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Ayfer Özg̈ur

aozgur@stanford.edu

Stanford University

Abstract

Van Trees inequality, also known as the Bayesian Cramér-Rao lower bound, is a powerful tool for

establishing lower bounds for minimax estimation through Fisher information. It easily adapts to different

statistical models and often yields tight bounds. Recently, its application has been extended to distributed

estimation with privacy and communication constraints where it yields order-wise optimal minimax lower

bounds for various parametric tasks under squared L2 loss.

However, a widely perceived drawback of the van Trees inequality is that it is limited to squared

L2 loss. The goal of this paper is to dispel that perception by introducing a strengthened version

of the van Trees inequality that applies to general Lq loss functions by building on the Efroimovich’s

inequality – a lesser-known entropic inequality dating back to the 1970s. We then apply the generalized

van Trees inequality to lower bound Lq loss in distributed minimax estimation under communication and

local differential privacy constraints. This leads to lower bounds for Lq loss that apply to sequentially

interactive and blackboard communication protocols. Additionally, we show how the generalized van

Trees inequality can be used to obtain local and non-asymptotic minimax results that capture the hardness

of estimating each instance at finite sample sizes.
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1 Introduction

For a real-valued parameter θ ∈ Θ and an observation X ∼ Pθ, the basic question of parametric statistics
is how well one can estimate θ from X under a given loss function ℓ(θ̂ − θ). The Fisher information
IX(θ) plays a crucial role in this context by capturing the local hardness of estimating θ from X , with
implications both asymptotically (Hájek, 1961; Van der Vaart, 2000) and non-asymptotically (Cramér, 1999;
Rao, 1992; Van Trees, 2004; Gill and Levit, 1995; Efroimovich, 1980; Aras et al., 2019). For example, the
famous Cramér-Rao lower bound (Cramér, 1999; Rao, 1992) states that the squared L2 estimation error
(a.k.a. the mean squared error) of any unbiased estimator is lower bounded by the inverse of the Fisher
information. The unbiasedness assumption on the estimator can be removed by assuming that the parameter
θ is distributed according to a prior on Θ. This is known as the Bayesian Cramér-Rao lower bound or the
van Trees Inequality (Van Trees, 2004; Gill and Levit, 1995). By strategically constructing the prior, this
approach can also be used to prove lower bounds for minimax estimation, where the goal is to minimize the
worst-case error of the estimator over the parameter space Θ.

The classic parametric estimation tasks have gained renewed popularity over recent years, driven by the
prevalence of modern datasets often generated and stored on local devices, such as in federated learning
(FL) and analytics (FA) (McMahan et al., 2017a,b; Kairouz et al., 2019). In these settings, the collection
and utilization of decentralized data encounter various resource constraints, including communication and
privacy considerations. These constraints have raised the question of how well one can estimate the unknown
parameter θ ∈ Θ from a processed observation Y , which corresponds to the output of a privatization and/or
compression mechanism applied to X ∼ Pθ. In Barnes et al. (2019a,b, 2020), the classical Fisher information
framework has been extended to the case of privacy and communication (or compression) constraints. This
approach first upper bounds the Fisher information from a differentially private and/or compressed sam-
ple Y and then uses the van Trees inequality to lower bound the minimax squared L2 error of distributed
estimation. This, in a unified fashion, leads to order-optimal lower bounds for various parametric tasks un-
der privacy and/or communication constraints, including two tasks that have been of significant interest in
the recent literature: distributed mean estimation (Duchi et al., 2013; Gandikota et al., 2021; Suresh et al.,
2017; Zhang et al., 2012; Duchi and Ruan, 2018; Duchi and Rogers, 2019; Asi et al., 2022; Agarwal et al.,
2018; Chen et al., 2020; Feldman and Talwar, 2021; Shah et al., 2022; Asi et al., 2023; Isik et al., 2023,
see) and discrete distribution (or frequency) estimation (Han et al., 2018a,b; Úlfar Erlingsson et al., 2014;
Kairouz et al., 2016; Wang et al., 2017; Ye and Barg, 2017; Acharya et al., 2019, 2020a; Chen et al., 2020;
Feldman and Talwar, 2021; Feldman et al., 2022, see). While order-optimal minimax lower bounds for
distributed estimation under information constraints can also be derived by using other techniques, e.g.,
leveraging strong data-processing inequalities in Duchi et al. (2013); Zhang et al. (2013); Garg et al. (2014);
Braverman et al. (2016); Duchi and Rogers (2019); Asoodeh and Zhang (2022) or employing methods based
on Le Cam, Fano, or Assaud (Acharya et al., 2020a,b, 2023), the constrained Fisher information approach
has several distinct advantages:

• It is relatively straightforward and applies to various parametric models in a unified fashion, e.g., mean
estimation or distribution estimation. In contrast, methods based on Le Cam, Fano, or Assaud are
more versatile in that they can be potentially adopted to diverse statistical problems beyond parametric
settings, e.g., testing, but the construction of worst-case instances tends to be intricate and is heavily
tied to the specific problem structure.

• The Fisher information approach elucidates a clear relationship between the tail behavior of the score
function of the parametric model and error rates under privacy/communication constraints.

