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A compiler’s intermediate representation (IR) defines a program’s execution plan by encoding its instructions
and their relative order. Compiler optimizations aim to replace a given execution plan (which instructions
to execute and when) with a semantically-equivalent one that increases the program’s performance for the
target architecture. Alternative representations of an IR, like the Program Dependence Graph (PDG), aid
this process by capturing the minimum set of constraints that semantically-equivalent execution plans must
satisfy. Parallel programming like OpenMP extends a sequential execution plan by adding the possibility
of running instructions in parallel, creating a parallel execution plan. Recently introduced parallel IRs, like
TAPIR, explicitly encode a parallel execution plan. These new IRs finally make it possible for compilers to
change the parallel execution plan expressed by programmers to better fit the target parallel architecture.
Unfortunately, parallel IRs do not help compilers in identifying the set of parallel execution plans that preserve
the original semantics. In other words, we are still lacking an alternative representation of parallel IRs to
capture the minimum set of constraints that parallel execution plans must satisfy to be semantically-equivalent.
Unfortunately, the PDG is not an ideal candidate for this task as it was designed for sequential code. In more
detail, this paper shows that the PDG over-constrains the optimization space when used for parallel code. We
propose the Parallel Semantics Program Dependence Graph (PS-PDG) to precisely capture the salient program
constraints that all semantically-equivalent parallel execution plans (and therefore parallel IRs) must satisfy.
This paper defines the PS-PDG, justifies the necessity of each extension to the PDG, and demonstrates the
increased optimization power of the PS-PDG over an existing PDG-based automatic-parallelizing compiler.
Compilers can now rely on the PS-PDG to select different parallel execution plans while maintaining the same
original semantics.

1 INTRODUCTION

A compiler’s intermediate representation (IR) defines a program’s execution plan by encoding its
instructions and their relative order. Most compiler optimizations are performed by changing the IR
of a program. Many of these optimizations (e.g., code scheduling) need to change the relative order
of IR instructions (i.e., the execution plan) to reach their optimization goal and/or to better target
the underlying architecture. This is possible because not all orders specified by a given IR instance
are necessary (thanks to having independent instructions). It is therefore important to understand
what is the minimum subset of instruction order constraints that must be enforced to preserve
the original semantics. Unfortunately, IRs (e.g., LLVM IR) do not highlight such subset; instead,
a specific instance of an IR specifies the total order of its instructions, but some of these orders
are the result of a choice (e.g., execution order of independent instructions within a basic block)
rather than a constraint that must be satisfied. To overcome this limitation, code optimizations
rely on a different representation of the IR code called the Program Dependence Graph (PDG) [20],
which encodes the (ideally small) set of order constraints that all possible total order of instructions
(hence, IR instances) must satisfy to preserve the original semantics of the input code. The PDG
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can alternatively be seen as the (ideally large) set of degrees of freedom that a code optimizer can
leverage to generate an IR instance that better fits the target architecture.

The typical compilation pipeline followed by a code optimization is shown in Figure 1. A given
IR instance is analyzed by a dependence analysis to generate its PDG !. Then, a code optimization
decides the order of instructions that are left unspecified by the PDG (those that can execute
in multiple orders). These decisions are then enforced by generating a new IR instance with
(potentially) a different total order compared to the one given as input. In other words, a code
optimization changes the execution plan of an IR by relying on the degrees of freedom highlighted
by its PDG representation.
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Fig. 1. Compiler pipeline utilizing IR and PDG for code optimization.

For decades, compilers have used sequential IRs (IRs that assume sequential execution; e.g., LLVM
IR, GCC RTL) and PDG to compile and optimize both sequential and parallel programs. Parallel
code extends the execution plan of sequential code by adding the choice of which instructions
to run in parallel with respect to what. Parallel language compilers (e.g., OpenMP compilers)
generally represent the parallel aspects of the execution plan (e.g., run iterations of a given loop in
parallel) with annotations, built-ins, or calls added to their IRs. These constructs enable sequential
optimizations to proceed correctly without changing the parallel aspects of the execution plan.
This is obtained by outlining parallel regions into functions so that the sequential interpretation of
the resulting code is valid (even if overly constrained). This design decision handcuffed compilers
to maintain the parallel aspects of the execution plan that were encoded by programmers. This is
the reason why OpenMP and Cilk compilers (for example) do not alter the decision of what to run
in parallel that was encoded by programmers within their source code.

While sequential IRs and their PDG made sense when compilers were not expected to include code
optimizations specifically designed for parallel code, they are insufficient for the next generation
of compilers that include parallel optimizations. This is because parallel optimizations require
modifying parallel aspects of the input code. In more detail, as parallel machines proliferate, the
community frequently observed that the parallel execution plan expressed by programmers is sub-
optimal for the target architecture [9, 16, 17, 22, 42, 45, 48]. This is because different architectures
require different parallel execution plans to reach high performance. In other words, just as the
sequential execution plans specified by programmers are sub-optimal [13, 18, 19, 34, 36, 47, 54], so
too are the parallel execution plans found in manually-written parallel programs. To address this,
the community has introduced parallel IRs like TAPIR [2, 30, 41, 49-51, 53] to represent parallel
execution plans and changes thereto. Explicit encoding of a specific parallel execution plan into a
parallel IR made changes to it finally possible. Unfortunately, changing a given parallel execution

1Some code optimizations target small code regions like loops. Some compilers therefore generate only the subset of the
PDG that is needed by the selected code optimizations.
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plan is still not practical because a given instance of a parallel IR does not highlight the minimum
set of constraints that all parallel execution plans must satisfy to preserve the original semantics.
Similarly to the need to have a separate representation for sequential IRs to enable code optimizers
to change the sequential execution plan (i.e., the total order of instructions), we need a separate
representation of parallel IRs to enable parallel code optimizers to change the parallel execution
plan (i.e., what to run in parallel and how). Unfortunately, the PDG is not a good representation
for this goal because it was designed to target sequential IRs, which blocks it from encoding all
degrees of freedom that parallel code optimizers could take advantage of. In other words, the PDG
is a sub-optimal representation for parallel IRs and our empirical results (§6) clearly show that its
limitations for parallel IRs are too significant to be ignored.

To overcome this limitation, this paper proposes the Parallel Semantics Program Dependence
Graph (PS-PDG) representation to capture the salient program constraints of parallel programs.
The PS-PDG generalizes the PDG to capture the constraints that define the set of semantically
equivalent execution plans for modern parallel programming models such as OpenMP and Cilk.
After defining the PS-PDG, this paper shows how each of its extensions to the PDG is necessary.

