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WiOpen: A Robust Wi-Fi-based Open-set
Gesture Recognition Framework
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Abstract—Recent years have witnessed a growing interest in Wi-Fi-based gesture recognition. However, existing works have
predominantly focused on closed-set paradigms, where all testing gestures are predefined during training. This poses a significant
challenge in real-world applications, as unseen gestures might be misclassified as known classes during testing. To address this issue,
we propose WiOpen, a robust Wi-Fi-based Open-Set Gesture Recognition (OSGR) framework. Implementing OSGR requires
addressing challenges caused by the unique uncertainty in Wi-Fi sensing. This uncertainty, resulting from noise and domains, leads to
widely scattered and irregular data distributions in collected Wi-Fi sensing data. Consequently, data ambiguity between classes and
challenges in defining appropriate decision boundaries to identify unknowns arise. To tackle these challenges, WiOpen adopts a
two-fold approach to eliminate uncertainty and define precise decision boundaries. Initially, it addresses uncertainty induced by noise
during data preprocessing by utilizing the CSI ratio. Next, it designs the OSGR network based on an uncertainty quantification method.
Throughout the learning process, this network effectively mitigates uncertainty stemming from domains. Ultimately, the network
leverages relationships among samples’ neighbors to dynamically define open-set decision boundaries, successfully realizing OSGR.
Comprehensive experiments on publicly accessible datasets confirm WiOpen’s effectiveness. Notably, WiOpen also demonstrates
superiority in cross-domain tasks when compared to state-of-the-art approaches.

Index Terms—Wi-Fi, Gesture Recognition, Open-Set Recognition, CSI, Uncertainty Reduction.

✦

1 INTRODUCTION

W I-FI based gesture recognition [1] has garnered sig-
nificant attention in recent years due to its advan-

tages in terms of ubiquitous deployment and non-intrusive
sensing. However, current studies in the field all rely on
a closed-set assumption [2]–[4], i.e., each test sample is
assumed to always belong to one of the pre-defined set
of gesture classes. Although this conventional presumption
often proves untenable in practical applications, as gesture
recognition systems can invariably encounter unseen ges-
ture classes or even non-gestural activities, close-set tech-
niques tend to force unknown class samples to be classified
into one of the known gesture classes. This limitation not
only results in an poor user experience but also undermines
the practicability and reliability of Wi-Fi gesture recognition
systems. Therefore, it is imperative to address this drawback
and develop more robust and flexible open-set gesture
recognition (OSGR) approaches that can handle open-set
scenarios effectively. Such methods should properly classify
unknown-class samples as “unknown” and known-class
samples as one of the known classes.
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Fig. 1. The comparison between different approaches. (a) Close-set
methods; (b) Distance-based methods; (c) Prototype-based methods;
(d) Wiopen. Colored circles represent known classes samples, gray ”x”
symbols, colored ”x” symbols, and stars represents unknown samples,
misclassified samples and prototypes, respectively.

The objective of closed-set gesture recognition is to min-
imize empirical risk, which relates to the risk associated
with misclassifying known classes. In contrast, OSGR not
only focuses on minimizing empirical risk but also ad-
dresses open space risk. In real-world scenarios, each class’s
associated feature space is finite, while the area beyond
these feature spaces is referred to as the open space, as
depicted in Figure 1d. Labeling samples within the open
space as known classes introduces open space risk. Tradi-
tional closed-set classifiers [2], [4] usually divide the entire
feature space into several known classes, and the decision
boundaries of such solutions are shown in Figure 1a. These
methods accept data from infinitely wide regions, implying
that their open-space risk is unbounded, making them inef-
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fective in identifying unknown samples. In contrast to these
traditional schemes, some existing Wi-Fi-based studies have
briefly touched upon the identification of unknown classes.
For instance, Wione [5] constructed prototypes for all users
for user identification and classified samples as unknown
when their distance to the prototypes of all known classes
was similar. Similarly, CAUTION [6] compared the distance
between the sample and the two nearest user prototypes,
classifying it as unknown when the distances were similar.
Nevertheless, as illustrated in Figure 1b, these distance-
based approaches are only effective for unknown samples in
close proximity to the decision boundaries. In another exam-
ples, Tan et al. [7] and Multitrack [8] developed prototypes
for each activity class and employed similarity comparisons
for activity recognition. Samples falling below a certain sim-
ilarity threshold were labeled as unknown. While prototype-
based approaches construct decision boundaries for reject-
ing unknowns based on distance, these boundaries cannot
flexibly envelop the feature space of each class, leading to
misjudgments. All of the aforementioned methods assume
the existence of a prototype that can represent a class.
However, due to the inherent uncertainty in Wi-Fi sensing,
such an assumption is unrealistic. The uncertainty, arising
from both noise and domains, gives rise to a highly scattered
and irregular distribution in collected Wi-Fi sensing data.
The irregularity in data distribution makes it challenging
to accurately describe the data distribution using a single
prototype, such as green class in Figure 1c.

The uncertainty caused by noise and domain are differ-
ent. Noise, such as environmental and device noise, intro-
duces random biases to the Wi-Fi sensing signals, resulting
in random offsets in the data distribution and making the
distribution more discrete. Domain refers to variables such
as users, the location and direction of activities. According to
previous studies [9], [10], variations in the domain can cause
different mappings of activities onto Wi-Fi sensing signals,
leading to directed shifts in the data. The uncertainty in
Wi-Fi sensing presents two significant challenges for imple-
menting OSGR based on Wi-Fi. The first challenge emerges
from the high data dispersion caused by uncertainty, lead-
ing to confusion between classes with substantial intra-
class variation and limited inter-class variation. The second
challenge arises from the irregularity in data distribution,
making it more complex to define decision boundaries for
distinguishing unknown from known samples.

In this paper, we present WiOpen, a robust Wi-Fi-based
OSGR framework. To address the first challenge, WiOpen
conducts an extensive analysis of the open-set challenges
encountered in Wi-Fi gesture recognition. It introduces an
uncertainty quantification method as a pivotal step. Lever-
aging this analysis, WiOpen takes measures to mitigate
the uncertainty caused by noise during data preprocessing,
achieved through the utilization of the CSI ratio. Subse-
quently, the OSGR network inspired by uncertainty quantifi-
cation comes into play. This network learns the relationship
between sensing data and Doppler frequency shift (DFS),
effectively eliminating the influence stemming from static
path factors. Simultaneously, it unravels the intrinsic struc-
ture of Wi-Fi data characterized by a highly irregular distri-
bution by analyzing the relationships between neighboring
samples, thereby reducing the uncertainty associated with

domains. With respect to the second challenge, WiOpen
suggests employing the sample’s neighborhood structure
rather than the structure of the sample and prototype as the
criterion for decision boundary construction. The decision
boundaries constructed based on distances from samples to
a subset of neighbors exhibit greater flexibility compared
to those constructed using distances from samples to pro-
totypes. This approach effectively bounds open space risk.
Furthermore, by designing both the training and the deci-
sion boundaries making method based on the neighborhood
structure, WiOpen can address open space risk in an end-to-
end manner. As illustrated in Figure 1d, WiOpen confines
the decision boundaries of known classes, successfully mit-
igating open-space risk and enhancing OSGR performance.

We have implemented WiOpen and conducted a com-
prehensive evaluation using public datasets. The exper-
imental results illustrate the effectiveness of WiOpen in
open-set scenarios. Furthermore, when compared to state-
of-the-art (SOTA) approaches, WiOpen demonstrates dis-
tinct advantages in cross-domain tasks. In summary, this
paper presents the following contributions:

• We introduce WiOpen, the first Wi-Fi-based open-
set gesture recognition system, capable of effectively
reject unknown gestures while recognizing known
gestures.

• We conduct an in-depth analysis of the open-set
challenges within Wi-Fi-based gesture recognition,
elucidating the relationship between uncertainty and
Wi-Fi OSGR performance.

• We propose a uncertainty quantification method and
an OSGR network inspired by uncertainty quantifi-
cation, designed to mitigate uncertainty and achieve
effective Wi-Fi OSGR.

