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Abstract

Optical approaches have made great strides towards the goal of high-speed, energy-efficient computing
necessary for modern deep learning and AI applications. Read-in and read-out of data, however, limit the
overall performance of existing approaches. This study introduces a multilayer optoelectronic computing
framework that alternates between optical and optoelectronic layers to implement matrix-vector multipli-
cations and rectified linear functions, respectively. Our framework is designed for real-time, parallelized
operations, leveraging 2D arrays of LEDs and photodetectors connected via independent analog electron-
ics. We experimentally demonstrate this approach using a system with a three-layer network with two
hidden layers and operate it to recognize images from the MNIST database with a recognition accuracy of
92% and classify classes from a nonlinear spiral data with 86% accuracy. By implementing multiple layers
of a deep neural network simultaneously, our approach significantly reduces the number of read-ins and
read-outs required and paves the way for scalable optical accelerators requiring ultra low energy.
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1 Introduction

Deep learning is now ubiquitous for solving problems ranging from image recognition to drug discovery [1].

Critical to this success is the use of ever larger deep learning models and datasets, that come with correspond-

ingly rapid increases in required computing resources [2, 3]. This increased demand [4, 5] has spurred research

into alternative computing technology [6, 7]. Research in optical computing has been explored for decades

[8, 9, 10, 11, 12], and is currently undergoing a renaissance. The combination of the potentially dramatic

energy savings [7, 13] of light-based computation coupled with improvements in optoelectronics, photonics,

and fabrication capabilities have led to promising first results [14, 15].

A major objective of contemporary optical computing approaches is to develop accelerators, energy-efficient

implementations of small sections of modern neural networks [16, 17]. Photonic accelerators make use of silicon

fabrication to create a small number of high-speed, nonlinear photonic neurons [18, 19, 20] and recent imple-

mentations have reached computational power rivaling modern day GPUs [21, 22, 23]. Free-space accelerators

typically have many more neurons at slower operating speeds and are potentially able to achieve even higher

computation speeds [24, 16, 25, 26, 27, 28, 29, 30].

Several challenges still need to be tackled before either photonic or free-space systems will be able to com-

pete with existing computational hardware, such as system scalability, stability/accuracy, and interfacing with

electronics [6]. One of the reasons for these challenges is the requirement of many systems for coherent light.

Coherent systems enable complex summation [24, 31] and can make effective use of optical nonlinear activation

functions [32, 33]. They typically require control over optical phase, resulting in strict requirements limiting

system scale-up. Systems using amplitude-based computation in a free-space propagation setup [34, 25, 27, 30]

have primarily focused on using a single optical step between read-in and read-out of data and thus have not

been extended to multilayer architectures (a recent example demonstrated a two-layer architecture [35]). In

these existing systems, the energy cost of electronic read-in/read-out constrains their overall efficiency.

In this work, we illustrate the potential of a multilayer incoherent optoelectronic accelerator. By de-

ploying multiple optical interconnects with nonlinear activation functions between layer in a single system,

the cost of electronic interfacing is greatly reduced, thereby opening the way for implementing scalable

deep neural network architectures. We introduce and experimentally demonstrate a computing paradigm

based on paired optoelectronic boards and optical interconnects, respectively describing nonlinear activation

and weight matrix operations of a neural network (FIG 1). Our system builds upon and is smoothly ex-

tended by prior work implementing optoelectronic activation functions [18, 36, 37, 35] and matrix operations

[34, 38, 16, 25, 27, 39, 40, 41, 42].

Our work is experimentally realized using off-the-shelf components on printed circuit boards and ampli-
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tude masks. The focus of the work is to demonstrate an optoelectronic computing paradigm that consists of

individual units that can be straightforwardly scaled up in both the number of neurons and the number of

layers. The system is designed so that networks previously trained on conventional computing hardware can be

directly deployed onto the accelerator. This focus on inference-only systems is driven by the fact that roughly

half of energy spent for AI currently goes into inference rather than training [43]. Large models such as GPT-4

are trained for months on compute cluster containing tens of thousands of GPUs. While training takes place

rarely, more than 100 million users place enormous demands on computing resources for inference [44]. This

greatly eases the ability for systems based on this paradigm to be adopted for industrial applications. These

assets, in combination with advances in high-speed analog electronics, pave the way for large-scale implemen-

tations.