• Leveraging the chain rule of Fisher information, the Fisher information approach naturally extends
to sequentially interactive communication protocols or even fully interactive blackboard protocols
(Kushilevitz, 1997).
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• Finally, Fisher information is inherently a local measure of hardness. For example, the influential
Hájek-Le Cam’s local asymptotic minimax (LAM) theorem asserts that, for a general ball-shaped loss
function ℓ(·), the asymptotic estimation error at θ ∈ Θ is at least E [ℓ(Z)], where Z ∼ N

(

0, I−1
X (θ)

)

(Hájek, 1961; Van der Vaart, 2000). Using the van Trees inequality with a carefully constructed prior,
Chen et al. (2021b) shows that Fisher information can be used to prove local and non-asymptotic
minimax lower bounds that capture the hardness of estimating each instance of the problem at finite
sample size. To the best of our knowledge, this is the only example of non-asymptotic local lower bounds
for distributed estimation, combining the power of Hájek-Le Cam type results to capture local hardness
with the non-asymptotic nature of global minimax lower bounds that have been almost exclusively the
focus of the existing distributed estimation literature.

However, a widely perceived drawback of the Fisher information approach, both for classical parametric
statistics as well as its extension to the distributed setting with privacy and communication constraints, is
that its applicability is limited to squared L2 error. For example, Tsybakov (2004) acknowledges several
advantages of van Trees inequality, such as its relative simplicity in application and ability to establish
sharp bounds, and also notes “a limitation is that the van Trees inequality applies only to the squared loss
function.” The goal of this paper is to dispel this perception by showing how Fisher information can be
used to prove lower bounds for any Lq loss for 1 ≤ q < ∞. We do this by building on a less-known entropic
inequality called Efroimovich’s inequality (Efroimovich, 1980) highlighted in recent works Aras et al. (2019);
Lee (2022). Our paper makes the following contributions:

• We prove a van Trees type inequality for Lq loss by combining Efroimovich’s inequality with a maximum
entropy argument.1

• We leverage this generalized van Trees inequality to establish global minimax lower bounds for various
distributed estimation tasks under Lq loss. As an immediate consequence, this yields lower bounds for
Lq loss applicable to sequentially interactive and blackboard communication protocols. Our approach
not only recovers previous lower bounds presented in Acharya et al. (2023) for sequentially interactive
models in a cleaner and more straightforward manner, but also extends to fully interactive blackboard
communication protocols.

• We show how the generalized van Trees inequality can be used to derive local non-asymptotic minimax
lower bounds for distribution estimation under Lq loss extending the approach of Chen et al. (2021b).
This emph local lower bounds match the performance of a scheme previously developed in Chen et al.
(2021b) and establish its instance-optimality under L1 loss. The results extend to Lq loss.

Organization. The rest of the paper is organized as follows. We recap van Trees inequality and extend
it to Lq loss via Efroimovich inequality in Section 2. In Section 3, we leverage the generalized van Trees
inequality to establish global minimax lower bounds for various distributed estimation tasks under Lq loss.
In Section 4, we extend our focus to derive local minimax lower bounds for distribution estimation tasks and
provide schemes that achieve the lower bounds pointwisely. Finally, we summarize the work in Section 5.

2 Preliminaries

In this section, we recap van Trees inequality and Efroimovich inequality and refer interested readers to
Aras et al. (2019) and Lee (2022) for more details and recent advances. Throughout the paper, we consider
the following parametric model: let {Pθ|θ ∈ Θ} with Θ ⊆ R

d be a family of probability measures over X
with a dominating σ-finite measure λ such that the density:

dPθ(·) = f(·; θ)dλ(·)

exists. We make the following assumption on the model:

1In Aras et al. (2019); Lee (2022), the authors comment that Efroimovich’s inequality can be potentially used to bound loss
functions beyond L2. However, we have not been able to find an explicit result in this direction.
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Assumption 2.1 The density function f(x; θ) is differentiable for x ∈ X λ-a.e. In addition, f satisfies
∫

X
∇θf(x; θ)dλ(x) = 0,

for all θ ∈ Θ.

Assumption 2.1 is a common regularity condition in the Cramér-Rao type bounds, allowing for exchanging
the differentiation and integration. For a prior distribution π over Θ, the information theorists’ Fisher
information is defined as

J(π) ,

∫

Rd

|∇θπ(θ)|2
π(θ)

, (1)

if it exists. On the other hand, the Fisher information matrix of {Pθ|θ ∈ Θ} is defined as

[IX(θ)]ij ,

∫

X

∂
∂θi

f(x; θ) · ∂
∂θj

f(x; θ)

f(x; θ)
dλ(x). (2)

Van Trees inequality states that the L2 estimation error for estimating θ ∈ Θ, given a prior distribution
π over Θ, is lower bound by the inverse Fisher information:

Theorem 2.2 (Van Trees (2004); Gill and Levit (1995)) Let X ∼ Pθ and θ ∼ π for some prior dis-
tribution π. Let Assumption 2.1 hold. Then, for any prior distribution π on Θ for which the information
theorist’s Fisher information J(π) exists, it holds that

E

[

∥

∥

∥θ − θ̂
∥

∥

∥

2

2

]

≥ d

det (IX(θ) + J(π))
1/d

. (3)

While van Trees inequality only applies to the L2 error, the following Efroimovich inequality can be used
to establish lower bounds for more general loss functions.

Theorem 2.3 (Efroimovich (1980)) Under the assumptions of Theorem 2.2, we also have

1

2πe
e

2
dh(θ|X) ≥ 1

det (IX(θ) + J(π))1/d
, (4)

where h(θ|X) is the conditional (differential) entropy.