• We implement WiOpen and conduct extensive ex-
periments on public datasets to evaluate its perfor-
mance. Evaluations demonstrate the feasibility and
effectiveness of our system.

2 RELATED WORKS

2.1 Wi-Fi based Gesture Recognition

Gesture sensing and recognition enabled by WiFi [11], [12]
can be broadly categorized into two groups: handcraft-
based and deep learning-based methods. Handcraft-based
approaches typically involve manual characterization of
signal distortions corresponding to different gestures. In
contrast, learning-based methods leverage machine learning
techniques for gesture recognition. WiGest [13] employs
manual pattern construction for each gesture in received
signal strength (RSS) and uses a similarity matching method
for recognition. While this work is inspiring, its reliance on
coarse-grained RSS indicators limits its accuracy. WiMU [14]
goes further by achieving multi-user gesture recognition us-
ing fine-grained Channel State Information (CSI). However,
it relies on an exhaustive search among known gestures,
leading to scalability challenges. WiDraw [15] employs
Angle-Of-Arrival (AOA) measurements for hand tracking,
allowing users to draw in the air with minimal tracking
error. Nevertheless, its practicality is limited by the need
for over 25 WiFi transceivers around the user. QGesture
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[16] utilizes phase information for similar performance but
requires knowledge of the initial hand position for tracking.

Learning-based methods shift the focus to automatic
pattern recognition through data-driven techniques. This
category can be further divided into shallow learning [17],
[18] and deep learning [3], [19], [20]. Shallow learning in-
volves training a shallow learner with handcrafted features
for gesture classification. Wikey [18] was one of the first
to explore keystroke recognition based on WiFi sensing
and machine learning. WiFinger [17] employs WiFi CSI for
recognizing nine sign languages, but it requires users to
be positioned in the line of sight between the transmitting
and receiving antennas. While shallow learning typically
requires a small training dataset, its performance is limited.
Consequently, deep learning has emerged as an effective
alternative. For example, WiSign [19] focuses on American
Sign Language recognition, using amplitude and phase CSI
profiles processed by a Deep Belief Network (DBN) for
recognition. However, deep learning-based approaches face
a critical challenge, namely, their dependence on domain-
specific training.

WiDar3 [2] addresses this challenge by introducing
a domain-independent feature, BVP, which characterizes
power distribution across various velocities for cross-
domain gesture recognition. WiDar3 is among the pio-
neers in unveiling and tackling the cross-domain issue in
gesture recognition. Its meticulously crafted dataset forms
the basis for fair comparisons among various recognition
frameworks. Building upon the WiDar3.0 dataset, WiHF [3]
derives a domain-independent motion change pattern for
arm gestures, providing unique features for cross-domain
recognition. WiSGP [21] employs a data augmentation-
based approach to augment data and domain informa-
tion, achieving a Wi-Fi gesture recognition system with
domain-generalization capabilities. WiSR [4] leverages the
differences between subcarriers to accomplish domain-
generalization in Wi-Fi gesture recognition. WiGRUNT [1],
PAC-CSI [22] and [23], on the other hand, focus on attention
mechanisms designed to automatically uncover critical in-
formation for gesture recognition. Wi-learner [24] utilizes
autoencoders to enable small-sample cross-domain Wi-Fi
gesture recognition. However, these approaches have not
taken into account the more practical scenario of open-set
gesture recognition, where considering all test samples as
known poses significant potential risks.

2.2 Identify Unknows in Wi-Fi

In Wi-Fi sensing research, apart from gesture recognition,
some efforts have touched upon the challenge of distin-
guishing unknown classes. However, these efforts are often
mentioned as a part of a larger study and lack in-depth
analysis of this specific challenge. The identification of
unknown classes can be achieved by utilizing the scores
provided by classifiers [25], [26]. For instance, setting a
threshold on classification scores from traditional machine
learning models [27] or deep softmax learners [28]–[30]
can be used to determine whether an input sample be-
longs to an unknown class. Nevertheless, this approach
is most suitable for identifying unknown samples situated
near the classifier’s decision boundary. It can often lead to

misclassification when dealing with samples far from the
classification boundary [31].

Existing studies on Wi-Fi-based unknown class recog-
nition have adopted another approach, known as the
prototype-based method [32]–[35]. In the works of Wione
[5] and CAUTION [6], a conventional softmax classifier is
used for user identity classification. After model training,
they summarize a prototype for each class. When a sample
is equidistant from prototypes of two or more classes, it is
classified as an unknown user. However, this approach fails
when an unknown sample is close to one known class but
far from others. Tan et al. [7] and Multitrack [8] directly learn
a prototype for each activity class. Activity recognition is
achieved by comparing the similarity of input samples with
prototypes of all classes. When the lowest similarity with
all prototypes falls below a certain threshold, the sample
is classified as unknown. This method does not consider
compressing the feature space of known classes to reduce
open space risk. Moreover, these approaches assume that
each class can be represented by a single prototype. While
this assumption is applicable in visual domains, the unique
uncertainty in Wi-Fi sensing signals results in highly irreg-
ular data distributions. Consequently, prototypes obtained
through traditional methods are inadequate representations
of corresponding classes. Our proposed method, WiOpen,
acknowledges the impact of uncertainty, conducts in-depth
analysis, and designs targeted solutions, thus achieving Wi-
Fi-based OSGR.

3 PRELIMINARIES

In this section, we first introduce the concepts of open-
set recognition and open space risk. We then discuss the
uncertainty in Wi-Fi based open-set gesture recognition.
Finally, we propose the motivation of WiOpen.

3.1 Open-Set Recognition and Open Space Risk
Open-set recognition (OSR) pertains to situations where
new, previously unseen classes emerge during testing. In
such cases, a classifier should not only accurately classify
known classes but also effectively reject unknown ones.
Considering a training set DL = {(x1, y1), ...(xn, yn)} of n
labeled gesture samples, where xi represents each sample
and yi ∈ {1...Y } denotes the label of xi, and a testing
dataset DT = {(t1), ...(tu)} where the label of ti belongs to
{1...Y + Q}, with Q representing the number of unknown
classes typical in real-world scenarios. The open space,
denoted as O, encompasses regions far from the known
classes. And the degree of openness, which quantifies the
open space in the OSR, can be described as P [36]:

P = 1−

√
2× Y

2 ∗ Y +Q
(1)

Inevitably, designating any sample in the open space
as a known class introduces risks, known as open space
risk (Ro). Qualitatively, Ro can be described as the relative
measure of the open space O in comparison to the overall
measurement space M [27]:

RO =

∫
O f(x)dx∫
M f(x)dx

(2)
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Here, f(x) represents the measurable recognition function,
where f(x) = 1 denotes that a certain class within the
known classes has been recognized, otherwise f(x) = 0.
In other words, the more samples from the open space are
classified as known classes, the higher RO becomes.

In the context of OSR and considering the concepts of
open space risk and openness, the fundamental requirement
for addressing the OSR problem is to determine a recogni-
tion function, denoted as f(x), that minimizes the following
open-set risk:

argmin
f

{RO(f,DU) + λrRE(f,DL)} (3)

Here, λr serves as a regularization constant, and RO and
RE represent the open space risk and the empirical risk (the
risk associated with incorrectly assigning known samples),
respectively. DL denotes the set of known labeled training
data, and DU represents the potentially unknown data.

3.2 When Wi-Fi Based Gesture Recognition Meets
Open-Set Challenge

Current Wi-Fi based sensing solutions predominantly rely
on Channel State Information (CSI) [37]–[39]. CSI character-
izes the signal attenuation that occurs as signals propagate
through a given medium. This attenuation can be expressed
through the following equation:

Y = HX +N (4)

Where Y and X are the received and transmitted signal
vectors, respectively. N is additive white Gaussian noise,
and H stands for the channel matrix representing the CSI.

