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Abstract

Speculative Decoding is a widely used tech-
nique to speed up inference for Large Lan-
guage Models (LLMs) without sacrificing qual-
ity. When performing inference, speculative
decoding uses a smaller draft model to gener-
ate speculative tokens and then uses the target
LLM to verify those draft tokens. The speedup
provided by speculative decoding heavily de-
pends on the choice of the draft model. In this
work, we perform a detailed study comprising
over 350 experiments with LLAMA-65B and
OPT-66B using speculative decoding and de-
lineate the factors that affect the performance
gain provided by speculative decoding. Our ex-
periments indicate that the performance of spec-
ulative decoding depends heavily on the latency
of the draft model, and the draft model’s capa-
bility in language modeling does not correlate
strongly with its performance in speculative de-
coding. Based on these insights we explore a
new design space for draft models and design
hardware-efficient draft models for speculative
decoding. Our newly designed draft model for
LLAMA-65B can provide 60% higher through-
put than existing draft models and can general-
ize further to the LLAMA-2 model family and
supervised fine-tuned models.

1 Introduction

In recent years, Large Language Models (LLMs)
have emerged as a cornerstone of modern compu-
tational linguistics, offering unprecedented capa-
bilities in generating and interpreting human lan-
guage. As the demand for faster and more effi-
cient language processing grows, understanding
and optimizing the inference throughput of these
models becomes increasingly crucial. Decoder-
only LLMs (Brown et al., 2020; Touvron et al.,
2023a,b) use auto-regressive decoding to perform
inference. Auto-regressive decoding is known to be
hardware inefficient (Miao et al., 2023; Liu et al.,

*Correspondence: Minghao Yan <myan@cs.wisc.edu>

2023a), leading to poor resource utilization and low
throughput during inference.

Several methods (Yu et al., 2022; Wang et al.,
2020; Kwon et al., 2023; Dao et al., 2023; Hong
et al., 2023) have been studied to optimize the serv-
ing of LLMs. One promising approach to improve
the throughput for serving LLMs without accuracy
loss is speculative decoding (Stern et al., 2018; Xia
et al., 2023a; Leviathan et al., 2023). When us-
ing speculative decoding to serve an LLM (usually
100s of billion parameters), a draft model (a signifi-
cantly smaller LLM) is used to generate speculative
tokens. The target LLM model then verifies the out-
put of the draft model and only outputs tokens that
match its output. In the case of speculative decod-
ing, the target LLM for inference acts as a verifier
for the draft model. By leveraging faster inference
of smaller draft models, speculative decoding turns
autoregressive decoding on the target LLM into a
more hardware-friendly batched operation (similar
to “prefill”), thereby increasing throughput while
preserving accuracy.

Given the promised benefits of speculative de-
coding, this paper first focuses on understanding
the key factors that dictate the throughput improve-
ments that can be obtained. We perform a com-
prehensive benchmarking study and profile spec-
ulative decoding to characterize bottlenecks. We
perform over 350 experiments, using LLMs like
LLAMA-65B, OPT-66B, and fine-tuned chat mod-
els such as Vicuna-33B (Chiang et al., 2023) as
target models and LLAMA and OPT families as
draft models, ranging from ≈ 5× to 528× fewer
parameters than the target models. Our findings
show that the key bottleneck in speculative decod-
ing is the draft model’s latency, highlighting the
need to optimize draft model designs.

Next, we find that existing draft models, which
are typically designed only for improving accuracy
in a given parameter budget, are sub-optimal for
maximizing the throughput with speculative decod-
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Figure 1: This figure shows the speculative decoding process. In vanilla LLM inference, after the prompt is
processed into KV caches (Prefill phase), LLM generates the output token by token in an autoregressive manner
(Autoregressive generation phase). In speculative decoding, a draft model is first used to generate n candidate
tokens at each step (Draft token generation phase). The LLM verifies the candidate tokens and accepts k (k ≤ n)
tokens (LLM verification phase). Since LLM knows all n candidate tokens in advance, this step is identical to
a prefill step of length n. In both cases, this process is repeated until either an end-of-sequence (EOS) token is
generated or the maximum generation limit has been reached.

ing. From our experiments, we first observe that
the draft model latency is bottlenecked by model
depth, and higher model depth leads to increased
latency (Section 3.2). Second, we also find that
draft model accuracy on language modeling tasks
does not correlate strongly with its performance
in speculative decoding (Section 3.3), i.e., a draft
model with higher accuracy on language modeling
task can have similar TAR to a model with lower
accuracy. Based on these two insights, we propose
designing new draft models that trade increased
depth for width (thus retaining the same parame-
ter count) and show that our new draft models can
boost inference throughput using speculative de-
coding by over 60%. Finally, we show how pruning
methods like Sheared-LLAMA (Xia et al., 2023b)
can generate smaller draft models with favorable
configurations.