To see how Theorem 2.3 implies the classical van Trees inequality, observe that

2

d
h(θ|X) ≤ 2

d
h(θ|θ̂(X)) ≤ 2

d
h(θ − θ̂) (5)

≤ log

(

2πe · det
(

E

[

(θ̂ − θ)(θ̂ − θ)⊺
])1/d

)

≤ log

(

2πe · 1
d
E

[

∥

∥

∥θ̂ − θ
∥

∥

∥

2

2

])

.

The last two inequalities follow from the fact that the Gaussian distribution maximizes entropy for fixed
second moments and the AM-GM inequality. Rearranging yields Theorem 2.2.

Through Efroimovich’s inequality, one can easily extend van Trees inequality to L1 loss: following (5),
we obtain

2

d
h(θ̂ − θ) ≤ 2

d

∑

i

h(θ̂i − θi) ≤
2

d

∑

i

log
(

2eE
[∣

∣

∣θi − θ̂i

∣

∣

∣

])

≤ 2 log

(

2e

d

∑

i

E

[∣

∣

∣θi − θ̂i

∣

∣

∣

]

)

= log

(

(

2e

d
E

[∥

∥

∥
θ̂ − θ

∥

∥

∥

1

]

)2
)

.
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The last two inequalities follow from (1) the fact that the Laplace distribution maximizes entropy for a fixed
mean absolute error, and (2) the AM-GM inequality. Applying Theorem 2.3, we immediately obtain the
following lower bound for L1 loss:

E

[∥

∥

∥θ̂ − θ
∥

∥

∥

1

]

≥
√

π

2e

d

det (IX(θ) + J(π))1/2d
. (6)

The above lower bound is order-wise optimal. To see this, suppose that there exists an order-optimal
estimator θ̂∗(X) such that

E

[

∥

∥

∥θ − θ̂∗
∥

∥

∥

2

2

]

= C · d

det (IX(θ) + J(π))1/d
.

Then, the Cauchy–Schwartz inequality yields

E

[∥

∥

∥θ − θ̂∗
∥

∥

∥

1

]

≤
√

d · E
[

∥

∥

∥θ − θ̂∗
∥

∥

∥

2

2

]

=
√
C · d

det (IX(θ) + J(π))
1/2d

.

Since it is well-known that the L2 lower bound can be achieved, this argument implies the L1 lower bound is
also tight up to a constant. More generally, we can prove the following van Trees inequality for any Lq loss:

Theorem 2.4 (Generalized van Trees Inequality) Let q ≥ 1 and let CME(q) be the partition function
of the Lq max-entropy distribution, formally defined as2

CME(q) , 2e
1
q Γ

(

1

q

)

q
1
q−1.

Then, it holds that

Eθ,X

[

∥

∥

∥θ̂(X)− θ
∥

∥

∥

q

q

]

≥
( √

2πe

CME(q)

)q
d

det (IX(θ) + J(π))
q
2d

.

We can simplify the lower bound with the following AM-GM inequality

det(A)1/d ≤ Tr(A)

d
for any PSD A ∈ R

d×d,

obtaining the following simpler but slightly weaker form:

Proposition 2.5 Let q ≥ 1 and CME(q) be defined as in Theorem 2.4. Then, it holds that

Eθ,X

[

∥

∥

∥θ̂(X)− θ
∥

∥

∥

q

q

]

≥
( √

2πe

CME(q)

)q

· d1+
q
2

Tr (IX(θ) + J(π))
q
2

.

3 Distributed Estimation under Information Constraints

The generalized van Trees inequality (in the form stated in Proposition 2.5), can be combined with an
upper bound on the trace of the Fisher information matrix to obtain a lower bound on the minimax Lq

loss achievable in a distributed setting under privacy and communication constraints. This approach is
rather straightforward and is outlined in Barnes et al. (2019b, 2020, 2019a), where authors also develop the
necessary upper bounds on the trace of the Fisher information matrix under privacy and communication
constraints. In this section, we overview how privacy and communication constraints are mathematically
modeled in a distributed estimation setting and state the corresponding lower bounds under Lq loss.

2One can verify that CME(2) =
√

2πe and CME(1) =
√

2e.
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3.1 Problem Setup

The general distributed statistical task we consider in this paper can be formulated as follows. Each one of
the n clients observes a local sample Xi ∼ Pθ, processes it via a local channel (i.e., a randomized mapping),
and then sends a message Yi ∈ Y to the server, which, upon receiving Y n, aims to estimate the unknown
parameter θ.

At client i, the message Yi is generated via a sequential communication protocol; that is, samples are com-
municated sequentially by broadcasting the communication to all nodes in the system, including the server.
Therefore, the encoding function Wi of the i-th client can depend on all previous messages Y1, ..., Yi−1 ∈ Y.
Formally, it can be written as a randomized mapping (possibly using shared randomness across participating
clients and the server) of the form Yi ∼ Wi(·|Xi, Y

i−1).

b-bit communication constraint The b-bit communication constraint restricts |Y| ≤ 2b, ensuring the
local message can be described in b bits.