To reduce disruptions to existing compilers, we propose a PS-PDG-based compilation pipeline
(shown in Figure 2 and described next) that is similar to what has been in use for decades. Our
pipeline substitutes the PDG representation with the PS-PDG one. We believe this is the missing
piece to enable parallel compilers to reach their full potential. In more detail, in a compiler developed
with the PS-PDG, Cilk[12] and OpenMP[43] source code is first translated into their parallel IR
while preserving the execution plan expressed by the programmers. Then, the IR is analyzed to
generate a PS-PDG, which captures the minimum constraints necessary to preserve the original
semantics. With the PS-PDG, the compiler is finally capable to identify all possible parallel execution
plans that are guaranteed to preserve the original semantics of the input code. Hence, parallel
compilers can now find the most appropriate parallel execution plan for the target architecture.
The parallel execution plan chosen is then realized into the generated parallel IR. The parallel IR is
then translated into the target assembly code.
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Fig. 2. Compiler pipeline utilizing parallel IR and PS-PDG for parallel code optimization.

The main contributions of this work are:

o A definition of the PS-PDG: a representation that captures the salient program constraints
of parallel programs (§3).

o A detailed analysis of the necessity of each element of the PS-PDG representation (§4).

e A demonstration that the PS-PDG is sufficient to fully capture the parallel semantics of
OpenMP programs (§5).

o The first compiler to generate the PS-PDG for existing OpenMP benchmarks (§6.1).
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e A demonstration of PS-PDG’s ability to expand the options available to an automatic-
parallelizing compiler when selecting a parallelization plan. We compare this to the PDG
and source code parallelization plan (§6.2).

e A measurement of the reduction in the critical path on an ideal machine using existing
automatic-parallelizing compiler techniques with the PS-PDG. We compare this to the PDG
and source code parallelization plan (§6.3).

2 BACKGROUND & MOTIVATION

Programmers need to express well-tuned parallelism in their applications to achieve high per-
formance and energy efficiency. This requires rich parallel programming models (PPMs) so that
programmers can express complex parallel execution plans for their applications. This has led to an
ever-increasing number of PPMs and features therein. Two examples of widely-adopted PPMs are
OpenMP and Cilk. This section uses an OpenMP code example to demonstrate how a programmer
can explicitly encode a parallel execution plan. Then, the same example serves as motivation for
using the PS-PDG to represent the precise parallel constraints of a parallel program for use in
parallel execution plan transformations.

2.1 Programmers Explicitly Encode Parallelism

The OpenMP PPM allows programmers to parallelize their code with pragmas. An example is
#pragma omp parallel for which specifies that the iterations of the annotated loop can execute in
parallel. In this pragma, the worksharing pragma omp for specifies that the iterations of the loop
should be distributed across multiple threads. Other pragmas offer greater control over the parallel
execution, such as critical which specifies that the given code region should only be executed by
a single thread at any given time.

Fig. 3 shows the OpenMP source code from the hottest computation kernel of the IS benchmark
from the NAS benchmark suite [8], along with the execution of its encoded parallelization plan. The
entire kernel is within a #pragma omp parallel which spawns many threads. Since the loops (1)
(blue) and (3) (orange), do not have a worksharing pragma, each thread executes the entire loop on
its private copy of prv_buff1. Loop (2) (green) instead has its iterations running in parallel between
threads. Loop (4) (purple) is wrapped in a critical section to avoid a data race while updating
key_buff1 concurrently.

The code of Fig. 3 is an example of the OpenMP PPM where the programmer has encoded a
specific parallelization plan into the application. A parallelization plan is the selection of what
to parallelize (e.g., which loops) along with enabling features (e.g., which variables are thread-
private), combined with the chosen parallel execution model (e.g., tasks, threads). Beyond the
explicit parallelization encoded, the parallelization plan implies properties of the original code.

2.2 Enabling Compilers to Optimize Parallel Code

Let us re-consider the hot code of IS shown in Fig. 3, but with a different parallelization plan than the
one encoded by its OpenMP implementation, shown on the right side of Fig. 3. Now iterations of loop
(1) execute in parallel while accessing different slices on a shared copy of prv_buff1 (the original
plan had loop (1) accessing only the thread-private copies of this array). We divide the iterations
of loop (1) across many threads that access different slices of the single shared array prv_buff1.
Then, we perform an array privatization of prv_buff1 before executing loop (2). Iterations of loop
(2) execute between threads as in the original plan. We then reduce the private copies of prv_buff1
to their shared copy as soon as loop (2) ends its parallel execution. Therefore, loop (3) will only
need to execute on a single thread (avoiding its parallel overhead that the original plan had). As
there is only one shared copy of prv_buff1 at this point of execution, loop (4) can now execute in



The Parallel Semantics Program Dependence Graph

.. #pt‘??ma omp parallel Encoded Better
394 #pragma omp barrier : . .
: Parallel Execution Parallel Execution
396 for (i=0; i<MAX_KEY; i++) M e
397 prv_buffl[i] = 0; : |--->2<I
Array Privitization
400 #pragma_omp_for nowait % [/
401 for( i=0; i<NUM_KEYS; i++ ) { §
: 402 key_buff2[i] = key_array[i]; S S P -
i 403 . g =
H H (4 2
...} p %
F 4@9@ :g @ s lg
i 410 prv_bufflkey_buff2[i]]++; \\: E:: ::; 5
411 J
] N Kb k1
N K a
413 for( i=0; i<MAX_KEY-1; i++ ) § 14 K3
4:4@ prv_buffl[i+1] += prv_buffl[i]; N -
= THHE 2 ]
1 : N
417 #pragma omp critical : -@- o ----- -] g ——@— [i------mmmm e ]
j}g { T TS Time Bl O N =] ]
1 or( i=0; i<MAX_KEY; i++ . S
42@@ | key_buff1[i] += prv_buffi[il; : 5 @ 5 O =
421 :
422 - _______________
426 G S
427 #pragma omp barrier §
o e i N
e U8C L.(@)------ = R SN Time Saved ...
]
Iteration [] Thr.ead Private = by Better
& Sequential Objects B . .
= Execution % Shared Parallelization
S Parallel Object Plal’l ’
11 TN Execution o Armray \/
1 2 3 4 Core Number Privatization
Array
1 overhead H’-’ Reduction

Fig. 3. The key computational kernel from the IS benchmark with the original and a more performant
compiler-selected parallel execution.

parallel (the original plan executed the loop sequentially between threads) by dividing its iterations
between threads (without any critical section). This new parallelization plan’s execution is shown
on the right side of Fig. 3.

