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Critical Casimir effect appears when critical fluctuations of an order parameter interact with
classical boundaries. We investigate this effect in the setting of a Landau-Ginzburg model with
continuous symmetry in the presence of quenched disorder. The quenched free energy is written as
an asymptotic series of moments of the model’s partition function. Our main result is that, in the
presence of a strong disorder, Goldstone modes of the system contribute either with an attractive
or with a repulsive force. This result was obtained using the distributional zeta-function method
without relying on any particular ansatz in the functional space of the moments of the partition
function.

I. INTRODUCTION

Quantum fields are mathematical objects that allow
a general description of the physical world. In the ax-
iomatic approach they are operator-valued generalized
functions acting over test function spaces [1, 2]. Such
a description leds the local energy of quantum fields to
attain negative values [3]. In the presence of boundaries,
negative local energies generate attractive forces. This
result, known in the literature as the Casimir effect [4, 5],
manifests itself for all types of fundamental fields, scalar,
fermionic, and vector fields [6–9].

In an Euclidean functional integral description, due
the randomness properties of quantum fields, they need
to be integrated over the functional space [10]. From
such a functional/classical probabilistic point of view, it
is known that if the mean of a nonzero random variable
vanishes, their variance differs from zero. This fact alone
suffices to give rise to Casimir forces. The physical reason
behind the Casimir effect can be traced to the presence
of massless excitations and the change of the thermody-
namic equilibrium of the vacuum (state with zero num-
ber occupation) due to the presence of boundaries that
change the fluctuating spectrum of the theory [11].

Holding the physical interpretation of the Casimir
forces, one can expect that a similar effect happens for
critical systems with infinite correlation lengths in the
presence of boundaries. Such a situation was discussed
in fluids first by Fisher and de Gennes [12]. As a mat-
ter of fact, thermal fluctuations can induce Casimir-like
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long-ranged forces in any correlated medium, with a crit-
ical system being an example. In such a situation the
massless excitations are not associated with photons but
with some other quasi-particles, e.g., phonons or Gold-
stone bosons. Such an effect is referred to as the critical
or the thermodynamic Casimir effect. So far the critical
Casimir effect has enjoyed only a few reviews, e.g. those
of Refs. [13–17].

Quantum Nyquist theorem [18] allows one to identify
regimes where thermal fluctuations dominate over those
of quantum origin, with the possibility of systems be-
coming critical. Such situations are the subject of sta-
tistical field theory. When a system reaches the criti-
cal regime, correlations become long-ranged, and criti-
cal Casimir forces appear. Besides thermal fluctuations,
disorder fluctuations can also drive a system to critical-
ity [19]. A prototype model featuring disorder fluctua-
tions is a binary fluid in a porous medium [20], whose
critical behavior can be studied as a continuous field in
the presence of a random field. When the binary-fluid
correlation length is smaller than the porous radius, one
has a system with finite-size effects in the presence of a
surface field. When the binary fluid correlation length
is much larger than that of the porous radius, the ran-
dom porous can exert a random field effect. In the latter
case, introduction of boundaries gives rise to the critical
Casimir effect [15].

A similar scenario, but with a discrete symmetry, was
studied in Ref. [21]. The main result of that study was
that a change in the sign ofthe Casimir force can happen
depending on the ratio of the inverse of the correlation
length and the disorder strength. This result is analo-
gous to the situation of the electromagnetic Casimir ef-
fect which can change sign depending on the ratio be-
tween the permeability and the dielectric constant [22],
disorder fluctuations lead to a Casimir force that is at-
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tractive or repulsive. We would like to point that there
are some papers in the literature discussing the critical
Casimir effect with the disorder at the surface, see e.g.
[23, 24].

The purpose of this work is to revisit the Casimir effect
in disordered systems with a continuous symmetry. More
specifically, we consider continuous fields that model or-
der parameters possessing a continuous symmetry in sce-
narios where the disorder fluctuations dominate over the
thermal fluctuations. Examples of systems realizing such
a scenario include a binary fluid in the presence of an
external random field in the critical regime, superfluids,
and liquid crystals. In such a situation, when the crit-
icality is reached, one has to take into account the soft
modes (Goldstone bosons) due to the symmetry breaking
[25, 26]. Another difference, and perhaps a more techni-
cal one, is that in the approach that we adopt here we
do not choose any ansatz for the functional space in the
series of the quenched free energy. This procedure will
be clarified along the following sections. Our primary
aim in this work is to answer whether the soft modes
associated with the Goldstone boson favor or suppress
the Casimir force and whether they affect the sign of
the force. The result that we obtain for such question
is that the soft modes do not affect the change of the
sign of the force. However a interesting effect due the
disorder arises. In the regime of strong disorder, where
we only have the Casimir effect due the presence of the
soft mode, the Goldstone mode contribution may change
from attractive to repulsive. In other words, the pres-
ence of disorder may change the sign of the “universal
amplitude” due to the Goldstone modes.

The paper is organized as follows. In the firsts two
sections we introduce the two main mathematical tools
utilized in the paper: Sec. II presents the spectral zeta-
function regularization method and how one can use it
to obtain the Casimir energy of a system, while in Sec.
III we introduce the distributional zeta-function method
to evaluate the quenched free energy, revisiting the crit-
ical Casimir force due the disorder. In the Sec. IV we
presents our main results and calculations. Sec. V con-
tains our main conclusions alongside with future perspec-
tives.