We have open-sourced our code 1 and distilled
models2 on Github and HuggingFace.
Our Contributions:

• To the best of our knowledge, we are the first
work to conduct comprehensive experiments
on serving the open source LLAMA-65B and
OPT-66B models utilizing speculative decod-
ing, conducting more than 352 experiments
to elucidate the factors one needs to consider
while selecting and designing a draft model.

• We show the need for a systematic redesign
of draft models used for speculative decod-
ing. We demonstrate that using accuracy
on language modeling tasks to choose the
draft model for speculative decoding can lead
to suboptimal choices, and our experiments

1https://github.com/uw-mad-dash/
decoding-speculative-decoding

2https://huggingface.co/minghaoyan/

highlight that redesigning draft models can
improve the throughput of speculative de-
coding by up to 60%. Based on these in-
sights, our pruned LLAMA-796M provides
up to 60% higher throughput than Sheared-
LLAMA-1.3B while using only 0.8% of to-
kens (0.42B vs 50.42B) used to train Sheared-
LLAMA-1.3B. We also show that LLAMA-
796M works well for other LLMs, such as
LLAMA-2 families of models and supervised
fine-tuned models (Vicuna-33B).

• Finally, we also study how improvements in
models and hardware can further impact draft
model design for future generations of LLMs.
(Section 5.1).

2 Background and Related Work

First, we provide a high-level overview of LLM
inference and the use of speculative decoding.

2.1 Background
A decoder-only LLM performs inference in two
phases: a prefill phase and an autoregressive-
decoding phase. In the prefill phase, the LLM is
initialized with a context or prompt, formulated as
C = {c1, c2, ..., cn}, where C represents the input
context and n the length of the prefill. In the prefill
phase, the model processes the whole input context
in parallel and performs next-word prediction. Dur-
ing the autoregressive-decoding phase, the model
generates new text sequentially, one token at a time,
building upon the context provided in the prefill
phase. Due to its sequential nature, the autoregres-
sive decoding phase is widely known to be mem-
ory bandwidth bound on modern GPUs (Leviathan
et al., 2023).

To improve hardware utilization and throughput,
Schuster et al. (2022); Chen et al. (2023) proposed
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Figure 2: This figure shows the throughput of different draft models from the OPT series. As model size increases,
throughput decreases due to higher inference latency despite consistent increases in TAR.

speculative decoding, where a significantly smaller
draft model generates multiple tokens, and the tar-
get LLM performs verification on the generated
tokens in parallel. The verification is akin to pre-
fill stage in LLM inference. As long as more than
one token is accepted on average, speculative de-
coding can potentially provide speedups. Figure 1
shows how inference using speculative decoding
differs from auto-regressive decoding. It is widely
reported (Miao et al., 2023; Liu et al., 2023a) that
the number of tokens accepted by the target model
influences the speedup provided by speculative de-
coding.

In this work, we conduct a comprehensive em-
pirical study to identify the performance bottleneck
of speculative decoding and identify strategies to
design the best draft model for a given LLM.

2.2 Related Work

LLM Inference There has been significant
amount of work on improving LLM serving includ-
ing work in Orca (Yu et al., 2022), LightSeq (Wang
et al., 2020), DeepSpeed Inference (Aminabadi
et al., 2022), PagedAttention (Kwon et al., 2023),
FlashDecoding (Dao et al., 2023) and FlashDecod-
ing++ (Hong et al., 2023). These works seek to
improve LLM inference by better utilization of
hardware. There are lines of work that have looked
at pruning LLMs based on input context to speed
up inference (Liu et al., 2023b) or using shallower
and wider neural networks for machine transla-
tion (Kasai et al., 2020). However, in this work,
we focus on speculative decoding (Leviathan et al.,
2023; Chen et al., 2023; Santilli et al., 2023), which
has been inspired by speculative execution in hard-
ware (Hennessy and Patterson, 2011).

