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Abstract
The increasing prevalence of multi-agent learn-
ing systems in society necessitates understand-
ing how to learn effective and safe policies in
general-sum multi-agent environments against
a variety of opponents, including self-play.
General-sum learning is difficult because of non-
stationary opponents and misaligned incentives.
Our first main contribution is to show that many
recent approaches to general-sum learning can be
derived as approximations to Stackelberg strate-
gies, which suggests a framework for develop-
ing new multi-agent learning algorithms. We
then define non-coincidental games as games in
which the Stackelberg strategy profile is not a
Nash Equilibrium. This notably includes several
canonical matrix games and provides a normative
theory for why existing algorithms fail in self-
play in such games. We address this problem by
introducing Welfare Equilibria (WE) as a gen-
eralisation of Stackelberg Strategies, which can
recover desirable Nash Equilibria even in non-
coincidental games. Finally, we introduce Wel-
fare Function Search (WelFuSe) as a practical ap-
proach to finding desirable WE against unknown
opponents, which finds more mutually desirable
solutions in self-play, while preserving perfor-
mance against naive learning opponents.

1. Introduction
The use of machine learning in multi-agent systems is
becoming increasingly prevalent in society (Zhang et al.,
2021), but learning in multi-agent systems presents several
challenges. Firstly, different agents might have misaligned
or conflicting incentives (Subramanian et al., 2023), in
which case agents won’t necessarily act in the interests of
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other agents. Secondly, the learning environment is non-
stationary, because other agents are simultaneously learn-
ing and updating their policies. Non-stationarity violates
standard theoretical assumptions made in reinforcement
learning (Sutton & Barto, 2018), and empirically makes
learning significantly more challenging (Wang et al., 2022).

Real-world case-studies of multi-agent systems have
shown how nefarious human agents can derail the be-
haviour of artificial learning agents, causing emotional
harm to innocent observers and reputational damage to the
learning agent’s creators (Wolf et al., 2017). Such ex-
amples highlight the possible negative real-world conse-
quences of deploying naively designed learning agents in
multi-agent systems, and hence the necessity of adapting
to the possible incentives and behaviour of other agents.
These considerations are especially important in safety-
critical environments (Kiran et al., 2021).

Opponent shaping (OS) is an approach to general-sum
learning in which agents explicitly consider the opponent’s
incentives and behaviour, and adapt their own behaviour in
order to shape the opponent’s future learning process. For
example, under self-play LOLA (Foerster et al., 2018) con-
verges to prosocial solutions which incentivise opponent
cooperation in canonical games such as the Iterated Pris-
oners’ Dilemma (IPD). However, it has been shown (Willi
et al., 2022) that OS algorithms can behave arrogantly in
games such as the chicken game, leading to catastrophic
outcomes in self-play. Avoiding catastrophe in self-play
is fundamentally important for any learning algorithm that
is to be deployed outside of simulation, because otherwise
a malicious opponent could derail performance simply by
choosing to use the same learning algorithm.

Our first contribution, in Section 5.1, is to show that Stack-
elberg strategies (Simaan & Cruz Jr, 1973) when chosen
by both players represent a sensible solution concept in
many two-player games. In Section 5.2 we show that many
OS algorithms can be derived as approximations to Stack-
elberg strategies, and in Section 5.3 we use this frame-
work to derive new example algorithms which have quali-
tative advantages over existing approaches in small games.
In Section 6.1 we introduce non-coincidental games as
games in which the Stackelberg strategy profile is not a
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Nash Equilibrium, which notably includes several canoni-
cal matrix games (such as the chicken game), and helps ex-
plain why several OS algorithms which approximate Stack-
elberg strategies also fail in similar cases. We address
this problem in Section 6.2 by introducing Welfare Equi-
libria (WE) as an abstract generalisation of Stackelberg
strategies, which can find desirable solutions in self-play
in a broader class of games, including non-coincidental
games. Lastly, in Section 6.3 we introduce Welfare Func-
tion Search (WelFuSe) as a practical approach to finding
desirable WE against unknown opponents, which consid-
ers the problem of choosing a welfare function as a ban-
dit problem, which is solved using posterior sampling. We
demonstrate how WelFuSe finds more desirable solutions
in OS self-play while preserving performance against naive
learning opponents. The payoff tables for all matrix games
we describe are included in Table 2 in the Appendix, and
code is publicly available online1.

2. Background
Agents in multi-agent systems may have misaligned or con-
flicting incentives, which can be analysed using game the-
ory. A game consists of a fixed number of players, each
of which chooses a strategy, and the collection of strate-
gies chosen by each player is known as the strategy pro-
file. Each player has a reward function, which returns to
them a scalar reward as a function of any given strategy
profile. A given player’s strategy is a best response (BR)
to a given strategy profile when there is no other strategy
available to that player which increases the value of their
reward function (assuming the rest of the strategy profile
remains fixed). A strategy profile is a Nash Equilibrium
(NE) when every player’s strategy is a BR to all other play-
ers, in which case no agent is incentivised to deviate from
their choice of strategy (Nash, 1950).