3



Figure 1: (a) The multilayer optoelectronic neural network uses a series of interleaved optical and electronic
layers to implement matrix multiplication and nonlinearity, respectively. The inset illustrates (b) a nonnegative
fully connected MVM that is implemented dynamically using a 2D array of incoherent light emitting diodes
(LEDs), each encoding a neuron activation in our system. Each LED is associated with a 2D subarray of
amplitude-encoded weights that map onto a 2D array of photodiodes (PDs). (c) An electronic board contains
a parallel array of neurons each associated with a pair of photodiodes representing the positive and negative
inputs to the neuron.

2 Results

2.1 Multilayer optoelectronic neural network

Modern neural network models commonly include a series of matrix-vector multiplications (MVM) and non-

linear activations. The matrix in these multiplications frequently take the form of either fully-connected

matrices or convolution operations and the most commonly used nonlinear activation is the rectified linear

(ReLU) function.

Our experimental implementation of a multilayer optoelectronic neural network consists of four electronic

boards representing an input layer, two hidden layers and an output layer (FIG. 2a) with optical MVMs in

between. Free-space optics (green) execute a nonnegative fully-connected MVM while analog electronics (blue)

perform differential photodetection, signal amplification, nonlinearity application, and light emission.

While the setup implements fully connected MVMs, the 1D vectors of neuron activations in the input and

hidden layers are mapped onto 2D arrays of light emitting diodes (LEDs). In this case of the input layer, a

vector of 64 inputs is converted by an analog to digital converter (ADC) to the light intensity an 8×8 array of

LEDs. Our approach uses the incoherent light from this LED array to perform the MVM in a lensless fashion

using only nonnegative weights encoded on an amplitude mask (FIG. 2b, see Methods). Each LED positioned

along the 2D array is associated with a 2D subarray of amplitude encoded weights that maps onto the 2D

array of photodiodes (PDs) of the subsequent layer.

In our experiments, we use a liquid crystal display (LCD) to dynamically encode the amplitude mask.

Other approaches, such as using phase-change materials [21] or photomasks may also be used as passively
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Figure 2: Schematic of our multi-layer optoelectronic neural network implementation with optical operations
(green) and electronic operations (blue). (a) Data is read-in electronically to an Input layer with 64 units
arranged on an 8x8 array of LEDs. A fully connected matrix-vector-multiplication (MVM) maps light from
these units to a 10× 10 array of photodidoes (PDs). Hidden layer 1 combines pairs of values from the PDs to
drive a 5x10 array of LEDs. A second MVM and hidden layer implement Hidden layer 2 and a third MVM
is mapped onto an 8x8 array of PDs of the Output Layer. (b) Ray-tracing illustrates how a fully-connected
MVM operation is performed. (c) Amplitude weights are nonnegative, and a pair of photodiodes are fed
into an analog electronic circuit that performs a differencing operation before driving an LED. (d) Example
output LED response to a pair of detector inputs. Negative currents in the circuit are truncated by the LED,
effectively implementing a linear rectification.

encoded amplitude masks and improve the energy efficiency of system.

The positions and sizes of the weights on the amplitude mask are determined using ray-tracing (FIG. 2b).

The mask is positioned at an axial distance d1 away from the LED array and the PD array is positioned an

additional distance d2 further. This results in a magnification factor M = d1+d2

d1
, which is both the size and

shift scaling factor for the amplitude weights. This is used to determine the regions where light from LEDi

propagating towards PDj intersect the amplitude mask. This transmission of these regions are set to weight

W ij for all i, j. We choose parameters for the LED die size, LED spacing, PD active area, PD spacing, and

M to minimize crosstalk between the LED and PD pairs and the weights.

The system uses differential photodetection in the hidden layers to convert output values from the non-

negative MVM into a real valued MVM. A single neuron in a hidden layer has two PD inputs, corresponding

to positive and negative portions of the neuron activation. These inputs are subtracted from each other using

an operation amplifier (op-amp) differencing circuit. The circuit then amplifies the differenced input and
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drives an output LED. As an LED only emits light when forward biased, the circuit naturally implements a

ReLU on the differenced input (FIG. 2c). For these experiments, we designed these circuits on printed circuit

boards (PCBs) using commercially available integrated circuit chips (IC) and passive electronic components

(see Methods, FIG. 2d).