CSI can be delineated as the combination of two main
components: static CSI and dynamic CSI. Static CSI is in-
fluenced by the surrounding environment and the presence
of a Line-of-Sight (LoS) between the transceivers. Dynamic
CSI, on the other hand, is primarily determined by the
reflection path from moving objects:

H(r, t) = Hs(r, t) +Hd(r, t) (5)

Where r and t represent the signal frequency and the
timestamp, respectively. The dynamic CSI can be further
elaborated as:

Hd(r, t) =
∑
k∈D

hk(r, t)e
−j2π

dk(t)

λk (6)

Here, hk(r, t), dk(t), and λk represent the attenuation, the
path length of the dynamic path, and the wavelength associ-
ated with the kth path, respectively. The set D encompasses
dynamic paths. Notably, gestures induce changes in length
of the dynamic paths, subsequently altering the overall
CSI sequence. Traditional Wi-Fi-based gesture recognition
techniques aim to extract gesture-related information from
the overall CSI and subsequently interpret and recognize
the original gestures.

In contrast to close-set methods, Wi-Fi-based OSGR aims
to accomplish the dual task of recognizing known gestures
accurately while effectively identifying unknown gestures.
Equation 3 highlights that the challenge in solving the Wi-
Fi OSGR problem involves the simultaneous minimization
of empirical classification risk for labeled known data and

open-space risk for potential unknown data. Open-space
risk, as quantified by Equation 2, and empirical risk can be
expressed as follows:

RE =
1

N

N∑
i=1

L(f(xi), yi) (7)

Here, N signifies the number of training samples, while xi

and yi denote the i-th sample and its corresponding label.
The loss function, L, gauges the likelihood of the prediction
f(xi) with respect to the true label yi.

It is important to note that both RO and RE are in-
herently linked to the misclassification tendencies of the
gesture recognition model, f(x). Traditional recognition
models typically transform input data from the data space
to a feature space and subsequently establish a decision
boundary within this feature space to differentiate between
distinct classes. Consequently, misclassification may be at-
tributed to three key factors: 1. Data confusion in the
data space, 2. Feature confusion in the feature space, 3.
Overlapping decision boundaries. The extent of data and
feature confusion essentially determines the upper bounds
of decision boundary learning. Furthermore, RO is also
influenced by the establishment of decision boundaries used
for identifying unknowns. RO performs best when this
boundary only appropriately encompasses all samples of
known classes. However, unfortunately, due to the impact
of the unique uncertainty inherent in Wi-Fi sensing, both
reducing data confusion and determining suitable decision
boundaries face significant challenges.

We define uncertainty in Wi-Fi sensing as the intrin-
sic variability, randomness, or ambiguity present in the
available sensing data. In a nutshell, uncertainty introduces
a certain degree of bias to sensory data, resulting in a
spatial displacement of samples in the data space, ultimately
leading to irregular and discrete distributions of collected
CSI samples. We posit that uncertainty in Wi-Fi sensing
arises from two factors: noise and domains (such as distinct
users or different gesture execution locations), and it can be
expressed as:

Ψ = Ψn +Ψd (8)

where Ψ, Ψn and Ψd represents the overall uncertainty, the
uncertainty caused by noise and the uncertainty caused by
domains.

A portion of the noise present in CSI arises from mul-
tipath effects. From equations 5 and 6, the received CSI is
the summation of signals from multiple propagation paths,
which makes the target path signal susceptible to interfer-
ence from unrelated environmental signals [40]. Addition-
ally, noise is also introduced by Wi-Fi devices themselves,
contributing to Ψn:

Ψn = Ψe
n +Ψd

n (9)

Where Ψe
n and Ψd

n represent the noise uncertainty caused by
environment and devices. Noise introduces random biases
to the collected CSI samples, causing an expansion in the
distribution range of these samples. This results in larger
intra-class differences and smaller inter-class differences,
ultimately making it easier for confusion to occur between
classes, as shown in Figure 2.
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Fig. 2. The multipath effect, variations in the environment, changes in the position and orientation of the performer, and interference all contribute
to an increased randomness in the distribution of Wi-Fi CSI data.
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Fig. 3. Examples of samples with different noise uncertainty, where Ψn

before filtering is 1.92, and Ψn after filtering is 0.96.

Domain-induced uncertainty similarly introduces biases
to the collected CSI samples. However, unlike noise un-
certainty, the biases introduced by domain uncertainty are
directional, closely related to the principles of Wi-Fi sensing.
When there is no significant change in static paths, CSI
variations are primarily driven by dynamic path changes
caused by activities. According to the Fresnel zone theory
[9], [10], [41], even if the user’s gestures remain unchanged,
variations in user positions and orientations concerning the
transmitting and receiving antennas lead to corresponding
changes in the dynamic path variations. Wi-Fi sensing is
highly sensitive to domain changes, and as CSI data repre-
sents the superimposition of signals from multiple paths, it
possesses a lower spatial resolution compared to sensory
data in domains such as vision. Domain changes result
in substantial data distribution shifts towards the corre-
sponding directions, as illustrated in Figure 2. This type of
uncertainty is referred to as Ψd:

Ψd = Ψu
d +Ψl

d + ...Ψnd
d (10)

Where Ψu
d , Ψd

d and Ψnd
d represent user, location and nd th

domain. Such uncertainty is common in Wi-Fi based sens-
ing, leading to a widely scattered and irregular distribution
of CSI data [2], [3].

It can be observed that addressing the challenges of Wi-
Fi-based OSGR requires eliminating the effects of uncer-
tainty, and before eliminating uncertainty, it is advisable

to quantify it. Noise adds random noise to CSI data, and
the data distribution of this random noise should follow a
normal distribution with an unknown variance. Therefore,
quantifying noise uncertainty can be transformed into as-
sessing the proportion of data in CSI that conforms to this
normal distribution and the magnitude of the variance of
this normal distribution. On the other hand, domain uncer-
tainty results in directional biases in the data. When domain
uncertainty is higher, the distance of an individual CSI
sample to other samples of the same class increases, while
the distance to samples of other classes decreases. Thus, it
can be transformed into assessing the distances between
all samples and other samples. Therefore, we propose the
following formula to quantify uncertainty.

Ψ = Ψn +Ψd

=
1

N ∗G
(

N∑
n=1

(
G∑

k=1

(αnk − ᾱn)
2 +

G∑
k=1

σnk))

+
1

N
(

N∑
n=1

N∑
i=1

d(xn, xi)−
N∑

n=1

N∑
j=1

d(xn, xj))

(11)

Here, i ̸= n and j ̸= n, yi ̸= yn and yj = yn.
The two terms in the formula above serve as measures

of noise uncertainty and domain uncertainty. For the first
term, we fit a CSI sample, denoted as xn, into a Gaussian
Mixture Model (GMM) with G components, leading to the
following probability distribution:

p(xnt) =
G∑

k=1

αnkη(xk, µnk, σnk) (12)

Where αnk represents the probability that the observed data
belongs to the kth component, µnk and σnk represent the
expectation and variance of the kth component, respectively.
Here, η is the Gaussian probability density function and N is
the number of samples. xnk represents the reading at the kth
timestamp of the nth sample. When xn exhibits larger noise,
it indicates stronger random noise. This results in one of K
Gaussian components (representing random noise) having a
higher αnk. Moreover, greater noise leads to a more random
data distribution, resulting in a larger σnk. Consequently,
we design the first term to quantify Ψn, and the effect is
shown in Figure 3.

The second term in Equation 11 is used to measure Ψd.
In this term, yn represents the label of xn, and d denotes
the distance metric function. The objective of this term is
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(a) (b)

Fig. 4. Domain uncertainty.(a) 0.0901; (b) 0.2659. Colored points repre-
sent samples from known classes, while gray points represent samples
from unknown classes.

to gauge domain-related uncertainty by considering neigh-
borhood relationships. In essence, when there is a lower
probability that closer neighboring samples belong to the
same class, uncertainty increases. Conversely, the higher
the probability that a sample’s neighbors originate from
other classes, the greater Ψd becomes. We selected some
data from the WiDar3.0 [2] dataset and presented their data
distribution as shown in Figure 4. Figure 4a includes data
from different users, while Figure 4b includes data from
different users, directions, and positions. It can be observed
that domain factors do increase the irregularity in data
distribution. Our uncertainty measurement approach can
also quantify domain uncertainty.