II. CASIMIR ENERGY AND SPECTRAL
ZETA-FUNCTION REGULARIZATION

In quantum field theory, Casimir force can be com-
puted by analyzing either the local energy density [27–
33], or the total energy [34–36] of the quantized fields.
In this section we study the Casimir energy of a statisti-
cal field theory model describing a Gaussian scalar field
ϕ(x1, . . . , xd) in a slab geometry with one compactified
dimension, ΩL ≡ Rd−1× [0, L]. For simplicity, we assume

Dirichlet boundary conditions:

ϕ(x1, . . . , xd−1, 0) = ϕ(x1, . . . , xd−1, L) = 0. (1)

We start discussing the scalar field satisfying Dirich-
let boundary conditions inside a box with sides L1,
L2,. . . ,Ld. The partition function of the theory is

Z =

∫
Ω

[dϕ] e−
1
2

∫
ddx ϕ(x)(−∆+m2

0)ϕ(x), (2)

where Ω in the integral specifies the space of fields sat-
isfying the boundary conditions, [dϕ] ≡

∏
x∈Ω dϕ(x) is a

formal measure over the space of functions Ω, −∆ is the
Laplace operator, and m2

0 the bare mass of the free field.
Since the action is quadratic in the fields, the functional
integral can be evaluated, yielding

Z =
[
det(−∆+m2

0)Ω
]− 1

2 , (3)

where we omitted a normalization factor due to the total
volume of the functional space and the symbol Ω indi-
cates the boundary condition under which the determi-
nant must be computed. Using the fact that a positive
semi-definite self-adjoint operator satisfies an eigenvalue
equation, we can write such a determinant as

det(−∆+m2
0)Ω =

∞∏
i=1

λi, (4)

with the set of all λi being the spectrum defined by the
operator and its boundary condition. Equation (4) is
formally divergent and requires regularization. We use
the spectral zeta-function regularization method [37–41].
The zeta function regularization procedure is a special
case of analytic regularization. The use of the latter reg-
ularization in Casimir effect was discussed in Ref. [42, 43]
References [44–47] compare results for the Casimir energy
obtained with an analytic regularization procedure and
the traditional regularization using cutoff .
To give a meaning to Eq. (4), one starts defining the

spectral zeta-function, ζD(s), first for Re(s) > d/2 as

ζD(s) ≡
∞∑
i=1

1

λsi
, (5)

where D specifies the differential operator under consid-
eration. Second, extend it analytically to a maximal do-
main. Observe that zero belongs to its domain. Formally,
from equation (5),

d

ds
ζD(s)

∣∣∣∣
s=0

= −
∞∑
i=1

lnλi. (6)

One can combine Eqs. (4) and (6) to write the partition
function in Eq. (3) as

Z = exp

(
−1

2

∞∑
i=1

lnλi

)
= exp

(
1

2

d

ds
ζD(s)

∣∣∣∣
s=0

)
. (7)
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To proceed with the calculations, we must construct
the appropriate ζD(s). It can be constructed by using
the appropriate spectral measure in the Riemann- Stieljes
integral. All the information about the domain ΩL and
the boundary conditions are taken into account by the
spectral measure. So, in the continuous limit, one obtains
ζD(s) as:

ζD(s) =
Ad−1

(2π)d−1

∫
dd−1p

∞∑
n=1

[
p2 +m2

0 +
(πn
L

)2]−s
,

(8)
where p2 = p21 + · · · p2d−1 and Ad−1 is the area of the
hypersurface in d− 1 dimensions:

Ad−1 ≡
d−1∏
i=1

lim
Li→∞

Li, (9)

where such a limit must be understood as Li ≫ L, ∀ i =
1, · · · , d − 1. From here on, one could proceed with the
exact calculations of Ref. [38]; see also Ref. [48]. In the
following we introduce the calculation method we will use
later on Sec. IV. Such a method will reproduce the result
in the literature via direct calculations. To proceed, let
us to use that

dd−1p =
2π

d−1
2

Γ
(
d−1
2

)pd−2dp, (10)

and the Mellin representation of a−s,

a−s =
1

Γ(s)

∫ ∞

0

dt ts−1e−ta, (11)

to rewrite Eq. (8) as

ζD(s) =
2Ad−1π

d−1
2

(2π)d−1Γ
(
d−1
2

)
Γ(s)

(
L2

π

)s
×
∫ ∞

0

dt ts−1
∞∑
n=1

e−tn
2π

×
∫ ∞

0

dp pd−2 exp

[
−tL2

π

(
p2 +m2

0

)]
. (12)

The integration over the continuummodes can be read-
ily performed. Additionally, we set m2

0 = 0, because
that is the case where the Casimir force appears (infinite
correlation length), and rename ζD(s) → ζG(s), where
G stands for Goldstone. Performing the integral, one
obtains for ζG(s):

ζG(s) = Cd(L, s)

∫ ∞

0

dt ts−
1
2 (d+1)ψ(t), (13)

where we have defined the following quantities

Cd(L, s) ≡
Ad−1

(2L)d−1Γ(s)

(
L2

π

)s
, (14)

