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BOREL AND PARABOLIC-TYPE SUBALGEBRAS OF THE LATTICE VERTEX

OPERATOR ALGEBRA

JIANQI LIU

Abstract. In this paper, we introduce and study some new classes of subalgebras of the lattice

vertex operator algebras, which we call the Borel-type and parabolic-type subVOAs. For the

lowest-rank examples of Borel-type subVOAs VB of VZα, and one nontrivial lowest-rank example

of the parabolic-type subVOA VP of the lattice VOA VA2
associated to the root lattice A2, we

explicitly determine their Zhu’s algebras A(VB) and A(VP) in terms of generators and relations.

Using the descriptions of A(VB) and A(VP), we classify the irreducible modules over VB and VP.
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1. Introduction

The lattice vertex operator algebra (VOA for short) VL associated to a positive-definite even

lattice L was introduced by Borcherds in [Bor86] and Frenkel, Lepowsky, and Meurman in

[FLM88], whose construction was based on the vertex operator realization of irreducible rep-

resentations over the affine Kac-Moody algebras on the Fock space S (ĥ<0) ⊗ Cǫ[Q] given by

Frenkel and Kac in [FK80]. As the first example of vertex operator algebras, the lattice VOAs

play a fundamental role in the theory of VOAs. The famous moonshine module vertex op-

erator algebra V ♮, which connects the j-invariant and the monster simple group M, was con-

structed using the orbifold and the simple current extension methods for the lattice VOA VΛ
associated to the Leech lattice Λ by Frenkel, Lepowsky, and Meurman in [FLM88]. Motivated

by the understanding of the moonshine module V ♮ and conformal field theory [MS89, S93],
1
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the lattice VOA VL has been studied extensively: Dong and Lepowsky computed the fusion

rules for VL in [DL93]. Dong classified the irreducible modules and irreducible θ-twisted mod-

ules over VL in [D93, D94]. The Z2-orbifold V+L of the lattice VOA VL, which was used to

construct V ♮, was studied in detail in a series of papers by Abe, Dong, Griess, Li, and Na-

gatomo [AD04, ADL05, DG98, DN99(1), DN99(2)]. Using the Z2 and Z3-orbifold construc-

tions for the lattice VOAs, the Schellekens’ conjecture on 71 holomorphic VOAs with central

charge 24 [S93] was solved recently by van Ekeren, Lam, Möller, Scheithauer, and Shimakura

[vEMS20, Lam11, LS15, LS16].

In the classical theory of finite or infinite-dimensional Lie algebras, a Lie algebra g that

has interesting representation theory is normally equipped with a triangular decomposition

g = n− ⊕ h ⊕ n+. The Borel (or parabolic) subalgebra b = h ⊕ n+ is used in a standard tech-

nique to construct Verma modules and irreducible highest-weight modules over g. Although

vertex operator algebras have more resemblance with semisimple associative algebras from the

representation theoretical point of view, their structural theory actually has more resemblance

with the semisimple Lie algebras. For instance, the Jacobi identity for VOAs is a formal vari-

able generalization of the usual Jacobi identity for Lie algebras [FLM88]; the vertex operator

Y satisfies the skew-symmetry axiom similar to a Lie bracket [FHL93]; and a CFT-type sim-

ple VOA such that L(1)V1 = 0 always has a non-degenerate symmetric invariant bilinear form

[FHL93, L94] similar to a Cartan-Killing form, etc.

In this paper, we provide more evidence in the lattice VOAs showing that the structural theory

of VOAs resembles semisimple Lie algebras. To outline our results, we set some notation. Let

Mĥ(1, 0) be the Heisenberg VOA associated to ĥ = h ⊗ C[t, t−1] ⊕ CK, where h = C ⊗Z L. By

the construction of lattice VOA VL in [FLM88], one has the following decomposition of VL as

a module over the Heisenberg subVOA Mĥ(1, 0):

VL =
⊕

α∈L

Mĥ(1, α). (1.1)

The vertex operator Y of VL is given by intertwining operators among irreducible Heisenberg

modules, which satisfies Y(Mĥ(1, α), z)Mĥ(1, β) ⊂ Mĥ(1, α + β)((z)), for any α, β ∈ L. In par-

ticular, for any abelian submonoid M ≤ L, the subspace VM =
⊕
α∈M Mĥ(1, α) is a subVOA of

VL. Let B ≤ L be the submonoid Z≥0α1 ⊕ . . . ⊕ Z≥0αr, where {α1, . . . , αr} is a basis of L, and let

P ≤ L be a submonoid containing B. We call VB =
⊕
α∈B Mĥ(1, α) (resp. VP =

⊕
α∈P Mĥ(1, α))

a Borel (resp. parabolic)-type subVOA of VL. These subVOAs of VL first appeared in a recent

study of Rota-Baxter operators and classical Yang-Baxter equations for vertex operator algebras

by Bai, Guo, the author, and Wang in [BGL, BGLW]. VB and VP give rise to natural examples

of Rota-Baxter operators for lattice VOAs.

In the classical Lie theory, a Borel subgroup B of a connected linear algebraic group G is

defined to be a closed connected solvable subgroup of G that is maximal subject to these con-

ditions. A parabolic subgroup can be equivalently characterized as a closed subgroup P that

contains a Borel subgroup (see [B56, BT65, Hum1]). The Lie algebra b = Lie(B) is a Borel sub-

algebra of the Lie algebra g = Lie(G), and a parabolic subalgebra p of g is a subalgebra of g that

contains a Borel subalgebra b. If a Lie algebra g is semisimple, then it has a root space decompo-

sition g = h⊕
⊕
α∈Φ gα, where h is a Cartan subalgebra of g, and Φ is the root system associated

to h. In this case, a Borel subalgebra is given by b = h ⊕
⊕
α∈Φ+ gα, where Φ+ is the set of posi-

tive roots (see [BT65, Hum2]). In our Borel-type subVOA VB = Mĥ(1, 0) ⊕
⊕
α∈B\{0} Mĥ(1, α),

we can view Mĥ(1, 0) as an analog of the Cartan-part h in b, and view Mĥ(1, α) with α ∈ B\{0}
as an analog of the positive root space gα in b.

Although the “Cartan part” Mĥ(1, 0) of VB is non-commutative, and the ”positive-root parts”

Mĥ(1, α) of VB are not one-dimensional, we can still show that VB and VP satisfy many similar

properties as Borel and parabolic-subalgebras of a semisimple Lie algebra. We discuss these

properties in detail in Section 2. First, we show that VB and VP are all irrational as VOAs
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(Proposition 2.9), which corresponds to the fact that b and p of a semisimple Lie algebra g are

no longer semisimple as Lie algebras. Next, we show that certain Borel-type subVOAs VB∆ of

an A,D, or E-type root lattice VOA VQ are conjugate under the automorphism group Aut(VQ)

(Proposition 2.10), which corresponds to that fact that all Borel subgroups B of G and Borel

subalgebras b of g are conjugate under G. Furthermore, after introducing a notion of normalizer

NV (W) of a sub-vertex algebra W in a VOA V (Definition 2.11), we show that the normalizer

NVL(VP) of a parabolic-type subVOA VP in VL is equal to VP itself (Proposition 2.13), which

corresponds to the normalizer property of parabolic subgroups or subalgebras. Finally, we show

that all Borel-type subVOA VB of rank 1 or 2 are C1-cofinite (Proposition 2.16).

In Section 3, we focus on the lowest-rank examples of Borel-type subVOAs VB ≤ VZα,
where (α|α) = 2N and B = Z≥0α. To study the representation theory of VB, we first study

the Zhu’s algebra A(VB) for VB. For any CFT-type VOA V , Zhu found an associative algebra

A(V) attached to V by the calculation of recursive formulas of genus-zero correlation functions

restricted onto the bottom levels of admissible V-modules [Z96]. One of the most significant

properties of Zhu’s algebra is the one-two-one correspondence between irreducible V-modules

and irreducible A(V)-modules, see Theorem 2.2.2 in [Z96]. By construction, A(V) = V/O(V),

where O(V) ⊂ V is spanned by elements of the form a ◦ b =
∑

j≥0

(
wta

j

)
a j−2b, where a, b ∈ V are

homogeneous. Our main result in this Section is a concrete description of O(VB) of the VOA

VB (Theorem 3.8):

Theorem 1.1. Let VB = VZ≥0α be the Borel-type subVOA of VZα, with (α|α) = 2N. Then

O(VB) = span

{
α(−n − 2)u + α(−n − 1)u, α(−1)v + v, Mĥ(1, kα) :

n ≥ 0, u ∈ VB, v ∈
⊕

m≥1

Mĥ(1,mα), k ≥ 2

}
.

(1.2)

The proof of Theorem 1.1 uses a sequence of inductions on the length of spanning elements

u = α(−n1) . . . α(−nr)emα of VB, which are carried out in details by Lemma 3.4, Proposition 3.5,

Lemma 3.6, and Proposition 3.7. As an immediate Corollary, we prove that A(VB) is isomorphic

to the associative algebra C[x] ⊕ Cy, where y2 = 0, yx = −Ny, and xy = Ny. Using this

description of A(VB) and Theorem 2.2.2 in [Z96], we show that the irreducible modules of

VB are in one-to-one correspondence with the irreducible modules over the Heisenberg VOA

M
Ĉα(1, 0), and the fusion rules among irreducible modules over VB are also the same as fusion

rules among irreducible modules over M
Ĉα

(1, 0) (Theorem 3.15). This result is also parallel

to the semisimple Lie algebra case, namely, the irreducible modules over a Borel subalgebra

b = h⊕n+ of g are the same as irreducible modules over the Cartan part h on which n+ acts as 0.

To better understand the difference between Borel-type and parabolic-type subVOAs, in Sec-

tion 4 and 5, we study a lowest-rank example of parabolic-type subVOA VP that is not of

Borel-type. We take L = A2 = Zα ⊕ Zβ to be the type A2-root lattice, and take P = Zα ⊕ Z≥0β.

Note that there is no difference between Borel-type and parabolic-type subVOAs in a rank-one

lattice VOA. Our main result in Section 4 is a concrete description of the spanning elements of

O(VP) (see Definition 4.4 and Theorem 4.9):

Theorem 1.2. Let VP = VZα⊕Zβ be the parabolic-type subVOA of VA2
. Then O(VP) is spanned

by the following elements:


h(−n − 2)u + h(−n − 1)u, u ∈ VP, h ∈ h, n ≥ 0;

γ(−1)v + v, v ∈ Mĥ(1, γ), γ ∈ {α,−α, β, α + β};
γ(−1)2v + γ(−1)v, v ∈ Mĥ(1, γ + γ

′), γ, γ′ ∈ {α,−α, β, α + β}, γ + γ′ ∈ {α + β, β};
Mĥ(1,mα + nβ), mα + nβ ∈ (Zα ⊕ Z≥0β)\{0, α,−α, β, α+ β};
α(−1)3w − α(−1)w, w ∈ Mĥ(1, 0).
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The proof of Theorem 1.2 uses a similar induction process on the length of spanning ele-

ments h1(−n1) . . . hr(−nr)eγ of VP as in the proof of Theorem 1.1, with details carried out in

Lemmas 4.2 and 4.3, and Propositions 4.6, 4.7, and 4.8. With the spanning elements of O(VP),

we find a presentation of A(VP) by generators and relations (Theorem 4.11):

A(VP) � C〈x, y, xα, x−α, xβ, xα+β〉/R, (1.3)

where R is the two-sided ideal of the tensor algebra C〈x, y, xα, x−α, xβ, xα+β〉 generated by the

relations (4.21)–(4.26). Using these relations, we give a concrete description for the structure

of A(VP). In particular, we show that as associative algebras, there is an isomorphism:

A(VP) � A(VZα)[y; Id; δ] ⊕ J, (1.4)

where A(VZα)[y; Id; δ] is the skew-polynomial algebra (see [O33, GW04]) on the Zhu’s algebra

A(VZα) of the rank-one lattice VOA VZα, which is isomorphic to U(sl2(C))/〈e2〉, and J ⊂ A(VP)

is a two-sided ideal such that J2 = 0, see Corollaries 4.12 and 4.15.

In Section 5, we use the identifications (1.3) and (1.4) of A(VP), together with Theorem 2.2.1

in [Z96] again, to classify irreducible modules over VP. Our approach is to first construct two

irreducible modules over VP associated to a λ ∈ (Cα)⊥ ⊂ h:

L(0,λ) =
⊕

n∈Z
Mĥ(1, nα) ⊗ Ceλ, L( 1

2
α,λ) =

⊕

n∈Z
Mĥ(1, nα +

1

2
α) ⊗ Ceλ,

using a slight variation of the lattice vertex operators in [FLM88] (Definition 5.3). Then show

that the bottom levels U(0,λ) and U( 1
2
α,λ) of these irreducible modules exhaust all the possible

irreducible modules over A(VP) when λ varies in (Cα)⊥. The following is our main result in

Section 5 (see Theorem 5.6 and Corollary 5.7):

Theorem 1.3. The set Σ(P) =
{
(L(0,λ), YM), (L( 1

2
α,λ), YM) : λ ∈ (Cα)⊥ ⊂ h

}
is a complete list of

irreducible modules over the rank-two parabolic-type subVOA VP of VA2
.

Our constructions for the Borel and parabolic-type subVOAs have some further applications,

which are briefly discussed in Section 6. The first application of these subalgebras is the ex-

istence of an analog of triangular decomposition for vertex operator algebras, which we call

a quasi-triangular decomposition. A VOA V , equipped with a non-degenerated symmetric

invariant bilinear form (·|·), is said to admit a quasi-triangular decomposition if V has a sub-

space decomposition: V = V− ⊕ VH ⊕ V+, where V± and VH are invariant under the action

of sl2(C) = CL(−1) + CL(0) + CL(1), V± are sub-vertex algebras without vacuum, VH is a

sub-vertex algebra of V , and (V±|V±) = (VH |V±) = 0, see Definition 6.1. These axioms and

properties of V = V− ⊕ VH ⊕ V+ in Lemma 6.2 are also parallel to the properties of n± and h

with respect to the Cartan-Killing form in a triangular decomposition of a semisimple Lie al-

gebra g = n− ⊕ h ⊕ n+ The subVOAs VB and VP in Sections 3–5 naturally give rise to distinct

examples of the quasi-triangular decomposition for lattice VOAs. Our definitions for Borel and

parabolic-type subVOAs can also be generalized to the case of affine vertex operator algebras

Vĝ(k, 0) and Lĝ(k, 0) of arbitrary positive integral level k [FZ92]. We briefly discuss it by the

end of Section 6.

This paper is organized as follows: we introduce the concepts of Borel and parabolic-type

subVOAs of lattice VOAs and prove some basic properties in Section 2. In Section 3, we focus

on the rank-one Borel-type subVOA VZ≥0α of VZα and determine its Zhu’s algebra by presenting

a concrete description of O(VZ≥0α). In Section 4, we determine the structure of Zhu’s algebra

of a typical rank-two parabolic-type subVOA VP of VA2
that is not of Borel-type. In Section 5,

we classify the irreducible modules over VP using the results from previous sections. Finally, in

Section 6, we introduce the notion of quasi-triangular decomposition for VOAs and the Borel

and parabolic-type subVOAs for affine VOAs.

Conventions. Throughout this paper, all vector spaces are defined over C, the complex number

field. N represents the set of all natural numbers, including 0.
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2. The Borel-type and parabolic-type subVOAs of VL

In this section, we first review the construction of lattice VOAs in [FLM88] and some related

results, then define the Borel-type and parabolic type sub-algebras of a lattice VOA VL, based

on the decomposition of VL as an irreducible module over the Heisenberg subVOA. We will

prove that these subVOAs are irrational, and some of them are C1-cofinite; they also share some

similar properties as the usual Borel and parabolic subalgebras of a semisimple Lie algebra.

2.1. Preliminaries. For the general definitions of vertex operator algebras (VOAs), modules

over VOAs, and examples of VOAs, we refer to [DL93, FLM88, FHL93, LL04].

2.1.1. The lattice vertex operator algebras. Let L be a positive definite even lattice of rank

d ≥ 1, equipped with Z-bilinear form (·|·) : L × L → Z. Let h := C ⊗Z L, extend (·|·) to a

nondegenerate C-bilinear form (·|·) : h × h → C, and let Mĥ(1, 0) be the level-one Heisenberg

VOA associated to ĥ = h ⊗ C[t, t−1] ⊕ CK. Recall that the Lie bracket on the affine algebra ĥ is

given by:

[h1(m), h2(n)] = m(h1|h2)δm+n,0K, h1, h2 ∈ h, and m, n ∈ Z, (2.1)

where we denote h ⊗ tm ∈ ĥ by h(m). Then ĥ = (ĥ)+ ⊕ (ĥ)0 ⊕ (ĥ)−, where (ĥ)± =
⊕

n∈Z± h ⊗ Ctn,

and (ĥ)0 = h ⊗ C1 ⊕ CK. Let (ĥ)≥0 = (ĥ)+ ⊕ (ĥ)0, which is a Lie subalgebra of ĥ.

For each λ ∈ h, let eλ be a formal symbol associated to λ. Then Ceλ is a module over (ĥ)≥0,

with the module actions given by h(0)eλ = (h|λ)eλ, K.eλ = eλ, and h(n)eλ = 0, for all h ∈ h and

n > 0. Mĥ(1, λ) is defined to be the induced module:

Mĥ(1, λ) := Ind
ĥ

ĥ≥0
Ceλ = U(ĥ) ⊗U(ĥ≥0) Ceλ. (2.2)

Then Mĥ(1, λ) � U(ĥ<0) ⊗C Ceλ = span{h1(−n1) . . . hk(−nk)eλ : k ≥ 0, h1, . . . , hk ∈ h, n1 ≥ · · · ≥
nk ≥ 0} as vector spaces. It was proved in [FLM88, DL93] that Mĥ(1, 0) has a VOA structure,

called the level-one Heisenberg VOA, and Mĥ(1, λ) with different λ ∈ h, are all the irreducible

modules over Mĥ(1, 0) up to isomorphism.

Write Cǫ[L] =
⊕
α∈L Ceα, where eα is a formal symbol associated to α for each α ∈ L (eα

was denoted by ι(α) in [FLM88]), and ǫ : L × L → 〈±1〉 is a 2-cocycle of the abelian group L
such that ǫ(α, β)ǫ(β, α) = (−1)(α|β) for any α, β ∈ L. Let VL = Mĥ(1, 0) ⊗C Cǫ[L], then

VL = span{h1(−n1) . . . hk(−nk)e
α : k ≥ 0, α ∈ L, h1, . . . , hk ∈ h, n1 ≥ · · · ≥ nk ≥ 0},

where we omit the tensor sign ⊗ in the term h1(−n1) . . . hk(−nk)eα. The vertex operator Y : VL →
End(VL)[[z, z−1]] on the spanning elements of VL is given as follows:

Y(h(−1)1, z) := h(z) =
∑

n∈Z
h(n)z−n−1

(
h(n)eα := 0, h(0)eλ := (h|α)eα

)
, (2.3)

Y(eα, z) := E−(−α, z)E+(−α, z)eαz
α

(
zα(eβ) := z(α|β)eβ, eα(e

β) := ǫ(α, β)eα+β
)
, (2.4)

Y(h1(−n1 − 1) . . . hk(−nk − 1)eα, z) :=
◦
◦(∂

(n1)
z h1(z)) . . . (∂(nk)

z hk(z))Y(eα, z)
◦
◦, (2.5)

for any k ≥ 1, n1 ≥ · · · ≥ nk ≥ 0, h, h1, . . . hk ∈ h, and α, β ∈ L, where E±, ∂(n)
z , eα, and zα in

(2.3)–(2.5) are given as follows:

E±(−α, z) = exp


∑

n∈Z±

−α(n)

n
z−n

 , ∂
(n)
z =

1

n!
, eα(e

β) = ǫ(α, β)eα+β, zα(eβ) = z(α|β)zβ.