Consider the transformations required to change the parallelization plan on the left to the
parallelization plan on the right of Fig. 3. The private buffer prv_buff1 of loop (2) must first be
recognized as private from the IR explicit representation, then its uses beyond the loop must be
considered. The updates to prv_buff1 in both loops (2) and (3) must be recognized as reducible in
both uses before either can be transformed. Furthermore, the compiler must leverage the developer
knowledge that the various arrays do not alias with one another and that the indirect index into
prv_buff1 does not go beyond the use of the prv_buff1 in the other loops.

This example suggests that compilers need to become capable of modifying the parallelization
plan expressed by programmers. To do so, compilers must be equipped with the correct abstraction
that captures the precise parallel constraints of a parallel program. Today’s compilers of PPMs
like OpenMP and Cilk cannot do it. The compilation pipeline of these compilers look like the one
shown on the left of Fig. 4. As the source code is processed by the compiler, the parallelization plan
is simply lowered to the runtime calls that implement it; these compilers do not have an abstraction
that captures the precise parallel constraints of the parallel program being compiled. To empower
compilers to transform the parallelization plan to better utilize the underlying hardware, we need
to change the compiler’s internal abstractions.

To perform transformations such as the one described above, the compiler needs to implement the
transformed parallelization. Today’s automatic parallelizing compilers [5, 6, 14, 40, 55] successfully
use the PDG abstraction, but they cannot rely on the parallel semantics expressed by programmers
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Fig. 4. Comparison of the existing pipeline with our proposed PS-PDG pipeline. The parallelization plan in
the source code is abstracted away.

because the PDG does not capture it. To overcome this limitation, this paper proposes the PS-PDG,
an abstraction capable of capturing the precise parallel constraints of parallel programs while
decoupling it from the encoded parallel execution plan. With the PS-PDG, compilers can now
explore the space of semantically equivalent parallelization plans, while preserving semantics, to
fully leverage the precise parallel constraints of the parallel program.

The PS-PDG enables the pipeline shown in Fig. 4. The proposed pipeline does not rigidly follow
the encoded parallelization plan (like today’s compilers do). In this new pipeline, the precise parallel
constraints of a parallel program is captured by the PS-PDG abstraction so that compilers can now
see the space of semantically-equivalent parallelization plans. The middle-end is now capable of
selecting the parallelization plan that best fits the underlying architecture.

3 PS-PDG DEFINITION

PPMs like OpenMP and Cilk enable programmers to make parallelization decisions explicit. A
programmer can decide where to spawn threads or tasks, to distribute the computation of a loop
between parallel threads and/or tasks, and how to synchronize their execution. These parallelization
decisions define the parallel execution plan of that program.

Beyond controlling what code can run in parallel and when it can do so, a parallel execution plan
also implies properties of the code of the original program. For example, a parallel execution plan
described using OpenMP can include the declaration that iterations of a loop will run in parallel
during their executions. This plan implies the property that the target loop has no loop-carried
dependences between its iterations. Another example is an OpenMP critical section in a loop, which
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implies both the need to enforce the atomic property of the target code segment and that any
order of invocations of the target segment between loop iterations is valid. We refer to this implied
information as the precise constraints of a parallel program, which is captured by the PS-PDG.

Table 1. Complete PS-PDG Definition

PS-PDG ::= (Node*, Edge*, Variable*, VariableAccess*)
Node ::= (Instruction, Trait*) | (HierarchicalNode, Trait*)
HierarchicalNode ::= (Node", Context?)

Trait ::= (Singuler | Unordered | Atomic, Context)

Edge ::= DirectedEdge | UndirectedEdge

DirectedEdge ::= (Nodeproducer, Nodeconsumer, Data-selector?)
UndirectedEdge :=(Node, Node, Context)

Data-selector ::= (Any-Producer | Last-Producer | All-Consumers, Context)
Variable ::= (Privatizable | Reducible, Context)
VariableAccess  ::= (Variable, Node;., Node} ()

Context ::= Unique Identifier

The PS-PDG extends the PDG abstraction to capture the precise parallel constraints of a parallel
OpenMP or Cilk program. Like the PDG, the PS-PDG has nodes to represent computation and
edges to represent dependences within the computation, but it also includes variables to represent
data and use/def edges to represent the relation between data and its computation. As shown in
Table 1, a PS-PDG consists on one or more nodes with zero or more edges, variables and variable
accesses. The rest of this Section will describe each extension in detail.

3.1 Hierarchical Nodes

Explicit parallel programming enables programmers to specify properties of a code region. Often
such properties do not hold at finer granularities (e.g., single instruction). For example, an OpenMP
critical section declares that the code region as a whole has the atomicity property. This atomic
property does not hold at a finer granularity like at the single instruction level that composes this
critical code region. For this reason, the PS-PDG both adds the ability to have a single node that
represents an entire code region and the ability to express properties at their node granularity

(§3.2).

for(int 1=0; i<N; i++) {
{... parallel work ...}
#pragma omp critical
{x={...3
y=x+ {...};
z += globalUpdate(y, x); }
{... parallel work ...}
ks

OooO~NOUTHWNE

Fig. 5. Capturing properties of a region into hierarchical nodes with traits

A node in the PS-PDG represents a non-empty set of instructions organizing the code hier-
archically, shown in Fig. 5. For example, all instructions of a critical section in the PS-PDG is
represented by a single node. More generally, a node N of the PS-PDG is a non-empty set of one or
more instructions or other nodes such that both direct and indirect self-inclusions are not allowed.
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Having a single node representing a set of instructions is needed to capture the parallel semantics
of parallel constructs that target more than a single instruction.

3.2 Node Traits

Some properties expressed in a PPM are traits of a code region. These traits can be important for
the correctness and/or performance of a parallel application, for instance, atomicity.

A node in the PS-PDG can have various traits. This paper implemented the three types of traits
that are enough for the target languages OpenMP and Cilk: the atomic, orderless, and singular
traits. An atomic node represents a set of computations that must be executed atomically during
its parallel execution. An orderless node expresses that different instances of that node can be
executed in any order for a given context. A singular node represents a set of computations that
must be executed by only a single instance for a given context. An example of a node traits is
shown in Fig. 6.

