuMF C 0.0462 0.0462 0.0462 0.0000 3.8945 0.1233 0.9911 0.0089 0.9822 0.5000 10.8108 0.4975

NeuMF P 0.0451 0.047 0.0446 0.0024 3.9049 0.1277 0.9786 0.0214 0.9572 0.4896 10.8655 2.5672

NeuMF CP 0.0462 0.0464 0.0462 0.0002 3.9075 0.1272 0.9786 0.0214 0.9572 0.4875 10.5428 2.9851
VAECF N 0.0444 0.0527 0.0423 0.0103 4.3809 0.2893 0.9229 0.0771 0.8458 0.4407 9.9279 0.0

VAECF C 0.0464 0.0175 0.0536 -0.0362 4.4419 0.3019 0.9153 0.0847 0.8306 0.3873 8.3488 12.1171

VAECF P 0.0376 0.0461 0.0355 0.0106 4.9044 0.318 0.5856 0.4144 0.1712 0.0976 2.5944 77.8534

VAECF CP 0.0388 0.0186 0.0439 -0.0253 4.9316 0.3218 0.5856 0.4144 0.1712 0.0623 1.6048 85.8634

LastFM
PF N 0.0372 0.0507 0.0338 0.0169 5.0905 0.6682 0.6945 0.3055 0.3890 0.2054 5.5245 0.0

PF C 0.0372 0.0500 0.0340 0.0160 5.0883 0.6682 0.6951 0.3049 0.3902 0.2055 5.5227 0.0487

PF P 0.0369 0.0509 0.0334 0.0175 5.1208 0.6729 0.6792 0.3208 0.3584 0.1902 5.1531 7.4002

PF CP 0.0370 0.0497 0.0339 0.0159 5.1222 0.6729 0.6784 0.3216 0.3568 0.1886 5.0932 8.1792
WMF N 0.0319 0.0522 0.0268 0.0254 5.5358 0.7804 0.4452 0.5548 -0.1096 -0.0427 -1.339 0.0

WMF C 0.0328 0.0502 0.0284 0.0218 5.5379 0.7711 0.4443 0.5557 -0.1114 -0.0454 -1.3854 6.3232

WMF P 0.0290 0.0443 0.0252 0.0190 5.7961 0.7930 0.3313 0.6687 -0.3374 -0.1612 -5.5491 277.5176

WMF CP 0.0295 0.0435 0.0260 0.0175 5.7963 0.7863 0.3306 0.6694 -0.3388 -0.1626 -5.5137 280.7963
NeuMF N 0.0415 0.0720 0.0338 0.0382 3.7975 0.0916 0.9940 0.0060 0.9880 0.5192 12.5169 0.0

NeuMF C 0.0408 0.0622 0.0355 0.0267 3.7906 0.0942 0.9938 0.0062 0.9876 0.5132 12.5784 1.1556

NeuMF P 0.0411 0.0698 0.0339 0.0359 3.8122 0.0936 0.9811 0.0189 0.9622 0.5050 12.3021 2.735

NeuMF CP 0.0400 0.058 0.0355 0.0225 3.8052 0.0949 0.9809 0.0191 0.9618 0.4981 12.4556 4.0639
VAECF N 0.0555 0.0779 0.0499 0.0280 4.6164 0.4280 0.7790 0.2210 0.5580 0.2965 5.3414 0.0

VAECF C 0.0538 0.0002 0.0672 -0.067 4.5467 0.4333 0.7821 0.2179 0.5642 0.2518 4.6794 15.0759

VAECF P 0.0509 0.0748 0.0449 0.0298 5.1853 0.4605 0.3776 0.6224 -0.2448 -0.1089 -2.1391 136.7285

VAECF CP 0.0470 0.0106 0.0561 -0.0454 5.1287 0.4612 0.3776 0.6224 -0.2448 -0.1467 -3.1233 149.4772

Table 5. The correlation coefficients between evaluation metrics <Acc, DCF> and <Acc, DPF> across all eight datasets were explored
in this research (for baseline models in the N category).

model/obj. <Acc, DCF> <Acc, DPF>

Activity-lev.