The normal ordering in (2.5) rearranges the terms in such a way that the right hand side of (2.5)

has the following expression:
∑

m1>0,...,mk>0

∑

n1≥0,...,nk≥0

cm1,...,nkh1(−m1) . . . hk(−mk)E
−(−α, z)eαz

αE+(−α, z)h1(n1) . . . hk(nk). (2.6)
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Let {α1, . . . , αd} be an orthonormal basis of h, and let ω = 1
2

∑d
i=1 αi(−1)21 ∈ Mĥ(1, 0) ⊂ VL.

It was proved in the appendix A.2 in [FLM88] that (VL, Y, ω, 1) is a VOA such that Mĥ(1, 0) ⊂
VL is a subVOA. In particular, VL has the same Virasoro element ω and the vacuum element

1 with the Heisenberg subVOA Mĥ(1, 0). Recall that VL has the following decomposition as a

module over the Heisenberg VOA Mĥ(1, 0) (see [FLM88, D93]):

VL =
⊕

α∈L

Mĥ(1, α), (2.7)

where Mĥ(1, α) = Mĥ(1, 0) ⊗ Ceα for each α ∈ L.

Let L◦ := {h ∈ h : (h|α) ∈ Z, ∀α ∈ L} be the dual lattice of L. For each element λ ∈ L◦, it

was proved in [FLM88] that VL+λ = Mĥ(1, 0)⊗CCǫ[L+λ] is a module over VL, with the module

vertex operator YM : VL → End(VL+λ)[[z, z−1]] given by formulas similar with (2.3)–(2.5), the

only differences are h(0)eβ+λ := (h|β+λ)eβ+λ, zα(eβ+λ) := z(α|β+λ)eβ+λ, and eαeβ+λ := ǫ(α, β)eα+β+λ,
for any h ∈ h, α, β ∈ L and λ ∈ L◦.

Furthermore, Dong classified the irreducible modules over VL in [D93]. The main result is

the following: Let L◦/L =
⊔p

i=0
(L + λi) be the coset decomposition of the subgroup L in L◦.

Then {VL+λ0
, . . . ,VL+λp} are all the irreducible module over VL up to isomorphism (see Theorem

3.1 in [D93]). Furthermore, VL is a rational VOA.

2.1.2. subVOAs of VL associated to submonoids of L. Observe that a lattice L is an abelian

monoid, with the dentity element 0. An (abelian) submonoid of L is a subset M ⊂ L such that

0 ∈ M, and M is closed under the addition of L. An (abelian) sub-semigroup of L is a subset

S ⊂ L such that S is closed under addition of L.

The following notion was introduced by Huang and Lepowsky in [HL96]:

Definition 2.1. A vertex algebra without vacuum is a triple (V, Y,D), where V is a vector

spaces, Y : V → End(V)[[z, z−1]], a 7→ Y(a, z) =
∑

n∈Z anz−n−1, is a linear map, and D : V → V
is a linear map, satisfying the following axioms:

(1) (Truncation property) For any a, b ∈ V , anb = 0 for n ≫ 0.

(2) (D-derivative property) For any a ∈ V , [D, Y(a, z)] = d
dzY(a, z).

(3) (Skew-symmetry) For any a, b ∈ V , Y(a, z)b = ezDY(b,−z)a.

(4) (Jacobi identity) For any a, b, c ∈ V ,

z−1
0 δ

(
z1 − z2

z0

)
Y(a, z1)Y(b, z2) − z−1

0 δ

(
−z2 + z1

z0

)
Y(b, z2)Y(a, z1)= z−1

2 δ

(
z1 − z0

z2

)
Y(Y(a, z0)b, z2).

In particular, a VOA (V, Y, 1, ω) is a vertex algebra without vacuum with D = L(−1), and a

sub-vertex algebra without vacuum is a subspace W ⊂ V that is closed under Y and L(−1).

Proposition 2.2. Let M ≤ L be an abelian submonoid, with the identity element 0 ∈ L, and let
VM :=

⊕
α∈M Mĥ(1, α). Then (VM, Y, ω, 1) is a CFT-type subVOA of (VL, Y, ω, 1).

Let S ⊂ L be a sub-semigroup, and VS :=
⊕
α∈S Mĥ(1, α). Then (VS , Y, L(−1)) is a sub-vertex

algebra without vacuum of (VL, Y, L(−1)). If, furthermore, S ⊂ M and M + S ⊆ S , then VS is
an ideal of VM.

Proof. By (2.3) and (2.4), for any α, β ∈ M, we have

Y(eα, z)eβ = E−(−α, z)E+(−α, z)eαz
α(eβ) = E−(−α, z)E+(−α, z)ǫ(α, β)z(α|β)eα+β,

= exp


∑

n<0

−α(n)

n
z−n

ǫ(α, β)z(α|β)eα+β

which is contained in Mĥ(1, α + β)((z)) ⊂ VM((z)), in view of the decomposition (2.7). More

generally, for any h1(−n1 − 1) . . . hk(−nk − 1)eα ∈ Mĥ(1, α) and h′
1
(−m1 − 1) . . . h′r(−mr − 1)eβ ∈
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Mĥ(1, β), with α, β ∈ M, it is easy to see from (2.5) and (2.6) that

Y(h1(−n1 − 1) . . . hk(−nk − 1)eα, z)h′1(−m1 − 1) . . . h′r(−mr − 1)eβ ∈ Mĥ(1, α + β)((z)).

Since M is closed under addition and Mĥ(1, 0) ⊂ VM, it follows that VM is a sub-VOA of VL.

Since VM has the same Virasoro element as VL, we have (VM)n ⊆ (VL)n for each n ≥ 0, and

(VM)0 = (VL)0 = C1. Thus VM is of the CFT-type. The second statement is also clear since S is

closed under addition, and L(−1)Mĥ(1, α) ⊆ Mĥ(1, α) for any α ∈ S . �

The proof of Proposition 2.2 essentially relies on the fact that

Y(Mĥ(1, α), z)Mĥ(1, β) ⊂ Mĥ(1, α + β)((z)), α, β ∈ L, (2.8)

where Y is the vertex operator of the lattice VOA VL.

Definition 2.3. Given an abelian submonoid M ≤ L (resp. sub-semigroup S ≤ L). We call

(VM , Y, ω, 1) (resp. (VS , Y, L(−1))) in Proposition 2.2 the subVOA (resp. sub-vertex algebra

without vacuum) of VL associated to M (resp. S ).

Remark 2.4. When L is a rank one lattice Zα, it was observed by Dong (see Proposition 4.1

in [D93]) that VNα is a subVOA of VZα. Proposition 2.2 is a generalization of this result, noting

that Nα is an abelian sub-monoid of Zα.

2.2. Definitions of Borel-type and parabolic-type subVOAs of VL. We use Proposition 2.2

and define the Borel and parabolic-type subVOAs of VL by taking the subVOAs VM ≤ VL

associated to special submonoids M ≤ L.

Definition 2.5. Let L be a positive-definite even lattice of rank r, and let VL be the lattice VOA

associated to L.

(1) An abelian submonoid B ≤ L is called a Borel-type submonoid if there exists a basis

{α1, . . . , αr} of L such that B = Z≥0α1 ⊕ . . . ⊕ Z≥0αr. An abelian submonoid P ≤ L is

called a parabolic-type submonoid if there exists a Borel-type submonoid B ≤ L such

that B ⊆ P (So any parabolic-type submonoid is automatically of Borel-type).

(2) A Borel-type subalgebra (or subVOA) VB of the lattice VOA VL is the subVOA asso-

ciated to a Borel-type submonoid B ≤ L. i.e., VB =
⊕
α∈B Mĥ(1, α). A parabolic-type

subalgebra (or subVOA) VP of VL is the subVOA associated to a parabolic-type sub-

monoid P ≤ L. i.e., VP =
⊕
α∈P Mĥ(1, α).

Observe that both the Borel-type and parabolic-type subVOAs of VL are of the CFT-type, and

have the same vacuum element 1 and Virasoro element ω with the lattice VOA VL. Moreover,

they are not simple VOAs. In fact, S = Z>0α1 ⊕ . . . ⊕ Z>0αr is an obvious sub-semigroup of

B = Z≥0α1 ⊕ . . . ⊕ Z≥0αr. By Proposition 2.2, VB has an ideal VS .

Remark 2.6. For a Borel-type sub-VOA VB =
⊕
α∈B Mĥ(1, α), where B = Z≥0α1 ⊕ . . . ⊕ Z≥0αr,

we may view Mĥ(1, 0) ≤ VB as an analog of the “Cartan subalgebra”, and view Mĥ(1, α) with

α ∈ B − {0} as an analog of a “root space” associated to a “positive-root” α ∈ B. However,

unlike the Lie algebra case, the Cartan-part Mĥ(1, 0) is not commutative.

Example 2.7. Certain parabolic-type subVOAs can give rise to the decomposition of the lattice

VOA VL into a direct sum of two sub-vertex algebras without vacuum.

(1) Let L be the rank one positive definite even lattice L = Zα, with (α|α) = 2N for some

fixed positive integer N. Clearly, B = Z≥0α is a Borel-type submonoid, Zα<0 is a sub-

semigroup of L, and L = B
⊔
Zα<0. Then VB =

⊕
m∈Z≥0

Mĥ(1,mα) is a Borel-type

subalgebra. Moreover, VZ<0α =
⊕

m∈Z<0
Mĥ(1,mα) is a sub-vertex algebra without vac-

uum, and VZα = VB ⊕ VZ<0α.
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(2) L = A2 be the root lattice of type A2. Note that A2 = Zα ⊕ Zβ, with (α|α) = (β|β) = 2

and (α|β) = −1. Then P = Zα ⊕ Z≥0β is a parabolic-type submonoid of A2 as B =
Z≥0α ⊕ Z≥0β ⊂ P, and A2 = P ⊔ P−, where P− = Zα ⊕ Z<0β. See Figure 4 for an

illustration. By Proposition 2.2, VP =
⊕
γ∈P Mĥ(1, γ) is a parabolic subalgebra of VA2

,

VP− is a sub-vertex algebra without vacuum of VA2
, and VA2

= VP ⊕ VP−.

(3) There is another example parabolic-type subalgebra of VA2
. Let P1 := Zα ⊕ Z>0β +

Z≥0α = {mα + nβ, kα : m ∈ Z, n > 0, k ≥ 0}. See Figure 3 for an illustration. It is easy

to check that P1 ≤ A2 is a submonoid, and B = Z≥0α ⊕ Z≥0β ⊂ P1. By Proposition 2.2

again, VP1
=

⊕
γ∈P1

Mĥ(1, γ) ≤ VA2
is a parabolic-type subalgebra.

(4) More generally, let L be a positive-definite even lattice of rank r with a basis {α1, . . . , αr},
and let

P := Zα1 ⊕ . . . ⊕ Zαr−1 ⊕ Z≥0αr, and P− := Zα1 ⊕ . . . ⊕ Zαr−1 ⊕ Z<0αr. (2.9)

Then P is a parabolic-type submonoid of L since it contains B = Z≥0α1⊕ . . .⊕Z≥0αr, P−

is a sub-semigroup of L, and L = P⊔P−. Then VP =
⊕
α∈P Mĥ(1, α) ≤ VL is a parabolic-

type subVOA, and VP− =
⊕
β∈P− Mĥ(1, β) ≤ VL is a sub-vertex algebra without vacuum.

Moreover, VL = VP ⊕ VP−.

Remark 2.8. The decomposition VZα = VB⊕VZ<0α and VL = VP⊕VP− first appeared in the study

of Rota-Baxter operators and classical Yang-Baxter equations for VOAs by Bai, Guo, the author,

and Wang in [BGL, BGLW]. The projections p : VZα → VB ⊂ VZα and p : VL → VP ⊂ VL are

natural examples of weight −1 Rota-Baxter operators for VOAs.

Berman, Dong, and Tan studied the representations of another class of sub-vertex algebras

of VL, which are generated by half of the lattice basis elements of L in [BDT02]. The sub-

vertex algebras they studied are different with Borel-type or parabolic-type subVOAs since the

structures of VB and VP are not symmetrical as the structure of the subalgebras in [BDT02].

Unlike the lattice VOA itself, the Borel-type and parabolic-type subVOAs that are not equal to

VL itself are irrational. This is parallel to the fact that the parabolic subalgebras of a semisimple

Lie algebra are not semisimple.

Proposition 2.9. The proper parabolic-type sub-algebras of a lattice VOA VL are all irrational.

Proof. By Definition 2.5, it suffices to show that a proper parabolic subVOA VP � VL is irra-

tional. Assume P contains a Borel-type submonoid Z≥0α1⊕ . . .⊕Z≥0αr. First, we note that there

must exist some index 1 ≤ j ≤ r such that for any n j < 0, the element n1α1+· · ·+n jα j+· · ·+nrαr,

with nk ∈ Z for any k , j, is not in P, as P would be the whole lattice L if otherwise. Without

loss of generality, we assume j = 1, then elements in P are of the form mα1 + n2α2 + · · ·+ nrαr,

for some m ≥ 0, and n2, . . . , nr ∈ Z. In particular, Z≥0α1 ⊂ P. Let

P1 := {mα1 + n2α2 + · · · + nrαr ∈ P : m ≥ 1, ni ∈ Z} ∪ {0 + n2α2 + · · · + nrαr ∈ P : ni ∈ Z}.
It is clear that P1 is a submonoid of P. i.e., P + P1 ⊆ P1. Then by (2.8), VP1 :=

⊕
α∈P1 Mĥ(1, α)

is a submodule of the adjoint module VP, and VP/VP1 � Mĥ(1, 0), which is an irreducible VP-

module. Similarly, if we let

P2 := {mα1 + n2α2 + · · · + nrαr ∈ P : m ≥ 2, ni ∈ Z} ∪ {0 + n2α2 + · · · + nrαr ∈ P : ni ∈ Z},
then P2 is a submonoid of both P1 and P; VP2 ⊂ VP1 is VP-submodule such that VP1/VP2 �

Mĥ(1, α1), which is an irreducible VP-module. Proceed like this, and we can construct a com-

position series of VP-modules:

VP ⊃ VP1 ⊃ VP2 ⊃ . . .VPm ⊃ VPm+1 ⊃ . . . ,
such that the consecutive quotient is VPm/VPm+1 � Mĥ(1,mα1), which is an irreducible VP-

module, for any m ≥ 0. Note that Mĥ(1,mα1) is not isomorphic to Mĥ(1,m
′α1) if m , m′

as VP-modules, since they are not isomorphic as Mĥ(1, 0)-modules and Mĥ(1, 0) ≤ VP. Thus, VP
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has infinitely many non-isomorphic irreducible modules, and so VP is irrational (see [DLM98]

Theorem 8.1). �

2.3. Basic properties. In this subsection, we show that the Borel and parabolic-type subVOAs

share some similar properties as a Borel subgroup of a linear algebraic group and Borel subal-

gebra of a semisimple Lie algebra. Although not rational, we show that all Borel-type subVOAs

of a rank 1 or 2 lattice are C1-cofinite.

2.3.1. Conjugacy property. In Lie theory, we know that Borel subgroups of a linear algebra

group are conjugate (see [Hum1] Chapter 21); Borel subalgebras of a semisimple Lie algebra g

are conjugate under inner automorphisms of g (see [Hum2] Chapter 16).

Let L be a root lattice Q associated to an A, D or E-type root systemΦ of rank r. Then for each

set of simple roots ∆ = {α1, . . . αr}, we have a Borel-type submonoid B∆ = Z≥0α1 ⊕ . . . ⊕ Z≥0αr

and an associated Borel-type subVOA VB∆ ≤ VQ.

Given a lattice isometry σ ∈ O(L) = {σ ∈ Aut(L) : (σα|σβ) = (α|β), α, β ∈ L}. We can first

lift it to C-linear isomorphism σ : h→ h, σ(αα) = λσ(α), where λ ∈ C and α ∈ L, and then lift

it to an automorphism σ̂ : VL → VL of the lattice VOA VL:

σ̂(h1(−n1) . . . hr(−nr)e
α) = (σh1)(−n1) . . . (σhr)(−nr)e

σα, (2.10)

where hi ∈ h, n1 ≥ · · · ≥ nr ≥ 1, and α ∈ L (see Section 2.4 in [DN99(2)]). On the other hand,

if ∆ and ∆′ are two sets of simple roots of Φ, then there exists w ∈ W(Φ), the Weyl group of

Φ, such that w(∆) = ∆′. Since w is generated by simple reflections, we have w ∈ O(Q) and

w(B∆) = B∆′ . Then by (2.10) and the definition of VM in Proposition 2.2, we have ŵ ∈ Aut(VL)

and ŵ(VB∆) = VB∆′ . Thus we proved the following:

Proposition 2.10. Let Q be a root lattice of type A,D, or E. Then the Borel-type subVOAs of
the form VB∆, where ∆ ⊂ Φ is a basis of Φ, are conjugate under Aut(VQ).

2.3.2. Normalizer property. In Lie theory, we know that if P ≤ G is a Borel or parabolic

subgroup of a linear algebraic group G, then NG(P) = P; and if b ≤ g is a Borel subalgebra of a

semisimple Lie algebra g, then ng(b) = b (see [Hum1] Chapter 23).

Let (V, Y, 1, ω) be a VOA, and W ≤ V be a sub-vertex algebra. There is an analog of the

“centralizer” of W in V , defined in [FZ92], called the commutant. By definition, ComV(W) =

{a ∈ V : w ja = 0, for all j ≥ 0, w ∈ W}. We define the normalizer of W in V as follows:

Definition 2.11. Let (V, Y, 1, ω) be a VOA, and W ≤ V be a sub-vertex algebra without vacuum.

NV(W) := {a ∈ V : a jW ⊆ W, for any j ≥ 0} (2.11)

is called the normalizer of W in V .

Lemma 2.12. NV(W) ≤ V is a sub-vertex algebra of V with W ⊆ NV (W). Moreover, NV (W)

can also be characterized as follows:

NV (W) := {a ∈ V : b ja ∈ W, for any b ∈ W, j ≥ 0}. (2.12)

In particular, we have ComV(W) ⊆ NV (W).

Proof. Since 1 jW = 0 for any j ≥ 0, we have 1 ∈ NV (W). Since W is closed under Y , clearly

W ⊆ NV (W). Let a, b ∈ NV (W), n ∈ Z, m ≥ 0, and w ∈ W. By the associativity we have

(anb)mw =
∑

j≥0

(
n

j

)
(−1) jan− jbm+ jw − (−1)n

∑

j≥0

(
n

j

)
(−1) jbm+n− ja jw ∈ W

since bm+ jw ∈ W and a jw ∈ W for any j ≥ 0. Thus, NV (W) is a sub-vertex algebra of V . Finally,

by the skew-symmetry of Y we have anb =
∑

i≥0 1/i!(−1)n+i+1L(−1)ibn+ia. Since L(−1)W ⊆ W
by Definition 2.1, it follows that for given a ∈ V , anw ∈ W for any n ≥ 0 and w ∈ W if and only

if wna ∈ W for any n ≥ 0 and w ∈ W. This shows (2.12). �
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Proposition 2.13. Let M ≤ L be an abelian submonoid. Then NVL(VM) = VM . In particular, for
any Borel-type or parabolic-type submonoid P ≤ L, we have NVL(VP) = VP.

Proof. Note that VL =
⊕
γ∈L\M Mĥ(1, γ) ⊕ VM, in view of (2.7). Let a = u + v ∈ NVL(VM)

with u =
∑
γ∈L\M uγ and v ∈ VM, where uγ = 0 for all but finitely many γ ∈ L\M. Since

VM ⊆ NVL(VM) by Lemma 2.12, we have u ∈ NVL(VM).