ψ(t) ≡
∞∑
n=1

e−tn
2π. (15)

As one can see, the contribution of ψ(t) is rapidly de-
creasing as t → ∞. However, depending on the values
of s and d, there are singularities at t → 0 that need
to be taken care of. As discussed in Ref. [38], the sin-
gularity can be removed assuming the system confined
to a large, but finite box, which entails an infrared cut-
off in the p-integrals above. Instead of introducing an
explicit infrared cutoff, we extract the finite part of the
integral by using the following relations of ψ(t) and the
weight 1/2 modular form Θ(t) [49]:

ψ(t) =
1

2
(Θ(t)− 1) , (16)

where

Θ(t) ≡
∑
n∈Z

e−tn
2π and Θ(1/t) =

√
tΘ(t). (17)

Combining the relation between ψ(t) and Θ(t) together
with the modular property of Θ(t) we can write

ψ(1/t) = t1/2ψ(t) +
1

2
t1/2 − 1

2
. (18)

Now we can carry out the analytic continuation of
Eq. (13) with the change of variables t → 1/t and us-
ing Eq. (18), which leads to

ζG(s) =
Cd(L, s)

2

[
2IG1,d(s) + IG2,d(s)− IG3,d(s)

]
, (19)

with IG1,d, . . . being the integrals:

IG1,d(s) =

∫ ∞

0

dt t
d
2−s−1ψ(t), (20)

IG2,d(s) =

∫ ∞

0

dt t
d
2−s−1, and, (21)

IG3,d(s) =

∫ ∞

0

dt t
d
2−s−

3
2 . (22)

The integral I1,d(s) is convergent for any values of
s and d, whereas I2,d(s) diverges for Re(2s) < d and

I
(3)
d (s) diverges for Re(2s) < d− 1. As can be checked in
the Eq. (14), we have that Cd(L, s) → 0 as s→ 0, which
implies

dζG(s)

ds

∣∣∣∣
s=0

=
1

2

dCd(L, s)

ds

∣∣∣∣
s=0

×
[
2IG1,d(0) + IG2,d(0)− IG3,d(0)

]
.

(23)

The integral IG1,d(0) is finite, positive definite, does not
depend on the distance of the plates L; it depends only
on the dimension d, and can be performed analytically.
On the other hand, the divergent integrals IG2,d(0) and
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IG3,d(0) do not depend on the distance between the plates
and can be dropped considering that we have a large box,
which implies a large, but finite, wavelength, as argued in
Ref. [38] and mentioned above. Divergences would not
appear if m0 ̸= 0. After some simplifications one can
obtain that

dζG(s)

ds

∣∣∣∣
s=0

=
Ad−1

(2L)d−1
IG1,d(0) =

Ad−1

(2L)d−1

1

2π

∞∑
n=1

1

nd

=
Ad−1

(2L)d−1

ζ(d)

2π
. (24)

Using that F = E − TS and the fact that T = 0 in our
case, one concludes that

Z = e−F = e−E ⇒ E = −1

2

dζG(s)

ds

∣∣∣∣
s=0

. (25)

Now we can define the energy density and find that

E

Ad−1
≡ ϵd(L) = − 1

2(2L)d−1

ζ(d)

2π
, (26)

which has, evidently, the correct sign and power law
with L.
For d = 3, Eq. (26) results

ϵ3(L) = − ζ(3)

16πL2
, (27)

which is the “universal” amplitude of the Goldstone
modes [25]. The reason for the quotation marks will be-
come clear at the end of this work. The Casimir force per
unit of area (Casimir pressure) can be calculated as the
negative of the derivative with respect to L of Eq. (26).
In the next section, we briefly review the technique

that will be used to take into account the disorder, the
distributional zeta-function method.

III. DISTRIBUTIONAL ZETA-FUNCTION
METHOD

This section aims to review the distributional zeta-
function method [50, 51], the method we used to obtain
the disorder-averaged free energy for a system described
by statistical field theory or Euclidean quantum field the-
ory. To exemplify the method, we use it to derive the
Casimir force for a general configuration of the field mul-
tiplets, without using a saddle point approximation.

The partition function of the model for one disorder
realization in the presence of an external source j(x) is
given by:

Z(j, h)=

∫
[dϕ] exp

[
−S(ϕ, h)+

∫
ddx j(x)ϕ(x)

]
, (28)

where the action functional in the presence of additive
(linearly coupled) disorder is

S(ϕ, h) = S(ϕ) +

∫
ddxh(x)ϕ(x). (29)

Here, S(ϕ) is the pure system action, and h(x) is a
quenched random field.
In a general situation, one can model a disordered

medium by a real random field h(x) in Rd with E[h(x)] =
0 and covariance E[h(x)h(y)], where E[· · · ] specifies the
mean over the ensemble of realizations of the disor-
der. Some works have studied the case of a disorder
modeled by a complex random field; see Refs. [52, 53]
and Sec. IV. As in the pure system case, one can de-
fine the system’s free energy for one disorder realization
W (j, h) = lnZ(j, h), the generating functional of con-
nected correlation functions for one disorder realization.
From W (j, h), one can obtain the quenched free energy
by performing the average over the ensemble of all disor-
der realizations:

E
[
W (j, h)