The output from a hidden layer propagates through an optical MVM which may be used to drive another

hidden layer. The process repeats until the output layer, which has a 2D PD array whose signal is read-out

using an analog to digital converter (ADC) to a computer. The entire multilayer optoelectronic neural network

runs continuously with sets of inputs and outputs synced to a clock.

2.2 Image classification

We tested the multilayer optoelectronic neural network by performing image classification on a downscaled

version of the MNIST handwritten digit dataset. The dataset consists of 28× 28 pixel images of handwritten

digits between 0 and 9. We first downscale the digits to a 7× 7 image and then pad the result with zeros and

linearize it to form a length 64 vector. These linearized vector inputs were trained in PyTorch with a multilayer

perceptron with the same network structure as our system (see Methods). Weights in the fully connected layers

are constrained to experimentally determined maximum and minimum weights and experimentally determined

offsets are added in the hidden layer differencing operation.

After training, the weights are loaded onto the amplitude masks in the optical layers of our setup. For

forward inference, the downscaled MNIST inputs are read in one at a time to our input board and propagated

through the system. An example digit propagation through each of the layers as compared to the simulated

values is shown in FIG. 3a. After each propagation, the outputs were digitized and fed back to the source

board. Correlation between experimental values and digital simulation values of the neuronal activations in

the hidden layers are high, demonstrating that errors due to cross-talk, nonlinearity in the LED response, and

errors in the optical weight response are minimal (FIG. 3b,c).

For the task of classifying the MNIST handwritten digit dataset, this optoelectronic neural network attains

a classification accuracy of 92.3% in experiments as opposed to a classification accuracy of 95.4% in the digital

simulation (FIG. 3d,e). We followed up these experiments using the full multilayer opto-electronic neural

network with all optical and electronic layers implemented simultaneously. In these classification experiments,

we obtained an overall accuracy of 91.8% with a test data simulation classification accuracy of 91.2% and an

experimental test data classification accuracy of 91.1%.

The protocol allows for a good alignment of each individual layer in the network with their corresponding

optical weight masks giving a close match with simulations. This performance is in contrast to a digital classi-

fication accuracy of 82.4% for a linear fully connected network in performing classification on the downscaled

MNIST digits. This result demonstrates the advantages of the nonlinearity introduced in our network over

the linear single layer performance.

To further demonstrate the advantage of multiple nonlinear layers in the neural network, we setup a model
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Figure 3: MNIST digit classification with a three-layer optoelectronic neural network. (a) Example propagation
of a trained miniaturized MNIST digit through the three-layer network. Digital simulation values are compared
to the analog experimental values. (b) Correlation between simulation and experiment of activations in Hidden
layer 1 in response to individual miniaturized MNIST digits (c) Same as (b), but in Hidden layer 2. (d)
Confusion matrix of estimated classes for simulated results, in percent. (e) Same as (d), but for experimental
results

of a two-input, four-class nonlinear spiral classification problem (FIG. 4). In this problem, a linear classifier has

an accuracy of 30.1%, while the experimental output of our system is able to achieve a classification accuracy

of 86.0% (FIG. 4b,c). The direct outputs of the setup closely match the expected simulation results for the

trained network (FIG. 4d) and the overall performance closely matches the best predicted performance.

2.3 Deep optical accelerators with weight transfer

Modern neural network architectures are large and complex, using dozens of layers with highly variable numbers

of neurons and connections between layers. As such, it is impractical to completely replicate these architectures

with optical/photonic approaches, including the multilayer optoelectronic neural network. A more useful

application of these approaches is to implement reasonable portions of modern network architectures as an

accelerator, especially if weights and structure from pre-trained networks can be directly transferred to the

accelerator.