Remark 3.1 While we only overview the b-bit sequentially interactive communication model, our results
extend to the b-bit blackboard communication protocol Kushilevitz (1997),where each node is allowed to write
b-bits in total on a publicly seen blackboard in a randomized order that can depend on the samples. The
blackboard model allows for much more interaction between the nodes as compared to the sequential model
(e.g. the protocol can start with one of the nodes writing a single bit on the blackboard and the second node to
write a bit can depend on the value of the first written bit etc.). The results in Corollary 3.2 trivially apply to
these more powerful communication protocols simply because the Fisher information bounds in Barnes et al.
(2019b, 2020) are proven under this more general model.

ε-local differential constraint The ε-LDP constraint requires that, for any i ∈ [n], xi, x
′
i ∈ X , yi−1 ∈

Yi−1, S ∈ σ (Yi), it holds that

Wi(S|xi, y
i−1)

Wi(S|x′
i, y

i−1)
≤ eε. (7)

It ensures that any adversary who observes the output Yi and the context Y i−1 cannot infer the local sample
Xi.

As a special case, when Wi depends only on Xi and is independent of the other messages Y i−1 for all i
(i.e. Wi(·|Xi, Y

i−1) = Wi(·|Xi)), we say the corresponding protocol is non-interactive. Finally, we call the

tuple
(

Wn, θ̂(Y n)
)

an estimation scheme, where θ̂ (Y n) is an estimator of θ. We use Πseq and Πind to denote

the collections of all sequentially interactive and non-interactive schemes, respectively. The goal is to lower
bound the global minimax Lq risk:

R (Lq,Θ) , inf
(Wn,θ̂)∈Πseq

sup
θ∈Θ

E

[

∥

∥

∥θ − θ̂ (Y n)
∥

∥

∥

q

q

]

and construct schemes in Πseq that match these lower bounds.

3.2 Global Minimax Lower Bounds

Combining Proposition 2.5 with the Fisher information bounds in Barnes et al. (2019b), we obtain the
following lower bounds on the Lq risk of common statistical models, including the discrete distribution
estimation and the Gaussian mean estimation.

Corollary 3.2 (Estimation under b-bit constraint) Let κ(q) ,
( √

2πe
CME(q)

)q

. Then the following lower

bounds hold:

• Gaussian location model: let X ∼ N (θ, σ2Id) with [−B,B] ⊂ Θ. For nB2 min (b, d) ≥ dσ2, we have

R (Lq,Θ) & dκ(q)max

{

(

dσ2

nb

)

q
2

,

(

σ2

n

)

q
2

}

. (8)
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• Gaussian covariance estimation: Suppose that X ∼ N (0, diag(θ1, ..., θd)) with [σ2
min, σ

2
max] ⊂ Θ. Then

for n
(

σ2
max − σ2

min

)2
min

(

b2, d
)

≥ dσ4
min, we have

R (Lq,Θ) & dκ(q)max

{

(

dσ4
min

nb2

)

q
2

,

(

σ4
min

n

)

q
2

}

. (9)

• Distribution estimation: Suppose that X = {1, 2, ..., d} and that f(x|θ) = θx. Let Θ = ∆d be the d-dim
probability simplex. For nmin

(

2b, d
)

≥ d2, we have

R (Lq,Θ) & dκ(q)max

{

(

1

n2b

)
q
2

,

(

1

nd

)
q
2

}

. (10)

• Product Bernoulli model: suppose that X ∼ ∏d
i=1 Bern(θi). If Θ = [0, 1]d, then for nmin {b, d} ≥ d,

we have

R (Lq,Θ) & dκ(q)max

{

(

d

nb

)
q
2

,

(

1

n

)
q
2

}

. (11)

for some universal constant C. On the other hand, Θ = ∆d, then for nmin
{

2b, d
}

≥ d2, we get instead

R (Lq,Θ) & dκ(q)max

{

(

1

n2b

)
q
2

,

(

1

nd

)
q
2

}

. (12)

Similarly, we can prove lower bounds under the ε-local DP model by using the Fisher information upper
bounds in Barnes et al. (2020). We defer this to Corollary A.1 in Appendix A. Corollary 3.2 and Corollary A.1
recover several existing lower bounds and extend them into the broader blackboard communication models.
Specifically, (8) and (15) recover the non-sparse setting of in (Acharya et al., 2023, Theorem 4) for q < ∞;
(10) and (17) recover (Acharya et al., 2023, Corollary 3); (11), (12), (17), and (18) recover (Acharya et al.,
2023, Theorem 3) for q < ∞.

3.3 Achievability

We note that nearly all of the aforementioned lower bounds are order-wise tight3, meaning that they accu-
rately characterize the correct dependence on parameters such as d, n, b, and ε.

Lemma 3.3 Assume the same conditions in Corollary 3.2. Then (8), (10), (11), (12) from Corollary 3.2
are tight. The same results hold for Corollary A.1 in Appendix A.

For 1 ≤ q ≤ 2, the upper bounds readily follow from Hölder’s inequality. For q > 2, the order-optimal
estimation schemes can be constructed via a sample splitting trick in a fashion similar to Han et al. (2018a);
Barnes et al. (2020), which yields optimal error performance. Notably, these upper bounds can be achieved
through independent protocols, indicating that the global minimax error is not improved by interaction
among clients.