3.3 Motivation of WiOpen

Based on the previous analysis, effectively addressing
the open-set challenge in Wi-Fi-based gesture recogni-
tion hinges on mitigating the impact of uncertainty in
data/feature space. To mitigate uncertainty, we propose a
method that involves designing strategies in both the data
preprocessing and feature learning stages, each serving a
distinct purpose. In the data preprocessing stage, WiOpen
focuses on the reduction of noise interference. This step is es-
sential in eliminating unwanted data variations introduced
by environmental factors, device noise, and multipath ef-
fects. In the feature learning stage, our approach utilizes the
uncertainty quantification method-inspired OSGR network
to facilitate dynamic-related feature extraction and sample
clustering in the feature space. These features aim to create
more compact representations, which in turn significantly
lower uncertainty, thus enhancing the final decision-making
process. Specifically, according to the uncertainty quantifi-
cation method, the OSGR network assesses the distances
between each sample and all other samples, effectively
bringing closer the distances between samples of the same
class and pushing away those from other classes during
training.

In the decision-making phase, it is essential to learn
decision boundaries to effectively bound open space risk
and empirical risk under the impact of uncertainty. Deep
learning techniques, have demonstrated promise in various
Wi-Fi-based gesture recognition tasks. Traditional softmax
classifiers [2], [3] are efficient at measuring empirical risk,

Fig. 5. WiOpen System.

but they have limitations. The decision boundary they estab-
lish partitions the entire feature space into regions, equal to
the number of known classes. Furthermore, softmax scores
normalize measures that quantify the ratio of the distance
between a sample and a class to the sum of distances
between the sample and all other classes. Thus softmax
classifiers may not effectively bound open space risk. Even
for an unknown sample, if its distance to a known class is
significantly closer than to other known classes, the softmax
scores would assign a high probability to it belonging to
the closest known class. This results in a classifier that only
rejects sample near the decision boundary, causing regions
of acceptance to be infinitely wide, as illustrated in Figure 1.

Furthermore, while the proposed approach can eliminate
a portion of uncertainty, the final samples feature distri-
bution still exhibits irregularity. Therefore, the prototype-
based approaches continues to face challenges in obtaining
optimal decision boundaries. To address this issue, building
upon the uncertainty-inspired OSGR network, we introduce
decision functions constructed based on semantic relation-
ships between samples and their neighbors. Specifically,
distances between samples are used to define a classification
distribution based on class labels. Neighbor relationship
mining helps overcome the limitation of learning a single
protype for each class, making it more suitable for Wi-
Fi sensing data with significant irregularity. Furthermore,
employing uncertainty measurement (distance in WiOpen)
directly as the decision boundaries optimization parameter
makes the network more conducive to reducing uncertainty,
achieving end-to-end uncertainty reduction, and effective
decision boundary planning [42].

4 METHOD

4.1 Overview of WiOpen

As shown in Figure 5, WiOpen is composed of three
main components: data acquisition, data processing, and
the OSGR network. The data acquisition component is
responsible for obtaining data from Wi-Fi sensing devices
and performing data preprocessing to eliminate some of
the noise uncertainty. The data preprocessing component
involves extracting DFS from CSI and visualizing it along
with CSI amplitude and phase as input to the OSGR net-
work. The OSGR network utilizes the reconstruction from
CSI to DFS to eliminate influence of static paths, and learns
the semantic neighborhood structure of samples to eliminate
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domain uncertainty and construct decision boundaries for
open-set recognition.

4.2 Data Acquisition

The CSI is collected from wireless network cards capable
of capturing CSI. As demonstrated in the previous section,
the gesture can be portrayed by the change CSI. However,
with commodity Wi-Fi devices, there’s a challenge due to
unsynchronized transmitters and receivers, leading to a
time-varying random noise e−jθn :

H(f, t) = e−jθn(Hs(f, t) +Hd(f, t))

= e−jθn(Hs(f, t) +A(f, t)e−j2π d(t)
λ )

(13)

where A(f, t), e−j2π d(t)
λ and d(t) denote the complex atten-

uation, phase shift and path length of dynamic components,
respectively. This random phase noise, e−jθn , hinders the
direct use of CSI phase information and increase noise
uncertainty.

Therefore, we need to eliminate e−jθn . Fortunately, for
commodity Wi-Fi cards, this noise remains constant across
different antennas on the same Wi-Fi Network Interface
Card (NIC) because they share the same RF oscillator. This
noise can be eliminated using the CSI-ratio model [43]:

Hq(f, t) =
H1(f, t)

H2(f, t)

=
e−jθn(Hs,1 +A1e

−j2π
d1(t)

λ )

e−jθn(Hs,2 +A1e−j2π
d2(t)

λ )

=
A1e

−j2π
d1(t)

λ +Hs,1

A2e−j2π
d1(t)+△d

λ +Hs,2

(14)

where H1(f, t) and H2(f, t) are the CSI of two receiv-
ing antennas. When two antennas are close to each other,
△d can be regarded as a constant. According to Mobius
transformation [44], equation 14 represents transformations
such as scaling and rotation of the phase shift e−j2π

d1(t)
λ of

antenna 1 in the complex plane, and these transformations
will not affect the changing trend of the CSI. Following the
CSI ratio-processing, we further mitigate noise uncertainty
by subjecting the data to a low-pass filter for the removal
of environmental noise. Subsequently, the processed data
undergoes further refinement in the data processing section.

4.3 Data Processing

The data processing section involves visualizing the CSI
and extracting DFS, which are fundamental for providing
high-quality inputs to the OSGR network. Specifically, To
ensure that the OSGR network receives normalized and
information-rich inputs, we adopt the CSI visualization
technique detailed in [1]. This method visualizes both the
amplitude and phase of CSI separately and then integrates
them into a single image. The advantage of this approach
is that it consolidates the various dimensions of CSI infor-
mation into a two-dimensional matrix, which is suitable for
processing using a Convolutional Neural Network (CNN)-
based network. The visualization results for CSI amplitude
and phase are depicted in Figure 6.

Fig. 6. The amplitude and phase visualization for a sample of ”push &
pull” gesture.

(a) (b)

Fig. 7. The DFS visualization for a sample of ”push & pull” gesture.(a)
Previous method [2]; (b) Our method.

In contrast to previous methods, WiOpen derives DFS
from data processed with CSI ratio, as opposed to CSI
conjugate multiplication [2]. The CSI ratio method is ad-
vantageous because it represents transformations such as
rotation and scaling of CSI in the complex plane, thus
avoiding some negative effects introduced by H2(f, t). To
further mitigate cumulative error effects caused by △d, we
apply an antenna selection coefficient sa to select H1(f, t)
and H2(f, t). This coefficient is calculated as follows:

sa =
1

C

C∑
c=1

var(|Ha(fc, t))|
mean(|Ha(fc, t)|)

(15)

where var and mean denote the variance and mean value of
amplitude readings for the ath antenna of the cth subcarrier.
We select the antennas with the highest and lowest sa values
as H1(f, t) and H2(f, t), respectively. The rationale behind
this selection is that CSI with larger variances is generally
more sensitive to motion, while CSI with higher amplitude
typically contains a larger static path component, making
H1(f,t) less affected by △d.

After obtaining denoised CSI after data acquisition, and
to further reduce the impact of the static path (without
introducing DFS), we apply a high-pass filter. Finally, we
utilize Fast Fourier Transform (FFT) to obtain DFS. A com-
parison between the method used to extract DFS in previous
approaches and the one adopted by WiOpen is illustrated in
Figure 7. Notably, the latter produces higher-quality DFS.