A Stackelberg strategy is an abstract choice of strategy
that either player can choose to play in almost any two-
player game (Simaan & Cruz Jr, 1973), modelled on the
concept of Stackelberg games. Suppose a two-player game
G consists of strategies x and y (one for each player) and
reward functions Rx(x, y) and Ry(x, y), and x is chosen
to be a Stackelberg strategy. The player that chooses x as-
sumes the opponent will be able to first observe and then
play a BR to any given choice of x, therefore the opponent’s
strategy can be described by the “Opponent BR Function”,
denoted by y∗(x) and shown below in Equation 2. Once the
opponent BR function is known, the reward for any given
choice of x is a function only of x (and not of y), which
can be maximised using standard optimisation approaches,
leading to the Stackelberg strategy x∗, shown in Equation
3. The opponent BR functions and Stackelberg strategies

1https://github.com/jakelevi1996/welfare equilibria public

for either player in the game G are summarised below:

x∗(y) = argmax
x

[
Rx(x, y)

]
(1)

y∗(x) = argmax
y

[
Ry(x, y)

]
(2)

x∗ = argmax
x

[
Rx

(
x, y∗(x)

)]
(3)

y∗ = argmax
y

[
Ry

(
x∗(y), y

)]
(4)

A simple approach to learning in multi-agent systems is
naive learning (NL). A NL agent takes steps of gradient as-
cent on their own reward function, given the current strate-
gies of all other players at each time step, assuming those
strategies are constant. There are many simple scenarios
in which NL fails to converge in self-play (Singh et al.,
2000). OS approaches address this problem by anticipating
and shaping the update step of the opponent. The first OS
method is LOLA (Foerster et al., 2018), which includes a
Taylor series expansion of its reward function after simu-
lating an opponent NL update in its optimisation objective.
LOLA achieved impressive results such as converging to
the tit-for-tat (TFT) NE strategy in IPD self-play. How-
ever, later work (Letcher et al., 2018) showed that LOLA
can fail to preserve NE, and introduced SOS as an alter-
native, which interpolates between LOLA and an earlier
approach known as LookAhead (Zhang & Lesser, 2010).
This addresses the problem of “arrogance” and encourages
SOS to converge to stable-fix points. COLA (Willi et al.,
2022) addresses the inconsistency in which LOLA implic-
itly assumes that the opponent is a NL agent by explic-
itly learning the opponent’s update function, and using the
learned update function to train a policy. The same work
also introduced Exact-LOLA (ELOLA), which is similar to
LOLA except it does not approximate the perturbed reward
function using Taylor series. M-FOS (Lu et al., 2022b;
Fung et al., 2023) achieves particularly good performance
against NL agents by learning which strategy to play next
as a function of both agents’ most recently played strate-
gies. This function does not use an explicit model of the
opponent, and is learned over multiple episodes against the
opponent. SHAPER (Khan et al., 2023) is parameterised
with an RNN which captures memory over multiple time
scales, allowing it to scale up to high-dimensional and n-
player games (Souly et al., 2023). The Good Shepherd
(Balaguer et al., 2022) anticipates the opponent’s long-term
behaviour by simulating many naive updates of the oppo-
nent’s parameters, and using these hypothetical future op-
ponent parameters when optimising the reward function.

OS approaches have found desirable solutions in a variety
of classic matrix games, as well as extensive-form games
such as the Coin Game (Foerster et al., 2018). However,
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there are differentiable games which do not contain any
NE, in which many approaches (including OS approaches)
fail to converge. Even defining a solution concept in such
games, which do not contain any NE, is non-trivial. In
Section 5.1 we focus on one such example (provided by
(Letcher, 2020) in the proof of Theorem 1, page 5) which
we refer to as the “Impossible Market”, which consists of
two players choosing strategies x ∈ R and y ∈ R with the
following reward functions:

Rx(x, y) = −x6

6
+

x2

2
− xy − 1

4

(
y4

1 + x2
− x4

1 + y2

)
(5)

Ry(x, y) = −y6

6
+

y2

2
+ xy +

1

4

(
y4

1 + x2
− x4

1 + y2

)
(6)

3. Related Work
Much previous work has explored Stackelberg strategies
in various applications (Pita et al., 2009; Yin et al., 2010;
2012), and has also argued that Stackelberg equilibria (in
which a leader plays a Stackelberg strategy and a follower
plays a BR) should be considered as solution concepts,
even in games which are not Stackelberg games (Conitzer,
2016). Using Query Oracles as an abstraction for the
opponent BR has facilitated the extension of Stackelberg
strategies to deep reinforcement learning (Gerstgrasser &
Parkes, 2023). Using commitment schedules has allowed
Stackelberg strategies to be learned without access to the
opponent reward function (Loftin et al., 2023). However,
a common theme in previous work on Stackelberg strate-
gies is the assumption that the opponent always plays a BR
to the Stackelberg strategy, introducing possibly arbitrary
asymmetry into the game, rather than considering the im-
plications of both players choosing Stackelberg strategies.
In contrast, we will consider Stackelberg strategies in self-
play, and generalisations of Stackelberg strategies which
display more desirable behaviour in self-play in a broader
range of environments.

Beyond Stackelberg strategies, previous work has investi-
gated alternative solution concepts and approaches to learn-
ing and equilibrium selection. An Active Markov Game
accounts for agents in a game updating their strategies
over time, and an Active Equilibrium is a solution con-
cept in which no agent could improve their long term aver-
age reward by changing their update function (Kim et al.,
2022a;b). FURTHER is an approach for learning in an Ac-
tive Markov Game using variational inference to approxi-
mate opponent update functions (Kim et al., 2022a). The
Active Equilibrium solution concept is closely related to a
NE in a meta-game, in which the strategy in the meta-game

is the update function, and the reward in the meta-game
is long-term average reward over time. This interpretation
illuminates the connection with MFOS (Lu et al., 2022b),
which uses reinforcement learning to shape the opponent
learning in the meta-game. Modelling Opponent Learning
(MOL) uses a two-phase approach, which first learns the
game structure and BR of the opponent, and then guides the
opponent’s learning in the second phase (Hu et al., 2023).