4 Local Minimax Bounds on Discrete Distribution Estimation

In Section 3, we establish minimax bounds for various distributed statistical estimation models. However,
these global minimax lower bounds tend to be too conservative and may not accurately reflect the difficulty of
estimating each instance θ ∈ Θ. This is especially notable in the case of discrete distribution estimation. For
example, we would expect the estimation problem to be inherently easier when the underlying distribution

3The only exception is the sub-exponential case (9), in which the tightness of the lower bound (even under L2 loss) remains
open.
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we aim to estimate happens to be sparse. Ideally, it is desirable to have estimation schemes that can
automatically adapt to the hardness of the underlying instance, i.e. achieve smaller error in easier instances
of the problem, without knowing the instance ahead of time. In contrast, globally minimax optimal estimation
schemes are typically designed and tuned for worst-case scenarios and can therefore be too pessimistic, i.e.
not able to exploit structures that make the problem instance easier.

In this section, we focus on the discrete distribution estimation problem and derive local bounds with
respect to general Lq loss. We consider the same setting as in Section 3; however to highlight that the
parameter of interest is an instance of the d-dim probability simplex, we use p = (p1, p2, ..., pd) ∈ ∆d to
denote the unknown parameter (θ ∈ Θ). The goal here is to design a scheme (Wn, p̂ (Y n)) to minimize the
Lq local statistical risk:

R (Lq, p, (W
n, p̂)) , E

[

‖p− p̂ (Y n)‖qq
]

for all p ∈ ∆d.

We mainly focus on the regime 1 ≪ d ≪ n and aim to characterize the pointwise statistical convergence
rates when n is sufficiently large.

4.1 b-bit communication constraint

We start with the b-bit communication constraint. Chen et al. (2021b) provides a two-round scheme that
achieves the following estimation error:

Theorem 4.1 (L2 local minimax error Chen et al. (2021b)) Let b ≤ ⌊log2 d⌋.

1. There exists a sequentially interactive scheme (with a single round of interaction) (Wn, p̌) ∈ Πseq, such
that for all p ∈ ∆d,

R (L2, p, (W
n, p̌)) ≍

‖p‖ 1
2
+ on(1)

n2b
. (13)

2. There exists a sequentially interactive scheme (with a single round of interaction)
(

W̃n, p̌
)

∈ Πseq,

such that for all p ∈ ∆d,

R
(

L1, p,
(

W̃n, p̌
))

.

√

‖p‖ 1
3
+ on(1)

n2b
. (14)

Note that the upper bound on the risk is now a function of the unknown p. Chen et al. (2021a) develops
the matching lower bound in (13) for L2 loss. The optimality of the L1 rate in (14) has remained open. In
this paper, we close this gap by proving the following matching lower bound for general Lq loss.

Theorem 4.2 (b-bit Lq local minimax lower bounds) Let p ∈ ∆′
d ,

{

p ∈ ∆d

∣

∣

1
2 < p1 < 2

3

}

. Then for

any δ > 0, B ≥
√

‖p‖1/2

d2b , as long as n = Ω
(

d3 log d
‖p‖1/2

)

, it holds that4

inf
(Wn,p̂)∈Πseq

sup
p′:‖p′−p‖∞≤ B√

n

Ep′

[

‖p̂ (Wn(Xn))− p′‖qq
]

& max





Cδ ‖p‖ q
q+2+δ

(n2b)
q
2

,
‖p‖ q

q+2

(n2b)
q
2 log d

,
Cδ ‖p‖q/2+δ

q/2+δ

n
q
2

,
‖p‖q/2q/2

n
q
2 log d



 ,

where Cδ , (δ/(1 + δ))2 is a δ-dependent constant.

4Indeed, the lower bound holds for blackboard interactive schemes Kushilevitz (1997), a more general class of interactive
schemes than Πseq. See Barnes et al. (2019b) for a discussion of blackboard schemes.
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Sketch of the proof The proof is based on the framework introduced in Barnes et al. (2019b) (see also
Chen et al. (2021b) for the analysis of ℓ2 case), where a global upper bound on the quantized Fisher infor-
mation is given and used to derive the minimax lower bound on the ℓ2 error. We extend their results to the
local regime and develop a local upper bound on the quantized Fisher information around a neighborhood
of p.

To obtain a local upper bound, we construct an h-dimensional parametric sub-model Θh
p that contains

p and is a subset of Pd, where h ∈ [d] is a tuning parameter and will be determined later. By considering
the sub-model Θh

p , we can control its Fisher information around p with a function of h and p. Optimizing
over h ∈ [d] yield an upper bound that depends on ‖p‖ q

q+2
. Finally, the local upper bound on the quantized

Fisher information is translated to a local minimax lower bound on the Lq error via the generalized van
Trees inequality ( Theorem 2.4). We defer the detailed proof to Appendix B.2. �

Remark 4.3 Note that Theorem 4.2 complements Theorem 4.1 and is nearly tight (up to a log d factor) for
q = 1 and q = 2. We believe the upper bound can be easily adapted to match the lower bound for all q > 1.