(Table 3)

VACEF 0.0366 -0.0511

NeuMF 0.7494 0.0356

Mainstream

(Table 4)

VACEF -0.1664 -0.3679

NeuMF 0.4497 -0.0836

relationship between the various evaluation objectives. Ideally, a negative correlation between < 𝐴𝑐𝑐 ↑, 𝐷𝑃𝐹 ↓>
and < 𝐴𝑐𝑐 ↑, 𝐷𝐶𝐹 ↓> is desirable, as we need maximal accuracy and minimal unfairness on the producer and
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consumer side. The most intriguing finding is for the VACEF method, which demonstrates a negative correlation

between < 𝐴𝑐𝑐, 𝐷𝐶𝐹 >, where this value is subtly better (i.e., lower) than its NeuMF equivalent, Table 3 (-0.0511

vs. -0.356) vs. Table 4 (0.356 vs. -0.0836). Quite intriguingly, we observe a strong positive correlation between

and, as opposed to a weak or negative correlation in VACEF. These results indicate that VACEF is a strategy that

employs distinct mechanisms for retrieving relevant items, is capable of recommending relevant by proposing

items from the long tail (thereby enhancing DPF), and better serves the under-served user group (improving

DCF).

• Now, we will focus on RQ2 and investigate the impact of one-sided fairness optimization on several evaluation

criteria. Table 3 and Table 4 reveal that the general trend is that C-optimization increases C-Fairness while

P-optimization improves P-Fairness. For instance, from Table 3, we can see that NeuMF C-optimization could

achieve almost 20% improvement compared to the baseline (i.e., N) on Epinion. Moreover, WMP P-Optimisation

(see Table 4) improved the baseline models by 207%. To account for variation among datasets, we calculated

the coefficients
𝐷𝐶𝐹
𝐴𝐶𝐶

and
𝐷𝑃𝐹
𝐴𝐶𝐶

for the two best models in Table 6. We can observe that the general trend is that

C-Fairness optimization improves DCF, while P-Fairness optimization improves DPF and this improvement

appears to be greater for VACEF. Another intriguing observation is that uni-sided fairness optimization may not

guarantee multi-sided fairness improvement, e.g., P-optimization may have a negative impact on
𝐷𝐶𝐹
𝐴𝐶𝐶

, NeuMF

(1.091 to 1.094) and
𝐷𝐶𝐹
𝐴𝐶𝐶

, VAECF (0.255 to 0.290).

These results are quite insightful and demonstrate that our suggested strategy is capable of addressing diverse stake-

holder fairness concerns. They also expose a gap in past research, namely, the failure to investigate multi-sided fairness

evaluation when considering single-sided fairness intervention. Thus, the results in this part set the ground for simulta-

neously demonstrating the performance of our proposed CP-FairRank on all stakeholder evaluation objectives.

Table 6. We calculated the 𝐷𝑃𝐹
𝐴𝐶𝐶

and 𝐷𝐶𝐹
𝐴𝐶𝐶

for each of the 8 datasets utilized in this study, and calculated their average below, in
order to demonstrate the interplay and probable trade-off between fairness and overall system accuracy.

model/obj.

𝐷𝑃𝐹
𝐴𝐶𝐶

↓ 𝐷𝐶𝐹
𝐴𝐶𝐶

↓
N P C N C P

Activity-lev.

(Table 3)

VACEF 21.238 18.786 21.006 1.051 0.942 1.002

NeuMF 50.130 49.891 49.805 1.091 0.782 1.094

Mainstream

(Table 4)

VACEF 20.869 0.976 21.499 0.255 -0.802 0.290

NeuMF 46.498 46.232 46.201 0.314 0.182 0.308

Answers to RQ3. “Examining the effectiveness of CP-FairRank, our proposed CP-Fairness optimization method for

multi-stakeholder fairness optimization”.

The response to this research question is the center of this study. Here are some insights into the effectiveness of

CP-FairRank, our CPFairness optimization method:

• Upon first inspection of Tables 3 and 4, it is evident that the suggested CP-Fairness optimization approach is

able to simultaneously improve 𝐷𝐶𝐹 and 𝐷𝑃𝐹 of the investigated CF models without sacrificing a great deal

of accuracy, and this holds for both datasets and disadvantaged groups. Due to their simplicity, we employ the

statistics𝑚𝐶𝑃𝐹 and
𝑚𝐶𝑃𝐹
𝐴𝑐𝑐

to show this effect (the lower these value are the better they are judged). For instance,

we compare here these two statistics for ‘N’ and ‘CP’ for a randomly selected dataset Epinion and VACEF
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Fig. 4. Correlation plots were produced for the best performing models (in terms of accuracy), NeuMF, and VACEF, to illustrate the
potential trade-off between accuracy and fairness metrics. Noting that the points in this example represent datasets, the correlation
measures the generalizability of the findings across domains.

method, which is equal to VAECF-N = <0.4445, 10.0009> and VAECF-CP = <0.4157, 9.4628>, whereas for the

second user group VAECF-N = <0.4407, 9.9279> and VAECF-CP = <0.0623, 1.6048>. These results demonstrate

a clear improvement in joint fairness without affecting system utility as a whole, and this improvement is

significantly greater for the second user grouping.