4.4 Open-Set Gesture Recognition Network

The proposed OSGR network, depicted in Figure 8, is struc-
tured into two branches, each with specific objectives. The
first branch is dedicated to constructing DFS outputs from
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Fig. 8. Framework of the proposed open-set gesture recognition network.

the original inputs, while the other is focused on learning
valuable class-related knowledge. Throughout the training
process, these branches are guided by the neighborhood
loss and construction loss, respectively, to facilitate effective
knowledge acquisition. During testing, a K-Nearest Neigh-
bors (KNN)-based decision method is employed to classify
known samples and reject unknown ones.

Even after data preprocessing, the CSI retains influences
from static path interference and domain uncertainty. To
address the former, some existing approaches [2], [3], [24]
advocate using DFS or its derivatives as input for the
network, as DFS predominantly captures dynamic path
characteristics and effectively mitigates interference from
static paths. However, relying solely on DFS as input may
result in the loss of valuable information. Therefore, our
approach retains both amplitude and phase as input but
incorporates a construction loss to guide the network in
leveraging dynamic path-related information and mitigat-
ing interference from static paths to the fullest extent.
As illustrated in Figure 8, fθ1(x) represents the backbone
network responsible for feature learning. It extracts low-
dimensional features, denoted as vn, from the sample. These
features are then transformed into DFS corresponding to the
sample through the first branch fθ2(x). During the process
of constructing DFS, a bottleneck structure exists between
fθ1(x) and fθ2(x). This structure ensures that the learned
features vn contain as much information related to dynamic
paths as possible to achieve high-quality DFS construction.
Therefore, training this branch using the construction loss
serves the purpose of eliminating influence associated with
static paths. The construction loss is defined as:

Lc = MSE(xdfs
n , fθ2(fθ2(xn))) (16)

Where MSE represents Mean Squared Error loss, xn is the
input sample, and xdfs

n is the DFS corresponding to xn.
For addressing domain uncertainty, drawing inspiration

from the uncertainty quantification method outlined in
Equation 11, we have devised a scheme based on neighbor
component analysis (NCA) [45]. In this approach, NCA
computes the distance of each training sample to all other
samples within the embedding space. Subsequently, guided
by the distance metric and class labels, it minimizes the

distances between samples of the same class while pushing
samples from other classes further apart, thus effectively
reducing domain uncertainty. The second branch is specif-
ically dedicated to domain uncertainty reduction. Consid-
ering a training sample xn ∈ [x1...xN ] along with its
corresponding label yn and its feature vector vn = fθ1(xn),
we employ similarity as the distance metric. The similarity
between xn and another sample xj ∈ [x1...xN ] is defined as
the cosine similarity:

snj =
vTn

||vn||||vj ||
= vTn vj (17)

The probability that sample xn selects xj as its neighbor is:

pnj =
exp(snj/γ)∑

k ̸=n exp(snk/γ)
, pnn = 0 (18)

γ is the parameter to control the scale of the neighborhood.
During the training process, for each sample xn, the

OSGR network computes its probability of being classified
correctly as follows:

pn =
∑
j∈Sn

pnj (19)

Sn represents the indices of all samples with labels identical
to that of xn. The loss for the second branch, referred to as
neighbor loss, is defined as:

Le =
1

N

N∑
n=1

Ln
e = − 1

N

N∑
n=1

log(pn) (20)

The gradient calculation of Loss Le with respect to the
feature vectors vn is as follows:

∂Ln
e

∂vn
=

1

γ
(
∑
k∈Sn

pnkvk −
∑
k∈Sn

p̃nkvk) (21)

where p̃nk = pnk/
∑

j∈Sn
pnj is the normalized distribution

within the class yn. The overall loss of the OSGR network
is:

L = Le + λLc (22)

Where λ is the hyperparameter controlling the impact of
the construction branch. Throughout the training process,
L induces samples of the same class to converge in the
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TABLE 1
Description of Widar3 dataset

Environments No. of
Users Gestures No. of

Locations
No. of Ori-
entations

No. of
Samples

1st (Classroom ) 9
1: Push Pull; 2: Sweep; 3: Clap; 4:Slide; 5: Draw-O(Horizontal);

6: Draw-Zigzag(Horizontal); 7: Draw-N(Horizontal); 8:
Draw-Triangle(Horizontal); 9: Draw-Rectangle(Horizontal);

5 5 10125

2nd (Hall) 4 1: Push Pull; 2: Sweep; 3: Clap; 4:Slide; 5: Draw-O(Horizontal);
6: Draw-Zigzag(Horizontal); 5 5 3000

3rd (Office) 4 1: Push Pull; 2: Sweep; 3: Clap; 4:Slide; 5: Draw-O(Horizontal);
6: Draw-Zigzag(Horizontal); 5 5 3000

feature space while simultaneously distancing them from
samples of different classes. This process not only eradicates
domain uncertainty but also enables each sample to harness
knowledge associated with all other samples, facilitating
the learning of class-related information. Consequently, this
leads to the formation of a feature space characterized by
semantic separability. Utilizing this semantic space allows
for the classification of known classes and the discrimination
of unknown classes.

For recognize know gestures and reject unknows, all
feature vectors of training samples are stored in a feature
database, referred to as T . During the testing phase, a query
sample xt has its feature vector vt extracted using the pre-
trained network fθ1(xt). Subsequently, vt is used to query
a set of K nearest samples, referred to as Sk, from T based
on a similarity measure. The majority class within this set is
then defined as the candidate label:

yct = max(pc|pc =
sum(yj = c)

K
) (23)

The final label for xt is determined based on yct and a
threshold t:

yt =

{
yct ,

∑
j∈Sc

t
d(xt, xj) < t

yu,
∑

j∈Sc
t
d(xt, xj) ≥ t

(24)

Here, yu signifies that xt belongs to an unknown class. The
threshold t is defined as:

t = ξ ∗ 1

B

B∑
b=1

max(
∑
j∈Sr

d(xr, xj)) (25)

Where B represents the total number of training batches,
xr refers to all the samples in batch b, and ξ is a hyper-
parameter used to control the threshold. In contrast to pre-
vious approaches, the proposed OSGR network formulates
uncertainty measurement, feature learning objective, and
classifier decision criteria based on inter-sample neighbor-
hood relationships. This approach integrates the optimiza-
tion objectives for uncertainty reduction, meaningful feature
learning, and decision boundary definition in an end-to-end
manner. Setting decision boundaries through neighborhood
relationships overcomes the limitations of prototype-based
schemes, allowing for dynamic and flexible determination
of decision boundaries based on the distribution of sur-
rounding samples. Furthermore, the proposed threshold de-
termination approach facilitates adaptive threshold setting
during training, thereby enhancing the flexibility of decision
boundary determination.

5 EXPERIMENTAL ANALYSIS

5.1 Datasets
In this section, we introduce two datasets, Widar3.0 and
ARIL, which are used for experimental evaluation.

Widar3.0: The public dataset WiDar3.0 [2] contains
16125 samples collected from 3 environments, and its de-
tailed description is shown Table 1. To verify the perfor-
mance of the WiOpen system, in section 5.3, we evaluate the
know samples recognition and unknow samples rejection
performance under different openness P with all the data
from 1st environment (10125 samples, 9 users × 5 positions
× 5 orientations × 9 gestures × 5 instances). In section 5.4,
we also use all samples to evaluate the in-domain and cross-
domain performance of WiOpen same as other state-of-the-
art researches [21], [22].

ARIL: The ARIL dataset [46] comprises six distinct ges-
tures (namely, hand up, hand down, hand left, hand right,
hand circle, and hand cross), executed by a single user at
16 distinct locations within a confined space. Notably, the
ARIL dataset, while featuring only one environmental vari-
able (location), incorporates the use of universal software
radio peripheral (USRP) devices for CSI data collection.
We employ this dataset to assess the versatility of WiOpen
under different openness P across different wireless devices.
Otherwise, we also use ARIL to evaluate the cross-domain
performance of WiOpen. The ARIL dataset encompasses
1392 samples totally.