Now we show that u = 0. Since 0 ∈ M, we have Mĥ(1, 0) ⊆ VM. Then by (2.12), we have

(h(−1)1)0u =
∑
γ∈L\M h(0)uγ =

∑
γ∈L\M(h|γ)uγ ∈ VM ∩

⊕
γ∈L\M Mĥ(1, γ) = 0. Hence (h|γ)uγ = 0

for all γ ∈ L\M. For a fixed γ ∈ L\M, choose h ∈ h s.t. (h|γ) , 0, then we have uγ = 0 for all γ,

and so u =
∑
γ∈L\M uγ = 0. �

Remark 2.14. In general the normalizer NV (W) might not be equal to W. For example, let

S ⊂ L be a sub-semigroup and 0 < S . Then VS ≤ VL is a sub-vertex algebra without vacuum by

Proposition 2.2. It is easy to see that Mĥ(1, 0) ⊂ NVL(VS ) but Mĥ(1, 0) 1 VS .

2.3.3. Strongly generation property. Recall that a CFT-type VOA V is called strongly generated

by a subset U ⊆ V if V is spanned by elements of the following form:

u1
−n1

u2
−n2
. . . uk

−nk
u, where u1, . . . , uk, u ∈ U, n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. (2.13)

(see [K97]). It was proved by Karel and Li in [Li05, KL99] that a VOA V is strongly generated

by a finite-dimensional subspace U ⊂ V if and only if V is C1-cofinite.

Lemma 2.15. Let B = Z≥0α1⊕ . . .⊕Z≥0αr be a Borel-type submonoid of L such that (αi|α j) ≥ 0,
for all 1 ≤ i , j ≤ r. Then VB is strongly generated by U := {1, αi(−1)1, eαi : 1 ≤ i ≤ r}. In
particular, VB is C1-cofinite.

Proof. Let W be the subspace of VZ≥0α spanned by elements of the form (2.13), with u j, u ∈ U.

We need to show that each Mĥ(1, n1α1 + · · · + nrαr) is contained in W, for all non-negative

integers n j ≥ 0. Clearly, Mĥ(1, 0) ⊂ W. Since Mĥ(1, α) = Mĥ(1, 0) ⊗C Ceα, and Mĥ(1, 0) is

strongly generated by {α1(−1)1, . . . , αr(−1)1}, we only need to show en1α1+···+nrαr ∈ W.

Observe that if eα ∈ W and eβ ∈ W, with (α|β) ≥ 0, then

eα−(α|β)−1eβ = Resz z−(α|β)−1E−(−α, z)E+(−α, z)eαz
αeβ

= Resz z−(α|β)−1E−(−α, z)z(α|β)ǫ(α, β)eα+β (2.14)

= ǫ(α, β)eα+β ≡ 0 (mod W).

Furthermore, since (αi|α j) ≥ 0 for all 1 ≤ i , j ≤ r and (αi|αi) = 2Ni > 0 for all i, we have

(m1α1 + · · · + mrαr|n1α1 + · · · + nrαr) =
∑r

i, j=1 min j(αi|α j) ≥ 0, for any mi, n j ≥ 0. In particular,

if em1α1+···+mrαr ∈ W and en1α1+···+nrαr ∈ W, we have e(n1+m1)α1+···+(nr+mr)αr ∈ W by (2.14). Then it

follows from an easy induction that en1α1+···+nrαr ∈ W for any ni ≥ 0. �

Proposition 2.16. Assume that L is a positive-definite even lattice of rank at most 2. Let B ≤ L
be a Borel-type submonoid. Then the VOA VB is C1-cofinite.

Proof. If L = Zα or L = Zα ⊕ Zβ, with (α|β) ≥ 0, the conclusion follows from Lemma 2.15.

Now assume that (α|β) = −n with n > 0, and (β|β) ≥ (α|α). Without loss of generality, we

may also assume (β|β) = 2k with k ≥ 1 and (α|α) = 2. Since L = Zα ⊕ Zβ is positive-definite,

for any p, q ∈ Z, we have (pβ + qα|pβ + qα) = 2(kq2 − npq + p2) ≥ 0. Hence the discriminant

n2 − 4k ≤ 0, and so n ≤ 2
√

k. Now we fix p := ⌊ n+1
2
⌋ > 0. Then 2p − n = 0 or 1.

Let B = Z≥0α⊕Z≥0β, and let U = {α(−1)1, β(−1)1, eβ, eβ+α, . . . , eβ+pα}. Let W be the subspace

spanned by elements of the form (2.13), with u j, u ∈ U. By the proof of Lemma 2.15, it suffices

to show that erβ+sα ∈ W, for any r ≥ 0 and s ≥ 0.

Let i ≥ 0. Since (β + pα|iα) = i(−n + 2p) ≥ 0, we have eβ+pα+iα ∈ W for all i ≥ 0 by (2.14).

This shows eβ+sα ∈ W for all s ≥ 0. Now we show that e2β+sα ∈ W. Indeed, for any q ≥ 0 with

q ≤ p − 1, we have q ≤ n
2
≤ 2k

n as n ≤ 2
√

k, then (β|β + qα) = 2k − qn ≥ 0, and e2β+qα ∈ W
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for q ≤ p − 1 by (2.14). On the other hand, it is easy to check that (β + α|β + (p − 1)α) =

2k − np − 2(p − 1) ≥ 0, as p ≤ n+1
2

and n ≤ 2
√

k. Hence e2β+pα ∈ W by (2.14). Moreover, since

the angle between β+ jα and β+ (p − 1)α is less than the angle between β+ α and β+ (p − 1)α

for any 2 ≤ j ≤ p − 1. It follows that (β + jα|β + (p − 1)α) ≥ 0 for any 2 ≤ j ≤ p − 1, and so

e2β+sα ∈ W for 0 ≤ s ≤ 2p − 2.

By discussing the parity of n, we can show that (β+pα|β+(p−1)α) ≥ n2

2
−(2p−1)n+2p(p−1) =

0 or 3
2
. Thus, e2β+(2p−1)α ∈ W by (2.14). Since (β+ pα|β+ pα) ≥ 0, we have e2β+2pα ∈ W. Finally,

since (2β + 2pα|iα) = 2i(−n + 2p) ≥ 0 for any i ≥ 0, then e2β+2pα+iα ∈ W for any i ≥ 0. This

shows e2β+sα ∈ W for all s ≥ 0. By adopting a similar argument, we can show that etβ+sα ∈ W
for all t ≥ 0 and s ≥ 0. Hence VB = W is strongly generated by U, and VB is C1-cofinite. �

Remark 2.17. However, the Borel or parabolic-type subVOAs are not C2-cofinite. We will see

this in the following sections. The non-C2-cofiniteness of these subVOAs is also indicated by

the irrationality in Proposition 2.9. We conjecture that all parabolic-type subVOAs of a lattice

VOA VL are C1-cofinite.

3. The rank-one Borel-type subVOA VB of VZα

In this Section, we fix the rank-one lattice L = Zα, with (α|α) = 2N for some N ≥ 1, and

ǫ(mα, nα) = 1, for all m, n ∈ Z, and study its Borel (and parabolic)-type subVOA VB, where

B = Z≥0α. Note that the only Borel-type subVOAs of VZα are of this form by Definition 2.5

We will show that the Zhu’s algebra (see [Z96]) A(VB) of the VOA VB isomorphic to the

following associative algebra:

C〈x, y〉/〈y2, yx + Ny, xy − Ny〉,
where C〈x, y〉 is the tensor algebra on generators x and y.

First, we recall the construction of Zhu’s algebra A(V) in [Z96, FZ92]. Let (V, Y, 1, ω) be a

VOA. For homogeneous elements a, b ∈ V , define

a ◦ b := Resz Y(a, z)b
(1 + z)wta

z2
=

∑

j≥0

(
wta

j

)
a j−2b, (3.1)

a ∗ b := Resz Y(a, z)b
(1 + z)wta

z
=

∑

j≥0

(
wta

j

)
a j−1b. (3.2)

Let O(V) = span{a ◦ b : a, b ∈ V}, and let A(V) := V/O(V). By Theorem 2.1.1 in [Z96], O(V)

is a two-sided ideal with respect to ∗, and A(V) is an associative algebra with respect to ∗, with

the unit element [1]. By Lemma 2.1.3 in [Z96], we also have the following formulas:

a ∗ b ≡ Resz Y(b, z)a
(1 + z)wtb−1

z
(mod O(V)), (3.3)

a ∗ b − b ∗ a ≡ Resz Y(a, z)b(1 + z)wta−1 (mod O(V)), (3.4)

for any homogeneous a, b ∈ V . Furthermore, if m ≥ n ≥ 0, one has

Resz Y(a, z)b
(1 + z)wta+n

z2+m
≡ 0 (mod O(V)). (3.5)

3.1. A spanning set of O(VB). It is easy to establish a morphism between the associative alge-

bra C〈x, y〉/〈y2, yx + Ny, xy − Ny〉 and A(VB):

Proposition 3.1. There exists an epimorphism of associative algebras:

F : C〈x, y〉/〈y2, yx + Ny, xy − Ny〉 → A(VB), (3.6)

such that F(x) = [α(−1)1] and F(y) = [eα].
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Proof. By the definition of Y(eα, z) in (2.4), for any n ≥ 0, we have

eαn eα = 0, eα−1eα = · · · = eα−2Neα = 0, n ≥ 0, and eα−2N−1eα = e2α. (3.7)

Since wteα = N, by (3.2) and (3.7), we have eα ∗ eα =
∑

j≥0

(
N
j

)
eαj−1

eα = 0. Hence [eα] ∗ [eα] = 0

in A(VB). By (3.5), we have

α(−n − 2)u + α(−n − 1)u ≡ 0 (mod O(VB)),

and [α(−1)u] = [u] ∗ [α(−1)1], for all n ≥ 0 and u ∈ V . Thus

[α(−n1 − 1)α(−n2 − 1) . . . α(−nk − 1)u] = (−1)n1+···+nk [u] ∗ [α(−1)1] ∗ · · · ∗ [α(−1)1],

for any n1, . . . , nk ≥ 0 and u ∈ V . This shows A(VB) is generated by [α(−1)1] and [emα], for all

m ≥ 1. We claim that [ekα] = 0 for any k ≥ 2.

Indeed, for m ≥ 1, since we have eα−2Nm−1
emα = e(m+1)α, eα−nemα = 0 for any n ≤ 2Nm, and

2Nm + 1 ≥ 2, then it follows from (3.5) that for any m ≥ 1,

e(m+1)α = eα−2Nm−1emα +

(
N

1

)
eα−2Nmemα + · · · +

(
N

N

)
eα−2Nm−1+Nemα

= Resz Y(eα, z)emα (1 + z)N

z2Nm+1
≡ 0 (mod O(VB)).

Hence [ekα] = 0 in A(VB) for all k ≥ 2, and A(VB) is generated by [α(−1)1] and [eα]. Then

we have an epimorphism F : C〈x, y〉 → A(VB), such that F(x) = [α(−1)1] and F(y) = [eα].
Moreover, by (3.1) and the definition of Y(eα, z) in (2.4), we have

eα ◦ 1 = eα−21 +

(
N

1

)
eα−11 +

∑

j≥2

(
N

j

)
eαj−21 = Resz z−2 exp

−
∑

n<0

α(n)

n
z−n

eα + Neα + 0

= α(−1)eα + Neα ≡ 0 (mod O(VB)),

and so [eα] ∗ [α(−1)1] + N[eα] = 0 in A(VB). By (3.4), we also have

[α(−1)1] ∗ [eα] − [eα] ∗ [α(−1)1] = [Resz Y(α(−1)1, z)eα] = [α(0)eα] = 2N[eα],

and so [α(−1)1] ∗ [eα] − N[eα] = 0 in A(VB). Therefore, the epimorphism F : C〈x, y〉 → A(VB)

factors through C〈x, y〉/〈y2, yx + Ny, xy − Ny〉, and induces an epimorphism F in (3.6). �

Our goal is to show that epimorphism (3.6) is an isomorphism. We can achieve this goal by

finding a concrete description of O(VB).

Let O′ be the subspace of VB spanned by the following elements:


α(−n − 2)u + α(−n − 1)u, u ∈ VB, and n ≥ 0,

α(−1)v + Nv, v ∈
⊕

m≥1
Mĥ(1,mα),

Mĥ(1, kα), k ≥ 2.

(3.8)

Our goal in this Section is to show that O(VB) = O′.
First, we prove the easier part: O′ ⊆ O(VB). By (3.5), clearly we have α(−n−2)u+α(−n−1)u ∈

O(VB), for all u ∈ VB and n ≥ 0. By Theorem 2.1.1 in [Z96], we also have

a ∗ O(VB) ⊂ O(VB), and O(VB) ∗ a ⊂ O(VB), a ∈ V. (3.9)

Lemma 3.2. For any k ≥ 2, we have Mĥ(1, kα) ⊂ O(VB).

Proof. By the proof of Proposition 3.1, we have ekα ∈ O(VB), for any k ≥ 2. By (3.3), we have

u ∗ α(−1)1 ≡ α(−1)u (mod O(VB)). Now by (3.5) and (3.9), we have:

α(−n1 − 1) . . . α(−nr − 1)ekα ≡ (−1)n1+···+nrα(−1)rekα (mod O(VB))

≡ (−1)n1+···+nr ekα ∗ (α(−1)1) ∗ · · · ∗ (α(−1)1) (mod O(VB))

≡ 0 (mod O(VB)),
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for any k ≥ 2, r ≥ 1, and n1, . . . nr ≥ 0, where the last congruence follows from (3.9). Thus we

have Mĥ(1, kα) ⊂ O(VB), for all k ≥ 2. �

Lemma 3.3. For any v ∈
⊕

m≥1
Mĥ(1,mα), we have α(−1)v + Nv ∈ O(VB).

Proof. If m ≥ 2 and v ∈ Mĥ(1,mα), then by Lemma 3.2, we have v ∈ O(VB), and

α(−1)v + Nv ≡ v ∗ (α(−1)1) + Nv ≡ 0 (mod O(VB)),

by (3.9). Now let m = 1, by the proof of Proposition 3.1, we have α(−1)eα + Neα = eα ◦ 1 ≡ 0

(mod O(VB)). Let v = α(−n1 − 1) . . . α(−nr − 1)eα be a general spanning element of Mĥ(1, α),

where r ≥ 1, and n1, . . . nr ≥ 0. Since [α(−1), α(−p)] = 0 for all p ≥ 1, we have:

α(−1)v + Nv = α(−n1 − 1) . . . α(−nr − 1)(α(−1)eα + Neα)

≡ (−1)n1+···+nrα(−1)r(α(−1)eα + Neα) (mod O(VB))

≡ (−1)n1+···+nr (α(−1)eα + Neα) ∗ (α(−1)1) ∗ · · · ∗ (α(−1)1) (mod O(VB))

≡ 0 (mod O(VB)),

where the last congruence follows from (3.9) and the fact that α(−1)eα + Neα ∈ O(VB). �

By Lemma 3.2 and Lemma 3.3, we have O′ ⊆ O(VB).

3.2. Proof of the main Theorem. Conversely, we need to show that a ◦ u = Resz Y(a, z)u((1+

z)wta/z2) ∈ O′, for any homogeneous a, u ∈ V . First, note that if a ∈ Mĥ(1,mα) and u ∈
Mĥ(1, nα) for some m, n ≥ 1, then by (2.3) and (2.8), we have:

Resz Y(a, z)u
(1 + z)wta

z2
∈ Mĥ(1, (m + n)α)((z)) ⊂ O′((z)),

since m + n ≥ 2, and Mĥ(1, kα) ⊂ O′ for any k ≥ 2 by (3.8). Thus, we only need to show:

a ◦ u ∈ O′, for



a ∈ Mĥ(1, α) and u ∈ Mĥ(1, 0),

or

a ∈ Mĥ(1, 0) and u ∈ Mĥ(1, α).

(3.10)

First, we consider the case when a ∈ Mĥ(1, α) and u ∈ Mĥ(1, 0).

Our strategy is to show Resz Y(eα, z)u((1+ z)N/z2+n) ∈ O′ first, where u ∈ Mĥ(1, 0) and n ≥ 0,

then prove Resz Y(a, z)u((1+z)wta/z2) ∈ O′, for a = α(−n1) . . . α(−nr)eα ∈ Mĥ(1, α) by induction.

Lemma 3.4. For any m ≥ 1, we have α(−m)O′ ⊂ O′. For any u ∈ Mĥ(1, α), we have L(−1)u +
L(0)u ∈ O′.

Proof. Since [α(−m), α(−n)] = 0 for any m, n ≥ 1, and α(−m)Mĥ(1, kα) ⊂ Mĥ(1, kα), for any

k ≥ 0, we have α(−m)O′ ⊂ O′, in view of (3.8).

Let u = α(−n1) . . . α(−nr)eα ∈ Mĥ(1, α), where r ≥ 0 and n1, . . . , nr ≥ 1. Since L(−1)eα =
(eα)−21 = α(−1)eα, and [L(−1), α(−m)] = ma(−m − 1), we have

L(−1)α(−n1) . . . α(−nr)e
α + L(0)α(−n1) . . . α(−nr)e

α

= α(−n1) . . . α(−nr)α(−1)eα +
r∑

j=1

n j · α(−n1) . . . α(−n j − 1) . . . α(−nr)e
α

+ (n1 + · · · + nk + N)α(−n1) . . . α(−nr)e
α

= α(−n1) . . . α(−nr)(α(−1)eα + Neα)

+

r∑

j=1

(α(−n j − 1) + α(−n j))α(−n1) . . . α̂(−n j) . . . α(−nr)e
α

≡ 0 (mod O′),
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where the last congruence follows from α(−1)eα +Neα ∈ O′, α(−m)O′ ⊂ O′ for any m ≥ 1, and

α(−n − 1)v + α(−n)v ∈ O′ for all v ∈ Mĥ(1, α) and n ≥ 1, in view of (3.8). �

Proposition 3.5. Let u ∈ Mĥ(1, 0), and n ≥ 0. We have

Resz Y(eα, z)u
(1 + z)N

z2+n
∈ O′. (3.11)

Proof. We use induction on the length r of a spanning element u = α(−n1) . . . α(−nr)1 of

Mĥ(1, 0), where n1, . . . , nr ≥ 1. The base case is u = 1. First, we note that

eα− j−11 =
1

j!
(L(−1) jeα)−11 =

1

j!
L(−1) jeα, j ≥ 0.

Since eα− j−1
1 ∈ Mĥ(1, α) for any j ≥ 0, by Lemma 3.4 we have

L(−1) jeα ≡ −L(0)L(−1) j−1eα (mod O′)

= (−1)(N + j − 1)L(−1) j−1eα

...

≡ (−1) j(N + j − 1)(N + j − 2) . . . (N + 1)Neα (mod O′).

Then it follows from the definition of binomial coefficients that

Y(eα, z)1 =
∑

j≥0

eα− j−11z j =
∑

j≥0

1

j!
L(−1) jz jeα

≡
∑

j≥0

(−1) j (N + j − 1)(N + j − 2) . . . (N + 1)N

j!
z jeα (mod O′)

=
∑

j≥0

(−N − j + 1)(−N − j + 2) . . . (−N − 1)(−N)

j!
z jeα (3.12)

=
∑

j≥0

(
−N

j

)
z jeα = (1 + z)−Neα.

Now by (3.11) and (3.12), and the assumption that n ≥ 0, we have

Resz Y(eα, z)1
(1 + z)N

z2+n
≡ Resz(1 + z)−N (1 + z)N

z2+n
eα = Resz

1

z2+n
eα = 0 (mod O′).

This finishes the proof of base case. Assume the conclusion holds for smaller r. Note that for

any m ≥ 1, we have

[α(−m), Y(eα, z)] =
∑

i≥0

(
−m

i

)
Y(α(i)eα, z)z−m−i = 2NY(eα, z)z−m.