4. Problem Settings
We consider two different problem settings. The first, in
Section 5, is a traditional general-sum learning setting sim-
ilar to that used by LOLA (Foerster et al., 2018), in which
both agents have full access to the environment and the op-
ponent’s most recent strategy, including gradients. This
could apply to an offline learning setting against a simu-
lated opponent, after which the parameters are frozen and
deployed online. The second problem setting in Section
6 assumes a meta-learning approach, which uses batches
and multiple episodes of learning. Agent strategies are re-
set between each episode, which has more in common with
general-sum meta-learning approaches such as MFOS (Lu
et al., 2022b). The resulting shaping strategy is then de-
ployed in the real world. This assumes that at test time
the shaper interacts with the shapee over the course of the
shapee’s training horizon.

5. The Stackelberg Framework For
General-Sum Learning

5.1. The Stackelberg Strategy Profile As A Solution
Concept

Stackelberg strategies are usually motivated by assuming
asymmetry between players, such as one player learning
more quickly than the other (Simaan & Cruz Jr, 1973) or
having extra information (Chen & Cruz, 1972). However,
there are situations in which it is sensible for both players to
bilaterally choose Stackelberg strategies, such as in the Im-
possible Market which was introduced in Section 2, which
does not contain any NE. It is straightforward to approxi-
mate the opponent BR functions and Stackelberg strategies
for each player in the Impossible Market using grid search.
The results of doing so are shown in Figure 5 in the Ap-
pendix, leading to the Stackelberg strategies x∗ = 0 and
y∗ = 0. If x and y both play Stackelberg strategies in the
Impossible Market, they both receive a reward of 0. Even
if either player switches to a BR, the Stackelberg agent re-
ceives a reward of -0.654. This outcome is still better for
the Stackelberg agent than the worst-case reward that both
agents would periodically receive if they both used learn-
ing algorithms which converge to a limit cycle (Letcher,
2020), which is typically less than -1. Furthermore, both

3
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players cannot play BR strategies simultaneously because
the game does not contain any NE. The Stackelberg strat-
egy therefore represents a robust choice of strategy for each
agent in the Impossible Market.

In general it is possible for both agents to choose Stackel-
berg strategies in any two-player game, and therefore the
Stackelberg strategy profile (the strategy profile in which
both players choose Stackelberg strategies) represents a so-
lution concept for two-player games. Notably, the Stack-
elberg strategy profile may be distinct from a Stackelberg
equilibrium, in which one player plays a Stackelberg strat-
egy and the opponent plays a BR (Conitzer, 2016). Unlike
NE, the Stackelberg strategy profile provides a unique so-
lution concept in almost every two-player game (whereas
games may have multiple NE), and the Stackelberg strat-
egy profile also generalises to two-player games which do
not contain any NE (such as the Impossible Market). In-
cluded in the Appendix are depictions of the Stackelberg
strategy profile for the games of Matching Pennies (Figure
6), Stag Hunt (Figure 7), Prisoners’ Dilemma (Figure 8),
Awkward Game (an asymmetric, general-sum, two-player
2×2 matrix game, containing only one NE which is mixed,
shown in Figure 9), and IpdTftAlldMix (a version of
IPD in which both players must choose a 1D strategy, re-
ferring to a parameter which interpolates between the all-
defect and TFT strategies, shown in Figure 10), showing
that the Stackelberg strategy profile locates the most de-
sirable NE (in terms of maximising both players’ rewards)
in all five cases, regardless of whether that NE is pure or
mixed.

5.2. Opponent-Shaping Derived Via The Stackelberg
Framework

It is straightforward to approximate the BR functions and
Stackelberg strategies in the Impossible Market with grid
search because the strategies for both players are 1D. In
games with high-dimensional action spaces it will be im-
practical to use grid search, and other types of approxi-
mation are needed. Here, we demonstrate that approxi-
mating argmax in several different ways recovers differ-
ent OS algorithms, as well as LookAhead. LookAhead is
an “opponent-aware” algorithm which, while aware of the
opponent’s update step, does not shape it.

Suppose that at time t our strategy is xt and the opponent’s
strategy is yt. If we approximate ŷt ≈ y∗(xt) in Equation
3 with a single step of gradient ascent with learning rate α,
and we approximate xt+1 ≈ x∗ with a single step of gradi-
ent ascent with learning rate η (without gradient flow from
ŷt to xt+1), we recover the LookAhead learning update:

xt+1 = xt + η
∂

∂xt

[
Rx

(
xt, ŷt

)]
where ŷt = yt + α

∂

∂yt

[
Ry (xt, yt)

] (7)

If instead we do include gradient flow from ŷt(xt) (now
written as a function of xt) to xt+1, we recover the ELOLA
learning update:

xt+1 = xt + η
∂

∂xt

[
Rx

(
xt, ŷt(xt)

)]
where ŷt(xt) = yt + α

∂

∂yt

[
Ry (xt, yt)

] (8)

If we also approximate the reward function Rx with a
first-order Taylor series with respect to ŷt(xt) then we re-
cover the original LOLA update. If we interpolate between
LOLA and LookAhead (which have both been shown to be
approximations of Stackelberg strategies) then we recover
SOS (which is therefore also an approximation of a Stack-
elberg strategy). If we approximate y∗(x) in Equation 3
with many steps of gradient ascent (while still approximat-
ing x∗ with a single step of gradient ascent) then we recover
the Good Shepherd learning update.