4.2 ε-local differential privacy

Similarly, under the ε-local DP constraint, we prove the following local lower bound:

Theorem 4.4 (ε-LDP Lq local minimax lower bounds) Let p ∈ ∆′
d ,

{

p ∈ ∆d

∣

∣

1
2 < p1 < 2

3

}

. Then

for any δ > 0, B ≥
√

‖p‖1/2

dmin(eε,(eε−1)2)
, as long as n = Ω

(

d3 log d
‖p‖1/2

)

, it holds that

inf
(Wn,p̂)∈Πseq

sup
p′:‖p′−p‖∞≤ B√

n

Ep′

[

‖p̂ (Wn(Xn)) − p′‖qq
]

& max

(

Cδ ‖p‖ q
q+2+δ

(

nmin
(

eε, (eε − 1)2
))

q
2

,

C1‖p‖ q
q+2

(

nmin
(

eε, (eε − 1)
2
))

q
2

log d

,
Cδ · ‖p‖q/2+δ

q/2+δ

n
q
2

,
C2 ‖p‖q/2q/2

n
q
2 log d

)

,

for some Cδ, C1, C2 > 0.

However, unlike the b-bit communication constraint, the tightness of Theorem 4.4 is unknown, and a matching
achievability scheme currently remains unsettled.

5 Conclusion and Future Works

In this work, we first point out that the popular van Trees inequality can be generalized to accommodate
general loss functions through Efroimovich’s inequality. Subsequently, we extend the application of the
generalized van Trees inequality to Lq loss in the context of distributed estimation under communication
and local differential privacy constraints. Notably, combining with previous bounds on constrained Fisher
information, our results offer a significantly simplified analysis over existing (global) lower bounds and, more
importantly, can be used to derive local minimax results that capture the hardness of instances.
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Han, Y., Özgür, A., and Weissman, T. (2018b). Geometric lower bounds for distributed parameter estimation
under communication constraints. In Conference On Learning Theory, pages 3163–3188. PMLR.
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A Global Minimax Lower Bounds under LDP

Subject to ε-LDP constraints, the following lower bounds on the risk holds:

Corollary A.1 (Distributed estimation under ε-bit local DP) Making the same assumptions as in
Corollary 3.2

• Gaussian location model: let X ∼ N (θ, σ2Id) with [−B,B] ⊂ Θ. For nB2 min
(

ε, ε2, d
)

≥ dσ2, we have

R (Lq,Θ) & dκ(q)

(

d

nmin (ε, ε2)

)
q
2

. (15)

• Distribution estimation: Suppose that X = {1, 2, ..., d} and that f(x|θ) = θx. Let Θ = ∆d be the d-dim

probability simplex. For nmin
(

eε, (eε − 1)2 , d
)

≥ d2, we have

R (Lq,Θ) & dκ(q)





1

nmin
(

eε, (eε − 1)
2
, d
)





q
2

. (16)

• Product Bernoulli model: suppose that X ∼ ∏d
i=1 Bern(θi). If Θ = [0, 1]d, then for nmin {b, d} ≥ d,

we have

R (Lq,Θ) & dκ(q)

(

d

n (ε, ε2, d)

)
q
2

. (17)

On the other hand, Θ = ∆d, then for nmin
{

2b, d
}

≥ d2, we get instead

R (Lq,Θ) & dκ(q)





1

nmin
(

eε, (eε − 1)
2
, d
)





q
2

. (18)

B Missing Proofs

B.1 Proof of Theorem 2.4

We start with the following maximum-entropy lemma.

Lemma B.1 (Maximum entropy under p-th moment constraints.) For any random variable X ∈
R, it holds that

h(X) ≤ log

(

2e
1
q Γ

(

1

q

)

q
1
q−1 (E [|X |q])

1
q

)

, log
(

CME(q) · E [|X |q]
1
q

)

.

Now, we proceed with (5):

2

d
h(θ̂ − θ) ≤ 2

d

∑

i

h(θ̂i − θi) ≤
2

d

∑

i

log

(

CME(q)
(

E

[∣

∣

∣
θ̂i − θi

∣

∣

∣

q]) 1
q

)

≤ 2 log



CME(q)

(

1

d

∑

i

E

[∣

∣

∣θ̂i − θi

∣

∣

∣

q]
)

1
q





= log





(

CME(q)

(

1

d
E

[

∥

∥

∥θ̂ − θ
∥

∥

∥

q

q

])
1
q

)2


 .

Plugging into Theorem 2.3 and rearranging yield the desired result. �
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B.2 Proof of Theorem 4.2

Before entering the main proof, we first introduce some notation that will be used throughout this section.
Let (p(1), p(2), ..., p(d)) be the sorted sequence of p = (p1, p2, ..., pd) in the non-increasing order; that is,
p(i) ≥ p(j) for all i > j. Denote π : [d] → [d] as the corresponding sorting function5, i.e. p(i) = pπ(i) for all
i ∈ [d].

Constructing the sub-model Θh
p. We construct Θh

p by freezing the (d−h) smallest coordinates of p and
only letting the largest (h− 1) coordinates to be free parameters. Mathematically, let

Θh
p ,

{

(θ2, θ3, ..., θh)
∣

∣π−1
(

θ1, θ2, ..., θh, p(h+1), p(h+2), ..., p(d)
)

∈ Pd

}

, (19)

where θ1 = 1 − ∑h
i=2 θi −

∑d
i=h+1 pi is fixed when (θ2, ..., θh) are determined. For instance, if p =

(

1
16 ,

1
8 ,

1
2 ,

1
16 ,

1
4

)

(so d = 5) and h = 3, then the corresponding sub-model is

Θh
p ,

{

(θ2, θ3)

∣

∣

∣

∣

(

1

16
, θ3, θ1,

1

16
, θ2

)

∈ Pd

}

.