Then by α(−m)O′ ⊂ O′ in Lemma 3.4, the base case and the induction hypothesis, we have

Resz Y(eα, z)α(−n1) . . . α(−nr)1
(1 + z)N

z2+n

= Resz α(−n1) . . . α(−nr)Y(eα, z)1
(1 + z)N

z2+n

−
r∑

j=1

Resz α(−n1) . . . α(−n j−1)[α(−n j), Y(eα, z)]α(n j+1) . . . α(−nr)1
(1 + z)N

z2+n

≡ −
r∑

j=1

2N Resz α(−n1) . . . α(−n j−1)Y(eα, z)α(−n j+1) . . . α(−nr)1
(1 + z)N

z2+n+n j
(mod O′)

≡ 0 (mod O′)
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where the last congruence follows from the induction hypothesis, which indicates that

Resz Y(eα, z)α(−n j+1) . . . α(−nr)1((1 + z)N)/z2+n+n j ∈ O′.

Hence (3.11) holds for any u ∈ Mĥ(1, 0) and n ≥ 0. �

Consider an arbitrary spanning element a in Mĥ(1, α), we can write

a = α(−n1) . . . α(−nr)e
α, (3.13)

for some r ≥ 0 and n1, . . . , nr ≥ 1. We want to show that a ◦ u ∈ O′, for any u ∈ Mĥ(1, 0). If

r = 0, we have a = eα, and a ◦ u ∈ O′ by Proposition 3.5.

Assume r ≥ 1, we will use induction on the length r of a to show that a ◦ u ∈ O′. The base

case a = α(−k)eα with wta = N + k is given by the following Lemma:

Lemma 3.6. For any k ≥ 1, n ≥ 0, and u ∈ Mĥ(1, 0), we have

Resz Y(α(−k)eα, z)u
(1 + z)N+k

z2+n
∈ O′. (3.14)

Proof. By the Jacobi identity of VOA, it is easy to derive the following formula:

Y(α(−1)v, z) =
∑

j≥0

α(− j − 1)Y(v, z)z j +
∑

j≥0

Y(v, z)α( j)z− j−1, v ∈ VZα. (3.15)

Now we prove (3.14) by induction on k. When k = 1, by (3.15) we have

Resz Y(α(−1)eα, z)u
(1 + z)N+1

z2+n

= Resz

∑

j≥0

α(− j − 1)Y(eα, z)uz j (1 + z)N+1

z2+n
+ Resz

∑

j≥0

Y(eα, z)α( j)u
(1 + z)N+1

z2+n+ j+1

= Resz


∑

j≥0

α(− j − 1)Y(eα, z)uz j (1 + z)N

z2+n
+

∑

j≥0

α(− j − 1)Y(eα, z)uz j+1 (1 + z)N

z2+n



+ Resz

∑

j≥0

Y(eα, z)α( j)u
(1 + z)N

z2+n+ j+1
+ Resz

∑

j≥0

Y(eα, z)α( j)u
(1 + z)N

z2+n+ j

≡ Resz α(−1)Y(eα, z)u
(1 + z)N

z2+n

+
∑

j≥0

(α(− j − 2) + α(− j − 1)) Resz Y(eα, z)uz j+1 (1 + z)N

z2+n
+ 0 (mod O′)

≡ Resz α(−1)Y(eα, z)u
(1 + z)N

z2+n
(mod O′),

where the first congruence follows from Proposition 3.5, as n+ j ≥ 0, and the second congruence

follows from (3.8). Furthermore, by Proposition 3.5 again, we have

Resz α(−1)Y(eα, z)u
(1 + z)N

z2+n

= Resz

Y(eα, z)α(−1)u
(1 + z)N

z2+n
+

∑

j≥0

(
−1

j

)
z−1− jY(α( j)eα, z)u

(1 + z)N

z2+n



≡ 0 + Resz 2NY(eα, z)u
(1 + z)N

z2+n+1
(mod O′)

≡ 0 (mod O′).
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This proves (3.14) for k = 1. Assume (3.14) holds for smaller k. Note that [L(−1), α(−k)] =
1
kα(−k − 1) and α(−k)L(−1)eα = α(−k)

∑
i≥0

α√
2N

(−1 − i) α√
2N

(i)eα = α(−1)α(−k)eα. By (3.15),

Resz Y(α(−k − 1)eα, z)u
(1 + z)N+k+1

z2+n

=
1

k
Resz

(
Y(L(−1)α(−k)eα, z)u

(1 + z)N+k+1

z2+n
− Y(α(−k)L(−1)eα, z)u

(1 + z)N+k+1

z2+n

)

= −1

k
Resz

(
Y(α(−k)eα, z)u

d

dz

(
(1 + z)N+k+1

z2+n

)
+ Y(α(−1)α(−k)eα, z)u

(1 + z)N+k+1

z2+n

)

= −N + k + 1

k
Resz Y(α(−k)eα, z)u

(1 + z)N+k

z2+n

+
2 + n

k
Resz Y(α(−k)eα, z)u

(1 + z)N+k

z3+n
+

2 + n

k
Resz Y(α(−k)eα, z)u

(1 + z)N+k

z2+n

− 1

k
Resz

∑

j≥0

α(− j − 1)Y(α(−k)eα, z)uz j (1 + z)N+k+1

z2+n

− 1

k
Resz

∑

j≥0

Y(α(−k)eα, z)α( j)u
(1 + z)N+k+1

z2+n+ j+1

≡ 0 − 1

k
Resz

∑

j≥0

α(− j − 1)
(
Y(α(−k)eα, z)uz j + Y(α(−k)eα, z)uz j+1

) (1 + z)N+k

z2+n

− 1

k
Resz

∑

j≥0

Y(α(−k)eα, z)α( j)u
(1 + z)N+k(1 + z)

z2+n+1+ j
(mod O′)

= −1

k
Resz α(−1)Y(α(−k)eα, z)u

(1 + z)N+k

z2+n

− 1

k
Resz

∑

j≥0

(α(− j − 2) + α(− j − 1)) Y(α(−k)eα, z)uz j+1 (1 + z)N+k

z2+n

− 1

k
Resz

∑

j≥0

Y(α(−k)eα, z)α( j)u
(1 + z)N+k(1 + z)

z2+n+1+ j

≡ −1

k
Resz α(−1)Y(α(−k)eα, z)u

(1 + z)N+k

z2+n
(mod O′),

where the first congruence follows from the induction hypothesis (3.14), and the second congru-

ence follows from (3.8) and the induction hypothesis. By the Jacobi identity and the Heisenberg

relation [α( j), α(−k)] = δ j,kkK for any j ≥ 0, we have

− 1

k
Resz α(−1)Y(α(−k)eα, z)u

(1 + z)N+k

z2+n

= −1

k
Resz Y(α(−k)eα, z)α(−1)u

(1 + z)N+k

z2+n
− 1

k
Resz

∑

j≥0

(
−1

j

)
z−1− jY(α( j)α(−k)eα, z)u

(1 + z)N+k

z2+n

≡ 0 − 1

k
Resz(−1)kkY(eα, z)u(1 + z)k (1 + z)N

z2+n+1+k
(mod O′)

= −Resz(−1)k
∑

i≥0

(
k

i

)
Y(eα, z)u

(1 + z)N

z2+n+1+i

≡ 0 (mod O′),



BOREL AND PARABOLIC-TYPE SUBALGEBRAS OF THE LATTICE VERTEX OPERATOR ALGEBRA 17

where the first congruence follows from the induction hypothesis, and the second congruence

follows from Proposition 3.5. Therefore, we have

Resz Y(α(−k − 1)eα, z)u
(1 + z)N+k+1

z2+n
∈ O′.

So (3.14) holds for k + 1, and the inductive step is complete. �

Proposition 3.7. For any u ∈ Mĥ(1, 0) and a ∈ Mĥ(1, α), we have:

Resz Y(a, z)u
(1 + z)wta

z2+n
∈ O′, (3.16)

for any n ≥ 0. In particular, we have a ◦ u ∈ O′.

Proof. Write a = α(−n1) . . . α(−nr)eα as (3.13), where r ≥ 0 and n1, . . . , nr ≥ 1. We prove

(3.16) by induction on r. By Proposition 3.5 and Lemma 3.6, (3.16) holds when a = eα or

a = α(−k)eα. Now let r ≥ 2. The induction hypothesis is the assumption that

Resz Y(α(−n2) . . . α(−nr)e
α, z)u

(1 + z)N+n2+···+nr

z2+n
∈ O′, (3.17)

for n2, . . . , nr ≥ 1, n ≥ 0, and u ∈ Mĥ(1, 0). First, we claim that

Resz Y(α(−1)α(−n2) . . . α(−nr)e
α, z)u

(1 + z)N+n2+···+nr+1

z2+n
∈ O′. (3.18)

Denote N +n2+ · · ·+nr by m, note that wt(α(−n2) . . . α(−nr)eα) = m. Then by (3.15), (3.8), and

the induction hypothesis, we have

Resz Y(a(−1)α(−n2) . . . α(−nr)e
α, z)u

(1 + z)1+m

z2+n

= Resz

∑

j≥0

a(− j − 1)Y(α(−n2) . . . α(−nr)e
α, z)uz j (1 + z)1+m

z2+n

+ Resz

∑

j≥0

Y(α(−n2) . . . α(−nr)e
α, z)(a( j)u)

(1 + z)1+m

z2+n+ j+1

≡ Resz

∑

j≥0

a(− j − 1)Y(α(−n2) . . . α(−nr)e
α, z)uz j (1 + z)m

z2+n

+ Resz

∑

j≥0

a(− j − 1)Y(a2(α(−n2) . . . α(−nr)e
α, z)uz j+1 (1 + z)m

z2+n
(mod O′)

= Resz a(−1)Y(α(−n2) . . . α(−nr)e
α, z)u

(1 + z)m

z2+n

+ Resz

∑

j≥0

a(− j − 2)Y(α(−n2) . . . α(−nr)e
α, z)uz j+1 (1 + z)m

z2+n

+ Resz

∑

j≥0

a(− j − 1)Y(α(−n2) . . . α(−nr)e
α, z)uz j+1 (1 + z)m

z2+n

= Resz[a(−1), Y(α(−n2) . . . α(−nr)e
α, z)]u

(1 + z)m

z2+n

+ Resz Y(α(−n2) . . . α(−nr)e
α, z)a(−1)u

(1 + z)m

z2+n

+ Resz

∑

j≥0

(a(− j − 2) + a(− j − 1))Y(α(−n2) . . . α(−nr)e
α, z)uz j+1 (1 + z)m

z2+n
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≡
∑

i≥0

(
−1

i

)
z−1−i Resz Y(a(i)α(−n2) . . . α(−nr)e

α, z)u
(1 + z)m

z2+n
(mod O′)

= Resz 2Y(α(−n2) . . . α(−nr)e
α)u

(1 + z)m

z3+n

+
∑

i≥0

r∑

s=2

(
−1

i

)
Resz Y(α(−n2) . . . [α(i), α(−ns)] . . . α(−nr)e

α, z)u
(1 + z)m

z2+n+i+1

≡
r∑

s=2

(−1)nsns Resz Y(α(−n2) . . . α̂(−ns) . . . α(−nr)e
α, z)u

(1 + z)m

z2+n+ns+1
(mod O′).

Denote α(−n2) . . . α̂(−ns) . . . α(−nr)eα by as. Then m = wtas + ns, and by the induction hypoth-

esis (3.17), with r replaced by r − 1, we have

r∑

s=2

(−1)ns ns Resz Y(α(−n2) . . . α̂(−ns) . . . α(−nr)e
α, z)u

(1 + z)m

z2+n+ns+1

=

r∑

s=2

(−1)ns ns Resz Y(as, z)u(1 + z)ns
(1 + z)wtas

z2+n+ns+1

=

r∑

s=2

∑

j≥0

(
ns

j

)
(−1)ns ns Resz Y(as, z)u

(1 + z)wtas

z2+ns+ j+1

≡ 0 (mod O′)

since ns + j + 1 ≥ 1. This proves (3.18). Now assume that

Resz Y(α(−k)α(−n2) . . . α(−nr)e
α, z)u

(1 + z)N+k+n2+···+nr

z2+n
∈ O′, (3.19)

for some fixed k ≥ 1, n2, . . . , nr ≥ 1, and n ≥ 0. We want to show that

Resz Y(α(−k − 1)α(−n2) . . . α(−nr)e
α, z)u

(1 + z)N+k+1+n2+···+nr

z2+n
∈ O′. (3.20)

Indeed, by adopting a similar calculation as the proof of Lemma 3.6, we have

Resz Y(α(−k − 1)α(−n2) . . . α(−nr)e
α, z)u

(1 + z)N+k+1+n2+···+nr

z2+n

= Resz
1

k
Y(L(−1)α(−k)α(−n2) . . . α(−nr)e

α, z)u
(1 + z)N+k+1+n2+···+nr

z2+n

+ Resz
1

k
Y(α(−k)[L(−1), α(−n2) . . . α(−nr)]e

α, z)u
(1 + z)N+k+1+n2+...+nr

z2+n

+ Resz
1

k
Y(α(−1)α(−k)α(−n2) . . . α(−nr)e

α)u
(1 + z)N+k+1+n2+···+nr

z2+n
(3.21)

= −Resz
1

k
Y(α(−k)α(−n2) . . . α(−nr)e

α, z)u
d
dz

(
(1 + z)N+k+1+n2+···+nr

z2+n

)

+

r∑

s=2

Resz
ns

k
Y(α(−k)α(−n2) . . . α(−ns − 1) . . . α(−nr)e

α, z)u
(1 + z)N+k+...(1+ns)···+nr

z2+n

+ Resz
1

k
Y(α(−1)α(−k)α(−n2) . . . α(−nr)e

α)u
(1 + z)N+k+1+n2+···+nr

z2+n

= −Resz
1

k
(N + k + 1 + · · · + nr)Y(α(−k)α(−n2) . . . α(−nr)e

α, z)u
(1 + z)N+k+n2+···+nr

z2+n
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+ Resz
2 + n

k
Y(α(−k)α(−n2) . . . α(−nr)e

α, z)u
(1 + z)N+k+n2+···+nr (1 + z)

z2+n+1

+

r∑

s=2

Resz
ns

k
Y(α(−k)α(−n2) . . . α(−ns − 1) . . . α(−nr)e

α, z)u
(1 + z)N+k+...(1+ns)···+nr

z2+n

+ Resz
1

k
Y(α(−1)α(−k)α(−n2) . . . α(−nr)e

α)u
(1 + z)N+k+1+n2+···+nr

z2+n

≡ 0 + Resz
1

k
Y(α(−1)α(−k)α(−n2) . . . α(−nr)e

α)u
(1 + z)N+k+1+n2+···+nr

z2+n
(mod O′),

where the congruences follow from the induction (on k ≥ 1) hypothesis (3.19). Moreover, by

adopting a similar argument as our previous proof of (3.18), with the given assumption (3.17),

the following inclusion holds:

Resz
1

k
Y(α(−1)α(−k)α(−n2) . . . α(−nr)e

α)u
(1 + z)N+k+1+n2+···+nr

z2+n
∈ O′,

with the given assumption (3.19). Thus, (3.20) is true. Now the induction step for k ≥ 1 and the

induction step for the length r ≥ 1 of a ∈ Mĥ(1, α) are both complete. �

Now we have finished the proof of a ◦ u ∈ O′ for the first case in (3.10). The second case

when a ∈ Mĥ(1, 0) and u ∈ Mĥ(1, α) follows from a similar induction process as Lemma 3.6 and

Proposition 3.7 (see also (3.1.5) and (3.1.6) in [FZ92]), we omit the details.

In conclusion, we proved the following theorem:

Theorem 3.8. Let VB = VZ≥0α be the Borel-type subVOA of VZα, with (α|α) = 2N. Then

O(VB) = O′ = span

{
α(−n − 2)u + α(−n − 1)u, α(−1)v + v, Mĥ(1, kα) :

n ≥ 0, u ∈ VB, v ∈
⊕

m≥1

Mĥ(1,mα), k ≥ 2

}
.

(3.22)

Corollary 3.9. With the settings in Theorem 3.8, the epimorphism F given by (3.6) is an iso-
morphism of associative algebras. In particular, we have A(VB) � C[x] ⊕ Cy, with

y2 = 0, yx = −Ny, xy = Ny. (3.23)

Proof. We construct an inverse map of F in (3.6) as follows:

G : V → C〈x, y〉/〈y2, yx + Ny, xy − Ny〉,
α(−n1 − 1) . . . α(−nr − 1)1 7→ (−1)n1+...nr xr, (3.24)

α(−n1 − 1) . . . α(−nr − 1)eα 7→ (−1)n1+...nr yxr = (−1)r+n1+...nr y,

Mĥ(1, kα) 7→ 0, k ≥ 2,

where r ≥ 0 and n1, . . . , nr ≥ 0, and we use the same symbols x and y to denote their image

in the quotient space. Note that G is well-defined since V =
⊕

k≥0
Mĥ(1, kα), and α(−n1 −

1) . . . α(−nr − 1)1 and α(−n1 − 1) . . . α(−nr − 1)eα are basis elements of Mĥ(1, 0) and Mĥ(1, α),

respectively. We claim that G(O(VB)) = 0.

Indeed, it suffices to show that G vanishes on the spanning elements of O(VB) in (3.22). By

the definition (3.24) of G, we already have G(Mĥ(1, kα)) = 0 for any k ≥ 2. In particular, we

have G(α(−n − 2)u + α(−n − 1)u) = G(α(−1)v + Nv) = 0 if u, v ∈ Mĥ(1, kα) for some k ≥ 2. If

u = α(−n1 − 1) . . . α(−nr − 1)1 ∈ Mĥ(1, 0), by (3.24) we have

G(α(−n − 2)u + α(−n − 1)u)

= G(α(−n − 2)α(−n1 − 1) . . . α(−nr − 1)1) +G(α(−n − 1)α(−n1 − 1) . . . 1)

= (−1)n+1+n1+···+nr xr+1 + (−1)n+n1+···+nr xr+1 = 0.
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If u = α(−n1 − 1) . . . α(−nr − 1)eα ∈ Mĥ(1, α), by (3.24) we have:

G(α(−n − 1)u + α(−n − 1)u)

= G(α(−n − 2)α(−n1 − 1) . . . α(−nr − 1)eα) +G(α(−n − 1)α(−n1 − 1) . . . eα)

= (−1)n+1+n1+···+nr yxr+1 + (−1)n+n1+···+nr yxr+1 = 0.

Thus, G(α(−n−2)u+α(−n−1)u) = 0 for any u ∈ V . Finally, if v = α(−n1−1) . . . α(−nr−1)eα ∈
Mĥ(1, α), by (3.24) we have

G(α(−1)v + Nv)

= G(α(−1)α(−n1 − 1) . . . α(−nr − 1)eα) + NG(α(−n1 − 1) . . . α(−nr − 1)eα)

= (−1)n1+...nr yxr+1 + (−1)n1+...nr Nyxr

= (−1)n1+...nr (yx + Ny)xr = 0,

as yx + Ny = 0. Thus, G in (3.24) induces a linear map

G : A(V) = V/O(VB)→ C〈x, y〉/〈y2, yx + Ny, xy − Ny〉, such that

G([α(−n1 − 1) . . . α(−nr − 1)1]) = G((−1)n1+···+nr [α(−1)1]r) = (−1)n1+···+nr xr, (3.25)

G([α(−n1 − 1) . . . α(−nr − 1)eα]) = G((−1)n1+···+nr [eα] ∗ [α(−1)1]r) = (−1)n1+···+nr yxr,

for any r ≥ 0, n1, . . . , nr ≥ 0, and k ≥ 2. Since A(VB) is spanned by elements of the form

[α(−n1 − 1) . . . α(−nr − 1)1] and [α(−n1 − 1) . . . α(−nr − 1)eα] because of (3.22), it is clear that

G ◦ F = Id and F ◦G = Id, in view of (3.6) and (3.25). �

3.3. Applications of the main theorem. The following example gives a comparison between

the Zhu’s algebras A(VB) and A(VZα):

Example 3.10. Let L = Zα, with (α|α) = 2. Then L = A1 is the root lattice of type A1. Then VA1

is isomorphic to the affine VOA L ˆsl2 (1, 0), where sl2 = Ce + Ch + C f , and eα 7→ e, α(−1)1 7→
h, e−α 7→ f (see [FK80, FZ92]).