The OS algorithms we considered so far use explicit up-
date rules for choosing strategies on successive steps of a
game. MFOS is distinct from such algorithms in the sense
that MFOS learns an update rule which is fixed between
time steps but varied between episodes, in order to max-
imise the expected discounted return in each episode. The
MFOS update rule is learned from experience against its
opponent, and therefore the extent to which MFOS fits in
to the Stackelberg framework depends on the nature of the
opponent. Against an opponent which always plays an ap-
proximate BR (which is a reasonable approximation for a
rational opponent), MFOS learns to play the strategy which
maximises reward against the opponent stategy, which ap-
proximates the Stackelberg strategy to the extent that the
opponent plays an approximate BR. This interpretation is
consistent with the observation that MFOS learns to play
a ZD extortion strategy against a “Look-Ahead Best Re-
sponse” agent in IPD (Lu et al., 2022b), which is the best
strategy to play against an opponent that plays an approxi-
mate BR, and is therefore the Stackelberg strategy in IPD.

5.3. Deriving New Approximate Stackelberg Learning
Algorithms

In Section 5.2 we showed that several OS algorithms ap-
proximate Stackelberg strategies. In this subsection we
demonstrate that different approximations of the Stackel-
berg strategy can be used to devise new learning algorithms

4
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(c) SaGa self-play
η = 0.01, N = 200, σ = 1

Figure 1: Self-play phase portraits for different algorithms in the Impossible Market. Gradient arrow-lengths are normalised
for visual clarity and do not represent gradient magnitude.

with qualitative advantages over existing approaches. Our
intention here is simply to demonstrate the possibilities
available within this framework. Developing these specific
algorithms and further exploring the possibilities within
this framework will be explored in future work.

In Section 5.1 we demonstrated that Stackelberg strategies
offer a sensible solution concept in the Impossible Mar-
ket. However previous work (Letcher, 2020) has shown
that many algorithms (including several OS algorithms)
actually fail to converge in the Impossible Market. Sup-
pose we approximate the inner argmax used to calculate
y∗(xt) in Equation 3 by randomly sampling N different
opponent strategies, calculating the opponent’s reward for
each one, and assuming the opponent chooses the strategy
which maximises their reward. We then update our own
strategy using a single step of gradient ascent on our own
reward function, evaluated using our current strategy and
this approximate opponent BR. This can be summarised in
the following learning update:

xt+1 = xt + η
∂

∂xt

[
Rx (xt, ŷt)

]
where

ŷt = max
n∈{1,...,N}

[
Ry(xt, yt + εn)

]
εn ∼ N (0, σ2)

(9)

This update uses a SAmpling-based approximation to the
inner argmax and a Gradient-Ascent-based approximation
to the outer argmax, so we refer to this learning algo-
rithm as “SaGa”. The behaviour of SaGa self-play in the
Impossible Market is shown in a phase portrait in Fig-
ure 1, alongside equivalent phase portraits for NL and
ELOLA. These results demonstrate how NL and ELOLA
self-play both consistently converge to qualitatively simi-
lar limit-cycles, whereas SaGa self-play consistently con-
verges to the Stackelberg strategy profile, simply by using

a sampling-based approximation to the opponent BR.

Like any algorithm which uses gradient ascent, existing
OS algorithms are vulnerable to getting stuck in non-
global local maxima. This problem is particularly preva-
lent for games such as Stag Hunt and IpdTftAlldMix,
for which the reward function against a perfect BR oppo-
nent is not concave (see Figures 7 and 10 in the Appendix).
It is therefore natural to consider whether we can achieve
more robust performance by using sampling-based approx-
imations for the outer argmax as well as the inner argmax,
which can be achieved using the following learning update:

xt+1 = (1− η)xt + η max
m∈{1,...,M}

[
Rx

(
xt + εxm, ŷt (ε

x
m)

)]
where

ŷt (ε
x
m) = max

n∈{1,...,N}

[
Ry(xt + εxm, yt + εyn)

]
εyn, ε

x
m ∼ N (0, σ2)

(10)

This update uses a SAmpling-based approximation to the
inner argmax and a SAmpling-based approximation to
the outer argmax, so we refer to this learning algorithm
as “SaSa”. The behaviour of SaSa self-play in the Stag
Hunt game is shown in a phase portrait in Figure 2, along-
side equivalent phase portraits for NL and ELOLA. These
results demonstrate how NL and ELOLA self-play both
converge to sub-optimal NE from relatively large areas of
the state-space, whereas SaSa self-play consistently con-
verges to the optimal NE, simply by using sampling-based
argmax approximations.

The results for SaSa against NL in IPD are included in Fig-
ure 3. SaSa achieves a stable mean reward of -0.730, which
is greater than the reward for mutual-TFT and suggests
that SaSa on average learns a ZD extortion strategy (Press
& Dyson, 2012), demonstrating that SaSa can scale up to
games with moderately high-dimensional action spaces.
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Figure 2: Self-play phase portraits for different algorithms in the Stag Hunt game. Axes refer to probability of hunting a
stag for each player respectively, with the upper right corner corresponding to the optimal NE.

6. Welfare Equilibria
6.1. Non-Coincidental Games And The Chicken

Catastrophe

As mentioned in Section 5.1, Stackelberg strategy profiles
find optimal NE in a variety of zero-sum and general-sum
two-player games. A common property of many of these
games is that the most rewarding NE for one player coin-
cides with the most rewarding NE for the other player, so
we refer to such games as “Coincidental games”. In gen-
eral however, there are many games in which this property
does not hold, such as the Chicken Game. The Stackel-
berg strategy for either player in the Chicken Game is to
drive straight (to which the opponent BR is to chicken out),
however if both players drive straight then they both ex-
perience the unique worst possible outcome, in which nei-
ther player’s strategy is a BR (shown in Figure 11 in the
Appendix). We formally define non-coincidental games
as games in which the Stackelberg strategy profile is not
a NE2, and refer to the failure of the Stackelberg strategy
profile to find a desirable outcome in the chicken game (a
non-coincidental canonical matrix game) as “The Chicken
Catastrophe”.

