
Catching thermal avalanches in the disordered XXZ model

Tomasz Szo ldra,1, 2 Piotr Sierant,3 Maciej Lewenstein,3, 4 and Jakub Zakrzewski2, 5

1Doctoral School of Exact and Natural Sciences,
Jagiellonian University,  Lojasiewicza 11, PL-30-348 Kraków, Poland

2Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński,  Lojasiewicza 11, PL-30-348 Kraków, Poland
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We study the XXZ model with a random magnetic field in contact with a weakly disordered spin
chain, acting as a finite thermal bath. We revise Fermi’s golden rule description of the interaction
between the thermal bath and the XXZ spin chain, contrasting it with a nonperturbative quantum
avalanche scenario for the thermalization of the system. We employ two-point correlation functions
to define the extent ξd of the thermalized region next to the bath. Unbounded growth of ξd pro-
portional to the logarithm of time or faster is a signature of an avalanche. Such behavior signifies
the thermalization of the system, as we confirm numerically for a generic initial state in the ergodic
and critical regimes of the XXZ spin chain. In the many-body localized regime, a clear termination
of avalanches is observed for specifically prepared initial states and, surprisingly, is not visible for
generic initial product states. Additionally, we extract the localization length of the local integrals
of motion and show that a bath made out of a weakly disordered XXZ chain has a similar effect on
the system as a bath modeled by a Hamiltonian from a Gaussian orthogonal ensemble of random
matrices. We also comment on the result of the earlier study (Phys. Rev. B 108, L020201 (2023)),
arguing that the observed thermalization is due to external driving of the system and does not
occur in the autonomous model. Our work reveals experimentally accessible signatures of quantum
avalanches and identifies conditions under which termination of the avalanches may be observed.

I. INTRODUCTION

The ergodic hypothesis of Boltzmann [1] stipulates
that all microstates of a many-body system are equiprob-
able over a sufficiently long period of time. Such an equi-
librium state can be described within the framework of
statistical mechanics with several macroscopic variables.
The eigenstate thermalization hypothesis (ETH) [2–5]
describes the equilibrium of isolated quantum many-body
systems, warranting that, after the thermalization pro-
cess is complete, local observables, including their higher
order correlation functions, are described by appropriate
ensembles of statistical mechanics [6–10].

While the applicability of the ETH has been confirmed
for a wide range of quantum many-body systems, see
e.g. [11–16], a phenomenon of many-body localization
(MBL) [17–21] has been proposed as a general mech-
anism that prevents many-body systems from reaching
the thermal equilibrium in the presence of a strong disor-
der. Numerical results for spin-1/2 XXZ chains [22, 23],
bosonic models [24–27], or systems of spinful fermions
[28–31] indicate a rapid slow-down of dynamics with in-
creasing disorder strength [32–35], as confirmed experi-
mentally in setups of ultracold atoms [36–41], ions [42]
or superconducting qubits [43–46]. Early studies inter-
preted this behavior as a stable MBL phase [47–49]. In
such a dynamical phase of matter, the information about
details of the initial state of the system is kept indefinitely
in the values of local integrals of motion (LIOMs) [50–
56]. At the same time, the transport is suppressed [57],
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FIG. 1. a Scheme of our setup: two spin-1/2 XXZ chains of
sizes LA, LB , governed by Hamiltonians HA, HB , with differ-
ent amplitudes of random disorder, connected at the interface
by HAB . b Sketch of the signatures of quantum avalanches
obtained in Sec. II for the model from panel a. First order
perturbative scheme predicts the growth of thermalized re-
gion as ∝ ln(t) up to t ∼ 2LB when the system starts to feel
the discreteness of the bath spectrum (blue curve). In the
avalanche scenario, the bath continually increases its size and
the logarithmic growth continues until the Heisenberg time
tH (red curve) or speeds up (green curve).

and the entanglement spreads slowly [58–60]. However,
it has recently become apparent that the numerical ev-
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idence about the dramatic slow down of the dynamics
with increasing disorder strength [61–64], and the related
properties of highly excited eigenstates [65–72], do not
necessarily imply an existence of a stable MBL phase
and could be rather interpreted in terms of an MBL
regime [73–75], in which the thermalization occurs only
at enormous time scales and only for sufficiently large
system size [76, 77].

The question of the existence of a stable MBL phase
is actively pursued, and the answer may be model-
dependent as suggested by recent numerical studies [76,
78, 79]. One approach to tackle this question, fundamen-
tal for our understanding of non-equilibrium many-body
physics, is to investigate a mechanism that underlies the
slow thermalization of a strongly disordered many-body
system. Spatially uncorrelated disorder, assumed in the
standard models of MBL, necessarily leads to the emer-
gence of Griffiths regions, where the disorder is locally
weaker. The Griffiths regions play an essential role in
the physics of quantum phase transitions [80] and affect
the slow dynamics of disordered many-body systems [81–
84]. The significance of Griffiths regions was further high-
lighted when an avalanche mechanism for MBL transi-
tion was proposed [85]. The avalanche mechanism as-
sumes that the Griffiths regions of anomalously small
disorder become ergodic bubbles, and describes, under
certain simplifying assumptions, how the ergodic bub-
bles grow by thermalizing their surroundings. The sim-
plified model of avalanche spreading is itself an interest-
ing model of ergodicity breaking [77, 86–89], and consti-
tutes the basis of various phenomenological approaches
to MBL [90–93]. Nevertheless, understanding the rel-
evance of the avalanche mechanism for the dynamics of
disordered many-body systems [94–99] and how to model
the spread of avalanches [75, 100–102] remain the major
challenges in the field of MBL.

In this work, to study the fate of such ergodic bubbles
in a controlled setting, we follow the approach of [103–
105] and divide the lattice into subsystems A and B with
different disorder strengths WA and WB < WA. The sub-
system A plays the role of an MBL system, while the sub-
system B is the ergodic bubble, see Fig. 1a. By monitor-
ing the growth of correlations between the bathB and the
MBL system A, we investigate how the bath influences
the dynamics of the subsystem A, and whether it induces
its thermalization. Quantitative analysis of the correla-
tions between the subsystems allows us to pin-point the
onset of the propagation of avalanches that destabilize
the MBL system. We distinguish three different types
of behavior of the system, presented in Fig. 1b. If the
evolution starts from a generic initial state, the system
thermalizes in the ergodic and critical regime and the
quantum avalanches spread faster than ∝ ln(t). For the
same initial state, but in the MBL regime, we still ob-
serve a non-trivial increase of the thermalization distance
ξd(t) ∝ ln(t). The latter behavior is an artifact of the ini-
tial state. Considering a product state of a highly excited
eigenstate of subsystem A and arbitrary state in subsys-

tem B as the initial state, we demonstrate that in the
MBL regime the growth of ξd(t) terminates at a time
set by the bath size signifying the halt of spreading of
avalanches.

The rest of this paper is structured as follows. In
Sec. II, we outline a general picture of the possible sce-
narios for interaction of an ergodic bath with an MBL
system. Subsequently, in Sec. III, we present the disor-
dered spin-1/2 XXZ model and describe the correlation
functions that allow us to investigate the propagation of
avalanches, followed by numerically extracted signatures
of avalanche propagation in our setup. In Sec. IV, we
discuss a situation when the Hamiltonian of the subsys-
tem B is replaced by a GOE random matrix, study the
sensitivity to the disorder strength in the bath, and dis-
cuss the influence of the subsystem A on the dynamics
of the bath B. Finally, in Sec. V, we show that periodic
turning on and off of the coupling between subsystems A
and B leads to much stronger tendency towards delocal-
ization in comparison to the case of the time independent
coupling.

II. ERGODIC BUBBLES IN MBL SYSTEM

Typically, MBL is studied in systems with uncorrelated
on-site disorder, with values drawn from a uniform dis-
tribution on an interval [−W,W ]. The probability that
a stretch of ℓ consecutive sites, denoted as subsystem
B, experiences a weaker disorder WB < W is exponen-
tially small in ℓ and equal to pℓ = (WB/W )ℓ. However,
the probability of finding an ergodic bubble, i.e., a ther-
mal subsystem with weak disorder strength WB of any
finite size ℓ, tends to unity with increasing system size
L. Such a subsystem B plays a role of a thermal bath
for the neighboring spins. The fate of this bath, and its
influence on the dynamics of the surrounding spins are of
vital importance for the stability of MBL in the system.

We consider a 1D disordered spin chain described by

spin-1/2 operators S⃗i = (X̂i, Ŷi, Ẑi) on sites i = 1, . . . , L,
and model the situation of interest by the following
Hamiltonian

H = HA +HB +HAB (1)

where HA describes a generic MBL subsystem A, HB is
the Hamiltonian of the ergodic bubble, identified here as
the subsystem B and HAB is the coupling between the
subsystems A and B.

The density of states of the thermal subsystem is, at
the leading order, given by ρB ∼ 2LB . Since the subsys-
tem B is ergodic, the matrix elements of a local opera-
tor Oi localized around site i in B, in the eigenbasis of
HB , HB |ψn⟩ = En |ψn⟩, are given by the ETH ansatz
[2, 3, 5, 106]

⟨ψn|Oi |ψm⟩ = O(Ē)δnm + ρ
− 1

2

B fO(Ē, ω)Rmn, (2)

where Ē = (Em + En)/2, ω = En − Em is the energy
difference, Rmn is a random variable of zero mean and
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unit variance, and the factor ρ
− 1

2

B encodes the thermo-
dynamic entropy for the eigenstates in the middle of the
spectrum of HB [107]. Importantly, O(Ē) and fO(Ē, ω)
are both smooth functions of their arguments.