• We propose to aggregate the results across all datasets using the plots in Fig. 4, where the x-axis represents

the overall system utility (accuracy) and the y-axis shows one of fairness objectives (DPF or DCF). In this

case, the plots are the baseline CF model without any fairness intervention (‘N’) and the models after making

‘CP’ intervention using our proposed CP-FairRank. Note that the points in these graphs reflect one of the

8 datasets examined in this study.
5
This tendency can be easily confirmed by examining the results across

all models, demonstrating that our strategy can increase fairness consistently across models and datasets. In

certain circumstances, for instance, NeuMF, the improvement appears to be greater (looking at the sloping curve

downward), indicating that, depending on how much each model produces biased outcome, there may be more

or less space for improvement.

Summary. To provide a fair recommendation to both disadvantaged consumer and producer groups, we propose

CP-FairRank, a post-hoc method for optimizing the fairness of ranking lists provided to users by taking into

account the interests of both stakeholders involved in recommendation, consumers and producers. Through

large-scale experiments on 8 datasets broadly adopted used in recommendation research, we believe our study

provides persuasive evidence that the proposed technique can increase mCPF (joint consumer and producer

fairness) in literally all experimental case without compromising much on accuracy (in some case the accuracy

is also improved). Notable improvement is also shown in the user grouping based on main-streamness, indicating

that fairness optimization is not a purely mathematical process and that its quality can be affected by the data

distribution provided by the underlying user and item groups.

Ablation Study: Distributions of mCPF. In order to thoroughly assess the effectiveness of our proposed CP-fairness

re-ranking algorithm, we conducted a comprehensive experiment with 128 cases on eight real-world datasets. The

experiment was conducted on two user groups, UG1 and UG2, to examine the ability of the algorithm to meet the

5
Consider that the orange plots (after fairness intervention) should be below the blue plots (before intervention) since the y-axis represents the fairness

targets and the lower they are, the lower the unfairness.
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Fig. 5. Distributions of mCPF for fairness-unaware (N) and fairness-aware methods (i.e., C, P, and CP) on all 8 datasets. The numbers
on top of each plot show the overall performance (i.e., nDCG@10 for all users) according to each fairness methodology.

requirements of both user and item fairness in a two-sided marketplace. The results of the experiment are presented

in Figures 5 and 6. These figures show the distribution of the mCPF performance for all datasets, using four baseline

algorithms (PF, WMF, NeuMF, and VAECF) on activity-level and mainstream user groups, respectively. The results

indicate that our proposed CP-fairness model outperforms the baseline algorithms and unilateral fairness models in

all datasets, with a lower mCPF. It is also important to note that the behavior of the unilateral fairness models varies

across datasets. This variability is due to differences in the underlying data characteristics. For example, in Fig. 5a, the

C-fairness method performs better than the P-fairness method, while in Fig. 5h on the Foursquare dataset, the P-fairness

approach outperforms the C-fairness approach. In conclusion, the results of our experiment demonstrate that our CP

re-ranking algorithm not only reduces fairness disparities between the two groups of users and items, but also provides

competitive accuracy in comparison to the unilateral fairness methods and baselines. This is reflected in the nDCG@10

scores reported on top of the plots in Figures 5 and 6. Our proposed algorithm is therefore a promising solution for

enhancing fairness in two-sided marketplaces.

Ablation Study: Effect of 𝜆1 and 𝜆2.We also analyze the impact of the optimization regularization parameters 𝜆1

and 𝜆2 from Equation 3. We expect that the bigger 𝜆1 and 𝜆2 are, the fairer our proposed model will be. However,

the excessive pursuit of fairness is unnecessary and could have an adverse impact on the overall recommendation

performance. Therefore, we are interested in studying how different values of 𝜆1 and 𝜆2 in Equation 3 can influence the

total performance of the system, i.e., total accuracy, and novelty of the recommendation, as well as their impact on

consumer and provider groups.

The results presented in Figures 7 and 8 indicate that 𝜆1 exhibits a more “accuracy-centric” behavior, implying

that this parameter affects user-fairness and overall system accuracy with little impact on the items’ expositions. The

similarity in the type of items used by both active and inactive users suggests that there is no significant difference in
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Fig. 6. Distributions of mCPF for fairness-unaware (N) and fairness-aware methods (i.e., C, P, and CP) on all 8 datasets. The numbers
on top of each plot show the overall performance (i.e., nDCG@10 for all users) according to each fairness methodology.
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Fig. 7. The metric nDCG@10 and item exposure change on CP-fairness with respect to the 𝜆1 and 𝜆2 on all, active and inactive user
groups and short-head and long-tail item group on activity-level group (UG1). In each figure, the other 𝜆 is equal to 0.05.
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Fig. 8. The metric nDCG@10 and item exposure change on CP-fairness with respect to the 𝜆1 and 𝜆2 on all, active and inactive user
groups and short-head and long-tail item group on mainstream group (UG2). In each figure, the other 𝜆 is equal to 0.05.