5.2 Implementation Details
In our implementation, the data acquisition and preprocess-
ing were realized using Matlab, whereas the OSGR network
was constructed using the PyTorch framework. Following
extensive experimentation, we determined the optimal hy-
perparameters, which were set as follows: ξ = 2, λ = 1, and
γ = 0.05. The number of neighbors, K , used for selecting
test sample labels was set to 50. During training, we utilized
an initial learning rate of 0.001, which was reduced by
a factor of 10 every 15 epochs for a total of 50 epochs.
We employed the Adam optimizer for our model, and the
feature extraction backbone network, fθ1(x), is a ResNet18
network, while the fθ2(x) is a 7- layer CNN. The code is
available at https://github.com/purpleleaves007/WiOpen.

5.3 Overall Performance
In this study, we have chosen to assess OSGR performance
using close-set accuracy and the area under the Receiver Op-
erating Characteristic curve (AUROC). Close-set accuracy

https://github.com/purpleleaves007/WiOpen
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TABLE 2
AUROC comparison between different methods on Widar3.0. The best

performance values are highlighted in bold.

Method \ OP 0.11 0.16 0.22 0.29 0.40

Softmax [29] 0.67 0.76 0.73 0.74 0.71
WiGRUNT [1] 0.69 0.76 0.73 0.75 0.72

Wione [5] 0.68 0.75 0.75 0.76 0.69
WiOpen 0.74 0.80 0.81 0.79 0.76

TABLE 3
Close-set accuracy comparison between different methods on
Widar3.0. The best performance values are highlighted in bold.

Method \ OP 0.11 0.16 0.22 0.29 0.40

Softmax [29] 96.27% 95.11% 95.11% 95.56% 95.33%
WiGRUNT [1] 96.81% 95.22% 96.11% 95.85% 96.89%

Wione [5] 96.30% 95.29% 96.22% 96.15% 96.22%
WiOpen 96.59% 95.82% 96.56% 96.59% 97.11%

focuses on evaluating the classification performance with
respect to known classes, while AUROC [35] serves as a
robust measure for assessing the ability to distinguish un-
known classes. An AUROC value of ”1” indicates complete
separability between known and unknown classes. We also
conducted a comparative analysis between WiOpen and
three reference models: a baseline model based on Softmax,
a SOTA Wi-Fi gesture recognition system WiGRUNT [1] and
a prototype based method Wione [5].

Results on Widar3.0. To evaluate the performance of the
WiOpen in open-set scenarios, we conducted experiments
using 10,125 samples from the first environment and per-
formed testing at different openness levels (P = 0.11−0.40).
When P = 0.29, it indicates that our model was trained
using 2,700 samples from three known classes. Within the
test set, we allocated 675 samples from these three known
classes as ”known” samples, while the remaining 6,750
samples from six other classes were considered ”unknown.”
This setup mirrors a real-world scenario where a substantial
number of unknown samples are encountered. For AUROC
calculations, we assigned label ”0” to known classes and
label ”1” to unknown classes.

The experimental results, as outlined in Tables 2 and 3,
underscore the superior performance of WiOpen in open-
set scenarios compared to traditional methods. WiOpen
not only maintains competitive recognition accuracy but
also excels in identifying unknown samples, demonstrat-
ing a consistently higher AUROC ranging from 0.03 to
0.07 compared to other methods. Notably, the transition
from conventional gesture recognition systems, such as

TABLE 4
AUROC comparison between different methods on ARIL. The best

performance values are highlighted in bold.

Method \ OP 0.05 0.11 0.18 0.29

Softmax [29] 0.64 0.65 0.59 0.71
WiGRUNT [1] 0.65 0.66 0.58 0.72

Wione [5] 0.66 0.66 0.57 0.70
WiOpen 0.73 0.67 0.72 0.76

Fig. 9. The distribution of samples in the feature space.

TABLE 5
Close-set accuracy comparison between different methods on ARIL.

The best performance values are highlighted in bold.

Method \ OP 0.05 0.11 0.18 0.29

Softmax [29] 86.25% 88.02% 93.06% 91.67%
WiGRUNT [1] 87.50% 88.54% 93.75% 92.71%

Wione [5] 87.95% 88.79% 92.96% 90.52%
WiOpen 89.58% 93.23% 93.75% 94.79%

WiGRUNT, to OSGR systems often involves a complex
search process to determine the optimal score threshold.
In contrast, WiOpen dynamically adapts the threshold dur-
ing the training process. WiOpen’s training and unknown
rejection strategies, grounded in neighborhood structures,
offer an improvement over prototype-based methods like
Wione. As evident in Tables 2 and 3, WiOpen achieves a
balanced performance in recognizing known samples and
rejecting unknown samples. It’s crucial to note that when
P = 0.11, the AUROC for all approaches is notably low.
This phenomenon is attributed to the high similarity be-
tween the sixth and seventh gestures (Zigzag and N), which
can be considered essentially the same gesture rotated in
space. This emphasizes the importance of addressing the
distinction between intra-set and extra-set gestures, espe-
cially when they exhibit varying levels of similarity in
open-set scenarios. This presents an intriguing avenue for
future research. To visually represent the impact of the
OSGR network, we plotted the distribution of samples in
the feature space after processing, as depicted in Figure
9. The figure illustrates that the OSGR network effectively
mitigates a portion of domain uncertainty compared to the
state depicted in Figure 4b.

Results on ARIL. For ARIL, we use all 1,392 samples
to evaluate WiOpen. Testing was conducted across a range

TABLE 6
Close-set accuracy comparison between different methods on ARIL.

The best performance values are highlighted in bold.

Method Cross-Ori Cross-Loc
AUROC Acc AUROC Acc

Softmax [29] 0.70 90.80% 0.76 97.19%
WiGRUNT [1] 0.72 91.70% 0.76 97.33%

Wione [5] 0.69 90.80% 0.74 96.87%
WiOpen 0.78 92.59% 0.81 97.19%
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TABLE 7
Cross domain gesture recognition results compared with state-of-the-art solutions.(I-D, C-L, C-O, C-E and C-U means In-Domain, Cross Location,

Orientation, Environment and User, respectively. 6D and 1D means use 6 and 1 pairs of transmitter-receivers, respectively).

Method Pub Year WiDar3.0-6D WiDar3.0-1D ARIL
I-D C-L C-O C-E C-U C-E C-L C-O C-U C-L

WiDar3.0 [2] IEEE TPAMI 2021 92.7% 89.7% 82.6% 92.4% - - - - - -
WiHF [3] IEEE TMC 2020 97.65% 92.07% 82.38% 89.67% - - - - - -

WiGRUNT [1] IEEE THMS 2022 99.71% 96.62% 93.85% 93.73% - - - - - -
PAC-CSI [22] IEEE JSAC 2023 99.46% 98.77% 98.90% 96.47% 97.54% - - - - -
SelfReg [47] IEEE ICCV 2021 - - - - - 39.11% 76.71% 86.67% 53.10% 44.45%
WiSGP [21] IEEE TMC 2023 - - - - - 43.17% 78.49% 88.46% 56.77% 48.74%

WiSR [4] IEEE TMC 2023 - - - - - 42.52% 77.51% 88.80% 55.18% 48.64%
WiOpen - 2023 99.78% 98.81% 98.05% 97.99% 98.47% 84.44% 86.40% 77.67% 82.71% 73.61%

of openness levels (P = 0.05 − 0.29). The parameters and
experimental procedures remained consistent with those
employed for the WiDar3.0 dataset. It’s worth noting that
when evaluating the softmax and WiGRUNT systems, a new
search for the optimal threshold was required, introducing
notable inconvenience and limitations.

The experimental results, presented in Tables 4 and 5,
firmly establish WiOpen’s superiority in both recognizing
known samples and effectively rejecting unknown samples.
These results underscore WiOpen’s robust performance.

Results on Open-Set + Cross Domain. To ascertain
WiOpen’s performance in more demanding environments,
we combined open-set scenarios with cross-domain scenar-
ios. Specifically, we conducted experiments utilizing data
from the 1st environment of the WiDar3.0 dataset, applying
open-set setting across different locations and orientations,
all under an openness level of 0.29.