The MBL Hamiltonian HA can be expressed in terms
of the set of LIOM operators, {τzi }, i = 1, . . . LA [49].
Each of the LIOMs can be expanded in the microscopic
spin operators (X̂j , Ŷj , Ẑj) as

τ̂zj = ζ Ẑj +

∞∑
n=1

a
(n)
j Â

(n)
j , (3)

where ζ is the overlap of τ̂zj with Zj , and Â
(n)
j is an oper-

ator acting non-trivially only at sites j − n, . . . , j, . . . j +
n. The coefficients of longer-range operators decay as

a
(n)
j ∼ e−n/ξ [51]. This decay defines the characteristic

lengthscale ξ and is a crucial property that determines
the phenomenology of the MBL systems by ensuring the
quasi-locality of LIOMs.

The bath-MBL coupling HAB involves microscopic
spin operators supported at the interface between the
subsystems A and B. Due to the exponential decay
of LIOMs (3), this coupling can rewritten as HAB =∑LA

j=1H
(j)
AB with

H
(j)
AB =

(
V e−r/ξOiτ

−
j + h.c.

)
, (4)

where Oi acts on the degrees of freedom of the ergodic
subsystem B, and r = |i− j| is the distance between the
LIOM and the bath. To write (4), we have neglected
all sub-leading terms involving higher order products of
LIOM operators and we have kept only the local operator
Oi. These assumptions are sufficient for the qualitative
analysis of the leading terms dictating the influence of
the bath on the MBL system.

Let us assume that at time t = 0 we prepare the system
in the state

|ϕin⟩ = |τ1 . . . τj . . . τLA
⟩ ⊗ |ψn⟩ (5)

with a fixed configuration of LIOMs, τj =↑, ↓, and with
the ergodic bath initialized in the eigenstate |ψn⟩ with
energy En

1.
The initial state of the MBL subsystem A may slowly

thermalize due to the coupling HAB to the ergodic bath
B. In the following, we analyze two extreme scenarios
for time evolution of the system. First, we assume that

1 The eigenstate of the bath |ψn⟩ is chosen as the initial state for
simplicity. Due to the ergodicity of the bath, product states in
real space become superpositions of eigenstates |ψn⟩ with struc-
tureless coefficients, leading to qualitatively the same behavior.
In contrast, the assumption of an initial state being an eigenstate
in the subsystem A is of crucial importance, see Sec. III C.

the ergodic bath remains unaltered during the time evo-
lution, and employ the first order of perturbation the-
ory to estimate the decay rate of the LIOM configura-
tion [108]. We contrast this perturbative scenario with
the non-perturbative avalanche mechanism [85] which as-
sumes that the thermalized spins become members of the
ergodic bubble, increasing the potential of the bath to
thermalize the subsequent degrees of freedom.

1. Perturbative coupling to a static bath

Let us estimate the time scale for thermalization of
the LIOM τ̂j at site j. To that end, from the bath-

MBL interaction we keep only the coupling term H
(j)
AB ,

and note that, in the first order perturbation theory, the
initial state |ϕin⟩ (5) is coupled to

|ϕfin⟩ = |τ1 . . . τ j . . . τLA
⟩ ⊗ |ψm⟩ , (6)

where τ j is the opposite spin to τj and |ψm⟩ is an eigen-
state of the bath with m ̸= n. The probability that the
LIOM τ̂j remains in its initial eigenstate τj falls down ex-
ponentially in time with a decay rate given by the Fermi
golden rule [108],

Γj ∼ |Tj |2ρB , (7)

where the matrix element Tj = ⟨ϕfin|H(j)
AB |ϕin⟩ can be

rewritten with the help of the ETH ansatz (2), giving
rise to

Γj ∼ V 2e−2r/ξ, (8)

where we have neglected the energy dependence of the
spectral function fO and of the density of states. We note
that the rate Γj is independent of the bath size LB since
the density of states ρB in (7) is canceled by the square of

ρ
− 1

2

B from (2). Moreover, (8) is valid only on timescales

shorter than ρ−1
B . At larger times, the discreteness of

the spectrum of HB is resolved, and transitions from the
state |ϕin⟩ occur only in the rare cases of matching be-
tween the energies of |ϕin⟩, |ϕfin⟩. Therefore, LIOM at
site j is thermalized at timescale tj ∼ 1/Γj ∝ e2r/ξ in-
creasing exponentially with the distance r from the bath,
provided that tj < ρ−1

B . In other words, the distance ξd
of penetration of the ergodic bath B into the MBL sub-
system A will grow in time as ξd ∝ ln t, and then will
saturate at a time proportional to 2LB . Therefore, the
MBL in the subsystem A remains stable in this scenario.
Indeed, the difference of energies of the states |ϕin⟩, |ϕfin⟩
is, at minimum (in a typical case), proportional to ρ−1

B .
Hence, the first order perturbation theory correction to
the state |ϕin⟩ is of the order of

hstatr ∼ TLA−r

ρ−1
B

∼ e(−1/ξ)r, (9)

i.e., it is vanishing exponentially with the increasing dis-
tance r from the bath.
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2. Avalanche mechanism

The above description assumes that the events of ther-
malization of subsequent LIOMs are taking place inde-
pendently, and that the thermalized LIOMs do not influ-
ence the dynamics of the system at the later stages of the
process. In the following, we analyze the consequences of
an opposite assumption.

Let us now consider thermalization of the LIOM τ̂LA

closest to the bath. Equation (8) implies that the prob-
ability remaining in the eigenstate τLA

of the LIOM is
significantly below unity after time tLA

∝ e2/ξ. Accord-
ing to the avalanche mechanism [85], once the state of the
LIOM τ̂LA

has relaxed, the spin at site j = LA becomes a
member of the ergodic bath, and, consequently the den-
sity of states the new bath B′ is increased by a factor of
2, ρB′ = 2ρB . After r iterations of such a process, the
density of the states of the enlarged bath is ρB′ = 2rρB .
We consider a state |τ1 . . . τLA−r⟩ ⊗ |ϕn⟩, where |ϕn⟩ is
an eigenstate of the enlarged bath comprised of LB + r
spins, and calculate the first order perturbation theory
correction to this state due to the coupling HAB , which
leads us to

havalr ∼ TLA−r

(2rρB)−1
∼ e((ln 2)/2−1/ξ)r. (10)

In contrast to the perturbative expression for the static
bath B, Eq. (9), the hybridization ratio havalr is expo-
nentially enhanced by a factor e(r ln 2)/2, associated with
the growth of ρB′ upon incorporation of the neighbor-
ing spins. As a consequence, thermalization of the MBL
subsystem may be a self-sustaining process if the growth
of the bath density of states overcomes the decrease of
the interaction strength with the distance r, i.e., when
(ln 2)/2 − 1/ξ > 0. When this condition is met, an
avalanche propagates throughout the system, and the
system thermalizes. According to the Fermi golden rule
rate (8), the avalanche propagation may still be expo-
nentially slow, i.e. the distance ξd of penetration of the
MBL system may grow in time ξd ∝ ln t. However, the
density of states of the enlarged bath increases after each
act of thermalizing and incorporation of the neighbor-
ing spin, hence, (8) is valid up to the time scale ρ−1

B′ ,
which continually increases when the avalanche propa-
gates. The discussed scenario predicts an unbounded log-
arithmic growth of the thermalization length ξd ∝ ln t.
Higher order perturbative corrections, as well as non-
perturbative mechanisms associated with the growth of
the thermal inclusion, beyond the simplified processes
discussed above, may speed up the spreading of avalanche
when (ln 2)/2−1/ξ > 0. Thus, we define that avalanches
spread in the investigated disordered many-body system
whenever the presence of a thermal inclusion induces log-
arithmic, or any faster, growth of ξd in time. This def-
inition does not agree with that of Ref. [103] in which
ξd ∝ ln t is classified as a lack of an avalanche. Disagree-
ment comes from the fact that the expression for the de-
cay rate Γj , Eq. (8) is valid only at times t < ρ−1

B , which,

in the absence of the avalanche spreading, is bounded by
the constant 2LB .

III. DISORDERED XXZ SPIN CHAIN WITH
ENGINEERED ERGODIC BUBBLE

The simple scenarios for the time evolution of an MBL
system in contact with an ergodic bath described in
Sec. II rely on a number of assumptions which are not
straightforwardly testable. For that reason, the direct
relevance of the avalanche mechanism for the dynamics of
disordered systems remains not clear. The first assump-
tion regards the form of LIOM operators, see Eq. (3).
While there are numerical approaches that allow to con-
struct LIOMs for strongly disordered systems [55, 109–
119], probing of the properties of LIOMs at large time
scales, and especially in the vicinity of the crossover to
ETH phase remains a challenge, and one has to resort
to perturbative schemes which are not rigorously con-
trolled [51]. Moreover, the avalanche mechanism assumes
that each thermalized spin joins the ergodic bath which
still can be described by the ETH ansatz (2). A strict
validity of this assumption is unclear [94]. Finally, er-
godic bubbles in strongly disordered systems form due to
rare disorder configurations, and hence, their dynamics
can be probed only indirectly, with specific tools [120].

The above reasons motivate us to analyze numerically
the process of avalanche propagation in a system in which
we assure the presence of the ergodic bubble by dividing
the lattice into two subsystems as shown in Fig. 1a.