@ Singular

1 (H]]) Unordered
2 for(int i=0; i<N; i++) { @Atomic
3 { ... parallel work ... }
4 #pragma omp atomic update :
5 shared_array[i%num] += result;
6}
Fig. 6. How traits can be used to capture atomic updates.
3.3 Context

PPMs allow programmers to express semantics attached to a code region only when executed
within the context of another code region. For example, the code in a single OpenMP pragma
needs to only be executed for one of the iterations of the innermost parallel loop that contains it.
It does not however specify that code should only be executed by a single iteration of an outer
loop. In other words, the parallel semantics of a single section is valid only in the context of the

for(int i=0; i<N; i++) {
{. parallel work }
#pragma omp parallel for

forCint j=0; j<N; j++) { X .

{... parallel work ...} ! e

#pragma omp single § )
{ SO )\
z = updateGlobalCarr[j1);

10 checkpoint(z);

SR &

2 3 (2)

13 }

coNOUTPHA WN B

((e)

Fig. 7. Traits applied to context A captures the region’s semantics.
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innermost loop that contains it. Because the contexts in which parallel semantics is valid cannot
always be computed, the PS-PDG can specify contexts and their relation with parallel semantics.

A context in the PS-PDG represents a code region to which a parallel semantic applies. A
context in the PS-PDG is a labeled hierarchical node, where the label is a unique identifier. Hence,
hierarchical nodes of the PS-PDG that do not have a label are not contexts. A parallel semantic
explicitly lists the contexts in which it is valid, as shown in Tab. 1. For example, the hierarchical
node S of Fig. 7 that captures the single code section declares its semantics applies only to context
A, which is its target loop.

3.4 Directed and Undirected Edges

Parallel programming allows the declaration that two code regions (or two instructions) depend on
each other but their relative execution order is not important. This enables efficient parallel execu-
tions by avoiding unnecessary synchronizations. PS-PDG includes both directed and undirected
dependences (edges) to capture this semantics (Fig. 8).

A directed edge in a PS-PDG follows the semantics of the PDG abstraction where the execution
of the destination of that edge must wait for the edge’s source execution. Instead, an undirected
edge expresses a dependence between two computations (e.g., instructions) that cannot run in
parallel, but any ordering of their execution is allowed.

1

2 for(int i=0; i<N; i++) {

3 {... parallel work ...}

4 #pragma omp critical (critl)
5 1ibCall(CA, prv_A[i]);

6 {... parallel work ...}

7 #pragma omp critical (critl)
8 1ibCall(B, prv_B[i]);

9 {... parallel work ...}

10 }

Fig. 8. Ordering constraints are captured with directed and undirected edges.

3.5 Data-Selector Directed Edge

The execution of an application typically includes many instances of a single static instruction (e.g.,
multiple executions of a single static instruction within a loop). There is always a clear producer-
consumer relation between dependent instructions for sequential programs. For example, consider
the instructions i and j shown in Fig. 9 which has a dependence from i to j. In this sequential
program, the last instance of i executed before j will generate the data consumed by j (this is
captured by the PDG). However, programmers can express richer semantics when developing a
parallel program. For example, a programmer can express that the data generated by any instance
of i can be used by j. This is not expressible in prior abstractions like the PDG. So, the PS-PDG
introduces data-selectors that can be attached to a direct dependence.

A data-selector defines the set of dynamic instances of a static instruction. A directed edge in
the PS-PDG can have up to two data-selectors: one per static instruction attached to the edge. A
data-selector of the producer of a dependence defines which dynamic instance(s) of that producer
are allowed to generate the data that will unlock the consumer.

This paper implements only the data-selectors required to capture the semantics of OpenMP and
Cilk, which are the following:
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e Any Producer Selector: The consumer may use data generated by any instance of the producer.
e Last Producer Selector: The consumer must use data generated by the last instance of the
producer.

int sampleValue = 0;

#pragma omp parallel for

for(int k=0; k<N; k++) {
{... parallel work ...}
sample = {...}; // i

}

moreWork(sample); // j

% Any
Producer

o All Consumers Selector: All consumers must use the data generated by the producer.
Last
Producer

_
(&)
O o All
§ C\Q‘ Consumers

Fig. 9. Data-selector directed edges can capture non-trivial data relations.

NO U WN R

3.6 Parallel Semantic Variables

Efficient parallel execution often requires programmers to express knowledge about the program’s
variables that go beyond their reads and writes and their data types. For example, programmers can
express that a variable can be privatized in threads/tasks and all private instances can be merged
(reduced) using application-specific knowledge. This semantics goes beyond what can be expressed
in sequential programming and therefore beyond what the PDG can capture (as the PDG was
designed for sequential code). To preserve this semantic, the PS-PDG introduces the concept of
variables and their parallel semantics (how to clone them, their identity value, and how to reduce
them) in its abstraction.

A parallel semantic variable in PS-PDG represents a variable or memory object that can be
cloned to create private copies that a thread or task can independently use and modify. This
extension includes the code to execute to merge pairs of private copies together. To do so, the
variable description includes the reference to a computational node of the PS-PDG that represents
a function. This function takes two copies of a variable and it updates the first one with the result
of the merge. This merging operation is what compilers can use to reduce all private copies of a
variable into a single one. An example of parallel semantic variable is shown in Fig. 10.

Parallel semantic variables are accessed by computation (e.g., an instruction). Because such
variables can be stored in memory, their accesses are not captured by the conventional use-def

1 double total = 0.0, scratch = 0.0;

"scratch"
2 #pragma omp parallel for \\

3 reduction(+:total) \\ [_Fivafizable |
4 private(scratch)

5 for(int i=0; i<N; i++) {

6  scratch = work(i); “y

7 {... parallel work ...} otal" LA
8  total += scratch + {...}; ReduciBle

9 } i Corv;t;iner Inil{. )Val Idin)my

Fig. 10. Capturing programmer knowledge about data through privatizable and reducible parallel semantic
variables.

10
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chains [4]. To preserve this relation, the PS-PDG adds the Use/Def edges from a variable to PS-PDG
nodes to encode the semantics that a target node uses and/or defines the variable at the source of
that edge.

4 THE NECESSITY OF EACH PS-PDG EXTENSION

This section demonstrates that each feature of the PS-PDG abstraction is necessary to capture the
semantics expressible using the OpenMP programming model. The same result can be obtained
similarly for Cilk. It does so for each PS-PDG extension by removing it from the proposed abstrac-
tion. This is done by showing two parallel programs that have different parallelization plans and
semantics. By showing that these two programs translate to the same PS-PDG when the extension
under evaluation is not available, we demonstrate that the feature is necessary. Additionally, this
section provides an example that shows how each feature enables an important optimization. This
shows the value of each PS-PDG extension.