The experimental results, as detailed in Table 6, affirm
that WiOpen maintains its proficiency in recognizing known
samples and effectively rejecting unknown samples, even in
cross-domain open-set scenarios. Notably, the introduction
of domain discrepancies poses additional challenges. The
successful performance of WiOpen in cross-domain open-
set recognition is especially promising, as it closely aligns
with real-world applications and merits further exploration.

5.4 Cross Domain Performance
To facilitate a more comprehensive comparison of WiOpen
with other SOTA Wi-Fi based gesture recognition systems
and to underscore the efficacy of our proposed uncertainty
reduction method, we extended our experiments into cross-
domain tasks. To ensure compatibility with established so-
lutions, we conducted performance evaluations using the
WiDar3.0 dataset in two distinct scenarios: one involving all
six pairs of transmitter-receivers and the other employing
only a single pair of transmitter-receiver. In the case of
utilizing all six pairs of devices, our dataset settings closely
align with the SOTA PAC-CSI [22]. It’s noteworthy that
they opted to select 80% of the testing samples for the test
set, a distinction from our approach in which we did not
perform any sample selection for the test set. In the scenario
involving just one pair of transmitter-receiver, our dataset
settings mirror those of WiSR [4]. Furthermore, we also
conducted experiments on the ARIL dataset to evaluate the
performance of WiOpen in a broader context.

The experimental results are summarized in Table 7. In
the WiDar3.0-6D setting, WiOpen exhibits slightly lower
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Fig. 10. Box-plot of WiOpen and WiGRUNT, ID, CL and CO indicates in-
domain, cross-location and cross-orientation, respectively, and O and W
represents WiOpen and WiGRUNT, OID means in-domain results with
WiOpen method.

performance than the state-of-the-art PCA-CSI [22] in
the cross-orientation task. However, it outperforms both
WiGRUNT and PCA-CSI in other settings, showcasing su-
perior overall performance. In the WiDar3.0-1D and ARIL
scenarios, WiOpen lags behind WiSGP and WiSR in the
cross-orientation task. Nevertheless, it significantly outper-
forms WiSGP [21] and WiSR [4] in other tasks. Particularly
noteworthy is WiOpen’s substantial lead of over 41% in
cross-environment scenarios. To further assess the system’s
robustness, we conducted a comparative analysis between
WiGRUNT [1] and WiOpen under the WiDar3.0-6D setting.
The results are depicted in Figure 10. Clearly, WiOpen not
only achieves higher accuracy but also demonstrates less
performance variance across different domains compared to
WiGRUNT. These findings underscore the superior robust-
ness of WiOpen.

The key to WiOpen’s success in cross-domain tasks lies
in its innovative approach to uncertainty elimination. While
initially designed to address open-set challenges in Wi-
Fi gesture recognition, the domain uncertainty reduction
facilitated by the OSGR network proves to be advantageous
for cross-domain applications. The elimination of domain
uncertainty induces the convergence of feature spaces for
individual classes. The features acquired through OSGR
learning remove domain-specific irregularities, fundamen-
tally alleviating domain disparities and augmenting domain
generalization capabilities. This further underscores the ef-
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Fig. 12. Impact of Construction Loss.

fectiveness of WiOpen, highlighting the central role played
by its foundational principle of uncertainty reduction.

5.5 Sensitivity Analysis
In this section, we conduct sensitivity analyses on WiOpen
to assess the impact of various factors on its performance.

Impact of Threshold.
To evaluate the sensitivity of WiOpen to the threshold ξ,

we conducted experiments with ξ values ranging from 1 to
3 while keeping P = 0.29. The results, displayed in Figure
11, demonstrate a clear relationship between the threshold
and system performance. As the threshold increases, the
close-set accuracy decreases, but the system’s effectiveness
in rejecting unknown samples improves. To strike a balance
between these performance aspects, we selected ξ = 2.

Impact of Construction Loss.
To analyze the influence of the construction loss, we per-

formed experiments with λ values ranging from 0 to 2 while
maintaining P = 0.29. The results, as illustrated in Figure
12, show that the construction loss significantly contributes
to WiOpen’s ability to acquire valuable knowledge. In our
experiments, we opted for λ = 1.

Impact of Different Amounts of Training Data.
To evaluate WiOpen’s capability to learn classification

knowledge with limited training samples, we conducted
experiments by reducing the size of the training set to 20%
- 80% of the original training set. The results, depicted in
Figure 13, reveal that even with a reduced sample size,
WiOpen continues to perform well in cross-location and
cross-direction domain recognition tasks. This underscores
WiOpen’s aptitude for acquiring classification knowledge.

6 CONCLUSIONS

In this paper, we have introduced WiOpen, a pioneering
Wi-Fi-based OSGR system. We commenced our study with
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Fig. 13. Impact of Different Amounts of Training Data.

a comprehensive analysis of open-set challenges within
the realm of Wi-Fi sensing, shedding light on the intrin-
sic correlation between Wi-Fi-based OSGR and uncertainty.
Building upon this correlation analysis, we have put forth
solutions designed to eradicate uncertainty in Wi-Fi sens-
ing and establish decision boundaries. Our experimental
results not only underscore the remarkable effectiveness of
WiOpen in open-set gesture recognition, but also validate
the profound advantages of WiOpen in cross-domain and
small-sample recognition tasks. This substantiates WiOpen’s
unique ability to glean meaningful knowledge, making it a
robust system for real-world applications. For future works,
we will continue to address the intricate challenges posed by
the high similarity between unknown and known gestures
in open-set scenarios. Furthermore, we aim to tackle the
complexities introduced when the target domain contains
unknown samples during domain adaptation, further en-
hancing their suitability for real-world applications.

REFERENCES

[1] Y. Gu, X. Zhang, Y. Wang, M. Wang, H. Yan, Y. Ji, Z. Liu, J. Li, and
M. Dong, “Wigrunt: Wifi-enabled gesture recognition using dual-
attention network,” IEEE Transactions on Human-Machine Systems,
vol. 52, no. 4, pp. 736–746, 2022.

[2] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Widar3. 0: Zero-effort cross-domain gesture recognition with wi-
fi,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 11, pp. 8671–8688, 2021.

[3] C. Li, M. Liu, and Z. Cao, “Wihf: Gesture and user recognition
with wifi,” IEEE Transactions on Mobile Computing, vol. 21, no. 2,
pp. 757–768, 2020.

[4] S. Liu, Z. Chen, M. Wu, C. Liu, and L. Chen, “Wisr: Wireless
domain generalization based on style randomization,” IEEE Trans-
actions on Mobile Computing, 2023.

[5] Y. Gu, H. Yan, M. Dong, M. Wang, X. Zhang, Z. Liu, and F. Ren,
“Wione: One-shot learning for environment-robust device-free
user authentication via commodity wi-fi in man–machine system,”
IEEE Transactions on Computational Social Systems, vol. 8, no. 3, pp.
630–642, 2021.

[6] D. Wang, J. Yang, W. Cui, L. Xie, and S. Sun, “Caution: A robust
wifi-based human authentication system via few-shot open-set
recognition,” IEEE Internet of Things Journal, vol. 9, no. 18, pp.
17 323–17 333, 2022.

[7] S. Tan, J. Yang, and Y. Chen, “Enabling fine-grained finger gesture
recognition on commodity wifi devices,” IEEE Transactions on
Mobile Computing, vol. 21, no. 8, pp. 2789–2802, 2020.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 13

[8] S. Tan, L. Zhang, Z. Wang, and J. Yang, “Multitrack: Multi-user
tracking and activity recognition using commodity wifi,” in Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, 2019, pp. 1–12.

[9] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu,
and B. Xie, “Human respiration detection with commodity wifi
devices: Do user location and body orientation matter?” in Pro-
ceedings of the 2016 ACM international joint conference on pervasive
and ubiquitous computing, 2016, pp. 25–36.