A. The system

We consider the XXZ-spin model with random mag-
netic field, widely studied in the context of MBL [23, 33,
61, 62, 67, 73, 82, 95, 121–137], coupled to a bath mod-
elled also by XXZ-spin system. The Hamiltonian reads:

H = HA +HB +HAB , (11)

HA = J

LA−1∑
i=1

XiXi+1 + YiYi+1 + ∆AZiZi+1

+

LA∑
i=1

WiZi,

HB = J

L−1∑
i=LA+1

XiXi+1 + YiYi+1 + ∆BZiZi+1

+

L∑
i=LA+1

WiZi,

HAB = J (XiXi+1 + YiYi+1 + ∆ABZiZi+1) ,

where S⃗i = (Xi, Yi, Zi) are spin-1/2 operators at lattice
site i, J = 1 fixes the energy unit (and J−1 is the char-
acteristic time scale which we call a tunneling time hav-
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ing in mind the equivalent spinless fermions expression of
the model which arises upon the Jordan-Wigner transfor-
mation). Open boundary conditions are assumed. Un-
less stated otherwise, we set the interaction strengths
∆A = ∆B = ∆AB = 1. The chain consists of two
subsystems of sizes LA and LB , with the total system
size L = LA + LB . The on-site magnetic fields, Wi, are
independent random variables drawn from the uniform
distribution in the interval that differs between the two
subsystems:

Wi ∈
{

[−WA,WA] if 1 ≤ i ≤ LA,

[−WB ,WB ] otherwise,
(12)

see Fig. 1a. The subsystem B serves as a thermal bath
that seeds the avalanche and initializes the process of
thermalization of the subsystem A, and, consequently, of
the whole chain. For that reason, we fix the disorder in
the subsystem B to be weak. If not stated otherwise, we
put WB = 0.5. At this disorder strength the Heisenberg
spin chain thermalizes quickly, since WB = 0.5 is well be-
low the various estimates for critical disorder strength for
MBL transition [23, 67, 137–139]. We work in the Z = 0
total magnetization sector. Time evolution is computed
exactly using the Chebyshev polynomial expansion of the
time evolution operator [140, 141].

Observables describing the system (except for imbal-
ance from Fig. 7) are calculated as a median over 1000
random disorder realizations unless specified explicitly.
Using a robust estimator, such as median, instead of a
usual arithmetic average, ensures convergence of the mea-
sured quantities in the number of disorder realizations.
Median captures a typical behavior of the system and is
not sensitive to few accidental disorder realizations, par-
ticularly affecting the mean value at the largest disorder
strengths, deep in the MBL regime. For a comparison be-
tween results obtained using the mean and the median,
see Appendix A.

B. The avalanche spreading

In order to describe the process of the avalanche
spreading and of the ensuing thermalization of the sub-
system A quantitatively, we fix the initial state as the
Néel state and calculate the two-point connected correla-
tion function ⟨ZiZj⟩c = ⟨ZiZj⟩− ⟨Zi⟩ ⟨Zj⟩ for sites i and
j.

Typical behavior of the ⟨ZiZj⟩c correlation function for
WA = 4 and WB = 0.5 is presented in Fig. 2. Initially,
at time scale of one tunneling time only the short-range
correlations are present throughout the system among
the neighboring sites |i− j| ≈ 1 (plot not shown). After
several tunneling times, t ≈ 7, the sites within the bath
B develop mutual correlations, while the correlations in
the subsytem A remain short-ranged, see Fig.2a. Subsys-
tems A and B begin to develop non-trivial correlations
due to their connection via a bond between the sites LA,

LA + 1. During the course of time evolution of the sys-
tem, the correlations gradually increase, and, at a large
time t = 9820, we observe that the whole subsystem A
develops significant correlations with the bath B. The
correlation between a given site iA from A is, to a good
approximation, the same with all of the sites iB from the
bath B. This occurs because the spins in the bath are
strongly correlated with each other and as such can no
longer be treated individually. In contrast, the strength
of the correlation between the spins from subsystem A
with spins of the bath B decreases with the distance to
the edge of the bath.

Our aim is to find out if the correlations between the
bathB and the subsystem A are a non-perturbative effect
of the propagation of a quantum avalanche, or are only a
perturbative result of the bath proximity, as described in
Sec. II. To quantify how the correlations with the bath
penetrate through the subsystem A, following Ref. [103],
we define a bath-averaged correlation function for each
site,

g(2)(i) = ⟨ZiZj⟩c|j∈LB
. (13)

An example of the g(2)(i) function is shown in Fig. 2c.
Clearly, the correlations with the bath in the subsystem
A fall off exponentially with the distance from the inter-
face between A and B. This leads us to the definition
of the correlation decay length ξd which is obtained by
fitting

|g(2)(i)| = c exp

(
−LA − i

ξd

)
(14)

at a given instant of time. We note that the employed
definition allows us to accurately determine the decay
length ξd without introducing unwanted artifacts of the
approach employed in Ref. [103]. In particular, this
method is less sensitive to finite-size effects and the dis-
creteness of the lattice, see Appendix B for more details.
In the following, we will probe the thermalization of the
subsystem A mainly focusing on the time dependence of
the decay length ξd.

C. Signatures of avalanches due to the bath

Exact diagonalization studies of the disordered XXZ
model [67] suggest the presence of three distinct regimes
of the system characteristics, depending on the disorder
strength W . For the lowest disorder values W < WT (L)
the system follows ETH, its energy level statistics follow
GOE predictions and the system thermalizes in a generic
way. In contrast, for disorder larger than a certain value
W > W ∗(L), the spectrum shows signs of emergent in-
tegrability (MBL). If an MBL transition occurs in the
system, then limL→∞WT (L) = limL→∞W ∗(L) = Wc,
where Wc is the critical disorder strength. In that case,
for finite systems, there is a finite transient critical regime
WT (L) < W < W ∗(L) with multifractal entanglement
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ca b

FIG. 2. Model parameters are LA = 12, LB = 10, WA = 4, and WB = 0.5. a Initially, correlations within subsystem A (first 12
sites) are short-ranged, while correlations within the bath (sites 13-22) spread over the whole bath. b After a sufficiently long
time, correlations between the bath and the MBL subsystem are developed and the system thermalizes. Checkerboard pattern
appears due to a specific initial Neel state. c Average (over bath) of two-body correlations for each lattice site. Correlation
decay length ξd is obtained by fitting an exponential decay with distance, Eq. (14) (dashed lines).

structure in the eigenstates [95]. This might suggest that,
in these three regimes, the system will react differently to
the attached finite thermal bath. Our expectation is that
in the ergodic and critical regimes, any bath will lead to
a growth of ξd(t) faster than ∝ ln(t), consistent with an
avalanche scenario. In the MBL case, the growth ∝ ln(t)
should saturate around time t ∼ 2LB when the subsystem
A starts to resolve the discreteness of the bath’s energy
spectrum.

The results of our calculations of the correlation de-
cay length ξd(t) in all three regimes with a bath of
size LB = 6 and the Néel initial state are presented in
Fig. 3abc. Figure 3a shows the system behavior in the
ergodic regime with WA = 2.5. The avalanche is clearly
spreading through the system, as suggested by a positive
curvature of the decay length ξd(t), cf. linear fit between
times t = 10 − 100, implying faster-than-logarithmic
growth with time. It suggests that some assumptions
of the perturbation theory introduced in Sec. II are not
valid. In this case, the subsystem A cannot described
by a set of LIOMs. For the smallest system sizes, the
positive curvature is also visible, but the growth of ξd(t)
saturates before reaching t = 104. It is a finite-size effect
occuring when ξd becomes of the order of LA. Increasing
LA systematically increases accessible ξd before satura-
tion. We also notice that, in fact, no thermal bath is
needed to see features compatible with avalanches - the
curve for WB = WA = 2.5 and LA = 16 behaves qual-
itatively the same as the case with a bath WB = 0.5.
This means that the system can serve as a bath for it-
self, in agreement with the usual understanding of the
thermalization in quantum many-body systems.

In Fig. 3b we switch to the critical regime WA = 4.
The growth of ξd(t) is slower than in the ergodic case,
yet it is still faster than ξd ∼ ln(t), suggesting the spread
of avalanche. With increasing subsystem size LA, the
correlation decay length ξd slightly increases, ie., ther-
malization is enhanced. This is compatible with exact

diagonalization studies [67] which show that increase of
the system size increases the disorder strength at which
the ETH-MBL crossover is observed.

Figure 3c shows the apparent instability of the strongly
disordered MBL system (WA = 6) in contact with a ther-
malizing bath when starting from an initial Néel state.
We observe that ξd grows as ∝ ln(t) for the whole simu-
lation time t = 104. Recall that according to the pertur-
bative arguments presented in Sec. II, if the logarithmic
growth of ξd continues beyond t ≈ 2LB , one deals with a
continually increasing timescale of thermalization by the
bath (see Fermi’s golden rule in Eq. (8)). This suggests
spreading of an avalanche which thermalizes the system
and may be surprising as other signatures of MBL, such
as energy level statistics, entanglement entropy, Thou-
less time scaling [67] suggest a deeply localized regime
for this value of disorder in the absence of the bath. On
the other hand, a non-trivial long-time dynamics is also
observed for the bipartite von Neumann entanglement
entropy which grows as ∝ ln t [74] even in MBL regime.
Other works [75] predict a much larger value of disor-
der W > 18 needed for the MBL phase. Looking for
the explanation of this counterintuitive behavior of the
MBL system, we have checked that increasing the disor-
der strength to WA = 20 does not remove the logarithmic
growth until the latest accessible times t = 104. Remov-
ing the interactions in subsystem A and going to Ander-
son localized phase by setting ∆A = 0 in subsystem A
also leads to a similar long-time logarithmic growth, see
details in Appendix C.