Speculative Decoding Several prior works have
studied ways to improve speculative decoding. Liu
et al. (2023a) seeks to continuously train the draft
model on the output of the target model to improve
the token acceptance rate. However, training on the
same hardware during inference can be challeng-
ing, depending on the inference request rate and
hardware utilization. Predictive Pipeline Decod-
ing (PPD) (Yang et al., 2023) was one of the first
methods to introduce the use of early exit (Schuster
et al., 2022) from the target model to obtain draft
tokens. Similar to PPD, Draft&Verify (Zhang et al.,
2023) seeks to combine the use of early exit with
speculative decoding, where the early exit (Schus-
ter et al., 2022; Bae et al., 2023) from the target
model acts as a draft token. A drawback of these
methods is that the maximum benefit in latency
is capped. For example, in speculative decoding,
we can use draft models that are orders of magni-
tude (e.g., ≈100x-1000x) smaller than the target
model, while early exit methods usually exit af-
ter performing inference over at least a fourth of
the model (Schuster et al., 2022), thus, limiting
the gain in throughput. Other lines of work, such
as Medusa (Cai et al., 2024), propose fine-tuning
multiple generation heads within the LLM that do
not match the LLM output distribution exactly but
maintain the generation quality.

In this work, we aim to understand how the
choice of draft model affects the throughput pro-
vided by speculative decoding. We use insights
from benchmarking to design draft models that
maximize speculative decoding throughput.

3 Understanding Speculative Decoding

To study the effects of the choice of the draft model,
we first perform a detailed study on serving OPT-
65B and LLAMA-65B (two popular LLMs) using

3
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2420161284
Number of layers

0.000
0.002
0.004
0.006
0.008
0.010
0.012

La
te

nc
y 

(s
)

Single-step Decoding Latency vs Layer Depth

(b) In this figure, we fix layer width and increase the number
of layers. The number of parameters in the model increases
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(c) In this figure, we fix model depth and increase the number
of attention heads in each layer. The number of parameters in
the model increases from 350M to 1B.

Figure 4: This figure shows microbenchmarks on how
model depth and width affect decoding latency.

speculative decoding.

Setup. We implement speculative decoding in
the Microsoft Deepspeed library (Microsoft, 2023).
We use the same setup as SpecInfer (Miao et al.,

2023), first using the draft model to generate draft
tokens and then using the target model to verify
the output of the draft model. We set the batchsize
to 1 and use greedy decoding. For all our exper-
iments, we use 4 Nvidia 80GB A100 GPUs. We
perform our experiment on the OPT and LLAMA

base models (Zhang et al., 2022; Touvron et al.,
2023a) on MMLU (Hendrycks et al., 2020), Hel-
laswag (Zellers et al., 2019), and Chatbot Arena
datasets (Zheng et al., 2023). For MMLU, we use
the standard 5-shot setup. The remaining datasets
were evaluated in a zero-shot setting. We use OPT-
66B and LLAMA-65B as the target LLM for OPT
and LLAMA series and use OPT-125M, OPT-
350M, OPT-1.3B, OPT-2.7B, and OPT-6.7B as
draft models for OPT series, and LLAMA-7B, and
LLAMA-13B as draft models for LLAMA series.

Metrics. To quantify the performance of different
draft models when performing inference on a target
model, we measure throughput (tokens generated
per second) and TAR (Figure 2). We note that the
primary goal of speculative decoding is to improve
throughput.

3.1 Bottlenecks in Speculative Decoding
To understand the throughput of LLMs, we first
plot a latency breakdown of speculative decoding
in Figure 3. We show the latency breakdown be-
tween the draft token generation phase and the tar-
get model verification phase for serving OPT-66B
model when using various variants of OPT as the
draft model. A similar figure for LLAMA models
(Figure 9) can be found in the Appendix.