[10] K. Niu, F. Zhang, Z. Chang, and D. Zhang, “A fresnel diffraction
model based human respiration detection system using cots wi-fi
devices,” in Proceedings of the 2018 ACM international joint confer-
ence and 2018 international symposium on pervasive and ubiquitous
computing and wearable computers, 2018, pp. 416–419.

[11] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proceedings of the 19th annual
international conference on Mobile computing & networking, 2013, pp.
27–38.

[12] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu,
“E-eyes: device-free location-oriented activity identification using
fine-grained wifi signatures,” in Proceedings of the 20th annual
international conference on Mobile computing and networking, 2014,
pp. 617–628.

[13] H. Abdelnasser, M. Youssef, and K. A. Harras, “Wigest: A ubiq-
uitous wifi-based gesture recognition system,” in 2015 IEEE con-
ference on computer communications (INFOCOM). IEEE, 2015, pp.
1472–1480.

[14] R. H. Venkatnarayan, G. Page, and M. Shahzad, “Multi-user
gesture recognition using wifi,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
2018, pp. 401–413.

[15] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “Widraw: En-
abling hands-free drawing in the air on commodity wifi devices,”
in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, 2015, pp. 77–89.

[16] N. Yu, W. Wang, A. X. Liu, and L. Kong, “Qgesture: Quantifying
gesture distance and direction with wifi signals,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 2, no. 1, pp. 1–23, 2018.

[17] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “Wifinger: talk to
your smart devices with finger-grained gesture,” in Proceedings
of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2016, pp. 250–261.

[18] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recog-
nition using wifi signals,” in Proceedings of the 21st annual inter-
national conference on mobile computing and networking, 2015, pp.
90–102.

[19] L. Zhang, Y. Zhang, and X. Zheng, “Wisign: Ubiquitous american
sign language recognition using commercial wi-fi devices,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 11,
no. 3, pp. 1–24, 2020.

[20] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and
Z. Yang, “Zero-effort cross-domain gesture recognition with wi-fi,”
in Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, 2019, pp. 313–325.

[21] S. Liu, Z. Chen, M. Wu, H. Wang, B. Xing, and L. Chen, “General-
izing wireless cross-multiple-factor gesture recognition to unseen
domains,” IEEE Transactions on Mobile Computing, 2023.

[22] J. Su, Q. Mao, Z. Liao, Z. Sheng, C. Huang, and X. Zhang, “A
real-time cross-domain wi-fi-based gesture recognition system for
digital twins,” IEEE Journal on Selected Areas in Communications,
2023.

[23] Y. Gu, H. Yan, X. Zhang, Y. Wang, J. Huang, Y. Ji, and F. Ren,
“Attention-based gesture recognition using commodity wifi de-
vices,” IEEE Sensors Journal, vol. 23, no. 9, pp. 9685–9696, 2023.

[24] C. Feng, N. Wang, Y. Jiang, X. Zheng, K. Li, Z. Wang, and X. Chen,
“Wi-learner: Towards one-shot learning for cross-domain wi-fi
based gesture recognition,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 6, no. 3, pp. 1–27,
2022.

[25] A. Bendale and T. Boult, “Towards open world recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1893–1902.

[26] P. R. Mendes Júnior, R. M. De Souza, R. d. O. Werneck, B. V. Stein,
D. V. Pazinato, W. R. de Almeida, O. A. Penatti, R. d. S. Torres, and
A. Rocha, “Nearest neighbors distance ratio open-set classifier,”
Machine Learning, vol. 106, no. 3, pp. 359–386, 2017.

[27] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 7, pp. 1757–1772, 2012.

[28] D.-W. Zhou, H.-J. Ye, and D.-C. Zhan, “Learning placeholders for
open-set recognition,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 4401–4410.

[29] A. Bendale and T. E. Boult, “Towards open set deep networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1563–1572.

[30] D. Hendrycks and K. Gimpel, “A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks,” in
International Conference on Learning Representations, 2016.

[31] X. Sun, Z. Yang, C. Zhang, K.-V. Ling, and G. Peng, “Conditional
gaussian distribution learning for open set recognition,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 13 480–13 489.

[32] H.-M. Yang, X.-Y. Zhang, F. Yin, Q. Yang, and C.-L. Liu, “Con-
volutional prototype network for open set recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 5, pp. 2358–2370, 2020.

[33] G. Chen, L. Qiao, Y. Shi, P. Peng, J. Li, T. Huang, S. Pu, and
Y. Tian, “Learning open set network with discriminative reciprocal
points,” in Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer,
2020, pp. 507–522.

[34] G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial reciprocal
points learning for open set recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8065–
8081, 2021.

[35] H. Huang, Y. Wang, Q. Hu, and M.-M. Cheng, “Class-specific se-
mantic reconstruction for open set recognition,” IEEE transactions
on pattern analysis and machine intelligence, vol. 45, no. 4, pp. 4214–
4228, 2022.

[36] C. Geng, S.-j. Huang, and S. Chen, “Recent advances in open set
recognition: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, no. 10, pp. 3614–3631, 2020.

[37] J. Huang, B. Liu, C. Miao, Y. Lu, Q. Zheng, Y. Wu, J. Liu, L. Su, and
C. W. Chen, “Phaseanti: An anti-interference wifi-based activity
recognition system using interference-independent phase compo-
nent,” IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp.
2938–2954, 2023.

[38] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and
H. Huang, “Adaptive asynchronous federated learning in
resource-constrained edge computing,” IEEE Transactions on Mo-
bile Computing, vol. 22, no. 2, pp. 674–690, 2023.

[39] H. Yan, Y. Zhang, Y. Wang, and K. Xu, “Wiact: A passive wifi-
based human activity recognition system,” IEEE Sensors Journal,
vol. 20, no. 1, pp. 296–305, 2019.

[40] X. Zhang, Y. Gu, H. Yan, Y. Wang, M. Dong, K. Ota, F. Ren, and Y. Ji,
“Wital: A cots wifi devices based vital signs monitoring system
using nlos sensing model,” IEEE Transactions on Human-Machine
Systems, vol. 53, no. 3, pp. 629–641, 2023.

[41] F. Zhang, K. Niu, J. Xiong, B. Jin, T. Gu, Y. Jiang, and D. Zhang,
“Towards a diffraction-based sensing approach on human activity
recognition,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 3, no. 1, pp. 1–25, 2019.

[42] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models
for open set recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 11, pp. 2317–2324, 2014.

[43] D. Wu, R. Gao, Y. Zeng, J. Liu, L. Wang, T. Gu, and D. Zhang,
“Fingerdraw: Sub-wavelength level finger motion tracking with
wifi signals,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 4, no. 1, pp. 1–27, 2020.

[44] Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “Farsense:
Pushing the range limit of wifi-based respiration sensing with csi
ratio of two antennas,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–26, 2019.

[45] Z. Wu, A. A. Efros, and S. X. Yu, “Improving generalization via
scalable neighborhood component analysis,” in Proceedings of the
european conference on computer vision (ECCV), 2018, pp. 685–701.

[46] F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang, and J. Han, “Joint ac-
tivity recognition and indoor localization with wifi fingerprints,”
IEEE Access, vol. 7, pp. 80 058–80 068, 2019.

[47] D. Kim, Y. Yoo, S. Park, J. Kim, and J. Lee, “Selfreg: Self-supervised
contrastive regularization for domain generalization,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 9619–9628.


	Introduction
	Related Works
	Wi-Fi based Gesture Recognition
	Identify Unknows in Wi-Fi

	Preliminaries
	Open-Set Recognition and Open Space Risk
	When Wi-Fi Based Gesture Recognition Meets Open-Set Challenge
	Motivation of WiOpen

	Method
	Overview of WiOpen
	Data Acquisition
	Data Processing
	Open-Set Gesture Recognition Network

	Experimental Analysis
	Datasets
	Implementation Details
	Overall Performance
	Cross Domain Performance
	Sensitivity Analysis

	Conclusions
	References