It turns out that, in order to observe the termination
of a thermal avalanche, as predicted by the perturbation
theory for sufficiently small LIOM localization lengths,
one has to necessarily fulfill one of its assumption: the
initial state must be an eigenstate of the subsystem A.
Similar setup was considered in Ref. [105] with the pur-
pose of analyzing energy-resolved features of the spec-
trum and in Ref. [142] for perturbatively coupled chaotic
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FIG. 3. Growth of the correlation decay length ξd(t) in the three regimes of disorder WA, different subsystem A sizes LA, bath
size LB = 6 and initial Néel state (panels abc) or LB = 2, 4, 6 and a special initial state (panel d). Thermal avalanches are
observed in the ergodic and critical regimes (panels ab) as a growth faster than ξd ∝ ln(t). Even though there are no quantum
avalanches in the MBL regime (panel c), the growth of ξd continues as ∝ ln(t) much beyond the timescale t ∼ 2LB . To see
termination of avalanches in the MBL regime, one can start with a fine-tuned initial state, a product state of the subsystem
A eigenstate energy EA (we choose EA closest to 0), and a Néel state in subsystem B (panel d). For reference, linear fits
ξd ∝ ln(t) are performed between times t = 10− 100 (abd) or t = 10− 10000 (c) and denoted by dashed red lines. In panel d,
5 · 104 disorder realizations were used. For panel d we employ a special fitting method described in Appendix B.

systems. One can still start with the Néel state in sub-
system B as its eigenstates are featureless, and so is their
superposition. Results for this initial condition are pre-
sented in Fig. 3d. Clearly, the penetration of the thermal
bath into the MBL subsystem is logarithmic with time
and then stops around time on the order of 2LB , in full
agreement with the perturbative argument. Behavior of
ξd(t) is qualitatively the same for many subsystem sizes
LA and fixed bath LB .

Summarizing, the long-time growth of ξd(t) forWA = 6
in Fig. 3c seems to be a feature of the MBL regime rather
than a signature of an avalanche spreading and thermal-
ization of the system. When the initial state is an eigen-
state of the subsystem A, we do not observe any sig-
natures of avalanche spreading for the same system pa-
rameters, see Fig. 3d. The influence of the bath is fully
captured with the first order perturbation theory and the
highly non-perturbative effects of the avalanche mecha-
nism are not observed at WA = 6. This dependence of
the ξd behavior on the initial condition is not occurring
at smaller disorder strengths, when the system thermal-
ization genuinely begins, for instance at WA = 4 (data
not shown, see Appendix C). Therefore our analysis indi-
cates that the access to the eigenstates of HA is required
for observation of the stop of logarithmic growth of ξd in
time. Preparation of eigenstate of HA is experimentally
a nontrivial task, increasing the difficulty of an experi-
ment that could observe the halt of quantum avalanche
spreading. Finally, we emphasize that we are able to ob-
serve the stopping of avalanches only at the considered
(experimentally relevant) time scales and system sizes.
We cannot exclude that the avalanche starts to spread
and the system thermalizes at WA = 6 for larger LA or

longer times.

D. Extraction of the LIOM localization length
from time evolution

Linear fits from Fig. 3 allow us to extract the localiza-
tion length of the LIOMs ξ, see Eq. (3), and compare
it with a predicted threshold for avalanche, Eq. (10),
ξaval = 2/ ln(2) ≈ 2.9. In both perturbative and non-
perturbative pictures, the LIOM at distance r decays
around time tj ∝ exp(2r/ξ). In numerical data from
Fig. 3, distance r is measured by the correlation decay
rate ξd. Thus, one can perform a linear fit

ξd(t) =
ξ

2
ln t+ const (15)

and extract the LIOM localization length ξ. For
WA = 2.5 we get ξ = 1.1 < ξaval between times t =
10 − 100 which grows to xi = 5.4 > ξaval between times
t = 1000 − 10000 and is compatible with the presence of
an avalanche in Fig. 3a. In the critical regime WA = 4,
the obtained value ξ = 0.4 is close to the threshold ξaval,
as expected. In the localized regime WA = 6, the LIOM
localization length extracted from the initial Néel state
scenario is ξ = 0.21 and is also well below the threshold
for avalanche. A lower ξ = 0.10 is obtained for the special
initial state, signaling some additional effects happening
in the Néel state case which enhance the non-triviality of
the dynamics in that case.
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IV. BATH FEATURES

This section is devoted to the features of the bath
that might be relevant for the thermalization process.
In Sec. IV A we show that the bath can be approximated
well by all-to-all interacting system modeled by a GOE
matrix. In Sec. IV B we find that the system dynam-
ics does not change qualitatively upon changing disorder
amplitude WB in the bath (provided WB is small enough
so the bath is ergodic by itself). Finally, in Sec. IV C, we
study the evolution of correlations within the bath when
connected to subsystem A in its three different regimes,
capturing the moment when the bath starts to grow. Ad-
ditional analyses, such as change of the decay length for a
fixed bath and changing subsystem A size LA, or chang-
ing disorder strength WA, are shown in Appendix E.

A. Modeling the bath as a GOE matrix

Many approaches to thermalization in MBL through
avalanche scenario assumed that the bath can be mod-
eled by a random matrix from the Gaussian orthogonal
ensemble (GOE) which should behave identically to a
region thermalized due to accidentally low disorder val-
ues/differences [85, 86, 143, 144]. The full Hamiltonian
for such a setting reads

H ′ = J

LA∑
i=1

S⃗i · S⃗i+1 +

LA∑
i=1

WiZi + αHB,GOE, (16)

where HB, GOE is a GOE matrix defined for LB sites
in subsystem B, and α is an energy rescaling factor we
will specify later. Having access to the measures directly
probing the avalanches, we verify this assumption nu-
merically by comparing the two scenarios. Algorithm for
numerical construction of the HB,GOE in the total Sz

magnetization conserving basis is given in Appendix D.
Before, we proceed to present the results, we explain a
caveat that needs to be taken into account when compar-
ing the two models.

The density of states of HB, GOE is given by the Wigner
semicircle law [145, 146],

ρ(E) =
1

π

√
2 − E2. (17)

Its spectrum spans an interval of energies
−
√

2 < E <
√

2. In order to reproduce bandwidth
of the bath in the XXZ model, the GOE Hamiltonian is
multiplied by a factor α = (p95 − p5)/(2

√
2) where p95

and p5 are the 95th and 5th percentile of the disorder-
averaged XXZ density of states at W = 0.5. The result
of rescaling energies is presented in Fig. 4. The rescaling
gives a real symmetric random matrix whose middle
spectrum energy gaps reproduce the middle spectrum
gaps of the XXZ spin chain with disorder W = 0.5
in the zero magnetization sector. Numerical values of

FIG. 4. Comparison of the density of states for the XXZ
model with uniform W = 0.5 disorder (green dashed line)
and the GOE density of states (blue solid line) for the same
system size L. Before rescaling, the GOE density of states re-
produces the Wigner semicircle law (black dotted line). After
rescaling the GOE density by a constant multiplicative factor,
as described in the text, the two densities start overlapping
in the major part of the spectrum. Histograms are averaged
over 100 disorder and GOE realizations.

the rescaling factors for different lengths of the chain
L = 2 − 12 and other ”replicated” disorder strengths
W = 0, 0.5, 1 are listed in the Appendix D.

Naively, one could expect that replacing the nearest-
neighbor interacting low-disorder spin bath with an all-
to-all interacting GOE bath will speed up the thermal-
ization in the system. The GOE Hamiltonian scrambles
quantum information very fast, on the timescale O(1)
[147, 148]. In contrast, the XXZ model has Thouless time
that scales as O(L2) at best [66, 73]. In spite of this, we
do not observe any significant differences between these
two cases when inspecting the correlation decay length
ξd(t) for subsystem A in both ergodic (WA = 2) and MBL
regime (WA = 6), see Fig. 5. To our understanding, it
is not a surprise that the long-time t ≥ O(L2

B) behaviors
are the same for the GOE bath and low-disorder XXZ
model bath, as in both cases the baths have already ther-
malized and are in a similar featureless quantum state
with random probability amplitudes dependent only on
the initial energy. However, an unprecedented agreement
between these scenarios also at initial stages of time evo-
lution remains a puzzle. One possible explanation is that
if the subsystem A is connected with the bath only at its
end by a local term in the Hamiltonian, thermalization
of the distant site from the interface is mostly governed
by the rate of propagation of correlations through sub-
system A up to the interface, which does not depend on
the bath properties.

B. Disorder strength WB

As mentioned in Sec. IV A, the low-disorder bath can
be well modelled by the GOE Hamiltonian. What is
more, ξd(t) calculated in Fig. 5 does not change with the
disorder strength of the bath WB as long as WB stays
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FIG. 5. Decay length growth with time. LA = 8, LB = 6.
Precise value of the bath disorder strength WB does not quali-
tatively change the behavior, irrespective if it is in the ergodic
(panel a) or the MBL side of the crossover (panel b). Thus,
our analysis is restricted to WB = 0.5 for the rest of the pa-
per. We compare it with the bath modelled as a GOE matrix
coupled to a single spin at the end of the chain. The GOE
matrix is rescaled to replicate the density of states of the bath
with WB = 0.5, see text.

far on the ergodic side of the crossover, WB = 0, 0.5, 1.
This is particularly important as we are trying to use the
”engineered” bath to model ”accidental” baths naturally
present in the system due to accidentally small disorder
values. Interestingly, even for the case of WB = 0 the
thermalizing behavior is consistently the same. Integra-
bility of the bath is broken in this case by the interaction
with subsystem A.