We have shown the multilayer optoelectronic neural network can flexibly implement some of the most

common building blocks of modern neural networks, fully-connected MVMs and ReLUs. Additionally, these

building blocks are high-speed (FIG. 5a) and independent, suggesting good future scaling for implementations

with larger numbers of neurons. However, as our approach relies on analog computing, variability in the

optical and electronic responses limits the performance of direct weight transfer.
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Measurements of our experimental implementation (FIG. 5b-d) show a moderate amount of variability in

the weight response, LED brightness, and photodiode response, a result primarily due to the variability in

the discrete commercial electronics used on the PCBs. In particular, a small number of neurons account for

the majority of the variance. In this case, low-performance neurons may be excluded from individual layers,

resulting in a remaining population of units that have a suitably uniform performance, a process analogous

to the selection of individual cores on a microprocessor. The remaining variance in these properties can be

normalized on the amplitude mask by elementwise multiplication of trained weights with inverse measured

weight distribution during weight transfer.

Two additional properties that affect the performance of the multilayer optoelectronic neural network as an

accelerator are crosstalk (FIG. 5d) and nonlinearity in the LED forward bias response. The measured crosstalk

values are low, and do not substantially change the performance of our device during MNIST classification.

Nonlinearity in the LED response similarly had a minimal effect on the performance and can be corrected

with more sophisticated electronic circuits that are not reliant on op-amps for driving the LED response.

As an accelerator, one of the major advantages of our approach is its ability to implement multiple layers

of a neural network simultaneously (FIG. 6a-c). One major bottleneck of conventional computing approaches

is due to the von Neumann architecture where data is temporarily read-in and read-out of memory at each

computation step. Optical/photonic accelerators that implement a single layer of a neural network suffer the

same limitation and the energy cost of read-in/read-out of data dwarfs the energy cost of the computation

itself [30]. Our approach, by implementing multiple layers simultaneously, reduces the read-in/read-out cost

by a factor equal to the number of layers implemented (FIG. 6d), an advantage that grows with network depth.

As the system is designed to be energy efficient and scalable, we examine the power use per operation of

the system as it is scaled up for practical implementations. In our proof-of-concept implementation with an

8× 8 grid of photodiodes and a 4× 8 grid of LEDs operating at 500 kHz, we obtain a performance-per-watt

of 11.61 GOPS/W. This is in contrast to a GPU from earlier generations such as NVIDIA 1080 which has a

calculated performance-per-watt of about 49 GFLOPS/W or the A30 at 1 TFLOPS/W [4]. Our system can

be scaled both spatially and temporally. We examine the evolution of performance-per-watt of the system as

both of those factors are scaled up. The energy performance of the system improves quadratically as the array

sizes increases to 32 × 32 (FIG. 6e). beyond which diffraction effects become significant for moderate board

sizes (see Methods). On scaling up to a 32× 32 grid, the present approach yields a predicted performance of

2.92 TOPS/W. At higher speeds, the performance increases further, topping out at a prediced 120 TOPS/W

(FIG. 6f,g), all the while using specifications from off-the-shelf components (see Methods).
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3 Discussion

We have demonstrated a multilayer optoelectronic neural network based on interleaved optical and optoelec-

tronic layers. The incoherent optical layers are simple, requiring only a single amplitude mask to perform

fully connected MVMs. Similarly, the optoelectronic hidden layers rely on only basic electronic components,

consisting of 2D arrays of photodetectors and LEDs connected locally by analog electronics. Our experimental

setup with three MVMs and two hidden layers successfully classified handwritten digits, reaching a fidelity

almost equal to values from digital simulation. Measurements of the response of individual neurons in each

layer suggest this approach is suitable for direct transfer of weights from sections of modern neural networks

architectures and used as a multi-layer optical accelerator for neural network inference.

We designed our system to be reminiscent of modern LED displays - where an LED array backlight

projects through an LCD - combined with 2D photodiode arrays. These two components, when combined

with local, independent analog processing, result in a computation platform that is suitable for large-scale

implementations with very high data-processing rates. Modern LED displays are starting to make use of mini-

LEDS and micro-LEDS [45], paving the way for miniaturization. Recent improvements in CMOS chip design

and analog electronics suggest that the required technology for large-scale implementation and manufacture

are already available.