Recall that A(L ˆsl2 (1, 0)) � U(sl2)/〈e2〉, where 〈e2〉 is the two-sided ideal of A(L ˆsl2 (1, 0)) gen-

erated by e2, and [a(−1)1] 7→ a + 〈e2〉 for all a ∈ sl2 (see [FZ92]). By applying the Lie bracket

[a, ·] to e2 repeatedly, it is easy to show that the following relations hold in A(L ˆsl2 (1, 0)):

eh + e = 0; h2 − h − 2 f e = 0; f h − f = 0; e2 = f 2 = 0, (3.26)

where we used the same symbol to denote the equivalent classes. It follows that A(L ˆsl2 (1, 0))

has a basis {1, e, f , h, f e}.
Now let A be the subalgebra of A(L ˆsl2 (1, 0)) generated by the Borel subalgebra b = Ce+Ch ≤

g. By (3.26), we have A = 〈1, e, h, f e〉. Moreover, by Corollary 3.9, we have an epimorphism

of associative algebras:

A(VB)։ A = 〈1, e, h, f e〉 ≤ A(VA1
), x 7→ h, y 7→ e, x2 − x 7→ f e. (3.27)

For the lattice VOA VA1
, the following Corollary presents a spanning set of O(VA1

), which

will be used in the next Section.

Corollary 3.11. Let L = A1 = Zα. Then O(VA1
) is spanned by the following elements:



α(−n − 2)u + α(−n − 1)u, u ∈ VA1
, and n ≥ 0,

±α(−1)v + Nv, v ∈ Mĥ(1,±α),

Mĥ(1,±kα), k ≥ 2.

α(−1)3w − α(−1)w, w ∈ Mĥ(1, 0).

(3.28)
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Proof. Let O′′ be the subspace of VA1
spanned by the elements (3.28). Since both O(VZ≥0α) and

O(VZ≥0(−α)) are contained in O(VA1
), by Lemma 3.2 and 3.3, we have α(−n− 2)u+α(−n− 1)u ∈

O(VA1
) for any u ∈ VA1

, ±α(−1)v+Nv ∈ O(VA1
) for any v ∈ Mĥ(1,±α), and Mĥ(1,±kα) ⊂ O(VA1

)

for all k ≥ 2. Moreover, since wteα = 2 and (α| − α) = −2, we have

eα ◦ e−α = eα−2e−α + eα−1e−α

=
1

3
α(−3)1 +

1

4
(α(−2)α(−1) + α(−1)α(−2))1 +

1

3!
α(−1)31 +

1

2
α(−2)1 +

1

2!
α(−1)21

≡ 1

3
α(−1)1 − 1

2
α(−1)21 +

1

6
α(−1)31 − 1

2
α(−1)1 +

1

2
α(−1)21

≡ 1

6
(α(−1)31 − α(−1)1) (mod O(VA1

)).

Hence α(−1)3w − α(−1)w ∈ O(VA1
) for any w ∈ Mĥ(1, 0), in view of the proof of Lemma 3.3.

This shows O′′ ⊆ O(VA1
). Conversely, with a similar argument as Proposition 3.1 and Corol-

lary 3.9, we can easily show that

VA1
/O′′ � Cz ⊕ C[x]/〈x3 − x〉 ⊕ Cy, [e−α] 7→ z, [α(−1)1] 7→ x, [eα] 7→ y.

In particular, we have dim VA1
/O′′ = 5. On the other hand, we have dim V/O(VA1

) = 5, since

VA1
has two irreducible modules VZα and VZα+ 1

2α
with bottom levels of dimensions 1 and 2.

respectively (see [D93] Theorem 3.1), and there is a one-to-one correspondence between irre-

ducible A(VA1
)-modules and irreducible VA1

-modules (see [Z96] Theorem 2.2.2). Then we have

O′′ = O(VA1
) since there is an epimorphism VA1

/O′′ → A(VA1
). �

Remark 3.12. There is a description of Zhu’s algebra A(VL) of the lattice VOAs VL in [DLM97]

by a quotient algebra of U(ŝl2(C)). Such a description was obtained by the classification the-

orem on irreducible modules over VL in [D93]. Since we do not have a classification of irre-

ducible modules over VB (or VP) to begin with, we have to first determine O(VB) (or O(VP)) in

order to determine the structures of A(VB) (or A(VP)).

In the rest of this subsection, we assume that L = Zα with (α|α) = 2N and B = Z≥0α. Now

we classify the irreducible modules over the Borel-type subVOA VB.

Lemma 3.13. If U , 0 is an irreducible module over A(VB) � C[x] ⊕ Cy, then we must have
y.U = 0, and U � Ceλ for some λ ∈ h = Cα, with x.eλ = (α|λ)eλ.
Proof. By (3.23), Cy is an ideal of A(VZ≥0α). Then y.U ≤ U is an A(VB)-submodule, and so y.U
is either U or 0. If y.U = U, then we have 0 = y2.U = y.U = U, a contradiction. Thus, y.U = 0

and U is an irreducible module over C[x]. We have U � C[x]/m, for some maximal ideal m of

C[x]. By Hilbert’s Nullstellensatz, we have m = 〈x − µ〉 for some µ ∈ C. Choose λ ∈ h so that

(α|λ) = µ. Then U � C[x]/〈x − (α|λ)〉 � Ceλ, with x.eλ = (α|λ)eλ. �

Lemma 3.14. For any irreducible module W = Mĥ(1, λ) over the Heisenberg VOA Mĥ(1, 0), W
is also an irreducible module over the Borel-type subVOA VB, where YW : VB → End(W)[[z, z−1]]

satisfies YW(a, z) = 0, for any a ∈ Mĥ(1, nα) and n ≥ 1, and YW |M
ĥ
(1,0) is given by the action of

the Heisenberg VOA Mĥ(1, 0).

Proof. By (2.8), for any a ∈ Mĥ(1, nα) and b ∈ Mĥ(1,mα), where m, n ≥ 0, YW(a, z)b is either

0 or given by the Heisenberg module vertex operator. Hence (W, YW) is a well-defined module

over the Borel-type subVOA VB. It is clear that W is irreducible. �

Theorem 3.15. Σ =
{
(W = Mĥ(1, λ), YW) : λ ∈ h = Cα

}
, with YW defined by Lemma 3.14, is a

complete list of irreducible modules over the rank-one Borel-type subVOA VB.
Moreover, the fusion rule between the irreducible VB-modules Mĥ(1, λ),Mĥ(1, µ), and Mĥ(1, γ)

is the same as the fusion rule of these modules as modules over the Heisenberg VOA. In other
words, N

(
M
ĥ
(1,γ)

M
ĥ
(1,λ) M

ĥ
(1,µ)

)
� δλ+µ,γ.
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Proof. Given a module (W = Mĥ(1, λ), YW) in Σ, the bottom level W(0) = Ceλ is an A(VB)-

module, with the actions of x = [α(−1)1] and y = [eα] given by

x.eα = o(α(−1)1)eλ = (α|λ)eλ, y.eλ = o(eα)eλ = Resz zN−1YW(eα, z)eλ = 0.

(see [FZ92, Z96]). By Lemma 3.14, such A(VB)-modules W(0), with W varies in Σ, are all

the irreducible modules over A(VB) up to isomorphism. Then by Theorem 2.2.2 in [Z96], Σ is

the complete list of irreducible modules over VB. Finally, note that any intertwining operator

between modules over the Heisenberg VOA I ∈ I
(

M
ĥ
(1,γ)

M
ĥ
(1,λ) M

ĥ
(1,µ)

)
can be naturally lifted up to an

intertwining operator Ĩ of VB, since the Jacobi identity of I is

z−1
0 δ

(
z1 − z2

z0

)
YW3(a, z1)I(v, z2)u − z−1

0 δ

(
−z2 + z1

z0

)
I(v, z2)YW2(a, z1)u

= z−1
2 δ

(
z1 − z0

z2

)
I(YW1(a, z0)v, z2)u,

(3.29)

and YW i(a, z) = 0 for i = 1, 2, 3, if a ∈ Mĥ(1, nα) with n ≥ 1. Therefore, we can replace I in

(3.29) by the intertwining operator Ĩ of VB. Conversely, we can also restrict any intertwining

operator Y ∈ I
(

M
ĥ
(1,γ)

M
ĥ
(1,λ) M

ĥ
(1,µ)

)
of VB to an intertwining operator Y of the same type between

modules over the Heisenberg VOA. Therefore, the fusion rules of the Borel-type subVOA VB is

the same as the fusion rules between modules over the Heisenberg VOA Mĥ(1, 0). �

Remark 3.16. Theorem 3.15 is also parallel to the semisimple Lie algebra case. Note that a

Borel subalgebra b = n+ ⊕ h of a semisimple Lie algebra g has the same irreducible modules

as its Cartan part h, and the irreducible modules over (the abelian Lie algebra) h are all one-

dimensional.

4. The rank-two parabolic-type subVOA VP of VA2

In this and the next Sections, we study a nontrivial lowest rank example of parabolic-type

subVOAs in VL, where rank(L) = 2. Note that if rank(L) = 1, by Definition 2.5, there is no

difference between Borel-type and parabolic-type submonoids, and the rank-one case has been

dealt with in Section 3.

Let L = A2 = Zα ⊕ Zβ be the root lattice of type A2: (α|α) = (β|β) = 2, and (α|β) = −1,

equipped with the 2-cocycle ǫ : L × L→ 〈±1〉, such that

ǫ(α, α) = 1, ǫ(β, β) = 1, ǫ(α, β) = 1, ǫ(β, α) = −1, (4.1)

Since ǫ is bi-multiplicative, ǫ(α, α)ǫ(α,−α) = ǫ(α, 0) = 1 and ǫ(β, β)ǫ(β,−β) = ǫ(β, 0) = 1, it

follows that

ǫ(α,−α) = 1, ǫ(β,−β) = 1. (4.2)

Let P := Zα ⊕ Z≥0β, which is a parabolic-type submonoid of A2. See Example 2.7 and

Figure 1 for an illustration. Then VP =
⊕
γ∈P Mĥ(1, γ), where h = Cα ⊕ Cβ, is a parabolic-type

subVOA of VA2
. Similar to the argument in Proposition 2.16, by using (2.14) repeatedly, we can

easily prove the following:

Proposition 4.1. VP is strongly generated by U = {eα, e−α, eβ, eα+β, α(−1)1, β(−1)1}. In partic-
ular, VP is C1-cofinite.

We will determine the structure of Zhu’s algebra A(VP) in this Section, and classify the ir-

reducible modules over VP in the next Section. In this Section and the next, P will always

represent the parabolic-type submonoid P = Zα ⊕ Z≥0β of the root lattice A2.
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4.1. A spanning set of O(VP). Similar to our approach in Section 3, we first give a concrete

description of O(VP), and then use it to determine A(VP).

Lemma 4.2. Suppose γ, θ ∈ P such that (γ|γ)
2
= N ≥ 1 and (γ|θ) = n ≥ 1. Then eγ+θ ∈ O(VP).

Proof. By the definition of Y(eγ, z)eθ in (2.4), we have

eγ−n−1
eθ = Resz z−n−1E−(−γ, z)z(γ|θ)ǫ(γ, θ)eγ+θ = ǫ(γ, θ)eγ+θ,

and eγ−meθ = 0 for any m ≤ n. Since n ≥ 1 and wteγ = (γ|γ)
2
= N ≥ 1, we have

Resz Y(eγ, z)eθ
(1 + z)N

z1+n
= eγ−n−1

eθ +

(
N
1

)
eγ−neθ + · · · +

(
N
N

)
eγ−n−1+Neθ = ǫ(γ, θ)eγ+θ ∈ O(VP).

This shows eγ+θ ∈ O(VP) since ǫ(γ, θ) ∈ {±1}. �

Lemma 4.3. Let S := {emα+nβ : m ∈ Z, n ∈ N}\{e±α, eβ, eα+β}.We have S ⊂ O(VP).

Proof. For m ≥ 1, since (α|mα + β) = 2m − 1 ≥ 1, by Lemma 4.2 and an easy induction on m,

we have e(m+1)α+β ∈ O(VP) for any m ≥ 1. Similarly, since (β|α + nβ) = 2n − 1 ≥ 1 when n ≥ 1,

we have

eα+(n+1)β ∈ O(VP), n ≥ 1. (4.3)

Now let n ≥ 2, and assume that emα+nβ ∈ O(VP), for all m ≥ 1. We want to show that emα+(n+1)β ∈
O(VP), for all m ≥ 1.

Indeed, since (mα + nβ|α + β) = m((α|α) + (α|β)) + n((β|α) + (β|β)) = m + n ≥ 1, by Lemma

4.2 we have e(m+1)α+(n+1)β ∈ O(VP) for all m ≥ 1. Thus, emα+(n+1)β ∈ O(VP) for all m ≥ 2, and

by (4.3), we see that it is also true for m = 1. This finishes the induction step and shows that

emα+nβ ∈ O(VP), for all m ≥ 1 and n ≥ 2. Hence we have

S 1 := {emα+nβ : m ≥ 1, n ≥ 2} ∪ {emα+β : m ≥ 2} ⊂ O(VP). (4.4)

On the other hand, for any m ≥ 1, since (−mα|β) = m ≥ 1, we have e−mα+β ∈ O(VP) for all

m ≥ 1. Since (−α + nβ|β) = 1 + 2n ≥ 1 for any n ≥ 0, we have

e−α+(n+1)β ∈ O(VP), n ≥ 0. (4.5)

Using the fact that (−mα + nβ| − α + β) = 3m + 3n ≥ 1 for m, n ≥ 1, together with (4.5), we can

similarly show that

S 2 := {e−mα+nβ : m ≥ 1, n ≥ 1} ⊂ O(VP). (4.6)

Finally, for any m ≥ 1 and n ≥ 1, since (α|mα) = (−α| − mα) = 2m > 1 and (β|nβ) = 2n > 1,

by Lemma 4.2 again, we can easily show that e±mα ∈ O(VP) and enβ ∈ O(VP), for all m ≥ 2 and

n ≥ 2. Then by (4.4) and (4.6), we have S = S 1∪S 2∪{e±mα : m ≥ 2}∪{enβ : n ≥ 2} ⊂ O(VP). �

Inspired by (3.8), (3.28), and Lemma 4.3, we give the following definition:

Definition 4.4. Let O be the subspace of VP spanned by the following elements:


h(−n − 2)u + h(−n − 1)u, u ∈ VP, h ∈ h, n ≥ 0;

γ(−1)v + v, v ∈ Mĥ(1, γ), γ ∈ {α,−α, β, α + β};
γ(−1)2v + γ(−1)v, v ∈ Mĥ(1, γ + γ

′), γ, γ′ ∈ {α,−α, β, α + β}, γ + γ′ ∈ {α + β, β};
Mĥ(1,mα + nβ), mα + nβ ∈ (Zα ⊕ Z≥0β)\{0, α,−α, β, α + β};
α(−1)3w − α(−1)w, w ∈ Mĥ(1, 0).

(4.7)

Note that the only possible ordered pairs (γ, γ′) such that γ, γ′ ∈ {α,−α, β, α+ β} and γ+ γ′ ∈
{α + β, β} as in (4.7) are contained in the following set:

{(α, β), (β, α), (−α, α + β), (α + β,−α)}. (4.8)

So the set of elements γ(−1)2v + γ(−1)v in (4.7) can be written more explicitly as follows:

α(−1)2v + α(−1)v, β(−1)2v + β(−1)v, v ∈ Mĥ(1, α + β), (4.9)
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α(−1)2v − α(−1)v, (α + β)(−1)2v + (α + β)(−1)v, v ∈ Mĥ(1, β). (4.10)

Moreover, we observe that O(VZα) ⊂ O, and O(VZ≥0γ) ⊂ O for any γ ∈ {α,−α, β, α + β}, since

M
Ĉα(1,±α) ⊂ Mĥ(1,±α) and M

Ĉγ(1, γ) ⊂ Mĥ(1, γ) (see (3.22) and Corollary 3.11).

Remark 4.5. We use Figure 1 to illustrate our definition for O. The black dots in this diagram

represent the elements in parabolic-type submonoid P = Zα ⊕ Z≥0β of A2. Except for the roots

represented by the red vectors, the Heisenberg modules Mĥ(1, γ) associated to all other dots γ

are contained in the subspace O of VP =
⊕
γ∈P Mĥ(1, γ).

In the rest of this subsection, we will show that O is equal to O(VP).

Proposition 4.6. Let O be the subspace given by Definition 4.4. Then O ⊆ O(VP).

Proof. It is clear that h(−n−2)u+h(−n−1)u ∈ O(VP) for any h ∈ h, u ∈ VP, and n ≥ 0. Then by

the congruence h(−m)v ≡ (−1)m−1v ∗ (h(−1)1) (mod O(VP)) and (3.9), we have h(−m)O(VP) ⊆
O(VP) for any h ∈ h and m ≥ 1. Now it follows from Lemma 4.3 that Mĥ(1,mα + nβ) ⊆ O(VP)

for mα + nβ ∈ P\{α,−α, β, α + β}.
Moreover, given γ ∈ {α,−α, β, α + β}, since (γ|γ) = 2, we have

γ(−1)eγ + eγ = eγ−2
1 + eγ−1

1 = eγ ◦ 1 ∈ O(VP),

and so γ(−1)v + v ∈ O(VP) for any v ∈ Mĥ(1, γ) and γ ∈ {α,−α, β, α + β}. On the other hand,

suppose γ, γ′ ∈ {α,−α, β, α + β} such that γ + γ′ ∈ {β, α + β}. As h(−n − 2)u + h(−n − 1)u ≡ 0

(mod O(VP)) for any h ∈ h, n ≥ 0, and u ∈ VP, we have

0 ≡ eγ ◦ eγ
′
=

1

2
ǫ(γ, γ′)γ(−2)eγ+γ

′
+

1

2!
ǫ(γ, γ′)γ(−1)2eγ+γ

′
+ ǫ(γ, γ′)γ(−1)eγ+γ

′

≡ 1

2
ǫ(γ, γ′)γ(−1)2eγ+γ

′
+

1

2
ǫ(γ, γ′)γ(−1)eγ+γ

′
(mod O(VP)).

Thus, γ(−1)2v + γ(−1)v ∈ O(VP) for any v ∈ Mĥ(1, γ + γ
′).

Finally, since we have O(VZα) ⊂ O(VP), it follows from Corollary 3.11 that α(−1)31 −
α(−1)1 ∈ O(VP). Thus α(−1)3w − α(−1)w ∈ O(VP) for any w ∈ Mĥ(1, 0), as h(−m)O(VP) ⊆
O(VP) for any h ∈ h and m ≥ 1. �

Conversely, in order to prove O(VP) ⊆ O, we need to show that

Mĥ(1, η) ◦ Mĥ(1, θ) ⊂ O, for any η, θ ∈ P = Zα ⊕ Z≥0β. (4.11)

By the construction of subspace O in (4.7) and Y(eη, z)eθ ∈ Mĥ(1, η + θ)((z)), we have

Mĥ(1, η) ◦ Mĥ(1, θ) ⊂ Mĥ(1, η + θ) ⊂ O, if η + θ ∈ P\{0, α,−α, β, α + β}.
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Hence we only need to show that

Mĥ(1, 0) ◦ Mĥ(1, γ) ⊂ O and Mĥ(1, γ) ◦ Mĥ(1, 0) ⊂ O; (4.12)

Mĥ(1, α) ◦ Mĥ(1, β) ⊂ O and Mĥ(1, β) ◦ Mĥ(1, α) ⊂ O; (4.13)

Mĥ(1, α + β) ◦ Mĥ(1,−α) ⊂ O and Mĥ(1,−α) ◦ Mĥ(1, α + β) ⊂ O; (4.14)

Mĥ(1, α) ◦ Mĥ(1,−α) ⊂ O and Mĥ(1,−α) ◦ Mĥ(1, α) ⊂ O, (4.15)

where γ ∈ {α,−α, β, α + β}.
(4.12) can be proved by a similar argument as Proposition 3.5, Lemma 3.6, and Proposition

3.7, we omit the details.