C. Correlations within the bath

We now concentrate on the reaction of the bath when it
is interacting with the disordered XXZ chain. As it was
suggested in earlier studies [94, 149], the ergodic bath
may be destroyed when in contact with an MBL system
by the so-called ”MBL proximity” effect. In an oppo-
site scenario, a quantum avalanche may extend the bath
into the MBL subsystem. Here we study the off-diagonal
correlations of spins within the bath to characterize the
bath during the time evolution.

Figure 6 shows the average (over the bath) of the off-
diagonal correlations within the bath,

g
(2)
bath, offd. =

1

LB(LB − 1)

L∑
i,j=LA+1

i̸=j

⟨ZiZj⟩c. (18)

As a limiting case, we check a bath that is modeled by
the GOE Hamiltonian from Sec. IV A with LA = 0 (no
subsystem A) and LB = 6, 10. Clearly, the correlations
saturate fast at a negative value and remain stationary -
all pairs of spins within the bath develop correlations be-
tween each other until no more correlations can be built

further. The larger the system, the smaller the abso-
lute value of the bath averaged correlations, since there
are more possibilities to transition from a single site. A
similar thermalizing behavior is observed for a weakly
disordered spin bath (WB = 0.5), also for LA = 0, but
reaching the equilibrium takes longer compared to the
GOE case for the same size LB = 6, see discussion in
Sec. IV A.

Let us check what happens when the subsystem A is at-
tached in Fig. 6. We examine different disorder strengths
WA = 2.5, 4, 6 for fixed LA = 14 and LB = 6. At
WA = 6, we see clear signatures of saturation of bath
correlations around time t ≈ 10. Similar behavior is ob-
served in the critical regime WA = 4 but the saturation
occurs at a larger value. Since the correlations saturate
at a steady value, we may conclude that the bath does
not change its size at least to the accuracy offered by this
probe. Comparison to the baseline values for the free and
GOE baths suggests an increase of the effective bath size
for WA = 4 in comparison to the WA = 6 case. Compar-
ing with GOE bath for LB = 10 leads us to the conclusion
that the size of the effective bath for WA = 4 case cannot
be larger than 10 sites. Interestingly, a continuous dy-
namic drift in the offdiagonal correlations is observed for
WA = 2.5. This is another sign of a quantum avalanche
spreading, in addition to the correlation decay length pre-
sented in Fig. 3. Additional sites from subsystem A join
the bath by developing correlations with its constituents.
The increase in the effective size of the bath weakens the
correlations therein.

All in all, the dynamics of the correlation functions
within the bath allows to probe the thermalization of
the full system from a different perspective, providing
indirect information about the increase of the effective
bath size.

V. KICKED XXZ MODEL

In their recent work, Peacock and Sels [104] study a
model similar to ours: a strongly disordered Heisenberg
spin chain A with a bath B consisting of weakly disor-
dered spins (WB = 0.5). However, in their model, the
Hamiltonian is periodic in time. The unitary evolution
operator over one period of time reads

U = e−iHABτe−i(HA+HB)τ , (19)

where HA,B,AB are defined in Eq. (12). The subsystems
A and B evolve separately for half of the period T =
2τ = 20 and for the second half only the A−B coupling
yields the dynamics with HA and HB being put to zero.
We dub this system “kicked” as the form of the unitary,
(19), allows one to interpret the dynamics as evolving
with HA +HB for period τ and then undergoing a δ-kick
of strength HABτ resembling thus famous kicked rotator
or kicked top models [150]. The time dynamics is studied
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FIG. 6. Mean offdiagonal correlations within the bath as
function of time. Shades denote standard deviations of the
median. Results for the disconnected bath (LA = 0) with
weak disorder WB = 0.5 (red line) and the GOE bath of
different sizes (purple and gray line) are compared with the
LA = 14, LB = 6 case. Quantum avalanche is visible in
the WA = 2.5 case since growth of offdiagonal correlations
indicates an increase of the effective size of the bath.

by looking at the imbalance

I(t) =
4

LA − 4

LA−2∑
i=3

⟨Zi(0)Zi(t)⟩, (20)

for system A of length LA and B of length LB – note that
two spins on each side of the system A are not included
to minimalize edge effects.

We compare the imbalance obtained for the kicked
model (19) with that obtained for autonomous system
governed by Eq. (12) for the same parameter values. Re-
producing the results of [104] we note that in the presence
of the thermal inclusion the system A shows a much faster
decay than in the case WB = WA without a thermal in-
clusion. This difference is noticeable even for strongly
localized chains at WA = 12. At sufficiently long times,
the imbalance decays, suggesting thermalization of the
system in the wide range of disorder values WA = 4−12.
The onset of the decay of the imbalance scales with disor-
der as t → te−aWA , with constant a found to be a = 2.1
for LA = 12, LB = 10, WB = 0.5. The latter behav-
ior bears some resemblance to the Thouless time scaling
tTh = L2eW/Ω (where Ω is a constant) proposed for XXZ
spin chain in Ref. [73].

Intuitively, one could expect that since the bath B is
connected with the subsystem A at all times in our case,
contrary to kicked type of dynamics generated by (19),
the autonomous system should thermalize faster. On the
other hand, the energy is absorbed from the driving in
the kicked case, favoring the thermalization of the kicked
system, unless the driving is very fast [151].

The comparison of both models is presented in Fig. 7.
The first column of Fig. 7 (panels ”a” and ”e”) shows the
imbalance as a function of time in both models. It is clear
that although the signs of thermalization in the kicked
model start to appear at longer times (t ≈ 200−300) than
in the time-independent model, the acceleration of the
imbalance decay at largest disorder values is much more
evident in the kicked case. This is further demonstrated
in the middle column of Fig. 7 (panels ”b” and ”f”) which
shows how the difference of imbalance in the case of no
bath (WA = WB) and with the bath (WB = 0.5) accel-
erates with time for the kicked model even for WA = 12.
In contrast, the growth of the imbalance difference does
not accelerate for the time-independent model. On the
contrary, it rather saturates, at sufficiently large WA, to
a constant (which is possibly dependent on LA). This re-
sult is consistent with the MBL regime and is in a stark
difference with the kicked case.

Finally, in the rightmost column of Fig. 7 (panels ”c”,
”d”, and ”g”) we check whether the rescaling of time
t → te−aWA , which captures the dynamics of the kicked
model in a broad regime of WA, applies also to the
energy-conserving model. We find the optimal a describ-
ing the data by fitting a fourth degree polynomial to the
imbalance and minimizing the fit error by tuning a. To
check if a is universal and does not depend on disorder
WA, our fits are performed separately for small disorders
(WA ∈ [2, 5]) on the ergodic side of the crossover (Fig. 7c)
and for large disorders (WA ∈ [10, 13]) on the localized
side. Fitting errors are measured only in the correspond-
ing fitting range. The resulting optimal a are a = 6 and
a = 11, respectively. In the latter case, the data can be
in fact almost equally well described by any a ∈ [8, 15],
as the fit error does not change in this interval by more
than a few percent. Notably, due to the presence of the
exponent, the difference between a = 6 and a = 11 cases
is huge, the rescaled times differ by 15(!) orders of mag-
nitude in the middle of the interval of disorder strengths
considered. The lack of agreement with a found for low
disorder values suggests that the time-independent sys-
tem does not have a universal timescale dictated by the
disorder value. On the other hand, for the kicked model,
the same procedure gives a ranging from a = 1.6 for the
largest disorders WA ∈ [10, 12] to a = 2.3 for the smallest
disorders WA ∈ [4, 6], and the optimal a is well-defined
in both cases, staying in agreement with a = 2.1 from
Ref. [104]. We note that the dependence of a on the in-
terval of disorder strengths used to determine its value,
is opposite in the two models. This highlights further the
difference in the behavior of the two models at large WA.
Details on how we determine values of the constant a are
described in Appendix G.

Summarizing, the results of Ref. [104] are reproduced
for the kicked case (note that we use numerically ex-
act Chebyshev time propagation rather than the tensor
network time-evolved block decimation method (TEBD)
that is approximate). The results for the kicked and time
independent case differ qualitatively for the considered
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FIG. 7. Comparison of imbalance on sites 3 − 10 between kicked XXZ model by Peacock and Sels and the energy-conserving
model for LA = 12, LB = 10. Solid lines: WA = WB , bright lines: WB = 0.5 (for panels acdeg). The speedup of imbalance
decay happens due to the lack of energy conservation (e) because it is not observed in the time-independent case for the same
parameters (a). Panels b, f: differences of imbalance with WB = WA and WB = 0.5. Speedup of imbalance decay is visible for
the kicked model, while saturation is observed for the time-independent model. Right column: Imbalance with rescaled time
axis t→ te−aWA for the case WB = 0.5. Optimal constant a is obtained by minimizing the error of a fourth degree polynomial
fit (dashed black line) and a chosen range of disorder. While in the kicked case (panel g), there is a single universal constant
a ≈ 2.1 describing the curve for all WA ∈ [2, 12], in the disordered XXZ model case the optimal constant a drfits from a ≈ 6
for WA ∈ [2, 5] to a ∈ [8, 15] for WA ∈ [10, 13]. See text and Appendix G for more details on the fitting procedure.

system size. The tendency towards the thermalization of
the setup of [104], even at the strong disorder WA = 12,
does not translate to the energy-conserving setup. While
the rescaling t→ te−aWA suggests uniformity of the ther-
malizing behavior in the kicked case across the broad in-
terval of disorder strengths, the same rescaling does not
allow to collapse the results for our autonomous case with
a reasonable accuracy. Importantly, it is the autonomous,
time independent case which is relevant for our under-
standing of an avalanche spreading in isolated quantum
spin chains. Indeed, if disorder fluctuations produce a
region of anomalously weak disorder, its interaction with
the surrounding spins is captured by a time independent
Hamiltonian.