]
=

∫
[dh]P (h) lnZ(j, h), (30)

where [dh] =
∏
x∈Rd dh(x) is a formal functional mea-

sure and, [dh]P (h) is the probability distribution of the
disorder field.
For a general disorder probability distribution, the dis-

tributional zeta-function, Φ(s), is defined as:

Φ(s) =

∫
[dh]P (h)

1

Z(j, h)s
. (31)

For s ∈ C, this function is defined in the region where the
above integral converges. One defines the complex expo-
nential n−s = exp(−s log n) for log n ∈ R. As proved in
Refs. [50, 51], Φ(s) is defined for Re(s) ≥ 0. Therefore,
the integral is defined in the half-complex plane, and an
analytic continuation is unnecessary. We have that

E
[
W (j, h)

]
= −dΦ(s)

ds

∣∣∣∣∣
s=0+

, Re(s) ≥ 0. (32)

Using the Euler’s integral representation for the
gamma function, we get

Φ(s) =
1

Γ(s)

∫
[dh]P (h)

∫ ∞

0

dt ts−1e−Z(j,h)t. (33)

The next step consists in expanding the exponential in
the integral in a power series. The series expansion
has a uniform convergence for each h in the domain
t ∈ [0, a], where a is a dimensionless arbitrary con-
stant. We then split the integral into two pieces, one
that is uniformly convergent in the interval t ∈ [0, a]
for a finite, and one that becomes small for a → ∞.
The contribution from the first piece then becomes a
sum over all integer moments of the partition function,
E[Zk(j, h)] = E [(Z(j, h)) k], while the second vanishes
exponentially for a large. Explicitly, the average free en-
ergy can be represented by the following series of the
moments of the partition function:

E [W (j, h)] =

∞∑
k=1

(−1)k+1ak

kk!
E [Zk(j, h)]

− ln(a)− γ +R(a, j), (34)
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where γ is the Euler-Mascheroni constant, and R(a, j)
given by

R(a, j) = −
∫
[dh]P (h)

∫ ∞

a

dt

t
e−Z(j,h)t. (35)

For large a, |R(a, j)| is small; therefore the dominant
contribution to the average free energy is given by the
moments of the partition function of the model.

For concreteness, we assume a Gaussian form for the
probability distribution of the disorder field [dh]P (h):

P (h) = p0 exp

[
− 1

2ρ2

∫
ddx h2(x)

]
, (36)

where ρ is a positive parameter and p0 is a normaliza-
tion constant. In this case, we have a delta correlated
disorder:

E[h(x)h(y)] = ρ2 δd(x− y). (37)

After integrating the disorder, one obtains that each mo-
ment of the partition function E [Z k(j, h)] can be writ-
ten as:

E [Z k(j, h)] =

∫ k∏
i=1

[dϕki ] e
−Seff(ϕ

k
i ,j

k
i ), (38)

where Seff

(
ϕki , j

k
i

)
is obtained integrating over the disor-

der field, a standard procedure in the literature [54, 55].
In the above equation the superscript k in ϕki identi-
fies the term of the series expansion given by Eq. (34),
the subscript i is the component of the kth multiplet,

and
∏k
i=1[dϕ

k
i ] represents a product of formal functional

measures. Also, from now on, we set jki (x) = 0 ∀ i and
suppress its appearance as argument of the quantities of
interest.

To proceed, we use a Ginzburg-Landau model with λϕ4

interaction. After performing the disorder average, one
obtains the effective action:

Seff(ϕ
k
i ) =

∫
ddx

k∑
i=1

[
1

2
ϕki (x)

(
−∆ +m2

0

)
ϕki (x)

− ρ2

2

k∑
i,j=1

ϕki (x)ϕ
k
j (x) +

λ

4

k∑
i=1

(
ϕki (x)

)4]
.(39)

The ϕ4 term is necessary to stabilize a ground state of
the system since the disorder average introduces a nega-
tive contribution, quadratic in the fields. For simplicity,
we assume in this section the ansatz ϕki (x) = ϕkj (x) for
the function space; in which case the effective action be-
comes:

Seff(ϕ
k
i ) =

∫
ddx

k∑
i=1

[
1

2
ϕki (x)

(
−∆ +m2

0 − kρ2
)
ϕki (x)

+
λ

4

k∑
i=1

(
ϕki (x)

)4]
. (40)

Such a simplified ansatz has been studied in several works
using this method [21, 56–61] and leads to consistent re-
sults. Very recently [62], we have shown that one can
avoid such a simplification and work with the full set
of arbitrary field configurations {ϕki (x)}. For now, to
explain the zeta-distributional method to compute the
Casimir energy, we proceed with the simplified ansatz.
One sees in Eq. (40) that there exists a combination

of m2
0, k and, ρ for which m2

0 − kρ2 < 0, signaling the
spontaneous breaking of the discrete symmetry ϕki →
−ϕkj . As usual, one can move from the “false” vacuum
to the “true” vacuum by an appropriate shift of the fields
and identify the mass in the Gaussian contribution to the
action:

m2
ρ ≡ 2(kρ2 −m2

0) > 0. (41)