19



ACM Transaction on Recommender Sysems, , H. A. Rahmani, M. Naghiaei, Y. Deldjoo

0.0 0.2 0.4 0.6 0.8 1.0
NDCG

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

UserG = All

0.0 0.2 0.4 0.6 0.8 1.0
NDCG

UserG = Disadvanteged

0.0 0.2 0.4 0.6 0.8 1.0
NDCG

UserG = Advanteged

Type
N
C
P
CP

(a) Distribution of Utility of the top-𝑘 rec. lists measured using nDCG.

2 3 4 5 6
NOV

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

UserG = All

2 3 4 5 6
NOV

UserG = Disadvanteged

2 3 4 5 6
NOV

UserG = Advanteged

Type
N
C
P
CP

(b) Distribution of Novelty of the top-𝑘 rec. lists

Fig. 9. Distribution of the utility (a) and novelty (b) of the top-𝑘 recommendation list across users

their preferences for popular items. However, the 𝜆2 parameter showcases an “exposure-centric” behavior that can affect

both the accuracy and beyond-accuracy of the system. An excessive increase in 𝜆2 may not necessarily improve overall

accuracy as many long-tail items lack sufficient interaction data, leading to uncertainty in their potential impact on user

satisfaction if included in recommendation lists. Thus, finding the optimal balance when selecting model parameters is

crucial for enhancing the fairness and overall effectiveness of the marketplace [55].

6.3 Additional Insight: The Implications of the CP-FairRank on Items and Users within Subgroups

In this section, we study further the implications of our proposed CP method. We have previously demonstrated its

prowess in enhancing both consumer and producer fairness without compromising, and sometimes even augmenting,

the overall utility of recommendations. Drawing inspiration from [56], where authors highlighted potential trade-offs

between fairness evaluation objectives and overall recommendation utility, we aim to understand the potential impact

of our algorithm on the exposure of items within various subgroups. Specifically, we aim to offer a meticulous and

in-depth analysis regarding the impact on both advantaged and disadvantaged groups.
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Toward this goal, while Wu et al. [56] employed metrics to track variations in item exposure and recommendation

quality, we shift our focus to distribution representations. As illustrated in Figures 9a and 9b we present the distribution

of recommendation accuracy (NDCG) across users, as well as the novelty distribution of recommended items for the

entire users. It is noteworthy that we use novelty as a proxy for item exposure, complementing it as an additional metric

beyond accuracy, in line with the exposure metric (recommendation count) employed in prior sections to measure

provider fairness.

Upon examining the second figure, it becomes evident that both methods, P and CP, effectively push the novelty

of all items to the right, indicating an increase in item novelty. This observation holds true for both advantaged and

disadvantaged groups, as well as overall. Interestingly, even when comparing C with N, method C improves the novelty

of recommended items, despite not being explicitly designed for this purpose. These findings suggest that under our

proposed method, producers benefit from increased exposure to their less popular items, and fairness is achieved at

the group level, as demonstrated in earlier sections. In terms of the impact on the novelty of items, the hierarchy can

be summarized as 𝐶𝑃 = 𝑃 > 𝐶 > 𝑁 . Shifting our attention to the primary query: does this enhancement in fairness

and novelty come at the cost of recommendation quality, especially when considering specific user subgroups? An

analysis of Fig. 9 reveals that methods C, P, and CP all experience a decline in recommendation quality for both groups.

However, the decline is most pronounced for the C method. Hence, when focusing on recommendation quality, the

methods can be ranked as 𝑁 > 𝐶𝑃 = 𝑃 > 𝐶.
Overall, our study confirms the previous findings that there exists an inherent trade-off between recommendation

quality and the attainment of fairness in recommendation systems. However, our proposed method adeptly addresses

the shortcomings of the consumer fairness method proposed by Li et al. [34], effectively minimizing the adverse impacts

associated with this trade-off.