VI. CONCLUSIONS AND DISCUSSION

We have analyzed the effects of rare thermal bubbles,
which arise in disordered spin chains due to disorder fluc-
tuations on thermalization of the system. While the be-
havior of the ergodic bubbles determines the stability of

MBL phase, their direct investigation is not straightfor-
ward since the probability of appearance of an ergodic
bubble is exponentially small in its size. For that reason,
we consider a scenario of a finite thermal bath (XXZ
spin chain with low disorder) attached to an XXZ spin
chain with uniformly distributed random disorder which
plays the role of an MBL subsystem A. Based on the
time evolution of the system, we study the decay length
ξd(t) of connected two-body correlations ⟨ZiZj⟩c of the
MBL subsystem with the bath. Our perturbative analy-
sis of the system-bath coupling identifies the conditions
under which the MBL system is not thermalized by the
bath. In this case, ξd(t) ∝ ln(t) for a time scaling ex-
ponentially in the bath size, followed by a saturation.
In contrast, the quantum avalanche mechanism includes
non-perturbative effects, leading to thermalization, man-
ifested as a growth ξd(t) ∝ ln(t) or faster until time scale
which scales exponentially with the size of the total sys-
tem.

We perform an extensive numerical study, obtaining
a superlogarithmic growth of ξd(t) in the critical and
ergodic regimes. Such behavior is consistent with the
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quantum avalanche mechanism, although we cannot ex-
clude that a different microscopic mechanism plays a role
in the observed thermalization process. Surprisingly, the
ξd(t) ∝ ln(t) growth until the Heisenberg time is also ob-
served in the deep MBL regime if the initial state is set to
be a simple product state. However, the above result is
not a sign of thermalization but rather a long-timescale
feature of the dynamics, not captured by the theory. The
fact that the system does not thermalize becomes appar-
ent only if the time evolution starts from an initial state
being a product state of an energy eigenstate in the MBL
subsystem A and Néel state in the bath. In this case,
ξd(t) saturates at a constant after a time fixed by the
bath size. The onset of thermalization is visible in the
same setting in the ergodic and critical regimes. Thus,
we conclude that the observation of ξd(t) ∝ ln(t) long-
time growth from an initial product state does not allow
us to unambiguously determine whether the avalanches
propagate or not.

As we show in Sec. III D the rate of growth of ξd(t)
allows us to extract the LIOM localization length ξ. Ex-
tracted LIOM localization lengths in all three regimes
(ergodic, critical or MBL) of subsystem A are consistent
with the predicted ETH-MBL crossover at ξ = (ln 2)/2.
We further demonstrate that the thermalization process
does not depend on the details of the bath, as long as
the bath is an ergodic system on its own. In particular,
changing the bath disorder strength between WB = 0−1
does not qualitatively change the decay length growth
with time. Moreover, instead of the XXZ spin chain with
low disorder WB serving as a bath, one can attach a bath
whose Hamiltonian is a properly rescaled GOE matrix
and the thermalization characteristics manifested by the
behavior of ξd(t), remain the same to a good approxima-
tion.

We also inspect the offdiagonal correlations within the
bath during the time evolution. The correlations in the
bath disconnected from the MBL subsystem A quickly
saturate to time independent values. Similarly, when the
bath is connected to XXZ spin chain in the MBL regime,
the correlations saturate at a similar time scale, reflecting
the lack of non-trivial dynamics between the MBL system
and the bath. In contrast, when the XXZ spin chain
in subsystem A is in an ergodic regime, we observe a
steady relaxation of the off-diagonal correlations within
the bath, which is a direct consequence of a quantum
avalanche increasing the effective bath size.

Finally, we contrast our calculations of the imbalance
with the results from the kicked XXZ model [104]. Unlike
in the kicked model, the time rescaling t→ te−aWA does
not allow us to collapse the results for time evolution of
the imbalance for a wide range of disorder strength, WA,
in our energy conserving setup. Also, in our model, the
change in the behavior of imbalance with time, with and
without a bath, is not as dramatic as for the kicked case.
This suggests that thermalization in the kicked model
is enhanced by the driving and one should not generi-
cally expect the same behavior for the energy-conserving

Hamiltonian model, relevant for the question of MBL in
autonomous systems.

Our results shed new light on the avalanche mechanism
present in the disordered XXZ model. We have provided
numerical evidence consistent with the avalanche spread-
ing from an engineered thermal inclusion and have shown
that their fate depends on the disorder strength WA. At
the same time, we have demonstrated that an observation
of the termination of spreading of quantum avalanches is
more challenging as the system has to be prepared in an
eigenstate of the MBL subsystem A. Notably, prepara-
tion of area-law entanglement initial states of the MBL
subsystem A, is experimentally feasible [152].

Our work demonstrates that the disorder strengths in
the XXZ spin chain at which the avalanches propagate
and are terminated correspond to regimes of disorder
strengths identified respectively as ergodic and MBL in
the exact diagonalization studies of the model, for ex-
ample see Ref. [67]. The parametric shift of the disor-
der strengths required for termination of avalanches ob-
served in [75, 100] with respect to the exact diagonal-
ization studies may, therefore, be attributed to the as-
sumptions about the nature of the ergodic bubble made
in Refs. [75, 100]. The results presented in our work are
valid for ergodic bubbles placed on several lattice sites
and do not support those assumptions. Nevertheless, we
cannot exclude the possibility that ergodic bubbles of
much larger sizes, which can be found in thermodynam-
ically large systems, seed avalanches that propagate in
presence of much stronger disorder. The length and time
scales associated with such rare events are, most likely,
not relevant for numerical or experimental investigations
of disordered many-body systems.
Note The numerical data presented in this work

are freely available from https://chaos.if.uj.edu.pl/
ZOA/opendata/ or from the authors upon a reasonable
request.
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[73] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quan-
tum chaos challenges many-body localization, Phys.
Rev. E 102, 062144 (2020).

[74] P. Sierant and J. Zakrzewski, Challenges to observation
of many-body localization, Phys. Rev. B 105, 224203
(2022).

[75] A. Morningstar, L. Colmenarez, V. Khemani, D. J.
Luitz, and D. A. Huse, Avalanches and many-body res-
onances in many-body localized systems, Phys. Rev. B
105, 174205 (2022).

[76] P. Sierant, E. G. Lazo, M. Dalmonte, A. Scardicchio,
and J. Zakrzewski, Constraint-induced delocalization,

Phys. Rev. Lett. 127, 126603 (2021).
[77] W. De Roeck, F. Huveneers, B. Meeus, and O. A.
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M. C. Bañuls, Almost conserved operators in nearly
many-body localized systems, Phys. Rev. B 97, 094206
(2018).

[85] W. De Roeck and F. Huveneers, Stability and insta-
bility towards delocalization in many-body localization
systems, Phys. Rev. B 95, 155129 (2017).

[86] D. J. Luitz, F. m. c. Huveneers, and W. De Roeck,
How a small quantum bath can thermalize long localized
chains, Phys. Rev. Lett. 119, 150602 (2017).
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[88] J. Šuntajs, M. Hopjan, W. D. Roeck, and L. Vidmar,
Similarity between a many-body quantum avalanche
model and the ultrametric random matrix model (2023),
arXiv:2308.07431 [cond-mat.stat-mech].

[89] K. Pawlik, P. Sierant, L. Vidmar, and J. Zakrzewski,
Many-body mobility edge in quantum sun models
(2023), arXiv:2308.01073 [cond-mat.dis-nn].

[90] T. Thiery, F. m. c. Huveneers, M. Müller, and
W. De Roeck, Many-body delocalization as a quantum
avalanche, Phys. Rev. Lett. 121, 140601 (2018).

[91] A. Goremykina, R. Vasseur, and M. Serbyn, Analyti-
cally solvable renormalization group for the many-body
localization transition, Phys. Rev. Lett. 122, 040601
(2019).

[92] P. T. Dumitrescu, A. Goremykina, S. A. Parameswaran,
M. Serbyn, and R. Vasseur, Kosterlitz-thouless scaling
at many-body localization phase transitions, Phys. Rev.
B 99, 094205 (2019).

[93] A. Morningstar and D. A. Huse, Renormalization-group
study of the many-body localization transition in one
dimension, Phys. Rev. B 99, 224205 (2019).

[94] I.-D. Potirniche, S. Banerjee, and E. Altman, Explo-
ration of the stability of many-body localization in

https://doi.org/10.1103/PhysRevB.94.214206
https://doi.org/10.1103/PhysRevB.94.214206
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1103/PhysRevB.101.035148
https://doi.org/10.1103/PhysRevB.101.035148
https://doi.org/10.1103/PhysRevB.100.104203
https://doi.org/10.1103/PhysRevResearch.2.032045
https://doi.org/10.1103/PhysRevResearch.2.032045
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1103/PhysRevLett.124.186601
https://doi.org/10.1103/PhysRevLett.125.156601
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1103/PhysRevB.103.024203
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1103/PhysRevLett.129.260601
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevLett.127.126603
https://doi.org/https://doi.org/10.1016/j.physa.2023.129245
https://doi.org/https://doi.org/10.1016/j.physa.2023.129245
https://doi.org/10.1103/PhysRevB.107.115132
https://doi.org/10.1103/PhysRevB.108.064203
https://doi.org/10.1103/PhysRevB.108.064203
https://doi.org/10.1007/s10909-010-0205-4
https://doi.org/10.1007/s10909-010-0205-4
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevB.93.134206
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1103/PhysRevLett.114.160401
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1103/PhysRevB.97.094206
https://doi.org/10.1103/PhysRevB.97.094206
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevLett.129.060602
https://doi.org/10.1103/PhysRevLett.129.060602
https://arxiv.org/abs/2308.07431
https://arxiv.org/abs/2308.01073
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevLett.122.040601
https://doi.org/10.1103/PhysRevLett.122.040601
https://doi.org/10.1103/PhysRevB.99.094205
https://doi.org/10.1103/PhysRevB.99.094205
https://doi.org/10.1103/PhysRevB.99.224205


16

d > 1, Phys. Rev. B 99, 205149 (2019).
[95] L. Herviou, S. Bera, and J. H. Bardarson, Multiscale en-

tanglement clusters at the many-body localization phase
transition, Phys. Rev. B 99, 134205 (2019).