4.1.1. Proof of (4.13) and (4.14). Let (γ, γ′) be an ordered pair in the set (4.8). Given a span-

ning element u = h1(−n1) . . . hr(−nr)eγ of Mĥ(1, γ) and v = h1(−m1) . . . hs(−ms)eγ
′

of Mĥ(1, γ
′),

we need to show that Resz Y(u, z)v(1 + z)wtu/z2 ∈ O. For u = eγ, this is true by the following

(stronger) statement:

Proposition 4.7. Let (γ, γ′) be an ordered pair in the set (4.8), and n ≥ 0. We have

Resz Y(eγ, z)
(
h1(−n1) . . . hr(−nr)e

γ′
) (1 + z)

z2+n
∈ O, (4.16)

where r ≥ 0, hi ∈ h for all i, and n1 ≥ · · · ≥ nr ≥ 1.

Proof. It is clear from (4.7) that h(−m)O ⊂ O, for any m ≥ 1 and h ∈ h. Similar to Lemma 3.4,

we also have L(−1)u + L(0)u ∈ O for any u ∈ VP. Indeed, if u ∈ Mĥ(1,mα + nβ), with

mα + nβ ∈ P\{α,−α, β, α + β}, then L(−1)u + L(0)u ∈ Mĥ(1,mα + nβ) ⊂ O by (4.7). Now let

u = h1(−n1) . . . hr(−nr)eγ, with γ ∈ {α,−α, β, α+β}, hi ∈ h for all i, and n1 ≥ · · · ≥ nr ≥ 1. Since

L(−1)eγ = γ(−1)eγ, a similar calculation as Lemma 3.4 shows

L(−1)u + L(0)u = h1(−n1) . . . hr(−nr)(γ(−1)eγ + eγ)

+

r∑

j=1

(h j(−n j − 1) + h j(−n j))h
1(−n1) . . . ̂h j(−n j) . . . h

r(−nr)e
γ

≡ 0 (mod O),

in view of (4.7). Hence L(−1)u + L(0)u ∈ O for any u ∈ VP.

Now let (γ, γ′) ∈ {(α, β), (β, α), (−α, α + β), (α + β,−α)}. Note that ǫ(γ, γ′) = −1 by (4.1).

First, we use induction on n ≥ 0 to show

Resz Y(eγ, z)eγ
′ (1 + z)

z2+n
∈ O, (4.17)

which is the base case for an induction on r of (4.16). If n = 0, we have

Resz Y(eγ, z)eγ
′ (1 + z)

z2
= eγ−2

eγ
′
+ eγ−1

eγ
′
= −1

2
γ(−1)2eγ+γ

′ − 1

2
γ(−1)eγ+γ

′ ≡ 0 (mod O).

Suppose (4.17) holds for smaller n. Then

(n + 1)(n + 2)
(
eγ−n−3

eγ
′
+ eγ−n−2

eγ
′)
= (n + 1)(L(−1)eγ)−n−2eγ

′
+ (n + 2)(L(−1)eγ)−n−1eγ

′

= (n + 1)(γ(−1)eγ)−n−2eγ
′
+ (n + 2)(γ(−1)eγ)−n−1eγ

′

= (n + 1)


∑

j≥0

γ(−1 − j)eγ−n−2+ je
γ′ +

∑

j≥0

eγ−n−3− jγ( j)eγ
′



+ (n + 2)


∑

j≥0

γ(−1 − j)eγ−n−1+ je
γ′ +

∑

j≥0

eγ−n−2− jγ( j)eγ
′


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= (n + 1)
∑

j≥0

γ(−1 − j)eγ−n−2+ je
γ′ + (n + 1)(γ|γ′)eγ−n−3

eγ
′

+ (n + 2)
∑

j≥0

γ(−1 − j)eγ−n−1+ je
γ′ + (n + 2)(γ|γ′)eγ−n−2

eγ
′
.

Since (γ|γ′) = −1 and γ(−2 − j)v + γ(−1 − j)v ∈ O for any j ≥ 0, we have

(n + 1)(n + 3)
(
eγ−n−3

eγ
′
+ eγ−n−2

eγ
′)
= (n + 1)γ(−1)eγ−n−2

eγ
′

+ (n + 1)
∑

t≥0

γ(−2 − t)eγ−n−1+te
γ′ + (n + 2)

∑

j≥0

γ(−1 − j)eγ−n−1+ je
γ′ − eγ−n−2

eγ
′

≡ (n + 1)γ(−1)eγ−n−2
eγ
′
+

∑

j≥0

γ(−1 − j)eγ−n−1+ je
γ′ − eγ−n−2

eγ
′

(mod O)

≡ (n + 1)γ(−1)eγ−n−2
eγ
′
+

∑

j≥0

(−1) jγ(−1)eγ−n−1+ je
γ′ − eγ−n−2

eγ
′

(mod O).

Since γ(−1)O ⊂ O, then by the induction hypothesis we have

γ(−1)eγ−n−1+ je
γ′ ≡ (−1)eγ−n−1+ j−1

eγ
′ ≡ · · · ≡ (−1) jγ(−1)eγ−n−1

eγ
′

(mod O),

for any 0 ≤ j ≤ n, and eγ−n−2
eγ
′ ≡ · · · ≡ (−1)n+1eγ−1

eγ
′
= (−1)n+1ǫ(γ, γ′)γ(−1)eγ+γ

′
(mod O).

Moreover, we have eγ
0
eγ
′
= ǫ(γ, γ′)eγ+γ

′
, and eγmeγ

′
= 0 for m ≥ 1. It follows that

(n + 1)γ(−1)eγ−n−2
eγ
′
+

n+1∑

j=0

(−1) jγ(−1)eγ−n−1+ je
γ′ − eγ−n−2

eγ
′

≡ (n + 1)γ(−1)eγ−n−2
eγ
′
+ (n + 1)γ(−1)eγ−n−1

eγ
′
+ (−1)n+1γ(−1)eγ

0
eγ
′ − eγ−n−2

eγ
′

≡ 0 + (−1)n+1γ(−1)ǫ(γ, γ′)eγ+γ
′ − (−1)n+1ǫ(γ, γ′)γ(−1)eγ+γ

′

≡ 0 (mod O).

Hence we have (n + 1)(n + 3)
(
eγ−n−3

eγ
′
+ eγ−n−2

eγ
′) ∈ O, and the proof of (4.17) is complete.

Finally, we use induction on the length r to prove (4.16). The base case r = 0 follows from

(4.17). Suppose (4.16) holds for smaller r ≥ 1. Then

Resz Y(eγ, z)h1(−n1) . . . hr(−nr)e
γ′ (1 + z)

z2+n

= h1(−n1) . . . hr(−nr) Resz Y(eγ, z)eγ
′ (1 + z)

z2+n

−
r∑

j=1

(h j|γ) Resz h1(−n1) . . . h j−1(−n j−1)Y(eγ, z)h j+1(−n j+1) . . . hr(−nr)e
γ′ (1 + z)

z2+n+n j

≡ 0 (mod O),

where the last congruence follows from the induction hypothesis and the fact that h(−m)O ⊂ O
for any h ∈ h and m ≥ 1. �

By a slight modification of our induction arguments in Lemma 3.6 and Proposition 3.7, we

can show that

Resz Y(h1(−n1) . . . hr(−nr)e
γ)h1(−m1) . . . hs(−ms)e

γ′ (1 + z)n1+...nr+1

z2+n
∈ O, (4.18)

for any n ≥ 0. Note that the only properties of O′ we used in the proof of Lemma 3.6 and

Proposition 3.7 are α(−n − 2)v + α(−n − 1)v ∈ O′ and Proposition 3.5, which, in our rank-two

parabolic case, are satisfied by (4.7) and Proposition 4.7.

Now (4.13) and (4.14) follow from (4.18).
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4.1.2. Proof of (4.15). Given a spanning element u = h1(−n1) . . . hr(−nr)eα of Mĥ(1, α) and

v = h1(−m1) . . . hs(−ms)e−α of Mĥ(1,−α), we need to show that u ◦ v ∈ O. Again, we only prove

the base case when u = eα since the induction steps are similar to the proof of Lemma 3.6 and

Proposition 3.7.

Proposition 4.8. For any n ≥ 0, we have

Resz Y(eα, z)
(
h1(−n1) . . . hr(−nr)e

−α
) (1 + z)

z2+n
∈ O, (4.19)

where r ≥ 0, hi ∈ h for all i, and n1 ≥ · · · ≥ nr ≥ 1.

Proof. Again, we first prove (4.19) for r = 0 by induction on n ≥ 0. The base case n = 0 follows

from our calculation in Corollary 3.11:

eα ◦ e−α = eα−2e−α + eα−1e−α ≡ 1

6
(α(−1)31 − α(−1)1) ≡ 0 (mod O).

Suppose the conclusion holds for smaller n ≥ 1. Then by a similar calculation as Proposi-

tion 4.7, with γ = α and γ′ = −α, noting that eαme−α = 0 for m ≥ 2, we have

(n + 1)(n + 4)
(
eα−n−3e−α + eα−n−2e−α

)

≡ (n + 1)α(−1)eα−n−2e−α +
n+2∑

j=0

(−1) jα(−1)eα−n−1+ je
−α − 2eα−n−2e−α (mod O)

≡ ((n + 1)α(−1)eα−n−2e−α + (n + 1)α(−1)eα−n−1e−α)

+ (−1)n+1α(−1)eα0 e−α + (−1)n+2α(−1)eα1 e−α − 2(−1)n+1eα−1e−α (mod O)

≡ 0 + (−1)n+1ǫ(α,−α)
(
α(−1)21 − α(−1)1 − α(−2)1 − α(−1)21

)

≡ 0 (mod O).

This proves (4.19) with r = 0. The induction step for (4.19) with r ≥ 1 is also similar to

Proposition 4.7, we omit the details. �

With (4.12)–(4.15) and Proposition 4.6, we have our conclusion in this subsection:

Theorem 4.9. Let P be the parabolic-type submonoidZα⊕Z≥0β of the root lattice A2 = Zα⊕Zβ.
The subspace O(VP) of VP is equal to O in Definition 4.4.

4.2. The Zhu’s algebra of VP. With the explicit expression of O(VP) by (4.7) and Proposi-

tion 4.9, we give a concrete description of Zhu’s algebra A(VP).

4.2.1. Generators and relations. Since Mĥ(1,mα+nβ) ⊂ O for mα+nβ ∈ P\{0, α,−α, β, α+β}
by (4.7), we have

A(VP) = VP/O = [Mĥ(1, 0)] + [Mĥ(1, α)] + [Mĥ(1,−α)] + [Mĥ(1, β)] + [Mĥ(1, α + β)].

Moreover, it is easy to see that the relations in A(VP) given by (4.7) indicate that

[Mĥ(1, 0)] = C[[α(−1)1], [β(−1)1]]/〈[α(−1)1]3 − [α(−1)1]〉,
[Mĥ(1,±α)] = span{[β(−1)ne±α] : n ∈ N},
[Mĥ(1, β)] = C[eβ] + C[α(−1)eβ] + C[α(−1)2eβ],

[Mĥ(1, α + β)] = C[eα+β] + C[α(−1)eα+β] + C[α(−1)2eα+β].

(4.20)

Definition 4.10. Let AP be the associative (unital) algebra defined by

AP := C〈x, y, xα, x−α, xβ, xα+β〉/R,
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where C〈x, y, xα, x−α, xβ, xα+β〉 is the tensor algebra on (six) generators x, y, xα, x−α, xβ, xα+β, and

R is the two-sided ideal generated by the following sets of relations:

xx±α = ±x±α, x±αx = ∓x±α, xαx−α =
1

2
x2 +

1

2
x, x−αxα =

1

2
x2 − 1

2
x; (4.21)

xy = yx, x3 − x = 0, yx±α = x±αy ∓ x±α, xβy + xβ = 0, yxβ − xβ = 0; (4.22)

xα+β(x + y) + xα+β = 0, (x + y)xα+β − xα+β = 0; (4.23)

xxβ − xβx + xβ = 0, xxα+β − xα+βx − xα+β = 0; (4.24)

xαxβ = −xα+βy, xβxα = −xα+βy − xα+β, x−αxα+β = −xβx + xβ, xα+βx−α = −xβx; (4.25)

x2
±α = x2

β = x2
α+β = xαxα+β = xα+βxα = xβxα+β = xα+βxβ = xβx−α = x−αxβ = 0. (4.26)

Note that relations in (4.21) are similar to the relations of Zhu’s algebra A(VA1
) of the rank-

one lattice VOA VA1
(see (3.26) and Corollary 3.11). Relations in (4.22), (4.23), and (4.24) are

the product relations between {x, y} and {xα, x−α, xβ, xα+β}. Relations in (4.25) and (4.26) are the

product relations among {xα, x−α, xβ, xα+β}.

4.2.2. The isomorphism. Now we have our main theorem in this Section:

Theorem 4.11. There is an isomorphism of the (unital) associative algebras:

F : AP = C〈x, y, xα, x−α, xβ, xα+β〉/R→ A(VP),

x 7→ [α(−1)1], y 7→ [β(−1)1], x±α 7→ [e±α], xβ 7→ [eβ], xα+β 7→ [eα+β],
(4.27)

where we use the same notations for the equivalent classes of x, y, xα, x−α, xβ, and xα+β in AP.

Proof. First we show that F is well-defined. i.e., F preserves the relations given by (4.21)–

(4.26). Indeed, by (3.26) and the fact that there is an algebra homomorphism A(VZα) → A(VP),

F preserves (4.21). Note that the following relations hold in A(VP):

[α(−1)1] ∗ [β(−1)1] = [β(−1)α(−1)1] = [α(−1)β(−1)1] = [β(−1)1] ∗ [α(−1)1],

[β(−1)1] ∗ [e±α] − [β(−1)1] ∗ [e±α] = [β(0)e±α] = ∓[e±α],

[eβ] ∗ [β(−1)1] = [β(−1)eβ] = −[eβ], [β(−1)1] ∗ [eβ] = [(β(0) + β(−1))eβ] = [eβ],

where the last equality follows from β(−1)eβ + eβ ∈ O = O(VP) by (4.7) and Proposition 4.9.

Hence F preserves (4.22). Similarly, we can prove F preserves (4.23). The preservation of

(4.24) under F follows from

[[α(−1)1], [eβ]] = [α(0)eβ] = −[eβ], [[α(−1)1], [eα+β]] = [α(0)eα+β] = [eα+β];

and the preservation of (4.25) under F follows from

[eα] ∗ [eβ] = [eβ−1
eα] = [ǫ(β, α)β(−1)eα+β] = −[eα+β] ∗ [β(−1)1],

[eβ] ∗ [eα] = [ǫ(α, β)α(−1)eα+β] = −[eα+β] ∗ [β(−1)1] − [eα+β],

[e−α] ∗ [eα+β] = [ǫ(α + β,−α)(α + β)(−1)eβ] = −[eβ] ∗ [α(−1)1] + [eβ],

[eα+β] ∗ [e−α] = [ǫ(−α, α + β)(−α(−1))eβ] = −[eβ] ∗ [α(−1)1],

where we used (4.1) and the fact that [β(−1)eβ] = −[eβ] in A(VP).

Finally, for γ, γ′ ∈ {α,−α, β, α + β} such that γ + γ′ < {0, α,−α, β, α + β}, by (4.7) and

Proposition 4.9, we have eγ ∗ eγ
′ ∈ Mĥ(1, γ + γ

′) ⊂ O, and so [eγ] ∗ [eγ
′
] = 0 in A(VP). This

shows F preserves (4.26). Hence F is well-defined.

By (4.20), it is easy to see that F is surjective. To show F is an isomorphism, we adopt a

similar idea as the proof of Corollary 3.9 and construct an inverse map of F. In order to properly

define the inverse of F, we introduce the following linear map:

¯(·) : h = Cα ⊕ Cβ→ AP, h = λα + µβ 7→ h̄ = λx + µy, λ, µ ∈ C. (4.28)
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Again, we use the same symbol x and y to denote their image in AP. Now we define

G : VP → AP = C〈x, y, xα, x−α, xβ, xα+β〉/R,
h1(−n1 − 1) . . . hr(−nr − 1)eγ 7→ (−1)n1+···+nr xγ · h1 · h2 · · · hr, γ ∈ {α,−α, β, α + β}
h1(−n1 − 1) . . . hr(−nr − 1)1 7→ (−1)n1+···+nr h1 · h2 · · · hr,

Mĥ(1,mα + nβ) 7→ 0, mα + nβ ∈ P\{0, α,−α, β, α + β},

(4.29)

where r ≥ 0, n1 ≥ · · · ≥ nr ≥ 0, and hi is the image of hi ∈ h under ¯(·) in (4.28) for all i.
Next, we show that G vanishes on O(VP) = O given by (4.7). Indeed, clearly G(h(−n − 2)u +

h(−n − 1)u) = 0 for any h ∈ h, u ∈ VP, and n ≥ 0 (see also Theorem 3.8).

To show G(γ(−1)v + v) = 0, where v = h1(−n1 − 1) . . . hr(−nr − 1)eγ ∈ Mĥ(1, γ), note that

G(γ(−1)h1(−n1 − 1) . . . hr(−nr − 1)eγ + h1(−n1 − 1) . . . hr(−nr − 1)eγ)

= (−1)n1+···+nr xγ · γ · h1 · · · hr + (−1)n1+···+nr xγ · h1 · · · hr

= (xγ · γ + xγ)(−1)n1+···+nr h1 · · · hr

= 0,

since xαx + xα = 0, x−αx − x−α = 0, xβy + xβ = 0, and xα+β(x + y) + xα+β = 0, in view of (4.21),

(4.22), (4.23), and (4.28).

To show G(γ(−1)2v + γ(−1)v) = 0, where (γ, γ′) ∈ {(α, β), (β, α), (−α, α + β), (α + β,−α)} as

in (4.8), and v ∈ Mĥ(γ + γ
′), we claim the following relations hold in AP:

xα+βx
2 + xα+βx = 0 and xα+βy

2 + xα+β = 0, (4.30)

xβ(x + y)2 + xβ(x + y) = 0 and xβx
2 − xβx = 0. (4.31)

Indeed, by (4.23), (4.25), (4.24), and (4.21), we have

(xα+βx + xα+β)x = −xα+βyx = xαxβx = xαxxβ + xαxβ = −xαxβ + xαxβ = 0.

The second equality of (4.30) can be proved by a similar method, we omit the details. Further-

more, since xβy = −xβ in (4.22) and xβx = xxβ + xβ in (4.24), we have

xβ(x + y)2 + xβ(x + y) = xβx
2 + xβxy + xβyx + xβy

2 + xβx + xβy

= xβx
2 + (−xβ)x − xβx + (−1)2xβ + xβx − xβ

= (xβx − xβ)x = xxβx.

On the other hand, since xα+βx−α = −xβx in (4.25) and xxα+β = xα+βx + xα+β in (4.24), we have

xxβx = −xxα+βx−α = −xα+β(xx−α) − xα+βx−α = −xα+β(−x−α) − xα+βx−α = 0.