7 CONCLUSIONS

In this paper, we study fairness-aware recommendation algorithms from both the user and item perspectives. We first

show that current recommendation algorithms produce unfair recommendations between different disadvantaged user

and item groups due to the natural biases and imperfections in the underlying user interaction data. To address these

issues, we propose a personalized CP-fairness-constrained re-ranking method to compensate for the biases against

long-tail items and cold-start users, which are not necessarily groups defined by sensitive attributes. Our method seeks

to balance the representation in the recommendation space, while maintaining the recommendation quality. Extensive

experiments across eight datasets on two different user grouping methods, namely, activity-level and mainstreamness,

indicate that our method can reduce the unfair outcomes on beneficiary stakeholders, consumers and providers while

improving the overall recommendation quality. This demonstrates that algorithmic fairness may play a critical role

in mitigating data biases that, if left uncontrolled, can result in societal discrimination and polarization of opinions

and retail businesses. Although this study has focused on specific user and item groupings, we postulate that our

findings could extend to other groupings (e.g., based on sensitive attributes) that introduce substantial disparities, as our

re-ranking method’s objective function is designed to optimize a balance between fairness and accuracy, though this

could come at the expense of accuracy depending on the particularities of the grouping methodology and the feasibility

of achieving such a balance. Hence, in the future, we intend to extend this work by analyzing other fine-grained fairness

circumstances, such as mis-calibration and individual fairness, to determine if our system is capable of addressing

fairness constraints on these new definitions of fairness and grouping methodology. Moreover, we anticipate refining

our model to better address the complexities of multi-sided fairness, in recognition of the significant challenges this
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presents, as highlighted in the discussion on uni-sided and multi-sided fairness optimization. Furthermore, we recognize

the necessity of testing our algorithms on larger, more diverse datasets in future studies, as this will provide further

insights into their scalability and effectiveness in real-world, large-scale scenarios [20, 47], e.g., in temporal settings

[47]. In addition, we believe it would be interesting to analyze the biases induced in each domain based on dataset

characteristics (such as popularity bias, the user gini coefficient representing user activity distribution, and sparsity)

and to explain the results based on these various characteristics (see, for example, our recent research in this line [18]).

Another research domain that we consider highly pertinent to this discussion is the study of fairness in the context

of generative AI and large language models (LLMs) applied to recommender systems and machine learning at large

[15, 16, 41, 54, 59]. Given that these systems are trained on vast amounts of internet data, it becomes crucial to examine

their potential biases and to consider strategies for mitigating social and ethical risks, as well as optimizing overall

performance.

7.1 Limitations

Despite proposing a practical system to seamlessly and jointly address CO-Fairness in recommendations, like any

research, our work is not without limitations. The primary constraints of this study, particularly the selection of fairness

baselines, are discussed in detail in the subsequent sections.

Finding suitable baselines for our work presented several challenges, including (i) the absence of methods that

holistically address CP-Fairness (most research has been focused on single-stakeholder constraints), and (ii) varying

interpretations and assumptions on “what is fair”. For the first point, most existing work either focuses on evaluating

fairness on CP, often without coherent algorithmic integration [5, 19].

The second concern, defining “what is fairness” in a group setting in recommendation algorithms, as highlighted in

[19] and further underscored by Kırnap et al. [33], is multifaceted and diverse. In the RecSys literature, we can broadly

consider the following notions:

(1) Fair target representation: This is where fairness hinges on representing targets (such as user groups, item

genres, etc.) in a manner that is either equal (everyone gets the same representation) or proportional (represen-

tation is aligned with some inherent proportion in the dataset or the real world). The majority of algorithms

focused on fairness enhancement, irrespective of the stakeholder, belong to this category.

(2) Guaranteed allocation: This perspective ensures that every identifiable group receives a spot in the recom-

mendation list, thus ensuring that no group is entirely left out or overlooked. It is rooted in the principle that

fairness is not only about balanced representation but also about preventing complete absence, ensuring that

every group, regardless of its size or nature, is acknowledged. For instance, the work Wu et al. [56] working on

CP-fairness operates on this principle.

Our CP framework primarily focuses on the first approach, that is, achieving fairness through fair target representation.

Integrating other CP-Fairness perspectives such [56], which belongs to the guaranteed allocation category, into our

framework is not straightforward. Such an adaptation would necessitate a comprehensive revision of how we define

fairness in our method. For these reasons, we decided to compare our proposed fair CP re-ranking algorithm with

unilateral fairness models, C and P-fairness re-ranking on top of the core base ranker model to show how our method can

achieve the desirable performance on fairness metrics in both stakeholders and overall recommendation performance

(accuracy and beyond-accuracy). Specifically, the C variation of our system targets consumer-side fairness objectives,

aligned with the approach introduced by Li et al. [34]. Our approach incorporates users’ parity objectives in an
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unconstrained optimization problem and employs a greedy algorithm for optimal polynomial-time solutions. On the

other hand, the P variation emphasizes provider-side fairness objectives.
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