[96] T. Szo ldra, P. Sierant, K. Kottmann, M. Lewenstein,
and J. Zakrzewski, Detecting ergodic bubbles at the
crossover to many-body localization using neural net-
works, Phys. Rev. B 104, L140202 (2021).
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FIG. A1. Growth of the decay length ξd(t) calculated for
non-interacting Anderson model (∆A = 0) with an interact-
ing bath (∆B = 1 = ∆AB) for different numbers of random
realizations nreal. Including a single extra anomalous realiza-
tion of disorder (low disorder close to the interface) affects
the mean over realizations significantly (panel a), while the
median stays unchanged (panel b).
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Appendix A: Using median over disorder realizations

Throughout the analysis of the data supporting the
paper we have encountered issues with the convergence
of the mean over realizations due to rare thermalization
events. We have observed the largest difficulties with the
convergence for the case of an Anderson insulator in sub-
system A, ∆A = 0, connected to an interacting bath,
∆B = 1 = ∆AB , see Eq. (11) in the main text. Fig. A1
shows the decay length ξd(t) obtained by fitting an expo-
nential decay to the the g(2)(i) function calculated as a
mean (Fig. A1a) or median (Fig. A1b) over random dis-
order realizations. We have found that even with more
than 5000 realizations, including a single anomalous re-
alization in the calculation leads to a drastic change in
the mean value of g(2)(i), while not affecting the median
g(2)(i). We have checked that this originates from a huge
increase of the mean g(2)(i) function due to thermaliza-
tion caused by accidentally small values of disorder in
part of subsystem A close to the bath, i.e., an anomalous
rare event. Thus, to stay consistent with the rest of the
results presented in the main text, we use the median for
all system configurations. It is important to note that
for larger values of ξd ⪆ 1 we have observed no difference
between the mean and the variance.
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Appendix B: Comment on the method of the decay
length fitting

We define the correlation decay length ξd according
to Eq. (14) in the main text. To calculate ξd, we fit
Eq. (14) to numerical data for |g(2)(i)| > 10−8 in order
not to include numerical noise.

Another method, chosen in Ref. [103] for bosonic sys-
tem, is to calculate the first moment,

ξd,FM = −
LA∑
i=1

(LA − i)g(2)(i). (A1)

We believe this definition lacks an easily interpretable
meaning in the spin system as it has a unit of magneti-
zation multiplied by distance. Secondly, comparison be-
tween different system sizes is complicated as for a larger
system size LA there are more terms in the sum above
and the change in value of ξd,FM could be related solely to
the size change. Thus, for our purpose of measuring the
distance of bath penetration into the MBL system, we
propose an alternative to decay length obtained from ex-
ponential fit, i.e., the “center-of-mass” correlation length,

ξd,CoM =

∑LA

i=1(LA − i)|g(2)(i)|∑LA

i=1 |g(2)(i)|
. (A2)

Although the two definitions of ξd and ξd,CoM seem more
or less equivalent, practical calculation of ξd,CoM is more
sensitive to i) discreteness of the lattice, and ii) finite
size effects. To demonstrate that, we perform a simple
numerical experiment in which we assume correlations
with perfect artificial exponential decay with

ξd(t) = log10 t (A3)

and use two methods to recover this value for finite sys-
tem with LA = 14. Result is shown in Fig. A2. The
method of fitting an exponential decay gives a correct
ξd(t), and there are no finite size distortions. On the
other hand, the center-of-mass method underestimates
ξd for the smallest values of ξd ⪅ 0.5, while having an
incorrect positive curvature instead of being a straight
line. For systems deeply in the MBL phase, with a low
ξd, this could be incorrectly interpreted as a speedup due
to avalanche spreading, whereas the true decay length
grows as in Eq. (A3). Going further up to ξd ⪅ LA/5,
the linear trend on the logarithmic scale is recovered and
the center-of-mass result differs from the true value by
an additive factor of −0.5. This is not problematic, as
a constant shift does not change the conclusions about
avalanches. However, at larger values, ξd ⪆ LA/5, a clear
negative curvature starts to appear due to finite size ef-
fects. This underestimation of the decay length could be
interpreted as a lack of avalanches, in case the real de-
cay length actually speeds up. As a consequence, in the
main text we use exponential decay fits instead of the
center-of-mass method. Even though the assumption of
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FIG. A2. Decay lengths obtained by fitting an exponential de-
cay exp(−d/ξd) (solid line) (with d - distance to interface) and
calculating the center of mass, Eq. (A2) (dashed and dotted-
dashed lines) assuming an artificial model of correlations with
ξd(t) = log10 t. Center-of-mass calculations, Eq. (A2), would
falsely suggest that the long-time growth of ξd(t) is slower
than ξd ∼ log10(t), and are visibly affected by finite size ef-
fects even for ξd/LA ∼ 5. Due to discreteness of the lattice,
for ξd ⪅ 0.5, the faster-than-logarithmic growth is erroneously
implied by the CoM result.

an exponential decay is needed here, the method does
not falsely under- or overestimate the result, and change
the conclusion about avalanches.

Due to small values of the decay length ξd in Fig. 3d in
the main text, using the exponential fit revealed ”jumps”
of ξd in time once new sites reached the threshold of
|g(2)(i)| = 10−8 and started to be included in the fit. In
order to avoid this artifact, we calculated ξd,CoM, and
translated the result back to ξd by utilizing the empirical
relation between ξd and ξd,CoM found in Fig. A2. In this
way we are able to compare the result with the other
results obtained solely by fitting an exponential decay.

Appendix C: Conditions for observing termination
of avalanches

In Fig. 3c in the main paper we have observed a rather
unintuitive behavior: for WA = 6, ξd(t) continues its
growth until the latest times as ξd(t) ∝ ln(t), in contrary
to other measures from literature that suggest strong
MBL in this regime of disorder strength and sizes. Thus,
we speculated that this behavior is caused by either an
initial state not being an eigenstate of HA assumed in
theory from Sec. II or by interactions. Results of these
investigations are presented in Fig. A3.

Figure A3a with the Anderson insulator (∆A = 0)
starting from an initial Néel state shows that the long-
time dynamics does not disappear even in the case of no
interactions. This is surprising as Anderson localization
suppresses transport through the system. This suggests
the explanation of the long-time growth of ξd(t) for the
MBL system in Fig. 3c of the main text - it is a feature
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FIG. A3. Correlation decay length ξd(t) calculations in different regimes of the XXZ model, supplementing Fig. 3 in the main
text. Panel a: Even the localized Anderson insulator (∆A = 0) shows a steady increase of the decay length with time for an
initial Néel state. Panel b: Anderson insulator and an initial state being a product of an Anderson orbital in subsystem A (we
choose energy EA closest to 0) and Néel state in the bath allows us to observe saturation in ξd(t). Panel c: Starting from an
special initial state still shows thermalization in the interacting system in its ETH regime, WA = 2.5. The same is observed in
the critical regime with WA = 4 in panel d. In all cases, ∆B = 1 = ∆AB .

of the dynamics and not an indication of the quantum
avalanche. Indeed, setting the initial state in the Ander-
son insulator case to the product of an Anderson orbital
(eigenstate with energy EA which we choose to be closest
to 0) and the Néel state in the bath, Fig. A3b, we restore
the saturation of ξd(t) growth at large times.

Finally, we check whether the special choice of the ini-
tial state affects the behavior of the model in the er-
godic and critical regime. In Fig. A3c we demonstrate
that for WA = 2.5 in the ergodic regime there is a speed
up of ξd(t) beyond ξd(t) ∝ ln(t), a signature of a quan-
tum avalanche. The same happens in the critical regime
WA = 4 in Fig. A3 but the speed up appears later.

Appendix D: GOE Hamiltonian - magnetization
conservation and rescaling

In order to reproduce the finite spin chain bath by the
GOE, the HB,GOE matrix is supposed to conserve the
Z component of the total magnetization in the whole
system. The prescription we use for the GOE matrix
construction is described as algorithm 1.

Furthermore, we rescale the energy spectrum of a GOE
matrix from −

√
2 ≤ E ≤

√
2 to replicate the middle part

of energy spectrum of the weakly disordered XXZ chain.
We calculate the spectrum of the XXZ chain and find
α = (p95 − p5)/(2

√
2) where px is the x-th percentile of

the energy distribution. Values of α for different system
sizes and disorder values are listed in Table A1. Result
of the spectrum rescaling is presented in the main paper
as Fig. 4. We have also verified in Fig. A4 that the total
spectrum of the combined XXZ and GOE Hamiltonians,
given by Eq. (16), reproduces the original spectrum of
the XXZ model with two regions of different disorder
amplitudes, Eq. (12).
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remains approximately unchanged. Here, LA = 10. Single
disorder realization.