4.1 Hierarchical Nodes and Undirected Edges

To understand the value of Hierarchical Nodes (HN) and Undirected Edges (UE), consider the two
semantically different programs shown in Fig. 11-A. The program on the left requires avoiding
overlapping dynamic instances of the critical section but puts no restriction on their order. In
contrast, the program on the right requires each dynamic instance of its critical section to be
executed in loop-iteration order. The program on the left executes significantly faster than the one
on the right because it does not require synchronizations to enforce this additional constraint. A
compiler seeking the best parallelization plan for each program different in this one way must
know whether or not this extra degree of freedom (orderless) exists. In the PS-PDG, the undirected
edge and hierarchical node features combined remove the ordering constraint while ensuring that
dynamic instances of the connected nodes do not overlap. When this feature is removed, this
semantic information is lost. Fig. 11-A demonstrates this by showing how these two programs map
to the same PS-PDG lacking these features (“PS-PDG w/o HN and UE"). Furthermore, this orderless
semantics cannot be represented by the “PS-PDG w/o HN and UE" because the orderless semantics
does not hold at the single instruction granularity.

4.2 Node Traits

A node in the PS-PDG can hold various traits expressed in a parallel programming language.
These traits can be important for the correctness and performance of the parallel application.
To understand the value of Node Traits (NT), consider the two semantically different programs
shown in Fig. 11-B. The program on the left requires the singular execution of the print statement,
allowing for quick and simple output from the parallel application. In contrast, the program on
the right does not include a single annotation for its print statement, meaning multiple calls to
printf. To maintain correctness, then the compiler must understand how the printf fits into the
parallelization plan. Unfortunately, this is not possible when using the PS-PDG without Node Traits
(“PS-PDG w/o NT"). Fig. 11-B demonstrates this by showing how these two programs map to the
same “PS-PDG w/o NT". In the “PS-PDG w/o NT", the single execution semantic is lost. Further,
the single execution trait cannot be determined by compiler analysis from any other aspect of the
“PS-PDG w/o NT".

4.3 Contexts

To understand the value of Contexts (C), consider the two programs shown in Fig. 11-C. The
program on the left executes the first call to worker in parallel while the program on the right
executes it sequentially. By leveraging the parallelism in the hardware, the left program executes
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Faster

i1 #pragma omp parallel for :

PS-PDG w/o HN and UE

Slower

PS-PDG

i 1 #pragma omp parallel for :

{2 for(int i=0; i<N; i++) { . _ IheTwo {2 for(int i=0; i<N; i++) { '
{3 {... parallel work ...}; Programsare e i3 {... parallel work ...}
{4 #pragma omp critical { :Indistinguishable i 4 #pragma omp ordered {

i 5 1ibCall(A, prv_A[i]);i without the PS- e is 1ibCall(A, prv_A[i]);:
‘6 x = A[0]; PDG feature. i 6 x = A[0]; H
7 A[1] = func(x); --ipp ° <i-7 A[1] = func(x);

P8 3 83 H
:9  {... parallel work ...}: e i 9 {... parallel work ...}

‘10 .

PS-PDG w/o NT

i1 #pragma omp parallel for :
i2 for(int i=0; i<N; i++) {
{... parallel work .
#pragma omp single
printf(...);

i 1 #pragma omp parallel for :
i 2 for(int i=0; i<N; i++) {
H {... parallel work ...}

printf(...);

void worker(int* a, int n) {
if (n == @) { return; }
#pragma omp for
for(int i=0; i<n; i++)

*lib = {...}

8 void func(int a*) {
#pragma omp parallel

worker(a, n);

13 mergeData(a, n);
14 worker(a, n);

void worker(int* a, int n) {
if (n == @) { return; }
#pragma omp for
for(int i=0; i<n; i++)

*@lhib = {...}
void func(int a*) {
worker(a, n);

mergeData(a, n);
worker(a, n);

i1 int value; :
2 #pragma omp parallel for

PS-PDG w/o DSDE

{1 int value; i
2 #pragma omp parallel for \:

#pragma omp declare
reduction(cb: point:
combine(&omp_out, &omp_in))
initializer(omp_priv={0, 0, 03})

\
\
\

void work(struct point* points) {
struct point pt = {...};
#pragma omp parallel for
reduction(cb:pt)
for(int i=0; i<N; i++) {

E. Parallel Semantic Variab./é”aﬁd .Use/Def Relation

i3 H i3 lastprivate(value):
i 4 for(int i=0; i<N; i++) { {4 for(int i=0; i<N; i++) {
{5 int v; H iP5 int v
i6  {... parallel work .. i 6 {... parallel work ..
i7oov=A{...} i P17 ov={...}
& Collect any value i.8 // Collect last value
i9  wvalue = v; H i 9 value = v;
ok . 10}
D. Data-Selector Directed Edge ™" R
7 PS-PDG w/o PSV  *
1 void combine(point *a, point *b) { 1 void combine(point *a, point *b) {
2 if (a->x > b->x) a->x = b->x; 2 if (a->x > b->x) a->x = b->x;
3 if (a->y > b->y) a->y = b->y; 3 if (a->y > b->y) a->y = b->y;
4 if (sqrt(pow(a->x,2), 4 1if (sqrt(pow(a->x,2),
5 pow(a->y,2)) 5 pow(a->y,2))
6 < sqrt(pow(b->x,2), 6 < sqrt(pow(b->x,2),
7 pow(b-y,2))) 7 pow(b-y,2)))
8 a->force = b->force; 8 a->force = b->force;
93 93

void work(struct point* points) {
struct point pt = {...};
#pragma omp parallel for

for(int i=0; i<N; i++) {

{... parallel work ...} {... parallel work ...}
_ pt->x = {...}; pt->y = {...}; pt->x = {...}; pt->y = {...};
Reducible 22 #pragma omp ordered
Combiner |Initial Val | Identit i i i . i i i .
Cmr&r\‘r:r)lwzvoi (0%8,(‘1)/) gi combine(&pt, &points[i%3]); ) combine(&pt, &points[i%3]);

Fig. 11. Each feature of the PS-PDG is necessary since the removal of any PS-PDG feature would result in a
loss of information. Without the given feature, the resulting abstraction is indistinguishable for the faster

code (left) and the slower code (right).
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significantly faster than the program on the right. To generate the best parallel execution plan
for the first worker call, the compiler needs to know in which context(s) the independent loop
iteration semantic holds. PS-PDG Contexts represent the contexts in which code region parallel
semantics hold. Without PS-PDG Contexts, the two programs map to the same “PS-PDG w/o C".
Using only the “PS-PDG w/o C" in this example, the compiler cannot know when the loop iterations
are independent of each other and must assume they are not.