Our approach is general and extensible in several directions. LEDs with different wavelengths can be used to

encode either positive/negative weights or separate processing channels. Other modern neural network layers

may be implemented. The optical MVM can be adapted for large scale convolution operations [34, 38, 35]

and beamsplitters may be used to implement skip layers. Analog electronics are straightforwardly adapted

for pooling layers, other nonlinear responses, or encoded to add bias terms. We believe these advantages

and extensibility will allow the multilayer optoelectronic neural network approach to rapidly translate into a

useful optical accelerator for neural network inference while at the same time dramatically reducing the energy

requirements of such computations.
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4 Methods

4.1 MNIST dataset and processing

The MNIST handwritten digit dataset [46] was used to demonstrate the operation of our multilayer optoelec-

tronic neural network. The MNIST handwritten digit dataset consists of 60,000 images of handwritten digits

between 0 and 9. Each of the images is 28× 28 pixels in size. For use in our system, we downscaled the image

to 7× 7 pixels using bilinear interpolation. The downscaled images were padded with zeros along each of the

two dimensions to form an 8× 8 pixel input to our system.

4.2 Control software

The control software for running the multilayer optoelectronic neural network is written in Python. The code

for controlling the DAC (PXIe-6739) and ADC (NI PXIe-6355) instruments uses the NI-DAQMX Python

package. The control pipeline consists of preloading preprocessed input data to the DAC and triggering

simultaneous read-in and read-out of data. Data are synced via either the on-board clock or posthoc. The

SLMs (Holoeye LC2012) used to control the amplitude masks are controlled in Python using OpenCV or the

Holoeye SLM Display SDK. A CMOS camera (FLIR ORX-10G-71S7M) is controlled using the FLIR PySpin

SDK.

4.3 Network training

Network training was performed using PyTorch on the downscaled MNIST dataset with a 5:1 split of data for

training:testing. The downscaled MNIST digits are padded and linearized (64× 1) before being presented to

the network. The network architecture is as depicted in FIG. 1a, equivalent to a fully-connected feed forward

neural network with input size 64 followed by two hidden layers of size 50 (including ReLUs) and an output

layer of size 64. Only 10 output units are used for the 10 MNIST classes, and a Softmax is applied to convert

the outputs to probabilities.

Two custom layers are used to define the fully connected MVM and ReLU operations in a non-negative

manner. The fully connected layer is implemented as a matrix vector multiplication of neuron activations

of length n with a nonnegative weight matrix W of size n × 2m where m is the number of units of the

downstream layer. The weight matrix W is clamped to experimentally determined minimum and maximum

values from the process detailed in the alignment and calibration section of Methods. To increase robustness

of the experimental network performance, an alternative version of this layer has been implemented during

training to also include reshaping the output activations with a crosstalk matrix that has been randomly

shifted by small subunit distances. The ReLU is implemented as a paired differencing operation where the 2m

inputs are split into m pairs of values that are subtracted from each other forming m real-valued activations.

An experimentally determined offset is added to these activations before a ReLU operation is applied. Similar

to above, to increase robustness of the network, a random perturbation is sometimes applied to the neuronal
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activations and offsets during training. Training was performed using the Adam optimizer.

4.4 Electronics design and operation

The optoelectronic neural network implements optical matrix-vector multiplications by mapping light from a

2D array of LEDs (Wurth 150040GS73220, Vishay VLMTG1400) to a 2D array of photodiodes or phototran-

sistors (OSRAM SFH2704, SFH3710). Light-detection, signal processing and amplification, and light-emission

are performed using analog electronics and optoelectronics on a printed circuit board (PCB). The circuits used

are designed in LTSpice to meet AC and DC performance requirements at operation frequencies of up to 1MHz

and are then tested on a matrix board. We then design PCBs from those circuits in KiCad 6 using components

from standard libraries.

We design three types of PCBs each corresponding to the input, hidden and output layers. The input

board reads in analog data using a National Instruments (NI) digital-to-analog converter (DAC) PXIe-6739.

64 analog voltage inputs are converted to current values to drive an 8× 8 array of LEDs. A modified Howland

current pump circuit design implemented with operational amplifiers (op-amp) is used to drive each LED

independently.

An intermediate board implements one of the hidden layers in our optoelectronic neural network. In our

experimental setup it is composed of a 5× 10 array of independent units that each perform three operations:

photodetection, differencing and amplification, and light emission. In each unit, photodetection acquires

signals from 2 × 1 photodiodes amplified with a transimpedance amplifier. These two signals are subtracted

from each other using an op-amp based differential amplifier. A circuit converts this signal to a current to

drive a LED. The activations of the hidden layer are encoded as the output intensity of the LEDs, which

naturally rectifies any negative current output to zero output intensity.