In Figure 3, the time taken by the draft model
for token generation increases with an increase in
model sizes, going from 6.23 ms for OPT-125M to
18.56 ms for OPT-6.7B. However, even the small-
est draft model, OPT-125M, still takes significant
time in a speculative decoding iteration to perform
draft model autoregressive decoding. Though the
target LLM has a higher latency in each decoding
iteration, it only has to perform one prefill oper-
ation on the entire candidate token sequence. In
contrast, the draft model has to perform multi-step
autoregressive decoding sequentially, creating a
bottleneck. This highlights why draft model la-
tency is one of the key bottlenecks in speculative
decoding performance. We note that while Figure 3
uses lookahead values from 6 to 8, depending on
the draft model, even if we scale lookahead length
to hundreds of tokens, the target model verifica-
tion time stays constant. The draft model latency

4



remains the bottleneck due to the difference in effi-
ciency between prefill and auto-regressive decod-
ing. Next, we investigate how we can reduce draft
model latency.

3.2 Understanding Draft Model Latency

When studying the breakdown in latencies for spec-
ulative decoding in the previous section, we ob-
served something intriguing in Figure 3. We see
that OPT-350M has a similar draft-model latency
as OPT-1.3B, a model almost four times its size.
This indicates that OPT-350M is inefficient, and
we can design better models.

We perform three microbenchmarks to validate
our hypothesis and analyze decoding throughput:
First, we fix the total model parameters at 350M
and see how changing layer width and depth would
affect decoding latency. Then, we fix either the
layer width or depth to be the same as in OPT-
350M and modify the other to see how latency
scales with wider layers or shallower models.

Figure 4 shows the results of these three bench-
marks. In the first benchmark (Figure 4a), we vary
the number of attention heads, feed-forward di-
mension, and layers in a model to keep the model
parameters at around 350M. The detailed configu-
ration for each model can be found in Table 6 in
the Appendix. The plot shows that the autoregres-
sive decoding latency is linear in terms of layer
depth despite each model having roughly the same
parameter count.

The same is true for the second benchmark (Fig-
ure 4b). The original OPT-350M model has 24
layers. As we reduce the number of layers while
keeping all other configurations the same, the au-
toregressive decoding latency decreases linearly.
On the other hand, the third benchmark (Figure 4c)
shows that as we scale the number of attention
heads up from the original OPT-350’s 16 heads to
36 heads, the decoding latency stays almost con-
stant even if layer width has doubled.

These experiments indicate more latency-
efficient model architectures with the same param-
eter budget exist. Changing the number of layers
and attention heads not only changes the through-
put but also affects the quality of predictions made
by the model. We will next study how changes in
model depth and width affect model accuracy and
TAR and the correlation between them.
3.3 Understanding Draft Model TAR

In prior work (Leviathan et al., 2023), speculative
decoding throughput is modeled by 1−αγ+1

(1−α)(γc+1) ,

where 1−αγ+1

1−α represents the improvement factor
(expected number of tokens matched in each itera-
tion) and γc+1 represents the combined latency of
draft and target models. Therefore, tokens matched
per iteration (also known as TAR) have a linear
effect on speculative decoding throughput.

In this section, we perform experiments to un-
derstand the correlation between the accuracy of
a model on popular NLP tasks and its TAR. We
plot the accuracy of a model against the TAR it
achieves in Figure 5. Surprisingly, we find that
TAR has little correlation to the model’s accuracy
on a task. We believe this lack of correlation is due
to the majority of tokens in a sentence not being
content words, which do not affect the accuracy of
the model on a specific task.

For example, if a user asks a model: What is
the capital of Uruguay? An LLM may correctly
answer: The capital of Uruguay is Montevideo.
But a draft model, without retaining this much
knowledge, may respond incorrectly: The capital
of Uruguay is Paris. For model accuracy evalua-
tion, this would be a failure. However, this would
be a good set of candidate tokens in speculative
decoding, as the first five words are generated cor-
rectly. Therefore, as shown in Figure 5, TAR in-
creases sub-linearly with an increase in model size,
irrespective of its accuracy on the task. Results
on more datasets can be found in the Appendix
(Figure 10).

Combining insights from these experiments,
we observe that current draft models are not de-
signed to maximize speculative decoding through-
put. Next, we will show how to design new draft
models that outperform existing models.

4 Draft Model Design for Speculative
Decoding

The above results indicate that to improve the
throughput of speculative decoding, it is necessary
to improve the latency of draft models, i.e., can we
design a model that provides a similar TAR at a
lower inference cost? In the next section, we study
the possibility of such a design based on the above
insights.