To discuss the Casimir energy, it is enough to consider the
Gaussian contribution. This is so because, as shown by
several studies within quantum field theory scenarios [63–
66], radiative corrections are always subleading compared
to the free-field contribution. Since the critical Casimir
effect studied here is formally identical to the quantum
scalar case, the scenario is the same. Therefore, we drop
the non-Gaussian terms in the action. Now, compactifing
one dimension and assuming Dirichlet boundary condi-
tions, one can recast the mean over the k-th moment,
Eq. (38), as

E [Z k(h)] =
[
det(−∆+m2

ρ)ΩL

]− k
2 . (42)

From now on, we consider the situation m2
ρ > 0. Using

the spectral zeta-function regularization, Sec. II, we can
write the functional determinant as:

E [Z k(h)] = exp

[
k

2

d

ds
ζρ(s)

∣∣∣∣
s=0

]
. (43)

The ζρ(s) can be constructed as

ζρ(s) =
Ad−1

(2π)d−1

∫
dd−1p

∞∑
n=1

[
p2 +m2

ρ +
(πn
L

)2]−s
.

(44)
Following the same steps as those between Eqs. (8) and
(23), but for a nonzero mass, we obtain:

dζρ(s)

ds

∣∣∣∣
s=0

=
1

2

dCd(L, s)

ds

∣∣∣∣
s=0

×
[
2Iρ1,d(0) + Iρ2,d(0)− Iρ3,d(0)

]
, (45)

with

Iρ1,d(s) =

∫ ∞

0

dt t
d
2−s−1e

−L2m2
ρ

πt ψ(t), (46)

Iρ2,d(s) =

∫ ∞

0

dt t
d
2−s−1e

−L2m2
ρ

πt , (47)

Iρ3,d(s) =

∫ ∞

0

dt t
d
2−s−

3
2 e

−tL2m2
ρ

π . (48)
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Since now we have a nonzero mass, all integrals are
convergent. Some care must be taken to define the en-
ergy of the system. First of all, we recall that at zero
temperature, the quenched free energy can be written as

Fq(L) = Eq(L) = −E [W (j, h)]

=

∞∑
k=1

(−1)kak

kk!
E [(Z(j, h)) k]. (49)

Using the previous results and exponentiating the ak,
we obtain the Casimir energy in the presence of quenched
disorder, for now on we call such a quantity as quenched
Casimir energy,

Eq(L) =

∞∑
k=kc

(−1)k

kk!
exp

[
k ln a+

k

2

d

ds
ζρ(s)

∣∣∣∣
s=0

]
,

(50)
with kc defined as

kc ≡
⌊
m2

0

ρ2

⌋
, (51)

where ⌊x⌋ is the greatest integer less than or equal to x.
Analysing the behavior of the integrals Eq. (46)-(48),

it is immediate to see that for each k > kc the exponen-
tial damping makes their contributions sub-leading. So
the main contribution in the expression for the Casimir
energy will be

Eq(L) =
(−1)kc

kckc!
exp

[
kc ln a+

kc
2

d

ds
ζρ(s)

∣∣∣∣
s=0

]
. (52)

Clearly, from the last equation, we can see the connection
between a and the thermodynamic limit: since ζρ(s) is
an extensive quantity, a must be chosen to maximize the
exponential. Therefore, the Casimir force is given by:

fd(L) ≡ −∂Eq(L)
∂L

=
(−1)kc+1

2kc!

∂

∂L

d

ds
ζρ(s)

∣∣∣∣
s=0

. (53)

With the results obtained up to now, we have that

fd(L) =
Ad−1

2d+1

(−1)kc+1

kc!

×
{
− 1

Ld

[
2Iρ1,d(0) + Iρ2,d(0)− Iρ3,d(0)

]
+
L1−d

d− 1

∂

∂L

[
2Iρ1,d(0) + Iρ2,d(0)− Iρ3,d(0)

]}
.

(54)

The derivative of Iρi,d deserves a closer look. All of those

integrals have an exponential which depends on L2 and,
thanks to the exponential and the ψ(t) term, their deriva-
tives with respect to L/2 do not change their convergence
properties. In a power series expansion in L/2, the con-
tribution of the second term of Eq. (54) has a global con-
tribution proportional to −L2−d, which ensures that such

a contribution is the leading one in powers of L/2. Now,
defining the quenched Casimir pressure as the quenched
Casimir force per unit area (d− 1 volume), we can write

pd(L) =
(−1)kc

2d+1kc!Ld

[
L2

d− 1
Bd(0) +Dd(0)

]
, (55)

where Bd(0) and Dd(0) are defined by

Bd(0) ≡ − 1

L

∂

∂L

[
2Iρ1,d(0) + Iρ2,d(0)− Iρ3,d(0)

]
, (56)

Dd(0) ≡ 2Iρ1,d(0) + Iρ2,d(0)− Iρ3,d(0), (57)

are positive constants. Clearly, for m2
ρ = 0 the Bd(0)

vanishes and the well know behavior is recovered. The
most interesting feature of Eqs. (53) and Eq. (55) is
the fact that the factor of (−1)kc can change the force
or pressure from repulsive to attractive depending on the
values of m2

0 and ρ2. In the next section we further ex-
plore such a feature. Alongside considering the breaking
of a continuous symmetry breaking, which creates soft
modes in the system, we also do not make any ansatz
over the function space.