Appendix E: Further numerical experiments

In this section of Appendix, we perform further nu-
merical studies of the interplay of the system and bath
parameters and their effect on thermalization.

1. Fixed bath, changing subsystem A size

In Fig. A5 we check how the long-time value of ξd(t)
changes with LA for two bath sizes LB = 2, 6. In partic-
ular, we observe that in the ETH phase (WA = 2.5) ξd
grows with LA faster than linearly. This means that for a
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Algorithm 1: Embedding the GOE Hamiltonian in a Z-conserving basis

basis← Z-conserving basis of total dimension N , given by integers which contain spin configurations in binary format.
HXXZ ← Standard XXZ Hamiltonian matrix of dimension N ×N with hopping, interaction and disorder for the first
LA spins, expressed in basis. It also includes hopping and interaction for the pair of spins LA (last in subsystem A)
and LA + 1 (first in subsystem B).

α← GOE spectrum rescaling factor from Table A1.
A← Matrix of 2LB × 2LB random Gaussian variables of mean 0 and variance 1.
G← 0.5 ∗ (A + AT ) // GOE matrix of (excess) dimension 2LB × 2LB.

maskB ← (1≪ LB)− 1 // Uses binary left shift ≪. Binary number that has 1 on the B part of the spin

configuration and 0 on A, eg. 000011 for LA = 4, LB = 2.

X ← Empty list of dimension N .
for i in range(N) do

// To find normalization factor of the GOE matrix (number of non-zero elements) so that the final spectrum is

the Wigner semicircle −
√
2 < E <

√
2.

X[i]← basis[i]&maskB // Binary AND. Gives configuration on subsystem B.

end
n← Number of unique binary numbers in X.
for i in range(N) do

configAi← basis[i]≫ LB

configBi← basis[i]&maskB
for j in range(N) do

configAj ← basis[j]≫ LB

configBj ← basis[j]&maskB
if configAi == configAj then

HXXZ [i, j]← HXXZ [i, j] + 0.5 ∗ α ∗G[configBi, configBj]/
√
n // Matrix elements of G selected based on

integers uniquely defining configuration in the B part of the chain.

HXXZ [j, i]← HXXZ [i, j]
end

end

end
return HXXZ

W L scale α

0 2 0.354
4 0.837
6 1.113
8 1.353
10 1.574
12 1.720

0.5 2 0.428
4 0.927
6 1.232
8 1.459
10 1.666
12 1.823

1 2 0.600
4 1.115
5 1.468
8 1.684
10 1.915
12 2.091

TABLE A1. Factors used to rescale the GOE Hamiltonian.
In the main paper, values for W = 0.5 were used.

larger system, a larger fraction of the system is correlated
with the bath. Extrapolating this to the large system size
limit, LA ≫ 1, almost the entire system is thermalized

by a finite bath before reaching the Heisenberg time tH .
On the other hand, disorder values WA = 4, 6, 10 give a
linear dependence of ξd on LA and a constant fraction
of the system stays localized for each setting, not being
affected by the presence of the bath.

2. Fixed bath and LA, changing WA

Restricting ourselves to a smaller system size of LA =
14, LB = 6, we check how the late-time decay length
depends on the disorder strength WA. The result is pre-
sented in Fig. A6. This plot shows that the decay length
decreases very fast between WA = 2.5 to WA ≈ 5, and
then stays approximately constant around value ξd ≈ 0.5
for higher WA. It suggests that MBL prevents the spread
of avalanches at strong disorder, yet no sharp transition
can be identified due to finite sizes of the systems of in-
terest.

Appendix F: Comparison with other measures -
entanglement entropy

In order to get a view on thermalization process from
another point, we calculate the von Neuman entangle-
ment entropy of the system. In particular, we are inter-
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function of A system size LA, averaged over time window
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LB = 6 enhances thermalization. However, if the growth is
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will occupy at most a finite fraction of the chain A, and some
localized sites far from the interface will not be affected by the
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FIG. A6. Fitted bath correlation decay length ξd as a func-
tion of disorder strength WA. LA = 14, LB = 6.

ested in the number entropy part, which in the spinless
fermions description of the XXZ chain measures the un-
certainty in the number of particles in the subsystem.
The formula reads

Snum(t) = −
∑
n

p(n) ln p(n), (A1)

where p(n) is the probability of total magnetization
n =

∑
i∈cut Zi of a chosen subsystem of the whole sys-

tem, and ρ(n) is the block of the reduced density matrix
in magnetization n sector of the Hilbert space.

In Fig. A7 we notice that in the case of no bath
(WB = WA = 4, LA = 12, LB = 10), the number entropy
grows with time slower than ln t. Bath with WB = 0.5
causes a speedup in the number entropy growth. While
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FIG. A7. Number entropy SNum for LA = 12, LB = 10,
WA = 4, and WB = 0.5 (solid lines) or WB = 4 (transparent
lines). Depending on the position of the cut, a speedup be-
yond ∝ ln(t) is observed in the case WB = 0.5 sooner or later,
whereas the growth is slower than logarithmic when WB = 4.
This suggests that due to the presence of the bath, a thermal
avalanche is traveling through the system. Thus conclusions
from the analysis of the number entropy and correlation de-
cay length are fully compatible.

the first speedup for cut between sites 11 and 12 can
be observed around t = 10, the further the cut posi-
tion is, the longer it takes for the speedup to be visi-
ble. Nevertheless, entanglement entropy for the furthest
cut from the interface obtains a speedup beyond loga-
rithmic growth when the bath is present. This can be
interpreted as an avalanche reaching the boundary of the
system. This conclusion stays in agreement with the re-
sult obtained for the same system by measuring simpler
two-body correlation functions and their decay length,
shown in Fig. 3b in the main paper.

Appendix G: Universal scaling of time with disorder

Here we present details on the determination of op-
timal constant a in a universal time rescaling law t →
te−aWA in the discussion of Sec. V.

To find a numerically, we fix the value of a, rescale time
t→ te−aWA , and perform a fourth degree polynomial fit
to the imbalance from Fig. 7 on the logarithmic time
scale. The fit is performed either for a small interval of
disorder values WA, or for all data. Root-mean-squared
error (RMSE) of this fit measures the quality of a as a
potential constant explaining the trends in the data that
can be captured by a continuous curve. We repeat the
fitting for a range of different values of a, and the optimal
a is the one with the minimal RMSE of the fit.

Results for fitting a to the data from our disordered
XXZ model with a bath, decsribed by Eq. (12) in the
main text, are presented in Fig. A8. When the fit is
performed for the strongest disorder amplitudes up to
WA = 13 (Fig. A8a), the optimal a has values around
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a ≈ 6.5 − 11, the RMSE minima shift significantly when
changing the range of disorders used for fitting, and the
minima are very shallow i.e. a is not properly defined.
Fitting to the data corresponding to the weakest disorder
amplitudes, down to WA = 2, gives a different result:
optimal a stays around 6−7.5 and the minima are deeper
(see Fig. A8b). Optimal a for all considered ranges of
disorder are summarized in Fig. A8c: constant a drifts
between different ranges of disorder amplitudes used for
fitting, and the two regimes of large and small disorder
values give inconsistent a. This means that the model
lacks a universal scaling of time t→ te−aWA .

The same analysis, repeated for the kicked XXZ model

of Peacock and Sels [104], confirms the presence of a sin-
gle universal constant a that drifts much less with the dis-
order interval considered. Figures A9a (b) show RMSE
of the fourth degree polynomial fit to the data which has
large (small) disorder values. The minima are well de-
fined in both cases, and the optimal a stays around 2
with an absolute error of around 0.3. Thus, there ex-
ists a single a that is universal irrespective of the dis-
order strength, in full agreement with the statements of
Ref. [104]. It is interesting, though, that all trends ob-
served in this case in Fig. A9c, are reverse to trends for
the time-independent model, Fig. A9c. At present, it is
not clear to us why such a change in trend is present.
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a b c

FIG. A8. Disordered XXZ model. a, b Root-mean-squared error (RMSE) of the 4-th degree polynomial fits to imbalance from
Fig. 7 with rescaled time axis according to t → te−aWA . Lowest values of the error, marked by crosses or stars, correspond
to datapoints forming a universal curve due to rescaling time. Panel a shows fit errors when fitting the curve for the largest
imbalances - interval of disorder amplitudes used for fitting is marked by the color, see legend. Minima are very shallow when
fitting at large disorder values, signaling ambiguity of optimal a in that case. Panel b shows the RMSE of the fit limited to
the data for smallest disorder values, down to WA = 2.0. Panel c: Optimal a that describes universality shifts from around
6.5 to 11 when fitting to largest disorders. It stays around 6− 7 when fitting to smallest disorder values, signaling the lack of
a globally universal behavior for all disorder values. Fit was performed between times t = 90 to t = 9820 to not include initial
oscillations of the imbalance, and for disorder values WA = 2, 3, 4, ..., 13. In all cases, WB = 0.5.

a b c

FIG. A9. Same as in Fig. A8 but for the kicked XXZ model. Minima in panels a, b are well defined and do not change
significantly depending on the fitting interval of disorders WA. Panel c shows that an optimal a minimizing the RMSE has an
inverse trend when compared to the time-independent case in Fig.A8. Nevertheless, its values stay consistently around 2, while
in the time-independent case they drift from 6.5 to 11 with the change of fitting disorder interval. Here, WA = 4, 6, 8, 10, 12,
and WB = 0.5.
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