4.1 Draft Model Design

In section 3.1, we show that model depth bottle-
necks draft model latency, while in section 3.3, we
show that a draft model’s performance in specula-
tive decoding is largely irrelevant to its accuracy on
language modeling. These two insights prompted

5



4.4 4.5 4.6 4.7 4.8 4.9 5.0
TAR

25

50

75
Ac

cu
rc

y

125M 350M
1.3B2.7B

6.7B
OPT Models Accuracy vs TAR on Hellaswag

(a) Model accuracy vs TAR for OPT models

3.8 4.0 4.2 4.4 4.6
TAR

25

50

75

100

Ac
cu

ra
cy 1.3B

2.7B 7B 13B

LLaMA Models Accuracy vs TAR on Hellaswag

(b) Model accuracy vs TAR for LLAMA models
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Figure 6: This figure shows the throughput scaling of different draft models from the LLAMA series on MMLU
and Hellaswag. Asterisks represent models that are pruned but not fine-tuned. The red asterisks represent model
configurations that we designed.

us to test if we can build a wider and shallower
network and study how it affects latency and TAR.

Method: We leverage recent advances in struc-
tured LLM pruning, Sheared-LLAMA (Xia et al.,
2023b), which provides a framework to prune
larger models to a specified smaller configuration.
Sheared-LLAMA (Xia et al., 2023b) learns layers,
attention heads, and neurons to mask from the large
model to prune it into the specified small model.
The flexibility enables us to prune LLAMA-7B
into desirable model configurations. In our exper-
iments, we prune our models from LLAMA-7B
using 0.4B tokens sampled from the RedPajama
Dataset (Computer, 2023) (the same as in Sheared-
LLAMA (Xia et al., 2023b)), but skipped the ex-
pensive fine-tuning step on 50B more tokens (and
hence the name NoFT). We find that this is suffi-
cient to achieve a significantly higher throughput.

Deep vs Wide Model Comparison: Our goal
is to start with LLAMA-7B and produce a wider
version of Sheared-LLAMA-1.3B while keeping
the number of parameters the same as in Sheared-
LLAMA-1.3B. We choose Sheared-LLAMA-1.3B
since it achieves the highest throughput in our
benchmark among existing models (Blue dots in
Figure 6). We use two configurations: the first con-
figuration was provided by the Sheared-LLAMA

Table 1: This table shows the model configuration of
the two pruned models. Here l represents the number
of layers, h represents the number of attention heads,
dinter represents intermediate size, and dmodel represents
model dimension.

Model l h dinter dmodel

NoFT-1.3B 24 16 5504 2048
NoFT-Wide-1.3B 12 20 9280 2560
NoFT-Wide-796M 5 32 11008 4096
NoFT-Wide-543M 3 32 11008 4096
NoFT-Wide-290M 1 32 11008 4096

authors (NoFT-1.3B), and we designed the second
configuration (NoFT-Wide-1.3B) to optimize for
better speculative decoding throughput. Table 1
shows the detailed configuration of the two models.
We slash the number of layers by half, from 24 to
12, and keep the total parameter count roughly the
same by increasing the intermediate size from 5504
to 9280, the number of attention heads from 16 to
20, and the corresponding model dimension from
2048 to 2560.

Figure 6a, 6b, and 8b show that we can achieve
up to 30% higher speculative decoding throughput
using only 0.8% of tokens used to train Sheared-
LLAMA-1.3B.

Table 2 also shows the latency and TAR of the
two sheared models on MMLU. The deep variant

6



Table 2: This table shows the speculative decoding
throughput and the latencies to generate 8 tokens us-
ing the two pruned draft models.

Draft Model TAR Latency (ms) Tput (tokens/s)

NoFT-1.3B 3.81 105.1 23.10
NoFT-Wide-1.3B 3.70 53.5 32.59

(NoFT-1.3B) can achieve 3% higher TAR, but the
wide variant (NoFT-Wide-1.3B) reduces draft la-
tency by 49%, improving overall throughput by
41%. We found results are very similar for other
datasets, such as Chatbot Arena (Figure 8b in the
Appendix) and Hellaswag (Figure 6b). This exper-
iment shows a need to rethink the model design
space for speculative decoding, where we should
specifically design models for higher throughput.

Draft model scaling: To understand the limita-
tion of draft model depth-width tradeoff in spec-
ulative decoding, we created three configurations,
NoFT-Wide-796M, 543M, and 290M, that use the
same number of attention heads, intermediate size,
and model dimension as LLAMA-7B, but reduce
the number of layers to 5, 3, and 1, respectively.
This is the widest configuration possible using the
Sheared-LLAMA pruning scheme.