IV. INTERPLAY BETWEEN SOFT AND
CRITICAL MODES

In order to verify and go beyond the results of Ref.
[21], we now consider a system with a continuous sym-
metry U(1) ∼= O(2). Another difference will be in the
function space that we obtain after taking the average of
the logarithm of the partition function. To start, let us
consider the action

S(ϕ, ϕ∗) =
1

2

∫
ddx

[
ϕ∗(x)

(
−∆+m2

0

)
ϕ(x) + λV (ϕ, ϕ∗)

+ h∗(x)ϕ(x) + h(x)ϕ∗(x)] ; (58)

as before, m2
0 is the bare mass, λ is a strictly positive

constant and V (ϕ, ϕ∗) is a polynomial in the field vari-
ables. Here we would like to point out that in the case of
interacting field theories confined in compact domains,
is necessary to introduce surface counterterms [67–71]
The main difference here is that h(x) is now a complex
random field [52, 53, 72], with a probability distribution
P (h, h∗). Again, to simplify the problem, we consider a
Gaussian distribution

P (h, h∗) ≡ p0e
− 1

ρ2

∫
ddx|h(x)|2

. (59)

The k-th moment in the series, Eq. (38), with j(x) = 0,
generalizes to:

E
[
Zk(h)

]
=

∫ k∏
i,j=1

[dϕki ][dϕ
k∗
j ] e−Seff (ϕ

k
i ,ϕ

k∗
j ), (60)

with

Seff (ϕ
k
i , ϕ

k∗
j ) =

∑
i,j

[
S0(ϕ

k
i , ϕ

k∗
j ) + λSI(ϕ

k
i , ϕ

k∗
j )
]
. (61)
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Here, S0(ϕ
k
i , ϕ

k∗
j ) is the quadratic action:

S0(ϕ
k
i , ϕ

k∗
j ) =

1

2

∫
ddx ϕk∗i (x)

(
G0
ij − ρ2

)
ϕkj (x), (62)

in which, for later convenience, we defined

G0
ij ≡

(
−∆+m2

0

)
δij , (63)

and SI(ϕi, ϕ
∗
j ) is the interaction action corresponding to

V (ϕ, ϕ∗). The propagator corresponding to S0(ϕi, ϕ
∗
j )

is not diagonal in the (i, j)-space. Such a nagging fea-
ture has been previously dealt with in different ways in
the literature. For example, one can work with a non-
diagonal propagator, as in some of the minimal super-
symmetric standard model extensions [73, 74], or one
can use a Hubbard-Stratonovich identity as in the Bose-
Hubbard model [75]. Still another way is to use the
ansatz ϕki = ϕkj , as discussed in the last section. Al-
though such an ansatz leads to consistent results, it is
an unnecessary simplification as one can use the spec-
tral theorem of linear algebra to formally diagonalize the
propagator [62]. This diagonalization is a new develop-
ment in the distributional zeta-function method, intro-
duced in Ref. [62] in a different context.

The diagonalization proceeds as follows. We define the
matrix of the k × k propagator as

G ≡


G0

11 − ρ2 −ρ2 · · · −ρ2
−ρ2 G0

22 − ρ2 · · · −ρ2
... · · ·

. . .
...

−ρ2 −ρ2 · · · G0
kk − ρ2


k×k

, (64)

whereG0
ij was defined in Eq. (63). SinceG is a symmetric

matrix, it can be diagonalized by an orthogonal matrix S
whose columns are the eigenvectors of G:

D = ⟨S,GS⟩, (65)

where ⟨, ⟩ denotes the natural inner product in (i, j)-
space, and D is the (diagonal) matrix of eigenvalues of
G. Using the vector Φ(x) as the vector which has com-
ponents ϕi(x), we can rewrite the sum of the quadratic
actions as

k∑
i,j=1

S0(ϕi, ϕ
∗
j ) =

1

2

∫
ddx ⟨Φ(x), GΦ∗(x)⟩

=
1

2

∫
ddx ⟨Φ̃(x), DΦ̃∗(x)⟩, (66)

where Φ̃(x) = SΦ(x) and

D =


G0

11 − kρ2 0 · · · 0
0 G0

22 · · · 0
... · · ·

. . .
...

0 · · · G0
kk


k×k

. (67)

The matrix S can be calculated exactly; due to the de-
generacy of the spectrum, there is many matrices that

diagonalizes G. The components of Φ̃(x) will be given
by a linear combination of the ϕi(x) determined by S.

Let φi(x) denote the components of Φ̃(x) by φi(x). Us-
ing the component notation, one can write the diagonal
form of the quadratic action in Eq. (66) as

k∑
i,j=1

S0(ϕi, ϕ
∗
j ) =

1

2

∫
ddx φ∗(x)(−∆+m2

0 − kρ2)φ(x)

+
1

2

k−1∑
a=1

∫
ddx φ∗

a(x)(−∆+m2
0)φa(x), (68)

where, to simplify the notation henceforth, we defined
φ1(x) ≡ φ(x) and also changed the dummy index in the
second line. Since S is an orthogonal matrix, one has
that

k∏
i,j=1

[dϕi][dϕ
∗
j ] = [dφ][dφ∗]

k−1∏
a,b=1

[dφa][dφ
∗
b ]. (69)

Therefore, using Eqs. (68) and (69) into Eq. (60), we
obtain:

E
[
Zk(h)