This proves both the equalities in (4.31).

Now let (γ, γ′) be an ordered pair in (4.8). By (4.30), (4.31), and (4.28), we have xγ+γ′γ
2
+

xγ+γ′γ = 0 in AP. Thus, for v = h1(−n1 − 1) . . . hr(−nr − 1)eγ+γ
′ ∈ Mĥ(1, γ + γ

′), we have

G(γ(−1)2h1(−n1 − 1) . . . hr(−nr − 1)eγ+γ
′
+ γ(−1)h1(−n1 − 1) . . . hr(−nr − 1)eγ+γ

′
)

= (xγ+γ′γ
2
+ xγ+γ′γ)(−1)n1+···+nr h1 · · · hr

= 0.

Furthermore, we have G(Mĥ(1,mα+ nβ)) = 0 for mα+ nβ ∈ P\{0, α,−α, β, α+ β} by definition

(4.29) of G. Finally, for w = h1(−n1 − 1) . . . hr(−nr − 1)1 ∈ Mĥ(1, 0), by (4.22) we have

G(α(−1)3h1(−n1 − 1) . . . hr(−nr − 1)1 − α(−1)h1(−n1 − 1) . . . hr(−nr − 1)1)

= (−1)n1+···+nr h1 · · · hr · x3 − (−1)n1+···+nr h1 · · · hr · x
= 0.
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This shows G(O(VP)) = 0, and so G induces G : A(VP) = VP/O(VP) → AP. It is easy to see

from (4.29) and (4.27) that G : A(VP) → AP and F : AP → A(VP) are mutually inverse on the

generators of AP and A(VP). Hence G is an inverse of F, and F is an isomorphism of associative

algebras. �

4.2.3. Structure of AP and the skew-polynomial algebra. With (4.20), the identification (4.27),

and the relations (4.21)–(4.26), we have the following direct sum decomposition of the Zhu’s

algebra AP:

AP =


∞⊕

n=0

C(x−αy
n)

 ⊕ C[x, y]/〈x3 − x〉 ⊕

∞⊕

n=0

C(xαy
n)



⊕
(
Cxβ ⊕ Cxβx ⊕ Cxβx

2
)
⊕

(
Cxα+β ⊕ Cxα+βx ⊕ Cxα+βx

2
)
,

(4.32)

where the products of the spanning elements are given by (4.21)–(4.26). With the decomposi-

tion (4.32), we have the following Corollary which will be used in next Section:

Corollary 4.12. J =
(
Cxβ ⊕ Cxβx ⊕ Cxβx2

)
⊕

(
Cxα+β ⊕ Cxα+βx ⊕ Cxα+βx2

)
is a two-sided ideal

of AP such that J2 = 0, and the quotient algebra AP = AP/J is isomorphic to A(VZα) ⊗C C[y]

as vector spaces, with AP = AP ⊕ J. Furthermore, both A(VZα) = A(VZα) ⊗ C1 and C[y] =

C[1] ⊗ C[y] are subalgebras of AP and AP.

Proof. Let J1 = Cxβ ⊕Cxβx⊕Cxβx2 and J2 = Cxα+β ⊕Cxα+βx⊕Cxα+βx2. Then J = J1 ⊕ J2. By

(4.21)–(4.26), it is easy to check that J1, J2 satisfy the following properties:

xJ1, yJ1, J1x, J1y ⊂ J1,

xJ2, yJ2, J2x, J2y ⊂ J2,

xαJ1, J1xα ⊂ J2, xγJ1 = J1xγ = 0, γ ∈ {−α, β, α + β},
x−αJ2, J2x−α ⊂ J1, xγ′ J2 = J2xγ′ = 0, γ′ ∈ {α, β, α + β}.

This shows J = J1 ⊕ J2 is a two-sided ideal of AP. Moreover, using x2
±α = x2

β = x2
α+β = 0,

together with by (4.21) and (4.24), we can show J2 = 0. By the decomposition (4.32), we have

AP/J =


∞⊕

n=0

C(x−αy
n)

 ⊕ C[x, y]/〈x3 − x〉 ⊕

∞⊕

n=0

C(xαy
n)



�

(
Cx−α ⊕ C[x]/〈x3 − x〉 ⊕ Cxα

)
⊗C C[y]

as vector spaces. Hence AP = AP ⊕ J. Moreover, by (4.21) and (4.22), the subspace Cx−α ⊕
C[x]/〈x3−x〉⊕Cxα is closed under the product of AP. Moreover, the product relations among xα,
x−α, and x are exactly the same as products relations among [eα], [e−α], and [α(−1)1] of A(VZα),
in view of Examples 3.10 and Corollary 3.11. Thus, the subalgebra Cx−α ⊕C[x]/〈x3 − x〉 ⊕Cxα
is isomorphic to A(VZα). �

In fact, the subalgebra AP = AP/J of Zhu’s algebra AP is a skew-polynomial ring over A(VZα).
Recall the following definition in [GW04]:

Definition 4.13. Let R be a ring (not necessarily commutative),σ : R→ R be a homomorphism,

and let δ : R→ R be a σ-derivation, that is, σ is an abelian group homomorphism that satisfies

δ(ab) = δ(a)b + σ(a)δ(b) for all a, b ∈ R.

Then the skew-polynomial ring, or Ore-extension, R[x;σ; δ] is the free left R-module on a

basis {1, x, x2, x3, . . . }, with the multiplication given by xa = σ(a)x + δ(a), for all a ∈ R.

Lemma 4.14. Let R be the subalgebra A(VZα) = span{1, xα, x−α, x, x2} ≤ AP, and σ = Id : R→
R. Then the derivation δ := [y, ·] : AP → AP preserves R, and it satisfies:

δ(1) = δ(x) = δ(x2) = 0, δ(xα) = −xα, and δ(x−α) = x−α. (4.33)

In particular, δ restricts to a σ-derivation of R.
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α + β

0 α−α

β

Figure 2.

Proof. Since xy = yx, clearly [y, 1] = [y, x] = [y, x2] = 0. We also have yx±α = x±αy ∓ x±α by

(4.22), and so [y, xα] = −xα and [y, x−α] = x−α. This shows δ = [y, ·] preserves R, and δ satisfies

(4.33). Since δ(ab) = δ(a)b + Id(a)δ(b) for any a, b ∈ R, δ is a σ = Id-derivation. �

Corollary 4.15. AP = AP/J is isomorphic to the skew-polynomial algebra A(VZα)[y; Id; δ],
where δ = [y, ·]|A(VZα).

Proof. By Corollary 4.12, we have AP
� A(VZα) ⊗C C[y] = A(VZα)[y] as vector spaces. By

Lemma 4.14, δ[y, ·]|A(VZα) is a Id-derivation on A(VZα) such that ya = Id(a)y + δ(a) for all a ∈
A(VZα). Hence AP

� A(VZα)[y; Id; δ], in view of Definition 4.13. �

5. Representation of the rank-two parabolic-type subVOA VP of VA2

In this Section, we use our main results in the Section 4 to classify the irreducible modules

over the parabolic-type subVOA of the lattice VOA VA2
. Again, we fix the parabolic-type

submonoid P = Zα ⊕ Z≥0β of the root lattice A2 in this Section.

5.1. Construction of irreducible modules of VP. Note that P = Zα ⊕ Z≥0β is also an abelian

semigroup. Let I ≤ P be sub-semigroup Zα ⊕ Z>0β. In Figure 2, the dots represent elements in

P, and the red dots represent the elements in I.

Lemma 5.1. VI =
⊕
γ∈I Mĥ(1, γ) is an ideal of the parabolic-type VOA VP. The quotient VOA

VP/VI �
⊕

n∈Z Mĥ(1, nα) is a subVOA of VP, and VP = (VP/VI)⊕VI as vertex Leibniz algebras.

Proof. The diagram indicates that P + I ⊆ I and P = I ⊕ Zα as an abelian semigroup.

Then by Proposition 2.2 and (2.8), the subspace VI is an ideal of VP. Furthermore, since

Y(Mĥ(1, nα), z)Mĥ(1,mα) ⊂ Mĥ(1, (m + n)α)((z)) for any m, n ∈ Z, and Mĥ(1, 0) ⊂ VP/VI .

It follows that VP/VI is a subVOA of VP with the same Virasoro element. �

Remark 5.2. The quotient VOA VP/VI also has the following identification as a vector space:

VP/VI �

⊕

n∈Z
Mĥ(1, nα) =

⊕

n∈Z
M
Ĉα

(1, nα) ⊗ M
Ĉβ

(1, 0) = VZα ⊗ M
Ĉβ

(1, 0),

α(−n1) . . . α(−nk)β(−m1) . . . β(−ml)e
nα 7→ α(−n1) . . . α(−nk)e

nα ⊗ β(−m1) . . . β(−ml)1.

(5.1)

However, the identification (5.1) is not an isomorphism between the (quotient) VOA VP/VI

and the tensor product of the VOAs VZα and M
Ĉβ

(1, 0) defined in [FHL93]. This is essentially

because (α|β) , 0, and so the operators E+(−α, z) and β(−n), where n ≥ 1, are not commutative.

But it is easy to see from the spanning elements (4.7) and Theorem 4.9 that the Zhu’s algebra

A(VP/VI) = A(
⊕

n∈Z Mĥ(1, nα)) is isomorphic to the skew-polynomial algebra AP = AP/J =
A(VZα)[y; Id; δ] in Corollary 4.12 and 4.15.

Note that the rank-one lattice VOA VA1
= VZα is clearly a subVOA of both VP and VP/VI (see

(5.1)). By Theorem 3.1 in [D93], VA1
has two irreducible modules VZα and VZα+ 1

2
α. We will use

these irreducible VA1
-modules to construct irreducible VP-modules.
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5.1.1. Construction of L(0,λ) and L( 1
2α,λ). For the root lattice A2 = Zα⊕Zβ, recall that h = C⊗ZA2

has a nondegenerate symmetric bilinear form (·|·) : h × h→ C.

Definition 5.3. Let λ ∈ (Cα)⊥ ⊂ h. Define L(0,λ) and L( 1
2
α,λ) to be the following vector spaces:

L(0,λ) :=
⊕

n∈Z
Mĥ(1, nα) ⊗ Ceλ � VZα ⊗ M

Ĉβ(1, λ), (5.2)

L( 1
2
α,λ) :=

⊕

n∈Z
Mĥ(1, nα +

1

2
α) ⊗ Ceλ � VZα+ 1

2
α ⊗ M

Ĉβ(1, λ), (5.3)

where Mĥ(1, nα) and Mĥ(1, nα +
1
2
α) are modules over the Heisenberg Lie algebra ĥ of level 1.

Define the actions of operators h(m), enα, and znα with m, n ∈ Z on the tensor product spaces⊕
n∈Z Mĥ(1, nα) ⊗ Ceλ and

⊕
n∈Z Mĥ(1, nα +

1
2
α) ⊗ Ceλ as follows:

h(0) := h(0) ⊗ Id + Id ⊗ h(0), h(m) := h(m) ⊗ Id, m , 0, (5.4)

enα := enα ⊗ Id, znα := znα ⊗ Id, n ∈ Z. (5.5)

where we let h(0)eλ := (λ|h)eλ. In particular, for any m, n ∈ Z, and n1 ≥ · · · ≥ nr ≥ 1, we have

h(m)(h1(−n1) . . . hr(−nr)e
nα ⊗ eλ) := h(m)h1(−n1) . . . hr(−nr)e

nα ⊗ eλ, m , 0, (5.6)

h(0)(emα ⊗ eλ) = (mα + λ|h)emα ⊗ eλ, h(0)(emα+ 1
2
α ⊗ eλ) = (mα +

1

2
α + λ|h)emα+ 1

2
α ⊗ eλ, (5.7)

enα(e
mα ⊗ eλ) = ǫ(nα,mα)e(m+n)α ⊗ eλ, enα(e

mα+ 1
2
α ⊗ eλ) = ǫ(nα,mα)e(m+n)α+ 1

2
α ⊗ eλ, (5.8)

znα(emα ⊗ eλ) = z(nα|mα)emα ⊗ eλ, znα(emα+ 1
2
α ⊗ eλ) = z(nα|mα+ 1

2
α)emα+ 1

2
α ⊗ eλ. (5.9)

Define the module vertex operators YM : VP → End(L(ǫ,λ))[[z, z−1]], where ǫ = 0 or 1
2
α, by the

following common formula:

YM(h1(−n1 − 1) . . . hr(−nr − 1)enα, z) :=
◦
◦(∂

(n1)
z h1(z)) . . . (∂(nr)

z hr(z))Y(enα, z)
◦
◦, n ∈ Z, (5.10)

YM(h1(−n1 − 1) . . . hr(−nr − 1)eγ, z) := 0, γ ∈ I = Zα ⊕ Z>0β. (5.11)

where hi ∈ h for all i, n1 ≥ · · · ≥ nr ≥ 0, and Y(enα, z) = E−(−nα, z)E+(−nα, z)enαznα, and the

normal ordering is given by (2.6).

By (5.6) and (5.7), it is clear that the subspace Mĥ(1, nα+ ǫ)⊗Ceλ ⊂ L(ǫ,λ) is a ĥ-module, and

it is isomorphic to the ĥ-module Mĥ(1, nα + ǫ + λ), where ǫ = 0 or 1
2
α, and n ∈ Z.

5.1.2. Irreducibility of L(0,λ) and L( 1
2α,λ).

Lemma 5.4. For any λ ∈ (Cα)⊥ ⊂ h, the vector spaces L(ǫ,λ), where ǫ = 0 or 1
2
α, equipped with

YM in Definition 5.3, are weak VP-modules.

Proof. We need to show that the operator YM satisfies the truncation property and Jacobi iden-

tity. For the truncation property, we fix a spanning element v = h1(−n1) . . . hr(−nr)enα+ǫ ⊗ eλ of

L(ǫ,λ), where hi ∈ h for all i, and n1 ≥ · · · ≥ nr ≥ 1, and show that YM(a, z)v ∈ L(ǫ,λ)((z)) for any

a ∈ VP.

Indeed, if a ∈ VI, then by (5.11) we have anv = 0 for any n ∈ Z, there is noting to prove. Now

assume that a ∈ Mĥ(1,mα). If a = emα, then by (5.4), (5.5), and (5.10), we have

YM(a, z)(enα+ǫ ⊗ eλ) = (E−(−mα, z)E+(−mα, z)emαz
mαenα+ǫ ) ⊗ eλ ∈ L(ǫ,λ)((z)), (5.12)

since the VA1
-modules VZα and VZα+ 1

2α
satisfy the truncation property. Furthermore, since

[h(−p), E−(−mα, z)] = 0 and [h(−p), E+(−mα, z)] = −(h|mα)z−pE+(−mα, z) for any h ∈ h and

p > 0 (see [FLM88, LL04]), it follows that

YM(a, z)v = h1(−n1)YM(a, z)(h2(−n2) . . . hr(−nr)e
nα+ǫ ⊗ eλ)
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− (h1|mα)z−n1YM(a, z)(h2(−n2) . . . hr(−nr)e
nα+ǫ ⊗ eλ).

Then by an induction on the length r of v, with base case given by (5.12), we have

Y(emα, z)
(
h1(−n1) . . . hr(−nr)e

nα+ǫ ⊗ eλ
)
∈ L(ǫ,λ)((z)). (5.13)

Now let a be a general spanning element a = h1(−m1) . . . hs(−ms)emα of Mĥ(1,mα), where

h j ∈ h for all j, and m1 ≥ · · · ≥ ms ≥ 1. We show that akv = 0 if k ≫ 0. Again, by induction

on the length s of a, it suffices to consider the case when s = 1. The proof of the general case is

similar, we omit it. Note that

(h1(−m1)emα)kv

=
∑

j≥0

(
−m1

j

)
(−1) jh1(−m1 − j)(emα)k+ jv −

∑

j≥0

(
−m1

j

)
(−1)m1+ j(emα)−m1+k− j(h1( j)v)

=
∑

j≥0

(
−m1

j

)
(−1) jh1(−m1 − j)(emα)k+ jv

− (nα + ǫ + λ|h)(emα)−m1+k

(
h1(−n1) . . . hr(−nr)e

nα+ǫ ⊗ eλ
)

−
(
−m1

nr

)
nr(h1|hr)(−1)m1+nr (emα)−m1+k−nr

(
h1(−n1) . . . ̂hr(−nr)e

nα+ǫ ⊗ eλ
)

−
(
−m1

nr−1

)
nr−1(h1|hr−1)(−1)m1+nr−1(emα)−m1+k−nr−1

(
h1(−n1) . . . ̂hr−1(−nr−1)hr(−nr)e

nα+ǫ ⊗ eλ
)

...

−
(
−m1

n1

)
n1(h1|h1)(−1)m1+n1(emα)−m1+k−n1

(
̂h1(−n1) . . . hr(−nr)e

nα+ǫ ⊗ eλ
)
.

By (5.13), it is clear that we can choose k ≫ 0 large enough so that each term on the right hand

side of the equation above is equal to 0. This shows the truncation property of YM .

It remains to show the Jacobi identity of YM . Let a ∈ Mĥ(1, γ) and b ∈ Mĥ(1, η), where

γ, η ∈ P. We need to show that

z−1
0 δ

(
z1 − z2

z0

)
YM(a, z1)YM(b, z2) − z−1

0 δ

(
−z2 + z1

z0

)
YM(b, z2)YM(a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM(Y(a, z0)b, z2).

(5.14)

Note that Y(a, z0)b ∈ Mĥ(1, γ + η)((z0)). If either γ or η are contained in I ⊂ P, then by

Lemma 5.1, (5.11), and the fact that I + P = P + I ⊆ I, both sides of the Jacobi identity (5.14)

are 0. Now assume a = h1(−n1 − 1) . . . hr(−nr − 1)enα and b = h1(−m1 − 1) . . . hs(−ms − 1)emα

for some m, n ∈ Z, hi, h j ∈ h for all i, j, n1 ≥ · · · ≥ nr ≥ 0, and m1 ≥ · · · ≥ ms ≥ 0. By adopting

a similar argument as the proof of Theorem 8.6.1 in [FLM88], we can show that

[YM(a, z1), YM(b, z2)] = Resz0
z−1

2 YM(Y(a, z0)b, z2)e−z0(∂/∂z1) ((z1/z2)mαδ(z1/z2)) .

This commutator relation also (essentially) follows from the fact that the VA1
-module vertex

operators for VZα and VZα+ 1
2α

satisfy the Jacobi identity. Then by Theorem 8.8.9 in [FLM88],

the Jacobi identity (5.14) holds for YM . �

Lemma 5.5. Given λ ∈ (Cα)⊥ ⊂ h, the weak VP-modules (L(0,λ), YM) and (L( 1
2α,λ), YM) are

irreducible ordinary VP-modules, whose bottom levels areC(1⊗eλ) andC(e
1
2
α⊗eλ)⊕C(e−

1
2
α⊗eλ),

respectively.
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Proof. Note that Resz zYM(ω, z) = LM(0) = 1
2

∑2
i=1

∑
s≥0 ui(−s)ui(s), where {u1, u2} is an or-

thonormal basis of h. By (5.4) and the fact that (λ|α) = 0, we have

LM(0)(enα+ǫ ⊗ eλ) =
1

2
(nα + ǫ + λ|nα + ǫ + λ)enα+ǫ ⊗ eλ

=

(
1

2
(nα + ǫ |nα + ǫ) + (λ|λ)

2

)
enα+ǫ ⊗ eλ.