In Section 5.2 we showed that many OS algorithms approx-
imate Stackelberg strategies. Considering that the Stack-
elberg strategy profile fundamentally fails in the Chicken
Game, this provides a normative theory for why OS al-
gorithms which approximate Stackelberg strategies should

2Interestingly, the Impossible Market is a non-coincidental
game, although the Stackelberg strategy profile achieves desirable
behaviour in this case. One response to this observation follows
from the concept of arrogance penalties, which are introduced in
Section A.1 of the Appendix. Specifically, the Impossible Mar-
ket has negative arrogance penalties, so both players are rewarded
for “arrogantly” assuming an opponent BR and choosing a Stack-
elberg strategy. This is in contrast to the other non-coincidental
games we consider, wherein mutual arrogance has a cost.

also fail in self-play in the Chicken Game. This analysis is
consistent with empirical evidence (Willi et al., 2022), and
is problematic due to the importance of finding desirable
solutions in self-play (which we highlighted in Section 1).
In the following subsections we present a generalisation of
Stackelberg strategies which is capable of finding NE in
self-play in non-coincidental games. Our analysis excludes
M-FOS meta-self-play and the SOS algorithm, which both
address arrogance and are outside our framework.

6.2. Addressing The Chicken Catastrophe

A simple solution for the Chicken Catastrophe is for each
player to maximise egalitarian social welfare (defined in
Equation 15) instead of self-reward, while still assuming
the opponent plays a BR. If both players take this approach,
then they both concurrently select the unique mixed NE in
the Chicken Game, and both receive a better reward than if
they had both played Stackelberg strategies (shown in Fig-
ure 12 in the Appendix). However, this approach fails in
self-play in the non-coincidental game Bach Or Stravinsky
(BOS). Both pure NE in BOS have maximal and equal egal-
itarian social welfare, so there is no way for both players to
consistently favour one NE over the other in a way which
is fair to both players. A solution to BOS self-play is for
each player to maximise fairness (defined in Equation 16)
while assuming the opponent plays a BR. If both players
take this approach, then they both concurrently select the
unique mixed NE in BOS, which is maximally fair to both
players, and also better than failing to coordinate (shown in
Figure 16). However, this approach fails in self-play in a
game we introduce and refer to as the Eagle Game. In the
Eagle Game, maximising egalitarian social welfare leads
to better outcomes for both players than maximising self-
reward or fairness, assuming the opponent plays a BR in all
cases (shown in Figure 23).

The previous paragraph demonstrates that choosing an ap-
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Figure 3: Results for 5000 steps of learning with SaSa (η = 0.1,M = 20, N = 20, σ = 1) against NL (η = 0.1) in IPD
(using discounted returns with γ = 0.96), averaged over 100 trials. Final mean rewards are -0.72972 and -1.97547 for
SaSa and NL respectively.

propriate welfare function and then maximising that wel-
fare function (while assuming that the opponent will play
a greedy BR) allows each player to effectively choose be-
tween desirable NE strategies in a wide variety of games.
However, to our knowledge there is no single welfare func-
tion that consistently leads to desirable NE strategies in ev-
ery possible game. This motivates us to define the “Welfare
Equilibrium” (WE) strategy for any given choice of welfare
function as shown below, followed by examples of empir-
cally useful welfare functions (the opponent BR functions
are defined as in Equations 1 and 2):

x∗
WE = argmax

x

[
wx

(
x, y∗(x)

)]
(11)

y∗WE = argmax
y

[
wy

(
x∗(y), y

)]
(12)

wx
greedy(x, y) = Rx(x, y) (13)

wy
greedy(x, y) = Ry(x, y) (14)

wegalitarian(x, y) = min
(
Rx(x, y), Ry(x, y)

)
(15)

wfairness(x, y) = −
∣∣∣Rx(x, y)−Ry(x, y)

∣∣∣ (16)

The Stackelberg strategy for either player is a special case
of a WE strategy in which that player chooses to maximise
a greedy welfare function (self-reward). The WE strategy
is therefore a generalisation of the Stackelberg strategy.
Included in the Appendix are depictions of WE strategy
profiles for the Chicken Game (Figure 12), Baby Chicken
Game (a variant of the Chicken Game with a less severe
punishment for mutually driving straight, which leads to a
more intelligible depiction of the WE profile, shown in Fig-
ure 14), BOS (Figure 16), Tandem Game (Figure 18), Ulti-
matum Game (Figure 20), and Eagle Game (Figure 23),
showing that WE strategy profiles with appropriate wel-
fare functions can locate desirable NE and provide better
rewards for both players than the equivalent Stackelberg
strategy profile in all six cases.

Table 1: Rewards in Tandem Game for WE strategy profiles
with different welfare functions. Strategies are restricted to
the range [−2, 3] for numerical tractability, as in Figure 18.

Greedy (G) Egalitarian (E) Fairness (F)
G (-30.00, -30.00) (-6.24, -11.24) (-6.24, -11.24)
E (-11.24, -6.24) (0.00, 0.00) (0.00, 0.00)
F (-11.24, -6.24) (0.00, 0.00) (0.00, 0.00)

A natural question to ask is when (if ever) it is actually in
a player’s interest to maximise any welfare function other
than a greedy welfare function. The performance of any
learning algorithm in a multi-agent system depends on the
nature and dynamics of the opponent. Against an opponent
that will always play a BR, the Stackelberg strategy (equiv-
alent to a greedy WE strategy) is always the best strategy
to play (by definition). However, as outlined in Section 1,
it is also important to consider how an algorithm performs
in self-play, and for two WE agents in self-play in non-
coincidental games, the greedy welfare function is often not
the best welfare function to choose. This is demonstrated in
Table 1, which shows the possible rewards for WE agents
in self-play choosing between greedy, egalitarian and fair-
ness welfare functions and then playing WE strategies in
the Tandem Game (Letcher et al., 2018). In this exam-
ple, not only is it sometimes in a player’s interest to max-
imise a non-greedy welfare function, but in fact choosing
the greedy welfare function is a strictly dominated strategy.
This means that for either player, regardless of whichever
welfare function is chosen by the opponent, a better reward
would be achieved by choosing egalitarian or fairness wel-
fare functions instead of a greedy welfare function. There-
fore in this example, both players have a greedy incentive
to maximise a non-greedy welfare function.