4.4 Data-Selector Directed Edge

Data selectors can be added to the directed edges of the PS-PDG abstraction. Data selectors define
which dynamic instance (or instances) of the source node can generate the data that the destination
node needs. To understand the value of Data-Selector Directed Edge (DSDE), consider the two
parallel programs shown in Fig. 11-D. Their semantics are different. The program on the right
enforces that the value of the live-out variable value that can propagate outside the loop has to be
the one generated during the last iteration of that loop. The program on the left of Fig. 11-D allows
the propagation of the value generated by any loop iteration. The program on the left adds an extra
degree of freedom. With this freedom, a consumer of the live-out variable can start before the end of
the loop execution, allowing for more overlapping computation. Unfortunately, a PS-PDG without
Data-Selector Directed Edges (“PS-PDG w/o DSDE") cannot distinguish these cases. This can be
seen as both programs in Fig. 11-D map to the same “PS-PDG w/o DSDE". Thus, for correctness, the
parallelization plan generated from the “PS-PDG w/o DSDE" must enforce the stricter semantics of
the program, the slower program on the right. Note that the DSDE semantics cannot be inferred by
a code analysis on the “PS-PDG w/o DSDE".

4.5 Parallel Semantic Variable and Use/Def Relation

The PS-PDG includes Parallel Semantic Variables and Use/Def Relations (PSV) to represent a
variable or object upon which the developer has encoded parallel semantics (e.g., how to reduce
an object between tasks). These variables are connected to their computation (reads and writes)
through Use/Def edges from parallel variables to nodes in the PS-PDG. Consider the two parallel
programs shown in Fig. 11-E. The program on the left runs all iterations of the loop in parallel
without any synchronization between them. Each thread operates on a private copy of the struct
pt, then all private copies are reduced into a single one to be propagated to the code after the
loop. This reduction is performed using application-specific knowledge. In contrast, the program
on the right of Fig. 11-E has a single copy of the struct pt shared among all iterations of a loop.
Accesses (reads and writes) of this array are synchronized using an ordered section. The program
on the left executes significantly faster than the one on the right because it does not require any
synchronization between the loop iterations running in parallel. A compiler that needs to decide
the parallelization plan to apply to the program on the left of Fig. 11-E needs to be aware of the
ability to privatize and reduce the struct pt to generate the best parallelization plan. Unfortunately,
this is not possible when using a PS-PDG without Parallel Semantic Variables (“PS-PDG w/o PSV").
This becomes clear by observing that both programs in Fig. 11-E map to the same “PS-PDG w/o
PSV". This means that the parallelization plan generated from the “PS-PDG w/o PSV" must enforce
the stricter semantics of the program on the right of Fig. 11-E where all array accesses are ordered.
Furthermore, notice that the lost application-specific knowledge about the reduction of the struct
pt cannot be inferred from the “PS-PDG w/o PSV".

5 THE SUFFICIENCY OF THE PS-PDG FOR OPENMP

This section demonstrates that the PS-PDG abstraction is sufficient to capture the precise parallel
constraints of the OpenMP programming model (Appendix A demonstrates it similarly for the Cilk
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language). We target the OpenMP 5.0 specification [43] with the exclusions of execution control, the
target offload abstraction, runtime calls, and tooling support. We excluded these features because
the goal is to enable compilers to select a parallel execution plan for general-purpose CPUs. So, we
exclude features that only control the amount of parallelism to generate without adding semantics
(e.g., deciding the number of threads to use for a given loop).

We group the parallel semantics expressible using the OpenMP 5.0 specification into three groups:
declaration of independence, data properties, and computational ordering features. The OpenMP
parallel semantics enabled by each group is mapped to a set of PS-PDG abstraction extensions. The
parallel execution plan explicitly encoded by OpenMP programmer is within the parallelization
plan space generated by a compiler using the PS-PDG. That is, the PS-PDG is sufficient to capture
the precise parallel constraints of OpenMP

5.1 Declaration of Independence

Declaring the independence between code regions has a significant impact on the parallel semantics
of the OpenMP programming language. This type of parallel semantics is the most used in OpenMP
programs (empirically confirmed by well-established benchmark suites). The most typical example
of this semantics is omp for, which declares the independence between loop iterations of all the
code within the loop body not included in a critical section. Another example is task, which groups
computation into multiple tasks, and their dependences (or lack of) are explicitly declared. Other
examples with similar semantics are taskloop, sections, simd, and workshare; they all declare the
existence of parallelism between code regions. Finally, OpenMP provides clauses that programmers
use to declare when the declaration of parallelism (or dependence) is valid (in which contexts). For
example, the programmer can declare that two code regions are independent only when executed
within the context of a loop, but not when executed within the context of outer loops. These clauses
include barrier, flush, taskwait, and depobj. These clauses, such as barrier, do not add additional
information, rather they constrain the information provided by other clauses. This allows for the
developer to encode synchronization in order to respect dependences which would instead be
declared independent. The PS-PDG captures these constraints as dependeces.

The semantics encoded by all declarations of independence of the OpenMP language is captured
by the PS-PDG abstraction extensions hierarchical nodes and contexts. Each code region targeted by
an OpenMP pragma mentioned above (e.g., task) is mapped into a hierarchical node of the PS-PDG
abstraction. Edges between hierarchical nodes (including between a node and itself) declare their
dependences as specified by the OpenMP programmer. Finally, dependence edges include contexts
in the PS-PDG abstraction to declare when they are valid (and therefore when they are not). This
captures the precise parallel constraints of all declarations of independence that programmers can
do using OpenMP.