Bounding the quantized Fisher information. Now recall that under this model, the score function

Sθ(x) , (Sθ2(x), ..., Sθh (x)) ,

(

∂ log p(x|θ)
∂θ2

, ...,
∂ log p(x|θ)

∂θh

)

can be computed as

Sθi(x) =











1
θi
, if x = π(i), 2 ≤ i ≤ h

− 1
θ1
, if x = π(1)

0, otherwise

The next lemma shows that to bound the quantized Fisher information, it suffices to control the variance
of the score function.

Lemma B.2 (Theorem 1 in Barnes et al. (2019b)) Let W be any b-bit quantization scheme and IW (θ)
is the Fisher information of Y at θ where Y ∼ W (·|X) and X ∼ pθ. Then for any θ ∈ Θ ⊆ R

h,

Tr (IW (θ)) ≤ min

(

Tr (IX(θ)) , 2b max
‖u‖2≤1

Var (〈u, Sθ(X)〉)
)

.

Therefore, for any unit vector u = (u2, ..., uh) with ‖u‖2 = 1, we control the variance as follows:

Var (〈u, Sθ(X)〉) (a)
=

h
∑

i=1

θi





h
∑

j=2

ujSθj (π(i))





2

= θ1





h
∑

j=2

uj





2
(

1

θ1

)2

+
h
∑

i=2

θiu
2
i

1

θ2i

=

(

∑h
j=2 uj

)2

θ1
+

h
∑

j=2

u2
i

θi

≤ h

θ1
+

1

minj∈{2,...,h} θj
, (20)

where (a) holds since the score function has zero mean. This allows us to upper bound IW (θ) in a neighbor-
hood around θ(p), where θ(p) is the location of p in the sub-model Θh

p , i.e.

θ(p) = (θ2(p), ..., θh(p)) , (p(2), ..., p(h)).

5With a slight abuse of notation, we overload π so that π ((p1, ..., pd)) , (pπ(1), ..., pπ(d))

14



In particular, for any 0 < B ≤ p(h)

3 and p ∈ P ′
d ,

{

p ∈ Pd

∣

∣

1
2 < p1 < 5

6

}

, the neighborhood NB,h(p) ,
θ(p) + [−B,B]h must be contained in Θh

p . Next, we control the quantized Fisher information over NB,h(p)
as follows.

1. For any θ′ ∈ NB,h(p), it holds that

θ′1 ≥ θ1(p)−
hp(h)

3
≥ 1

6
,

where the second inequality holds since 1) θ1(p) = p(1) ≥ 1
2 by our definition of P ′

d, and 2)
hp(h)

3 ≤
∑h

i=1 p(1)

3 ≤ 1
3 . We also have

min
j∈{2,...,h}

θ′j ≥ min
j∈{2,...,h}

θj(p)−
p(h)

3
≥ 2p(h)

3
.

Therefore (20) implies for any θ′ ∈ NB,h(p),

Var (〈u, S′
θ(X)〉) ≤ 6h+

3

2p(h)
. (21)

2. By the definition of Sθi(x) and Fisher information matrix,

Tr (IX(θ)) =
∑

x

∑

i∈[h]

Sθi(x)Sθi(x)pθ(x) =

h
∑

i=1

1

p(i)
.

Maximizing Tr (IX(θ)) yields

max
θ′∈NB,h(p)

Tr (IX(θ)) =

h
∑

i=1

1

p(i) − 1
3p(h)

≤ 3

2

∑

i

1

p(i)
≤ 3

2

h

p(h)
. (22)

Combining (21) and (22) with Lemma B.2, we arrive at

∀θ′ ∈ NB,h(p), Tr (IW (θ′)) ≤ min

(

2b
(

6h+
3

2p(h)

)

,
3h

2p(h)

)

≤ 2b
(

6h+
3

2p(h)

)

+
3h

2p(h)
.

Bounding the Lq error. We choose the prior µ on NB,h(p) to minimize the Fisher information, i.e.,
µ = µ⊗h where µ is the cosine prior introduced in Borovkov (1998); Tsybakov (2008). It is straightforward

to see that Tr
(

I(π) = hπ2

B2

)

. Then, applying Proposition 2.5 on NB,h(p) yields

sup
θ′∈NB,h(p)

E

[

∥

∥

∥θ̂ − θ′
∥

∥

∥

q

q

]

≥ h1+ q
2

(

n2b
(

6h+ 3
2p(h)

)

+ hπ2

B2 + 3nh
2p(h)

)q/2

≥
h1+ q

2 p
q
2

(h)
(

n2b
(

6hp(h) +
3
2

)

+
hπ2p(h)

B2 + 3nh
2

)q/2

(a)

≥
h1+ q

2 p
q
2

(h)
(

10n2b +
10hp(h)

B2 + 4nh
)q/2

. (23)

where the (a) is due to hp(h) ≤ 1. Now, if we pick B ≥
√

hp(h)

n2b
, then (23) becomes

(23) ≥
h1+ q

2 p
q
2

(h)

(20n2b + 4nh)
q/2

≥ min





h1+ q
2 p

q
2

(h)

(40n2b)
q/2

,
h1+ q

2 p
q
2

(h)

(8nh)
q/2



 = min





h1+ q
2 p

q
2

(h)

(40n2b)
q/2

,
hp

q
2

(h)

(8n)
q/2



 . (24)

Notice that in order to satisfy the condition NB,h(p) ⊆ Θh
p , B must be at most

p(h)

3 , so we have an

implicit sample size requirement: n must be at least 3h
2bp(h)

.
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Optimizing over h. Finally, we maximize (24) over h ∈ [d] to obtain the best lower bound, via the
following simple but crucial lemma.