The welfare functions considered so far are not invariant to
affine transformations of either player’s reward function.
This can be addressed by introducing “arrogance penal-
ties”, which are discussed in Section A.1 of the Appendix.
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Figure 4: Comparing ELOLA (η = 0.1, α = 25, averaged over 100 trials) with WelFuSeElola (same ELOLA hyperparam-
eters, e = 3, s = 1000, b = 100, averaged over five random seeds) against different opponents in Chicken Game. Top row:
against NL. Bottom row: self-play. Left column: rewards for ELOLA. Centre column: rewards for WelFuSeElola. Right
column: welfare functions chosen by WelFuSeElola in each episode.

6.3. Welfare Function Search

The previous subsection demonstrated that the best welfare
function to choose in a WE strategy depends on the game
and the nature of the opponent, but did not explain how
to choose the best welfare function using a practical algo-
rithm, which we introduce in this subsection. The welfare
function is effectively an optimisation objective function
(given a suitable approximation of the opponent BR func-
tion), but rather than searching over the entire continuous
space of all possible welfare functions (Lu et al., 2022a),
we instead take a simpler approach and assume access to
a finite set of pre-defined welfare functions, such as the
three that were considered in Section 6.2, which have been
shown to find mutually desirable NE in a variety of canon-
ical non-coincidental games. We also assume access to an
inner OS algorithm (such as ELOLA), which is able to op-
timise a given choice of welfare function, rather than the
usual self-reward. In the OS update step, the opponent is
always assumed to maximise self-reward, consistent with
the definition of WE in Equations 11 and 12. This leads
to the algorithm “Welfare Function Search” (WelFuSe), a
practical algorithm for adaptively choosing a welfare func-
tion from experience, which preserves performance against
NL while avoiding catastrophe in self-play. The principle
behind WelFuSe is to treat the problem of choosing a wel-
fare function as a discrete bandit problem, which is solved
over multiple episodes using a batched variant of poste-
rior sampling (Sutton & Barto, 2018), in order to maximise

final self-reward from each episode. After each episode,
all agents’ strategies are reset, and a new batch of welfare
functions are sampled. The full WelFuSe algorithm is de-
scribed in Algorithm 1 in the Appendix.

The results from using WelFuSe with ELOLA as the in-
ner OS algorithm (which we jointly refer to as “Wel-
FuSeElola”) in the Chicken Game are shown in Figure 4
in the Appendix. These results demonstrate that against
NL, WelFuSeElola quickly learns to reject egalitarian and
fairness welfare functions in order to optimise a greedy
welfare function (Figure 4c). This leads to the optimal re-
ward against NL (Figure 4b), which is equal to the perfor-
mance of ELOLA (Figure 4a). However in self-play (when
both agents are WelFuSeElola agents, playing against each
other with separate welfare function distributions, while
each assumes their opponent takes an approximate NL up-
date step), WelFuSeElola learns to reject the greedy wel-
fare function and instead optimise a mixture of egalitarian
and fairness welfare functions (Figure 4f), leading to maxi-
mally fair and egalitarian outcomes for both WelFuSeElola
self-play agents (Figure 4e). This is much more desir-
able for both agents than the catastrophe experienced by
ELOLA agents in self-play (Figure 4d), and we therefore
conclude that WelFuSeElola has solved the chicken catas-
trophe.

We end this subsection by emphasising that WelFuSe can
be applied given any reasonable choice of inner OS algo-
rithm, and therefore WelFuSe should be considered as an

8
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extension to existing OS algorithms, rather than a mutually
exclusive alternative. As we have shown, WelFuSe learns
to select a non-greedy welfare function when it is in the
agent’s interest to do so. In other cases, WelFuSe learns
to reject all other welfare functions and learns to only op-
timise a greedy welfare function, in which case WelFuSe
simply reduces to its inner OS algorithm.

7. Conclusions
In Section 5.1 we showed that Stackelberg strategy profiles
provide a sensible solution concept in a variety of games,
which we refer to as coincidental games, as well as in the
Impossible Market, which contains no NE. In Section 5.2
we showed that Stackelberg strategies represent a unifying
framework from which many existing OS algorithms can
be derived as approximations. In Section 5.3 we demon-
strated the value of this framework by using it to derive new
algorithms which have qualitative advantages over previous
approaches. For example, SaGa was able to consistently
converge in the Impossible Market (unlike many learning
algorithms), and SaSa was able to consistently converge to
the global optimum in Stag Hunt while avoiding the non-
global local optimum. SaSa was also able to strongly dom-
inate NL in IPD in a single episode.

In Section 6.1 we defined non-coincidental games as games
in which the Stackelberg strategy profile is not a NE, which
notably includes several canonical matrix games, and il-
lustrates why OS algorithms can fail in self-play in such
games. Avoiding catastrophe in self-play is important for
any learning algorithm to be safe to deploy in multi-agent
systems in the real world. To this end, in Section 6.2 we in-
troduced WE as a generalisation of the Stackelberg frame-
work, which can recover desirable NE solutions in non-
coincidental games. We showed that against another WE
agent in the Tandem game, choosing a greedy welfare func-
tion is a strictly dominated strategy, and therefore in this ex-
ample both players have a greedy incentive to maximise a
non-greedy welfare function. In Section 6.3 we introduced
WelFuSe as a practical approach to choosing between wel-
fare functions, which was able to preserve the performance
of ELOLA against NL, while also avoiding catastrophe in
self-play.