For example, assume there is two-level nested loop where the inner loop has a call to a library
function and that this call has a self-dependence only between iterations of the outer loop. An
OpenMP programmer can parallelize this program by adding the pragma for to the inner loop. This
semantics is mapped to PS-PDG creating a hierarchical node for the outer loop; hence, the outer
loop becomes a context. Then, the dependence from the library call to itself includes the context of
the outer loop, which declares that is valid only for the outer loop. A compiler can now generate
the parallelization plan chosen by the OpenMP programmer using this PS-PDG as the inner loop
has no loop-carried dependence and therefore can be parallelized using the parallelization plan
selected by adding the pragma for to the inner loop.
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5.2 Data and its Properties

The parallel semantics of data is essential for a PPM to be widely adopted. Parallel semantics of
data allows programmers to declare properties of data, how to use them, and how to propagate
them throughout the computation. An example of this parallel semantics is the threadprivate
pragma, which declares that the data is attached to (e.g., an array) needs to be cloned such that
threads use/define only their own private copy of it. Without access to privatization and reduction
techniques the amount of expressible parallelism would be greatly limited. Therefore, the OpenMP
model (like other PPMs) enables programmers to declare how the data can be privatized per-
thread (threadprivate), how can the private copies be reduced at the end of a parallel code region
(reduction), and which data needs to be propagated throughout the computation (first/last
private).

The OpenMP semantics about privatizing data and reducing their private copies is captured
by the parallel semantics variable of the PS-PDG abstraction. The PS-PDG variable declares its
properties explicitly (e.g., per-thread private) and it declares how to reduce its private copies to a
single one. The Use/Def relations included in PS-PDG declare how the code uses the related variable,
and therefore when it needs to be privatized and when its private copies need to be reduced.

Finally, the OpenMP semantics about which data to propagate throughout the computation is
captured by the data selectors of the PS-PDG abstraction. These selectors declare which data needs
to propagate from a producer to its consumers.

5.3 Ordering

OpenMP programmers can express that two code regions are dependent, but their execution order is
not important. This is more efficient than enforcing a pre-defined order. This semantics is expressed
using the critical or atomic pragmas. The latter also imposes the need to execute atomically the
code region wrapped in it. The PS-PDG undirected edge declares this lack of ordering between two
interdependent code regions (or instructions), including self-dependences, and the OpenMP atomic
semantic is captured by the node trait atomic.

6 EVALUATING THE PS-PDG ABSTRACTION

The PS-PDG abstraction captures the precise parallel constraints of a parallel program. The strength
of an abstraction used within a compiler is in its ability to represent knowledge about a program
not readily ascertainable from the IR. The value of a specific abstraction is in what it enables,
and should be evaluated in this way. To this end, we evaluate the PS-PDG by what it enables
for an existing automatic-parallelizing compiler rather than the end result of the parallelization.
Notice that evaluating on the end result of a transformation would evaluate the transformation
implemented using the PS-PDG, rather than the expressiveness of the PS-PDG itself. Hence, we
evaluate the PS-PDG by performing two experiments that measure the power of the abstraction. The
first experiment measures the size of the PS-PDG enabled expansion of options for the parallelizing
compiler. The second experiment characterizes a bound on the potential of the parallel execution
plans that the PS-PDG exposed. We find the PS-PDG enabled compiler has a richer set of options
when determining a parallel execution plan and exposes significantly better parallel execution
plans. Both experiments use a parallelizing compiler enhanced to use the PS-PDG in place of the
PDG. We utilize the entire NAS Benchmark Suite [8] with class C inputs, with two exceptions (BT, FT:
class B) due to gigabyte-size static variables.
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Fig. 12. Our custom compilation pipeline to generate the PS-PDG for a given OpenMP program.

6.1 Implementing the PS-PDG in an existing compiler

To perform the two experiments described above, we implemented a custom compilation pipeline
(Fig. 12). This pipeline is built upon the NOELLE [40] compilation framework, which extends
LLVM [35]. NOELLE provides an automatic-parallelizing compiler working at the IR level, which
supports three loop-based parallelization techniques: DOALL [26], DSWP [55], HELIX [14, 15].
First, we added a tool that translates OpenMP annotations into pragmas that are amenable to
being lowered by our custom front-end. Then, our custom clang-based front-end that generates
LLVM IR with custom metadata from these pragmas. This IR with metadata feeds a series of
code transformations that are designed to make the code more amenable to parallelization while
maintaining the metadata for the precise parallel constraints of the parallel program. Finally, the
resulting IR with metadata is used to build the PS-PDG. The PS-PDG is then used by our extensions
of NOELLE’s compiler, which originally used the PDG.

Both our parallelizing compiler and NOELLE'’s original one consider the parallelization of each
loop with at least 1% run-time coverage. The subset of a dependence graph (PS-PDG or PDG)
for a given loop is analyzed to identify strongly-connected components (SCC) with loop-carried
dependences. For these SCCs, we utilize any PS-PDG features within the SCC to determine if
the loop-carried dependences can be removed (e.g., privatization). If a loop can be parallelized as
DOALL (i.e., no loop-carried dependences with a known trip count), then it is only considered as
DOALL. For non-DOALL loops, the compiler considers HELIX and DSWP.

6.2 The PS-PDG gives the compiler more choices

To understand the potential added by PS-PDG, we automatically enumerate the options our compiler
considers when determining a parallel execution plan of a loop. Then, we compare it with those
that the PDG-based compiler included in NOELLE has. The PDG-based compiler utilizes the
sequential version of the benchmarks. Additionally, we include the results from utilizing the
OpenMP worksharing loop information for improved loop dependence analysis as in [28], labeled as
"J&K". This approach enables the worksharing loop information to remove loop-carried dependences
in the PDG. Finally, we include the number of corresponding options available to the source code
OpenMP parallelization through environment variables.

We automatically enumerate the options for a 56 core machine while following the existing
parallelization process in the compiler. For DOALL loops, the number of options is at most 56
(cores) X 8 (chunk sizes considered). For non-DOALL loops, the SCCs of a loop are categorized as
sequential or parallel. The options available to HELIX is the possible number of sequential segments
of that loop (a sequential segment is a slice of the loop that includes at least one sequential SCC).
Furthermore, we consider running these sequential segments in parallel up to 56 cores. The options
available to DSWP is the number of pipeline stages (each stage has at least one SCC) up to 56 cores.

Fig. 13 shows the number of options available to the compiler. The PS-PDG enables the automatic-
parallelizing compiler to explore more options than the PDG, resulting in a large increase in the
number of parallelization plans when combined. The compiler is able to consider all loops which
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Fig. 13. Number of parallelization options available to the compiler.

meet the parallelization requirements while the programmer-encoded parallelization is static, the
PS-PDG pushes beyond the limitations of the PDG-based compiler. For benchmarks with few
loops which are parallelized well by the programmer (e.g., EP), the increase in options stays low.
Additionally, we find that utilizing the PDG with workshare improved loop dependence analysis is
insufficient to match the PS-PDG, as seen in the MG benchmark. Through the PS-PDG, the compiler
can leverage the precise parallel constraints of the explicit parallelism, while leveraging compiler
analysis for a larger space of parallelization plans.