Lemma B.3 For any p ∈ Pd and δ > 0, it holds that

•

max
h∈[d]

h1+ q
2 · p

q
2

(h) ≥ max

(

Cδ ‖p‖ q
q+2+δ ,

C‖p‖ q
q+2

log d

)

,

for Cδ ,
(

δ
1+δ

)
2

1+δ

and a universal constant C small enough.

•

max
h∈[d]

h · pq/2(h) ≥ max



Cδ · ‖p‖q/2+δ
q/2+δ ,

C ‖p‖q/2q/2

log d



 ,

for Cδ ,
(

δ
1+δ

)
2

1+δ

and a universal constant C small enough.

Picking h∗ = argmaxh∈[d] h
2p(h) and by Lemma B.3 and (24), we obtain that for all θ̂

sup
θ′∈NBn,h∗ (p)

E

[

∥

∥

∥θ̂ − θ′
∥

∥

∥

q

q

]

≥ max





Cδ ‖p‖ q
q+2+δ

(n2b)
q
2

,
C1‖p‖ q

q+2

(n2b)
q
2 log d

,
Cδ · ‖p‖q/2+δ

q/2+δ

n
q
2

,
C2 ‖p‖q/2q/2

n
q
2 log d



 ,

as long as p ∈ P ′
d and Bn =

√

h∗p(h∗)

n2b

(a)

≤
√

d
n2b‖p‖ 1

2

, where (a) holds due to the second result of Lemma B.3

and h∗ ≤ d. In addition, the sample size constraint that n must be larger than 3h∗

2bp(h∗)
can be satisfied if

n = Ω

(

d3 log d
2b‖p‖ 1

2

)

since h∗

p(h∗)
≤ (h∗)3 log d

C‖p‖ 1
2

≤ d3 log d
C‖p‖ 1

2

, where the first inequality is due to Lemma B.3 and the

second one is due to h∗ ≤ d. The proof is complete by observing that

inf
(Wn,p̂)

sup
p′:‖p′−p‖∞≤Bn

E

[

‖p̂− p′‖qq
]

≥ inf
(Wn,θ̂)

sup
θ′∈NBn,h∗ (p)

E

[

∥

∥

∥θ̂ − θ′
∥

∥

∥

q

q

]

.

�

B.3 Proof of Corollary 3.2 and Corollary A.1

The corollaries follow from a direct application of Theorem 2.4, along with (Barnes et al., 2019b, Corollary 1-
4) and (Barnes et al., 2020, Corollary 1-3).

B.4 Proof of Theorem 4.4

The proof follows exactly the same as the Section 4.2, except for replacing Lemma B.2 with the following:

Lemma B.4 (Proposition 2 and 3 and in Barnes et al. (2020)) Let W be any ε-local DP scheme and
IW (θ) is the Fisher information of Y at θ where Y ∼ W (·|X) and X ∼ pθ. Then for any θ ∈ Θ ⊆ R

h,

Tr (IW (θ)) ≤ min

{

Tr (IX(θ)) , eε max
‖u‖2≤1

Var (〈u, Sθ(X)〉) , (eε − 1)
2

max
‖u‖2≤1

Var (〈u, Sθ(X)〉)
}

.
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C Proof of Lemmas

C.1 Proof of Lemma B.1

Let X satisfy the q-th moment constraint E [|X |q] ≤ ∆. Then, by the maximum entropy principle, the
density of X that maximizes the entropy must take the following form:

f(x;β) =
exp (−|x|q/β)

λ(q, β)
,

where

λ(q, β) ,

∫

R

exp (−|x|q/β) dx =
2β1/q

q
Γ

(

1

q

)

.

Simple calculations yield

EX∼f(x;β) [|X |q] = 2

λ(q, β)

∫ ∞

0

xq exp (−xq/β) dx =
2β1/q+1

q Γ
(

1 + 1
q

)

λ(q, β)
=

βΓ
(

1 + 1
q

)

Γ
(

1
q

) =
β

q
≤ ∆.

On the other hand, the differential entropy can be calculated as

h(X) =
1

q
− log





q

2β1/qγ
(

1
q

)



 ≤ 1

q
− log





p1−1/q

2∆1/qΓ
(

1
q

)



 ,

which establishes the lemma.
�

C.2 Proof of Lemma B.3

The proof follows from the same arguments as in (Chen et al., 2021b, Lemma 6.2) and is omitted here. �

17


	Introduction
	Preliminaries
	Distributed Estimation under Information Constraints
	Problem Setup
	Global Minimax Lower Bounds
	Achievability

	Local Minimax Bounds on Discrete Distribution Estimation
	b-bit communication constraint
	-local differential privacy

	Conclusion and Future Works
	Global Minimax Lower Bounds under LDP
	Missing Proofs
	Proof of Theorem 2.4
	Proof of Theorem 4.2
	Proof of Corollary 3.2 and Corollary A.1
	Proof of Theorem 4.4

	Proof of Lemmas
	Proof of Lemma B.1
	Proof of Lemma B.3