Figure 6 shows that the NoFT-Wide-796M
model provides another 20% improvement in
throughput over NoFT-Wide-1.3B and demon-
strates up to 60% throughput improvement over the
existing Sheared-LLAMA-1.3B model. Though
the smaller NoFT-Wide-543M provides up to 40%
throughput improvements over Sheared-LLAMA-
1.3B, it has a lower throughput than NoFT-Wide-
796M.

Results in figure 6 show that reducing the layer
count to less than 5 layers would cause the model’s
alignment capability to reduce dramatically. In
addition, as we reduce models to 5 layers, target
model latency takes more than 80% of the time
in a decoding cycle. Therefore, further reducing
the latency would only provide a marginal gain
in overall decoding latency since the target model
latency remains constant. In this case, the drop
in TAR significantly outweighs the latency gain,
causing decoding throughput to decrease.
4.2 Ablation Studies

In this section, we study if using a different or
supervised fine-tuned target model would affect
our draft model’s performance.

Varying the target model: Prior experiments
are performed with LLAMA-65B as the target

Table 3: This table shows the tokens accepted per iter-
ation when we use different target models. The draft
model we use is NoFT-Wide-796M.

Target Model MMLU Hellaswag Chatbot Arena

LLAMA-65B 2.66 2.74 2.61
LLAMA-2 70B 2.55 2.68 2.64

Table 4: This table shows the throughput of specula-
tive decoding (tokens/s) with Vicuna 33B as the target
model.

Draft Model MMLU Hellaswag Chatbot Arena

Tiny-LLAMA-1.1B 20.78 18.25 18.73
NoFT-Wide-796M 29.87 26.55 25.61

model. As newer generations of models roll out, we
would like to see if our conclusion holds on newer
generations of models. In this ablation study, we
evaluate our best NoFT-Wide-796M model against
LLAMA-2-70B model. Table 3 shows that though
our NoFT-Wide-796M is distilled from LLAMA-
7B, it can achieve a similar token acceptance rate
when the target model is from LLAMA-2 family.
We believe the similarity in performance is due to
similar training datasets. This shows that our dis-
tilled model can be applied to future families of
models based on similar training recipes with little
to no changes.

Supervised fine-tuned models: Prior exper-
iments are performed on base models to study
the scaling of draft models. In practice, super-
vised fine-tuned models are adopted for their better
instruction-following capabilities. In this section,
we compare our best NoFT-Wide-796M model to
Tiny-LLAMA-1.1B with Vicuna 33B as the target
model. Note that our NoFT-Wide-796M is pruned
from the base version of LLAMA-7B without fine-
tuning. Table 4 shows that NoFT-Wide-796M out-
performs Tiny-LLAMA-1.1B in all cases by up to
45%. While Tiny-LLAMA-1.1B has a TAR 35%
and 32% higher than NoFT-Wide-796M on MMLU
and Hellaswag, respectively, its latency is 4x higher
due to having 22 layers in the model compared
to NoFT-Wide-796M with merely 5 layers. This
ablation study also demonstrates how speculative
decoding is bottlenecked by draft model depth and
that a draft model obtained from the non-fine-tuned
base model, when appropriately designed, can still
provide significant speedup over draft models fine-
tuned for chatbot purposes.
5 Discussion
Next, we discuss how our insights can change if
the models or the underlying hardware change.
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Table 5: This table shows the latency reduction needed
for larger draft models to achieve parity throughput with
OPT-125M on MMLU.

Model Latency (ms) Parity Latency Reduction (%)

125M 43.7 43.7 0
350M 79.8 50.6 36.6
1.3B 87.1 58.7 32.6
2.7B 114.3 49.8 56.4
6.7B 139.5 68.2 51.1

5.1 Future Draft Model Design
To study how compute and performance changes
can lead to different choices of draft models, we use
a performance model. The original speculative de-
coding (Leviathan et al., 2023) model 1−αγ+1

(1−α)(γc+1)
can be simplified to the following to remove the
unnecessary assumption of mutual independence
between generated tokens in a sequence:

Tput =


TAR

(tdtarget + tddraft)
if TAR > 1,

1

(tdtarget + tddraft)
if TAR ≤ 1.