6.3 The parallelization potential exposed by the PS-PDG

Next we evaluate the quality of the additional parallelization plans these options create. To evaluate
the potential of the parallelization plans, we measure, via an emulator, the critical path of the
available parallelism on an ideal machine with unlimited cores, zero cost communication, and
perfect memory access. This enables us to characterize the limit of the additional parallelism
unlocked by PS-PDG. We do so by comparing the limit of the parallelism expressed by programmers,
with the one obtainable using PDG, and with the parallelism obtainable using the new PS-PDG
abstraction. The critical path is computed as the number of dynamic LLVM instructions that must
run sequentially given a parallelization plan. The PDG measurements assume that every outermost
loop is parallelized using DOALL, HELIX, or DSWP using the SCCs generated from the PDG. The
J&K measurements assume that every outermost loop is parallelized using the SCCs from the PDG
along with inner developer-expressed loops. Lastly, the PS-PDG measurements assume that every
outer loop is parallelized using the SCCs from the PS-PDG, as well as inner developer-expressed
loops. We only consider the hierarchical parallelism possible with existing parallelizing compilers
or as expressed by the developer. This methodology is consistent with that proposed by others [57].

Fig. 14 shows the critical path speedup over the programmer encoded parallelization for an
ideal machine. By utilizing the PS-PDG, the automatic-parallelizing compiler can leverage the
developer encoded parallel semantics as well as the advanced compiler techniques, HELIX/DSWP.
The PS-PDG allows the compiler to discover plans with far more parallelization potential than with
the PDG. Additionally, for benchmarks with good parallelization coverage by the programmer (e.g.,
EP), the PS-PDG ensures no loss of parallelism since it captures the precise parallel constraints of
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the parallel program. Finally, we find that utilizing workshare improved loop dependence analysis
with the PDG (J&K) is unable to unlock as much parallelization potential as the PS-PDG (e.g., IS).
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Fig. 14. Critical path reduction from abstraction-enabled parallelism.

7 RELATED WORK

Previous work [49, 50, 53] proposed representations of the explicit parallelism encoded in a program
to help programmers understand their parallelization. These representations directly capture the
parallel control flow encoded in the parallel program. Other prior work [2, 29, 30, 41, 51] lowered
the explicit parallelism into the IR of the compiler, introducing a new IR where the parallel execution
plan can be encoded explicitly. Some prior work [28, 38] analyzed parallel IRs that capture simple
fork-join models to remove dependences from the PDG generated by compiler analyses (to unblock
vectorization), but they do not handle semantics beyond simple fork-join. Finally, HPVM [32] is
designed specifically for heterogeneous hardware to enable optimizations while still maintaining
performance portability. The PS-PDG is orthogonal to HPVM as it does not target heterogeneous
hardware via a hierarchical dataflow graph or enable optimizations on the graph.

The Galois System [33] and the Kinetic Dependence Graph [25] targeted implicit parallelism
in imperative languages. These approaches focus on irregular programs exploiting amorphous
data-parallelism to improve performance by dynamically modifying computation task graphs at
runtime.

Many functional programming languages represent parallelism either implicitly or explicitly
through annotations or parallel constructs in the language itself (e.g., map) [7, 10, 11, 21, 23, 24,
31, 37, 39, 44, 46, 52, 56]. These works directly translated the parallelism into a single or a few
predetermined parallel execution plans (usually based on task or fork-join parallelism), where the
runtime system is left with few decisions to make (e.g., number of threads).

8 CONCLUSION
This work presents the PS-PDG, a novel abstraction that captures the precise parallel constraints of
modern parallel programs. The PS-PDG is shown to be necessary and sufficient for capturing the
precise parallel constraints found in OpenMP and Cilk. Our PS-PDG enabled compiler is capable of
enabling advanced parallel execution plan optimizations for explicitly parallel programs on modern
many-core systems.
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A SUFFICIENCY OF PS-PDG FOR CILK

This Appendix describes how to map the Cilk parallel programming model to PS-PDG. In particular,
we refer to OpenCilk 2.0 [1] as Cilk as it is the only actively maintained implementation as of this
writing. Following OpenCilk 2.0, we exclude features such as inlets, array operations, elemental
functions, and the simd pragma. Note that inlets were removed as early as Intel Cilk Plus [27].
Additionally, since array operations and elemental functions are language constructs to exploit
data parallelism, their semantics can be equivalently expressed as a cilk_for if desired. Similar to
OpenMP, we do not consider Cilk clauses that control the amount of parallelism to generate such
as grainsize. Note however that the Cilk simd is semantically identical to the OpenMP simd.

The execution model of Cilk is expressed in the PS-PDG as follows. The cilk_spawn construct is
represented as a hierarchical single-entry single-exit (SESE) node that contains two nodes: an inner
entry node (referred to as a knot in the Cilk community) with two directed outgoing edges: one
to a node within the hierarchical node representing the function call within the spawn construct,
and the other exiting the hierarchical node. Each directed outgoing edge from the knot represents
an outgoing strand of execution (thread) from the spawn knot. That is, the node representing the
spawned function call represents forking a thread to call that function to be joined at the next
synchronization point. Similar to omp barrier, cilk_sync is represented by a node with incoming
edges from all nodes that contain spawned function calls in the smallest hierarchical node that
contains it. The construct cilk_scope is represented by a SESE hierarchical node that contains a
cilk_sync as the exit node and contains the nodes needed to represent the contents of the Cilk
scope. The cilk_sync node is necessary as there is an implicit synchronization at the end of every
Cilk scope. Finally, cilk_for is represented identically to omp parallel for.

Cilk hyperobjects are represented as reducible parallel semantic variables. Recall that Cilk
hyperobjects are copied from the parent function into the child strand, and after the spawned child
is joined back into the parent, the parent’s view of the object is reduced with the child’s view using
the given reducer operation by the programmer. At this point, the child’s view of the object is
destroyed along with the spawned strand. By design, this semantic also provides support for other
hyperobjects such as holders, which are a special case of reducers. For these classes of hyperobjects,
parallel semantic variables and their properties provide the relevant semantics for Cilk. Therefore,
we conclude that the PS-PDG abstraction possesses all the features needed to capture the Cilk
programming model, as well as OpenMP.
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