]
=

∫
[dφ][dφ∗]

k−1∏
a,b=1

[dφa][dφ
∗
b ]

× e−Sρ(φ,φ
∗)−

∑
a SO(φa,φ

∗
a)−λSI(φa,φ

∗
a), (70)

where Sρ(φ,φ
∗) is the action carrying the information on

the strength ρ of the disorder,

Sρ(φ,φ
∗) =

1

2

∫
ddxφ∗(x)(−∆+m2

0 − kρ2)φ(x), (71)

and SO(φa, φ
∗
a) is a O(k−1)-symmetric action, indepen-

dent of the disorder, given by:

SO(φa, φ
∗
a) =

1

2

∫
ddxφ∗

a(x)(−∆+m2
0)φa(x). (72)

The action SI(φa, φ
∗
a) will not be needed in our study

of the Casimir effect, but its presence with a λ > 0 is
required to guarantee the action boundness. Its explicit
expression is readily obtained by replacing Φ in the orig-
inal action by Φ̃ = SΦ.
We proceed recalling that each moment of the partition

function contributes to the total quenched free energy,
Eq. (34). To obtain the Casimir energy we compactify
one of the dimensions, Rd → Rd−1 × [0, L], and impose
some boundary conditions. As can be seen in Eq. (71),
there is a combination of k,m2

0 and ρ for which the effec-
tive massm2

0−kρ2 becomes negative, indicating the sym-
metry breaking U(1) → Z2, giving rise to a Goldstone
(soft) mode. Of course, the Casimir force is present even
for those terms in the sum with a positive effective mass,
as the condition for its presence is that the correlation
length becomes of the order of the system’s compacti-
fied size L. That is, the total energy receives contribu-
tions from symmetry-preserving and symmetry-breaking
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terms. Our interest in this work is study the interplay
between the contributions to the energy of the symmetry-
breaking soft mode and the critical mode, both induced
by the disorder. Therefore we neglect the symmetry-
preserving modes. We assess this interplay by first per-
forming a shift in the field φ(x) to expose the symmetry
breaking, then neglect all non-Gaussian terms, and fi-
nally, take the large L limit.
We perform the symmetry-breaking field shift for the

situation withm2
0−kρ2 < 0 in Eq. (71). In the Cartesian

representation of the fields φ(x) and φ∗(x) we have that

φ(x) =
1√
2
[ψ1(x) + iψ2(x)] , (73)

φ∗(x) =
1√
2
[ψ1(x)− iψ2(x)] . (74)

The minima of the action lie on the circle

ψ2
1 + ψ2

2 =
2(kρ2 −m2

0)

λ
≡ v2. (75)

Definining the shifted fields χ = ψ1 − v and ψ = ψ2, the
Gaussian part of the action becomes

Sρ(χ, ψ) =
1

2

∫
ddx

[
χ(x)(−∆+m2

ρ)χ(x)

+ ψ(x)(−∆)ψ(x)] , (76)

where we definedm2
ρ = 2(kρ2−m2

0). In the new variables,
after dropping all non-Gaussian terms, Eq. (70) assumes
the following enlightening form:

E
[
Zk(h)

]
= ZρZG [ZO]

k−1
, (77)

where

Zρ =

∫
[dχ] e−

1
2

∫
ddxχ(x)(−∆+m2

ρ)χ(x), (78)

ZG =

∫
[dψ] e−

1
2

∫
ddxψ(x)(−∆)ψ(x), (79)

ZO =

∫
[dφ][dφ∗] e−

1
2

∫
ddxφ∗(x)(−∆+m2

0)φ(x), (80)

where the partion functions are respectively the contribu-
tions of the disorder, the Goldstone mode, and a O(k−1)
symmetric model.

Now, we take a slab geometry with one compactified
dimension, ΩL = Rd−1 × [0, L], and impose Dirichlet
boundary conditions to all fields

Aα(x1, · · · , xd−1, 0) = Aα(x1, · · · , xd−1, L) = 0, (81)

with α = {ρ,G,O} and {Aρ, AG, AO} = {χ, ψ, φ} re-
spectively. Using the result in Eq. (3) for each of the
partition functions in Eqs. (78), (79), and (80), we obtain
for the k-th moment of the partition function, Eq. (77),
the following expression:

E
[
Zk(h)

]
=
[
det(−∆+m2

ρ)ΩL

]− 1
2 [det(−∆)ΩL

]
− 1

2

×
[
det(−∆+m2

0)ΩL

]− k−1
2 . (82)

The last term contributes neither to the critical nor to
the soft Goldstone modes. As such, it can be dropped by
redefining the energy.
The relevant contributions to the Casimir energy can

be regularized using the spectral zeta regularization

E
[
Zk(h)

]
= exp

{
1

2

d

ds
[ζρ(s) + ζG(s)]

∣∣∣∣
s=0

}
. (83)

By the same arguments used to obtain Eq. (52) in the
previous section, one concludes that the main contribu-
tion to the total quenched Casimir energy is given by

ETc =
(−1)kc

kckc!
exp

{
kc ln a+

1

2

d

ds
[ζρ(s) + ζG(s)]

∣∣∣∣
s=0

}
.