In the Appendix (Figure 12), we show that this sim-
plified formula almost perfectly captures the real
speculative decoding throughput. Here, td repre-
sents the latency to generate d tokens autoregres-
sively. In this section, with the aid of the perfor-
mance model, we provide quantitative answers to
several questions: First, we study the improvement
in TAR a larger draft model needs to be provided to
compensate for the additional inference cost. Next,
we study how much improvement in latency is re-
quired to change the choice of the draft model.
Improvement in TAR needed to switch to a
larger draft model model. In Figure 2, we ob-
served that with existing datasets and models, we
are better off with the smallest model as the draft
model, e.g., OPT-125M, than choosing a larger
model. However, there is a possibility that the TAR
difference will become greater for new datasets. In
Figure 7, we plot the improvement in TAR (extra
TAR), which larger models in the OPT model fam-
ily should provide to match the throughput of the
smallest model (OPT-125M) for MMLU. We find
that if a 1.3B model can achieve a TAR advantage
greater than 2 over OPT-125M for a new workload,
we would choose the 1.3B model instead. Further-
more, given that the maximum TAR is capped at
8 in our scenario due to the length of draft token
generation, it becomes unfeasible for OPT-2.7B
and OPT-6.7B to surpass OPT-125M in perfor-
mance. This is because the improvement needed

125M 350M 1.3B 2.7B 6.7B
OPT Draft Models

0

2

4

6

8

10

TA
R

Maximum TAR

Additional TAR Required for Parity Throughput MMLU
Current TAR
Additional TAR

Figure 7: This figure shows the extra TAR needed for
each model to achieve parity throughout with OPT-
125M on MMLU.

in TAR for OPT-6.7B to match the throughput of
OPT-125M would exceed this maximum limit.
Improvement in latency for switching to higher
TAR model. As hardware evolves, latency scal-
ing patterns may change with more computing
power and memory bandwidth. Therefore, conclu-
sions drawn on specific hardware (e.g., A100) may
not hold for newer or older hardware (e.g., H100
or V100). To account for changing hardware, we
study how much draft model latency improvement
is needed to achieve throughput parity. To demon-
strate this, we first compute the latency reduction
needed for different members in OPT family to
reach the same throughput as the smallest draft
model in Table 5. We find that up to 56% of latency
reduction is needed to achieve the same through-
put. For instance, for OPT-1.3B to achieve parity
throughput with OPT-125M, its latency needs to be
reduced by 32.9%. This reinforces our finding that
latency reduction provided by the smaller models
has significantly more benefit than the extra TAR
provided by a larger draft model.

6 Conclusion
In this work, we conduct a large-scale experimen-
tal study to understand how we can optimize the
throughput of speculative decoding. Using our ex-
periments, we outline the various factors that affect
speculative decoding throughput. We observe that
draft model accuracy on language modeling does
not correlate strongly with its performance in spec-
ulative decoding. Further, we find that draft model
latency is bottlenecked by model depth, and higher
model depth increases latency. Based on these two
insights, we propose new draft models pruned to
align with the target model while trading model
depth for width. Our proposed draft model can

8



increase throughput by up to 60% over existing
models. We find that the pruned models can be
used for supervised fine-tuned target models with-
out modification and discuss how future models
may impact draft model selection.

7 Limitations

Our work aims to improve the inference efficiency
of LLMs by designing better draft models for spec-
ulative decoding. Since speculative decoding pre-
serves the output from the LLM, our work will not
amplify existing biases in LLMs. However, limit-
ing and reducing such biases are out of the scope of
this work. Furthermore, since we are making LLM
generation more efficient, we believe our work will
not have a significant negative environmental im-
pact.
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A More Experiment Results

In this section, we show more experimental analy-
sis of speculative decoding. In Figure 8, we plot the
throughput of OPT and LLAMA models against
its TAR on Chatbot Arena. This figure shows that
as model size increases, throughput generally de-
creases due to significantly higher inference latency
despite consistent increases in TAR.

In Figure 9, we plot the throughput of OPT and
LLAMA models against its TAR on Chatbot Arena.
This figure shows that draft latency occupies a large
chunk of time in a speculative decoding iteration,
opening up new avenues for designing draft models
optimal for speculative decoding.