Despite these contributions, this work offers alluring direc-
tions for future work, such as developing new OS algo-
rithms using more sophisticated approximations to Stack-
elberg strategies, and more sophisticated approaches for
choosing effective welfare functions. Overall, we hope that
this work takes us closer towards understanding how to de-
sign multi-agent learning algorithms that are both safe and
effective in the real world.
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A. Appendix
A.1. Arrogance Penalties And Invariant Welfare

Functions

The egalitarian and fairness welfare functions provide mu-
tually desirable NE in a variety of non-coincidental games,
however they share a common disadvantage, which is that
unlike BR functions and Stackelberg strategies, they are not
invariant to shifting and positive scaling of either player’s
reward function. We can address this issue by introducing
“arrogance penalties”. When a player decides to play the
Stackelberg strategy (drive straight) in the chicken game,
they effectively assume that the opponent will play a BR
(chicken out) to the Stackelberg strategy, in which case the
former player expects a reward of +1. We refer to the re-
ward for either player when they play a Stackelberg strat-
egy and the opponent plays a BR as the “Stackelberg base-
line”. When both players choose Stackelberg strategies in
the chicken game and mutually drive straight, they both re-
ceive a reward of −100, which is 101 less than the Stack-
elberg baseline. This discrepency between expected and
received rewards for each player is effectively a penalty for
arrogantly assuming that they could “call the shots” while
the opponent would “fall in line”. We therefore refer to
the difference between the Stackelberg baseline and the
reward from the Stackelberg strategy profile as the “arro-
gance penalty” for each player respectively. Following this
intuition, we can define the shift-normalised reward func-
tions πx(x, y) and πy(x, y) for any strategy profile as the
reward that each player receives relative to their Stackel-
berg baseline:

πx(x, y) = Rx(x, y)−Rx
(
x∗, y∗ (x∗)

)
(17)

πy(x, y) = Ry(x, y)−Ry
(
x∗ (y∗) , y∗

)
(18)

We note that for either player, if their opponent will al-
ways play a BR, then the shift-normalised reward function
for the former player is negative everywhere except when
they play a Stackelberg strategy, at which point the shift-
normalised reward function is zero (this follows from the
definition of the Stackelberg strategies in equations 3 and
4). We also note that, because both players’ BR functions
and Stackelberg strategies are invariant to shifting of either
player’s reward function, so too are πx(x, y) and πy(x, y),
because any shift in Rx(x, y) or Ry(x, y) would be can-
celled out between the two terms in equations 17 and 18
respectively. This allows us to define the shift-normalised
egalitarian welfare function as follows:

πegalitarian(x, y) = min
(
πx(x, y), πy(x, y)

)
(19)

We note that in the special case of coincidental games,
when both players use the shift-normalised egalitarian wel-
fare function, the resulting WE strategy profile is always
the Stackelberg strategy profile. The shift-normalised
egalitarian welfare function is invariant to shifts in either
player’s reward function, but it is not invariant to scaling.
To address this issue, for non-coincidental games, we can
introduce the affinely-normalised reward functions (equal
to the shift-normalised reward functions normalised by the
absolute arrogance penalties) and affinely-normalised egal-
itarian welfare function as follows:

π̄x(x, y) =
Rx(x, y)−Rx

(
x∗, y∗ (x∗)

)
∣∣∣Rx

(
x∗, y∗ (x∗)

)
−Rx

(
x∗, y∗

)∣∣∣
(20)

π̄y(x, y) =
Ry(x, y)−Ry

(
x∗ (y∗) , y∗

)
∣∣∣Ry

(
x∗ (y∗) , y∗

)
−Ry

(
x∗, y∗

)∣∣∣
(21)

π̄egalitarian(x, y) = min
(
π̄x(x, y), π̄y(x, y)

)
(22)

The affinely-normalised fairness welfare function can be
defined analogously. The affinely-normalised egalitarian
welfare function (Equation 22) is invariant to shifting and
positive scaling of either player’s reward function. There-
fore, if it is used by both players as the welfare function
in a WE strategy profile, then the strategies chosen by both
players are also invariant to shifting and positive scaling of
either player’s reward function. Furthermore, in symmet-
ric games, the Stackelberg baseline and arrogance penalty
are necessarily symmetric for both players, which implies
that the affinely-normalised egalitarian WE strategy profile
is simply equivalent to the egalitarian WE strategy profile
in symmetric games.

What is offered by the affinely-normalised egalitarian wel-
fare function in terms of mathematical appeal is compen-
sated by its greater computational burden in asymmetric
games, because it depends on knowing the Stackelberg
strategies for both players and their respective BRs before it
can be used to calculate a WE strategy. This would limit the
applicability to online learning settings, although it could
be used if there was the opportunity to approximate Stack-
elberg strategies and BRs offline before the start of online
learning. This approach would also be suitable to offline
learning settings, in which the Stackelberg strategies, BRs,
and WE strategies could be learned sequentially. In gen-
eral, we leave the development of invariant welfare func-
tions which are more conducive to efficient practical online
implementation as an interesting direction for future work.
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(a) Payoff table for Prisoners’ Dilemma

Cooperate Defect
Cooperate (-1.0, -1.0) (-3.0, 0.0)
Defect (0.0, -3.0) (-2.0, -2.0)

(b) Payoff table for Matching Pennies

Heads Tails
Heads (1.0, -1.0) (-1.0, 1.0)
Tails (-1.0, 1.0) (1.0, -1.0)