(84)
We define the following zeta function

ζα(s) =
Ad−1

(2π)d−1

∫
dd−1p

∑
n=1

[
p2 +m2

α +
(πn
L

)2]−s
,

(85)
with α = {ρ,G} and m2

G = 0. Using the same definitions
and arguments in Sec. II, one can rewrite ζα(s) as

ζα(s) = Cd(L, s)

∫ ∞

0

dt ts−
1
2 (d+1)e

−tL2

π m2
αψ(t). (86)

Following the same steps taken between Eqs. (13) and
(19), it is straightforward to obtain that

ζα(s) = Cd(L, s)
[
2Iα1,d(s) + Iα2,d(s)− Iα3,d(s)

]
, (87)

where

Iα1,d(s) =

∫ ∞

0

dt t
d
2−s−1e

−L2

πt m2
αψ(t), (88)

Iα2,d(s) =

∫ ∞

0

dt t
d
2−s−1e

−L2

πt m2
α , (89)

Iα3,d(s) =

∫ ∞

0

dt t
d
2−s−

3
2 e

−tL2

π m2
α . (90)

One obtains the quenched Casimir force analogously
to Eq. (54). Such a force receives contributions from
the spectral zeta functions of soft and critical modes. In
the case of α = G we have the same situation of Sec. II
for m0 = 0, i.e., the contribution of the soft modes to
the Casimir force is given by Eq. (24). For α = ρ, we
have the calculation of Sec. III and the corresponding
contribution is given by Eq. (45). Putting all together,
we obtain for the total quenched Casimir pressure of the
system the following expression:

pTd (L) =
(−1)kc

kckc!2d−1Ld

[
L2

d− 1
Bd(0) +Dd(0) +

ζ(d)

2π

]
.

(91)

Such a result can be plotted as function of L for different
dimensions and values of kc. Figures 1 and 2 a display
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d = 2; kc = 2

d = 2; kc = 3

d = 3; kc = 2

d = 3; kc = 3

d = 4; kc = 2

d = 4; kc = 3

2 3 4 5 6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

L

p
dT

FIG. 1. Plot of the quenched Casimir pressure, Eq. (91), for
dimensions 2, 3, and 4 and kc = 2, and 3.

d = 2; kc = 4

d = 2; kc = 5

d = 3; kc = 4

d = 3; kc = 5

d = 4; kc = 4

d = 4; kc = 5

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-0.01

0.00

0.01

0.02

0.03

0.04

L

p
dT

FIG. 2. Plot of the quenched Casimir pressure, Eq. (91), for
dimensions 2, 3, and 4 and kc = 4, and 5.

pTd (L) for dimensions 2,3, and 4 for different values of kc.
Note the different scales in the axes of the two figures.

This result has some interesting features. First of all,
if we ignore the Goldstone mode contributions, the re-
sulting equation differs from Eq. (55) by a multiplicative
factor, 4/kc. This factor comes from the exact diagonal-
ization of the quadratic actions; when one uses the ansatz
ϕki (x) = ϕkj (x) ∀ i, j, as used in Sec. III, the multiplica-
tive factor does not appear. Of course, such a difference is
irrelevant to gathering qualitative understanding. How-
ever, the qualitative similarity between the results holds
only when one can neglect the contribution from the par-
tition function ZO, Eq. (80). This is the case whenever
the corresponding action does not reach criticality, a sit-
uation that can occur due to nonzero temperature or
finite-size effects. Another feature of Eq. (91) is that
the critical and the soft mode effects are noncompetitive,
they are of the same sign. Still another interesting feature
is that, when kcρ≫ m2

0, one can neglect the contribution
of Zρ, Eq. (78), to the Casimir energy; in practice, one
can set Bd(0) = Dd(0) = 0 in Eq. (91). This is interest-
ing because then only soft modes contribute, but with a

factor proportional to (−1)kc , which means that a change
of sign may occur. In other words, there is a universal
constant due to the soft modes, given by ζ(3)/16π, with
an overall sign that can be either negative (as usual) or
positive, depending on the value of kc.

V. CONCLUSIONS

In this work we analyzed the interplay in the Casimir
energy between the soft modes from the breaking of a
continuous symmetry, and the critical modes, due to a
disorder linearly coupled to a complex scalar field. We
found that both modes always have a cooperative effect
making the quenched Casimir pressure stronger. More
interesting we have seen that, in the scenario of strong
disordered system, the Goldstone mode contribution to
the pressure can be either positive or negative, depend-
ing on the ration between the strengh of disorder and
mass parameter. This fact can be relevant in stability
analyses of systems at nano scales, where those effects
are expected to be larger than one atmosphere [16].
From a technical point of view, in this work we made

use of a significant improvement on the application of
the zeta distributional method regarding the functional
space of fields. The functional space is ansatz-free, in the
sense that we have not made any special choices on the
fields in the nondiagonal effective action resulting from
the disorder averaging. Moreover, we have made use of
the spectral theorem of linear algebra to formally diag-
onalize the effective action in the full functional space.
These features seem to be applicable to any Gaussian
theory, bosonic or fermionic.
Further topics in the critical Casimir effect in disor-

dered systems which deserve attention include: analyses
on how boundary shape and temperature and/or finite-
size effects may affect the procedure that we described
here. In addition, it would be interesting to extend the
“ansatz-free” approach to interacting field theories, both
for additive and multiplicative disorder. These subjects
are under investigation by the authors.
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