In Figure 10, we plot the task accuracy versus
TAR for OPT and LLAMA models on MMLU.
The accuracy numbers are obtained from Open-
LLM Leaderboard (HuggingFace, 2023). This fig-
ure shows that task accuracy is irrelevant to TAR.

Required TAR to match throughput. We can
also use our analytical model to predict the TAR
necessary for different models to achieve a tar-
get throughput. This can be useful in scenar-
ios where developers deploy speculative decoding-
based LLMs and must meet a throughput goal. In
Figure 11, we plot the TAR needed by existing
models to achieve a specific throughput. The fig-
ure shows that the TAR gap between draft mod-
els at each given throughput is much larger than
we observed in Figure 2. When the throughput
requirement is high, a large draft model, such as
OPT-6.7B, can’t achieve the desired throughput.
This will allow model designers to quickly judge
which draft and target model pair allows them to
meet throughput requirements.
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Figure 8: This figure shows the throughput scaling against TAR for Chatbot Arena.
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Figure 9: Performance Breakdown of LLAMA specu-
lative decoding, lookahead length is set to be optimal
lookahead length found empirically.

Table 6: This table shows model configuration of var-
ious OPT-350M models we created. The goal is to
explore the tradeoff between model depth and width
while keeping the total parameter count constant.

Num Layers Attn. Heads Hidden size FFN Dim

24 16 1024 4096
20 20 1280 3448
16 22 1408 4096
12 28 1792 3448
8 36 2304 3448
4 56 3584 3448

B OPT-350M Configurations

Table 6 shows the detailed model configurations
of the OPT-350M variants we created. The goal is
to keep the total parameter count close to that of
OPT-350M while adjusting model width and depth.
C Simplifying Analytical model

The original speculative decoding paper (Leviathan
et al., 2023) proposed an analytical model

1−αγ+1

(1−α)(γc+1) to describe the speedup achieved by
speculative decoding, where α denotes the ex-

Table 7: This table shows the latency of each auto-
regressive generation step of the draft model.

Model Latency (ms)

OPT-125M 6.23
OPT-350M 11.74
OPT-1.3B 12.64
OPT-2.7B 16.35
OPT-6.7B 18.56

pected token acceptance rate (in percentage) and
γ denotes the lookahead length. However, this
model is inaccurate since it assumes that the tokens
generated in a sentence are mutually independent.
We simplify this cost model and use our updated
analytical model in our experiments.

Assuming a setup similar to prior
work (Leviathan et al., 2023; Chen et al.,
2023; Miao et al., 2023) where speculative
execution of the draft model and target model
verification phases happen sequentially, the
performance of speculative decoding can be
decomposed into the following factors,

Tput =


TAR

(tdtarget + tddraft)
if TAR > 1,

1

(tdtarget + tddraft)
if TAR ≤ 1.

Considering a case where, in each iteration, d
tokens are generated by the draft model, tddraft de-
picts the time draft models take to generate d draft
tokens, while tdtarget is the time taken by the target
model for verifying those d draft tokens. TAR is
used to denote the average number of tokens that
were matched across a query or a dataset.
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Figure 10: This figure shows the task accuracy versus TAR for OPT and LLAMA models on MMLU. The accuracy
numbers are obtained from OpenLLM Leaderboard (HuggingFace, 2023).
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Figure 11: This figure shows the required TAR to
achieve a given throughput.

Verifying Analytical Model In Figure 12, we
compare the throughput predicted by our model
with throughput measured on real hardware for
two model families: LLAMA (7B and 13B) and
OPT (125M, 350M, 1.3B, 2.7B, and 6.7B) to serve
LLAMA-65B and OPT-66B on MMLU.

We run these experiments on 4 Nvidia 80GB
A100 GPUs for 100 iterations on the real server,
and the error bars in Figure 12 represent the stan-
dard deviation of the measurement. For the per-
formance model, we collect tddraft and tdtarget on
a real cluster with a single iteration. For TAR, we
collect the average token acceptance rate from the
MMLU dataset. The maximum deviation we ob-
served between our proposed analytical model and
the results obtained is 3.5%. The close correspon-
dence between our performance model and real
measurements shows that our performance model
accurately predicts the throughput of speculative
decoding.
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Figure 12: This figure shows that our performance
model correctly captures the real performance of specu-
lative decoding. We use LLAMA-65B and OPT-66B as
the target model for each model family, respectively.
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