(c) Payoff table for Stag Hunt

Stag Hare
Stag (10.0, 10.0) (1.0, 8.0)
Hare (8.0, 1.0) (5.0, 5.0)

(d) Payoff table for Chicken Game

Chicken out Drive straight
Chicken out (0.0, 0.0) (-1.0, 1.0)
Drive straight (1.0, -1.0) (-100.0, -100.0)

(e) Payoff table for Bach Or Stravinsky (BOS)

Bach Stravinsky
Bach (2.0, 1.0) (0.0, 0.0)
Stravinsky (0.0, 0.0) (1.0, 2.0)

(f) Payoff table for Baby Chicken Game

Chicken out Drive straight
Chicken out (0.0, 0.0) (-1.0, 1.0)
Drive straight (1.0, -1.0) (-3.0, -3.0)

(g) Payoff table for Awkward Game

Cooperate Defect
Cooperate (3.0, 1.0) (1.0, 3.0)
Defect (2.0, 5.0) (4.0, 2.0)

(h) Payoff table for Eagle Game

Cooperate Defect
Cooperate (4.0, 1.0) (-4.0, -1.0)
Defect (-2.0, -3.0) (2.0, 3.0)

Table 2: Payoff tables for matrix games
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Algorithm 1 Welfare Function Search (WelFuSe)

Require: Set of welfare functionsW =
{
w1, . . . , w|W|

}
, number of episodes e, steps per episode s, batch size b, inner

OS algorithm os(wk, s)
1: for j ∈ (1, . . . , b) do
2: k ∼ U({1, . . . , |W|}) // Sample initial welfare functions uniformly
3: w(1,j) ← wk

4: end for
5: for i ∈ (1, . . . , e) do
6: for j ∈ (1, . . . , b) do
7: os(w(i,j), s) // Optimise welfare function using OS
8: Observe final reward r(i,j)

9: end for
10: Reset all agents’ parameters
11: // Consider each batch-index
12: for j ∈ (1, . . . , b) do
13: // Consider each welfare function wk

14: for k ∈ (1, . . . , |W|) do
15: mk ∼ U({n ∈ {1, . . . , b} : w(i,n) = wk}) // Sample batch-index which used wk

16: end for
17: k̂ ← argmax

k

[
r(i,mk)

]
// Select welfare function with best sampled reward

18: w(i+1,j) ← wk̂ // Set welfare function for next episode
19: end for
20: end for
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Figure 5: Stackelberg strategy profile (Greedy WE) for ImpossibleMarket
x∗ = 0.000, y∗ = 0.000, Rx = −0.000, Ry = −0.000
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Figure 6: Stackelberg strategy profile (Greedy WE) for MatchingPennies
x∗ = 0.500, y∗ = 0.500, Rx = 0.000, Ry = 0.000
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Figure 7: Stackelberg strategy profile (Greedy WE) for StagHunt
x∗ = 1.000, y∗ = 1.000, Rx = 10.000, Ry = 10.000
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Figure 8: Stackelberg strategy profile (Greedy WE) for PrisonersDilemma
x∗ = 0.000, y∗ = 0.000, Rx = −2.000, Ry = −2.000
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Figure 9: Stackelberg strategy profile (Greedy WE) for AwkwardGame
x∗ = 0.599, y∗ = 0.749, Rx = 2.500, Ry = 2.601
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Figure 10: Stackelberg strategy profile (Greedy WE) for IpdTftAlldMix
x∗ = 1.000, y∗ = 1.000, Rx = −1.000, Ry = −1.000
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Figure 11: Stackelberg strategy profile (Greedy WE) for ChickenGame
x∗ = 0.000, y∗ = 0.000, Rx = −100.000, Ry = −100.000
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Figure 12: Egalitarian WE for ChickenGame
x∗ = 0.989, y∗ = 0.989, Rx = −0.011, Ry = −0.011
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Figure 13: Stackelberg strategy profile (Greedy WE) for BabyChickenGame
x∗ = 0.000, y∗ = 0.000, Rx = −3.000, Ry = −3.000
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Figure 14: Egalitarian WE for BabyChickenGame
x∗ = 0.666, y∗ = 0.666, Rx = −0.334, Ry = −0.334
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Figure 15: Stackelberg strategy profile (Greedy WE) for Bach Or Stravinsky
x∗ = 1.000, y∗ = 0.000, Rx = 0.000, Ry = 0.000
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Figure 16: Fairness WE for Bach Or Stravinsky
x∗ = 0.666, y∗ = 0.334, Rx = 0.667, Ry = 0.667
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Figure 17: Stackelberg strategy profile (Greedy WE) for Tandem
x∗ = 3.000, y∗ = 3.000, Rx = −30.000, Ry = −30.000
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Figure 18: Egalitarian WE for Tandem
x∗ = 0.500, y∗ = 0.500, Rx = 0.000, Ry = 0.000
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Figure 19: Stackelberg strategy profile (Greedy WE) for UltimatumGame
x∗ = 0.000, y∗ = 0.000, Rx = 0.000, Ry = 0.000
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Figure 20: Egalitarian WE for UltimatumGame
x∗ = 1.000, y∗ = 0.000, Rx = 5.000, Ry = 5.000
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Figure 21: Stackelberg strategy profile (Greedy WE) for EagleGame
x∗ = 1.000, y∗ = 0.000, Rx = −4.000, Ry = −1.000
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Figure 22: Fairness WE for EagleGame
x∗ = 0.000, y∗ = 0.500, Rx = 0.000, Ry = 0.000
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Figure 23: Egalitarian WE for EagleGame
x∗ = 0.000, y∗ = 0.000, Rx = 2.000, Ry = 3.000
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