The output board consists of a 2D array of photodiodes whose signals are each amplified and converted

to a voltage with a transimpedance amplifier. These voltages are read-out using an analog to digital (ADC)

converter NI PXIe-6355 to a computer. A CMOS camera is also used in experiments in place of a photodiode

array for characterization of the optical response and calibration for optical alignment.

4.5 Optics design and operation

Our system executes a fully connected optical matrix-vector multiplication by mapping light from the 2D LED

plane to the 2D photodetector plane with weights encoded a single amplitude mask. A grayscale amplitude

mask implemented on a liquid crystal display is used to encode the optical weight matrix in the multilayer

optoelectronic neural network. A transmissive spatial light modulator (SLM, Holoeye LC2012) is used in

conjunction with a pair of polarizers for this purpose. The SLM has a resolution of 1024 × 768 with a pixel

size of 36µm and is presented an image composed of a subarray of weights for each LED that are mapped to

the photodetector plane of the following layer.

Light from the LED plane propagates a distance d1 before impinging the amplitude mask and then prop-
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agates a further distance d2 before interacting with the photodetector plane. The magnification M = d1+d2

d1

describes the scaling factor for the shift (xij
Amp − xi

LED) between a LED position xi
LED and a position on the

amplitude mask xij
Amp at the photodetector plane. The output position on the photodetector plane is then

xj
PD = xi

LED + M(xij
Amp − xi

LED). We position each weight W ij at xij
Amp for each pair i, j to satisfy this

relationship. If we sum the intensity contribution from each individual LEDi from the preceding PCB on a

PDj , we obtain a sum of the product of each of LED intensities IiLED and optical weights w(i,j)

Oj
PD =

∑
i

IiLED · w(i,j)

Similarly, we can calculate the signal at each photodetector and represent it as a product of the values

of the optical weights and LED signals. For an 8 × 8 array of photodetectors, we can represent the detected

signal as

O =



∑64
i=1 I

i
LED · w(i,1)

∑64
i=1 I

i
LED · w(i,2) . . .

∑64
i=1 I

i
LED · w(i,8)∑64

i=1 I
i
LED · w(i,9)

∑64
i=1 I

i
LED · w(i,10) . . .

∑64
i=1 I

i
LED · w(i,16)

...
...

. . .
...∑64

i=1 I
i
LED · w(i,57)

∑64
i=1 I

i
LED · w(i,58) . . .

∑64
i=1 I

i
LED · w(i,64)


Which can be split into the input matrix and weight matrix as follows

O =


I1LED . . . I8LED

...
. . .

...

I57LED . . . I64LED

 ·


w(i,1)

...

w(i,64)

 =


O1

PD

...

O1
PD


We use Monte Carlo raytracing to simulate the light distribution from the LED plane to the PD plane.

These simulations are used to better predict the distribution of light on the PD plane caused by individual

LED and weight positions due to the non-uniformity in LED light distribution and angle-dependent effects on

the amplitude mask plane. Additionally, these simulations estimate the spread of light on the PD plane due

to the finite size of the LED die and amplitude weights.

A modified angular spectrum propagation that uses the averaged output of optical propagations with

randomized input phases was used to estimate the effects of diffraction on the optical propagation for both

the experimental parameters in the experiment and also for a larger scale, 32× 32 sized array.

4.6 Alignment and calibration of optics/electronics

PCBs are fastened to an optical table using 1/2” posts (Thorlabs) and custom-designed 3D-printed parts. The

3D printed parts include holes for a 60mm cage. The 60mm cage and 1/4” cage rods are used to precisely

position and separate the PCBs with respect to one another. Soldering of LEDs and photodiodes is performed

with reflow soldering with a component placement error of ±100µm.

Optical masks are displayed on a SLM with a pair of polarizers. Errors due to gross optical alignment and
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component placement are dynamically corrected. Alignment is performed layer by layer with intermediate

outputs imaged onto a CMOS camera. We use custom code to iteratively shift positions of weights from

idealized positions to optimize performance and minimize weight crosstalk. This is also used to calibrate the

SLM transmission response.
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