Moreover, by (5.4) again, it is easy to show that [LM(0), h(−n)] = nh(−n), for any h ∈ h and

n > 0. Hence we have

LM(0)
(
h1(−n1) . . . hr(−nr)e

nα+ǫ ⊗ eλ
)

=

(
n1 · · · + nr +

1

2
(nα + ǫ |nα + ǫ) + (λ|λ)

2

)
h1(−n1) . . . hr(−nr)e

nα+ǫ ⊗ eλ,
(5.15)

where ǫ = 0 or 1
2
α, hi ∈ h for all i, n ∈ Z, and n1 ≥ · · · ≥ nr ≥ 1. Since (±1

2
α| ± 1

2
α) = 1

2
, then

it follows from (5.2) , (5.3), and (5.15) that L(0,λ) and L( 1
2
α,λ) are graded vector spaces, with the

grading subspaces given by LM(0)-eigenspaces:

L(0,λ) =

∞⊕

m=0

(
L(0,λ)

)
(λ|λ)

2
+m
, L( 1

2
α,λ) =

∞⊕

m=0

(
L( 1

2
α,λ)

)
(λ|λ)

2
+ 1

2
+m
. (5.16)

By (5.15) and (5.16), it is easy to see that the bottom levels (m = 0) of L(0,λ) and L( 1
2
α,λ) are given

by C(1 ⊗ eλ) and C(e
1
2α ⊗ eλ) ⊕ C(e−

1
2α ⊗ eλ), respectively.

Now we show that L(0,λ) and L( 1
2
α,λ) are irreducible. We only prove the irreducibility of L( 1

2
α,λ),

the other one is similar. Let W , 0 be a submodule of L( 1
2
α,λ). Consider a nonzero element

0 , u ∈ W. By the decomposition 5.3, u can be written as follows:

u = u−m + u−m+1 + · · · + u0 + · · · + un ∈
⊕

n∈Z
Mĥ(1, nα +

1

2
α) ⊗ Ceλ,

where u j ∈ Mĥ(1, jα + 1
2
α) ⊗ Ceλ for all −m ≤ j ≤ n. By (5.4) and (5.7), we have

β(0)u j =

(
jα +

1

2
α + λ|β

)
u j =

(
(λ|β) − j − 1

2

)
u j, −m ≤ j ≤ n.

i.e., u j with −m ≤ j ≤ n are eigenvectors of β(0) of distinct eigenvalues. Since β(0)ku ∈ W for

any k ≥ 0, it follows that u j ∈ W for all j (using the Vandermonde determinant).

Since u , 0, we may assume that 0 , u j ∈ W for some fixed j. Since Mĥ(1, jα+ 1
2
α)⊗Ceλ is

isomorphic to ĥ-module Mĥ(1, jα+ 1
2
α+λ) by the remark after Definition 5.3, then by applying

h(m), with h ∈ h and m ≥ 0, repeatedly onto u j, we can show that e jα+ 1
2
α ⊗ eλ ∈ W. Hence

e( j+n)α+ 1
2
α ⊗ eλ = ǫ( jα, nα)−1enα

(
e jα+ 1

2
α ⊗ eλ

)
∈ W, n ∈ Z,

in view of (5.8). This shows emα+ 1
2
α ⊗ eλ ∈ W for all m ∈ Z. Now it follows from (5.6) that

Mĥ(1,mα +
1
2
α) ⊗ Ceλ ⊆ W for all m ∈ Z. Hence we have L( 1

2
α,λ) = W. �

5.2. Classification of irreducible modules of VP. By Lemma 5.4 and 5.5,

Σ(P) =
{
(L(0,λ), YM), (L( 1

2
α,λ), YM) : λ ∈ (Cα)⊥ ⊂ h

}
(5.17)

is a set of irreducible modules over the parabolic-type subVOA VP of VA2
, where YM is given

by Definition 5.3. In this subsection, using the description of the Zhu’s algebra AP = A(VP) of

VP in Theorem 4.11 and Corollary 4.12, we show that Σ(P) gives a complete list of irreducible

modules over VP.
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By Lemma 5.5 and Theorem 2.1.2 in [Z96], U(0,λ) = C(1 ⊗ eλ) and U( 1
2α,λ) = C(e

1
2α ⊗ eλ) ⊕

C(e−
1
2
α ⊗ eλ) are irreducible modules over A(VP). We use the following notations for simplicity:

U(0,λ) := Ce, where e = 1 ⊗ eλ,

U( 1
2
α,λ) := Ce+ ⊕ Ce−, where e+ = e

1
2
α ⊗ eλ, e− = e−

1
2
α ⊗ eλ.

By Corollary 4.13 and (4.32), we have AP = (A(VZα) ⊗ C[y]) ⊕ J as vector spaces, wherein

A(VZα) is a subalgebra of AP, and J is a two-sided nilpotent ideal of AP.

Since the action of an element [a] ∈ A(VP) on U(ǫ,λ) is given by o(a) = Resz zwta−1YM(a, z),

then by (5.4)–(5.9), the following relations hold for the spanning elements of U(ǫ,λ):

J.e = J.e+ = J.e− = 0, (5.18)

xα.e = x−α.e = x.e = 0, y.e = (λ|β)e, (5.19)

xα.e
+ = 0, xα.e

− = 0; x−α.e
+ = e−, x−α.e

− = 0; x.e± = ±e±; y.e± = ((λ|β) ∓ 1

2
)e±. (5.20)

By Theorem 2.2.2 in [Z96], to show Σ(P) is a complete list of irreducible VP-modules, it

suffices to show that the following set

Σ0(P) :=
{
U(0,λ),U( 1

2
α,λ) : λ ∈ (Cα)⊥ ⊂ h

}
(5.21)

is a complete list of irreducible AP-modules.

Theorem 5.6. Let U , 0 be an irreducible AP-module. Then U is isomorphic to either U(0,λ) or
U( 1

2
α,λ), for some λ ∈ (Cα)⊥.

Proof. Since J ≤ AP is an nilpotent ideal, we must have J.U = 0. So U is an irreducible module

over the quotient algebra AP = AP/J =
(⊕∞

n=0
C(x−αyn)

)
⊕C[x, y]/〈x3−x〉⊕

(⊕∞
n=0
C(xαyn)

)
. By

Corollary 4.12, AP
� A(VZα) ⊗ C[y] as a vector space, and A(VZα) is a subalgebra of AP. Hence

U is also a A(VZα)-module. Recall that A(VZα) is a semisimple associative algebra with two

irreducible modules W0 = C1 and W
1
2
α = Ce

1
2
α+Ce−

1
2
α up to isomorphism (see Example 3.10).

Then U has the following decomposition as an A(VZα)-module:

U =
⊕

i∈I

W0 ⊕
⊕

j∈J

W
1
2
α,

where the irreducible modules W0 and W
1
2α occur |I| and |J|-times, respectively.

Case I: I , ∅. In this case, there exists a nonzero copy of W0 ⊂ U.

Consider W = C[y].W0 = C[y].1. Since x±α.1 = x.1 = 0, and

xy = yx, yxα = xαy − xα, yx−α − x−αy + x−α, (5.22)

in view of (4.22), W is an AP = A(VZα) ·C[y]-submodule. Hence we have U = W = C[y].1 as U
is irreducible. Moreover, in this case, U is also an irreducible C[y]-module. Then by Hilbert’s

Nullstellensatz, we have U � C[y]/〈y − λ0〉 for some λ0 ∈ C. Choose λ ∈ h so that (λ|α) = 0

and (λ|β) = λ0, then U � U(0,λ), in view of (5.19).

Case II: J , ∅. In this case, there exists a nonzero copy of W
1
2
α ⊂ U.

Again, by (5.22), the subspace W = C[y].W
1
2
α ⊂ U is a AP-submodule of U. Hence U =

W = C[y].e
1
2
α + C[y].e−

1
2
α. We want to show that U � U( 1

2
α,λ) for some λ ∈ (Cα)⊥.

For the simplicity of our notations, we denote e
1
2
α and e−

1
2
α in W

1
2
α by e+ and e−, respectively.

Similar to (5.20), we have the following relations:

xα.e
+ = 0, xα.e

− = e+, x−α.e
+ = e−, x−α.e

− = 0, x.e± = ±e±.

Moreover, it follows from (5.22) that xαyn = (y + 1)nxα and x−αyn = (y − 1)nx−α, for any n ≥ 0.

Then for any f (y), g(y) ∈ C[y], we have

xα.
(
(y − 1) f (y).e−

)
= y f (y + 1)e+, xα.

(
yg(y).e+

)
= (y + 1)g(y + 1)e.e+ = 0, (5.23)
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x−α.
(
yg(y).e+

)
= (y − 1)g(y − 1).e−, x−α.

(
(y − 1) f (y).e−

)
= (y − 2) f (y − 1)x−α.e

− = 0. (5.24)

Now consider the subspace

N := yC[y].e+ + (y − 1)C[y].e− ⊆ U.

By (5.23) and (5.24), we have x±α.((y − 1)C[y].e−) ⊆ yC[y].e+ ⊂ N and x±α.(yC[y].e+) ⊆
(y − 1)C[y].e− ⊂ N. Moreover, since xy = yx and x.e± = ±e±, it follows that N is an AP =

A(VZα) · C[y]-submodule of U. By the irreducibility of U, we have N = 0 or N = U.

If N = 0, then y.e+ = y.e− = 0, and it is clear that U � U( 1
2
α,0). If N = U, then there exists

f (y), g(y) ∈ C[y] such that

e+ = y f (y).e+ + (y − 1)g(y).e−. (5.25)

Apply xα to (5.25), we have 0 = yg(y + 1).e+ by (5.23). Apply x−α to this equation, we have

0 = (y − 1)g(y).e− by (5.24). Hence e+ = y f (y).e+, and

0 = (y f (y) − 1).e+ = (y − λk) . . . (y − λ1).e+, λ1, . . . , λk ∈ C,
where k is the degree of the polynomial y f (y). Note that λ1, . . . , λk are nonzero since their

product is (−1)k+1. Let 1 ≤ j ≤ k be the smallest index such that

(y − λ j−1) . . . (y − λ1).e+ , 0, and (y − λ j).
(
(y − λ j−1) . . . (y − λ1).e+

)
= 0.

Let ẽ+ := (y − λ j−1) . . . (y − λ1).e+. Then ẽ+ , 0 and y.ẽ+ = λ jẽ+. Moreover, we have

xα.ẽ+ = (y + 1 − λ j−1) . . . (y + 1 − λ1)xα.e+ = 0 and x.ẽ+ = ẽ+, in view of (5.23) and (5.22).

On the other hand, let ẽ− := x−α.ẽ+ = (y − 1 − λ j−1) . . . (y − 1 − λ1).e− (see (5.24)). We have

U = AP.ẽ+ = Cẽ+ + Cẽ− since AP = A(VZα) · C[y]. Moreover, we have x.e− = −e− since xx−α =
−x−α, and y.ẽ− = (λ j + 1)ẽ− by applying x−α to the equation (y− λ j)(y− λ j−1) . . . (y− λ1).e+ = 0.

If ẽ− = 0, then U = Cẽ+ is isomorphic to some U(0,λ). This contradicts our assumption that

W
1
2
α ⊂ U. Hence ẽ− , 0, and we have

xα.ẽ+ = 0, x−α.ẽ+ = ẽ−, x.ẽ+ = ẽ+, y.ẽ+ = λ jẽ+,

xα.ẽ− = (y + 1 − 1 − λ j−1) . . . (y + 1 − 1 − λ1).xα.e
− = (y − λ j−1) . . . (y − λ1).e+ = ẽ+,

x−α.ẽ− = (y − 1 − 1 − λ j−1) . . . (y − 1 − 1 − λ1)x−α.e
− = 0,

x.ẽ− = −ẽ−, y.ẽ− = (λ j + 1)ẽ−.

Note that ẽ+ and ẽ− are linearly independent since they are eigenvectors of x (or y) of distinct

eigenvalues. Now choose λ ∈ h such that (λ|α) = 0 and (λ|β) − 1
2
= λ j. Then by (5.20), we

have U = Cẽ+ ⊕ Cẽ− � U( 1
2
α,λ) as AP-modules. By (5.18) and Corollary 4.12, they are also

isomorphic as AP = AP ⊕ J-modules. �

Corollary 5.7. The set Σ(P) =
{
(L(0,λ), YM), (L( 1

2
α,λ), YM) : λ ∈ (Cα)⊥ ⊂ h

}
is a complete list of

irreducible modules over the rank-two parabolic-type subVOA VP of VA2
.

6. Further constructions and questions

In this Section, we introduce some new constructions motivated by the Borel and parabolic-

type subVOAs of lattice VOAs, and ask a few questions arising from our constructions.

6.1. Quasi-triangular decomposition of vertex operator algebras. According to [FHL93]

Section 5.3, a non-degenerate symmetric bilinear form (·|·) : V × V → C on a vertex operator

algebra V is called invariant if

(Y(a, z)b|c) = (b|Y(ezL(1)(−z−2)L(0)a, z−1)c), a, b, c ∈ V. (6.1)

Li proved in [L94] that the vector space of symmetric invariant bilinear forms of a VOA V is

isomorphic (V0/L(1)V1)∗, and any invariant bilinear form on V is automatically symmetric.



BOREL AND PARABOLIC-TYPE SUBALGEBRAS OF THE LATTICE VERTEX OPERATOR ALGEBRA 37

6.1.1. Definition and first properties of Quasi-triangular decomposition.

Definition 6.1. Let V be a vertex operator algebra, equipped with a non-degenerate symmetric

invariant bilinear form (·|·) : V × V → C such that (1|1) = 1. A subspace decomposition

V = V+ ⊕ VH ⊕ V− is called a quasi-triangular decomposition of V if

(1) VH and V± are invariant under the action of sl2(C) = CL(−1) + CL(0) + CL(1);

(2) VH is a sub-vertex algebra of V such that 1V ∈ VH;

(3) V+ and V− are sub-vertex algebras without vacuum of V;

(4) (V±|V±) = (VH |V+) = (VH |V−) = 0.

As an immediate consequence of Definition 6.1, the following properties, which resembles

the properties of usual triangular decomposition g = n− ⊕ h ⊕ n+ of a semisimple Lie algebra g,

hold for a quasi-triangular decomposition of VOAs:

Lemma 6.2. Let V = V+ ⊕ VH ⊕ V− be a quasi-triangular decomposition of a VOA V. Then

(a) (·|·)|VH×VH is non-degenerate on VH;
(b) V± and VH are graded subalgebras, with Vn = (V+)n ⊕ (VH)n ⊕ (V−)n for all n ∈ Z;
(c) V+ and V− are isotropic with respect to (·|·);
(d) Y(VH, z)V± ⊆ V± and Y(V±, z)VH ⊆ V±.

Proof. (a) follows from the non-degeneracy of (·|·) and (4) in Definition 6.1. Since L(0)VH ⊆ VH

and L(0)V± ⊆ V±, it follows that VH =
⊕

n∈Z(VH)n and V± =
⊕

n∈Z(V±)n, with (VH)n = VH ∩ Vn

and (V±)n = V± ∩ Vn for all n. This proves (b). Furthermore, since (Vm|Vn) = 0 unless m = n
(see [FHL93] Section 5.3), the restriction (·|·)|Vn×Vn is non-degenerate for any n. Then it follows

from (a) and (b) that (V+)n and (V−)n are isotropic for all n ∈ Z. Hence V+ and V− are isotropic.

Finally, given h ∈ VH and a ∈ V+, assume Y(h, z)a = b− + h′ + b+, with b± ∈ V± and h′ ∈ VH.

We claim that b− = 0 and h′ = 0.

Indeed, by the invariance (6.1), the axioms (2) and (4), and the fact that L(1)h ⊆ VH, we have

(b− + h′ + b+|VH) = (Y(h, z)a|VH) = (a|Y(ezL(1)(−z−2)L(0)h, z−1)VH) = (a|VH) = 0.

In particular, we have (h′|VH) = 0 since (b±|VH) = 0. Then it follows from (a) that h′ = 0.

Furthermore, by axioms (3) and (4), together with L(1)V+ ⊆ V+, we have

(b− + b+|V+) = (Y(h, z)a|V+) = (ezL(−1)Y(a,−z)h|V+) = (h|Y(e−zL(1)(−z−2)L(0)a,−z−1)ezL(1)V+)

= (h|V+) = 0.

In particular, we have (b−|V+) = 0 since (b+|V+) = 0. Then we have b− = 0 since V+ and V− are

isotropic. This shows Y(VH, z)V+ ⊆ V+. Similarly, we can show that Y(VH, z)V− ⊆ V−. Finally,

Y(V±, z)VH ⊆ V± follows from the skew-symmetry of Y and the fact that L(−1)V± ⊆ V±. �

6.1.2. Examples of quasi-triangular decomposition. There are natural examples of quasi tri-

angular decomposition for lattice VOAs arising from the Borel-type subVOA VB in Section 3

and the parabolic-type subVOA VP in Sections 4 and 5. Note that a lattice VOA VL has a non-

degenerate symmetric invariant bilinear form (·|·) : VL × VL → C extended from the bilinear

form on L. It satisfies (1|1) = 1 (see, for example, [FLM88, D93, L94]).

Lemma 6.3. Let L = Zα with (α|α) = 2N, and let V+ := VZ>0α, VH := Mĥ(1, 0), and V− := VZ<0α.
Then VZα = V+ ⊕ VH ⊕ V− is a quasi-triangular decomposition.

Proof. Since ω = 1
4
α(−1)2, it is clear that L(n)Mĥ(1,mα) ⊆ Mĥ(1,mα) for all m ∈ Z and

n = −1, 0, 1. It suffices to prove (4) in Definition 6.1. We claim that for any m, n ∈ Z,
(
Mĥ(1,mα)|Mĥ(1, nα)

)
= 0 unless m + n = 0. (6.2)
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0

α + β

−β

α−α

β

−α − β

Figure 3.

Indeed, note that α(0)α(−n1) . . . α(−nk)emα = 2Nm(α(−n1) . . . α(−nk)emα) for any m ∈ Z. Then

by the invariance (6.1) of the bilinear form and the fact that L(1)α(−1)1 = 0, we have

2Nm(u|v) = (α(0)u|v) = (u|
∑

j≥0

(−1)

j!
(L(1) jα(−1)1)2−0− j−2v) = (u| − α(0)v) = −2Nn(u|v),

where u ∈ Mĥ(1,mα) and v ∈ Mĥ(1, nα). This proves (6.2). Since Z>0α and Z<0α are sub-

semigroups of Zα, it is clear that (V±|V±) = (VH |V+) = (VH |V−) = 0. �

Now let L = A2 = Zα ⊕ Zβ be the root lattice of type A2. There are many examples of quasi-

triangular decompositions on the lattice VOA VA2
. Here we present two different examples.

Consider the following subsets of the lattice A2:

N+ := {mα + nβ : m ∈ Z, n > 0} + Z>0α, (6.3)

N− := {mα + nβ : m ∈ Z, n < 0} + Z<0α. (6.4)

Clearly, N± are sub-semigroups of A2, and so VN± =
⊕
γ∈N±

Mĥ(1, γ) are sub-vertex algebras

without vacuum of VL, in view of Proposition 2.2. Moreover, we have L = N+ ⊔ {0} ⊔ N−.

In figure 3, the red dots represent elements in N+, and the blue dots represent elements in N−.

The black dot is 0 of A2.

Lemma 6.4. With the notations as above, let V+ := VN+ , VH := Mĥ(1, 0), and V− := VN− . Then
VA2
= V+ ⊕ VH ⊕ V− is a quasi-triangular decomposition of the lattice VOA VA2

.

Proof. Again, it suffices to prove (4) in Definition 6.1 since ω = 1
2

∑2
i=1 ui(−1)21, where {u1, u2}

is an orthonormal basis of h. For γ, θ ∈ A2, similar to (6.2), we have
(
Mĥ(1, γ)|Mĥ(1, θ)

)
= 0, unless γ + θ = 0. (6.5)

The proof of (6.5) is also similar to (6.2), we omit it. Now it is clear from figure 3 that (V±|V±) =
(VH |V+) = (VH |V−) = 0. �

There is another quasi-triangular decomposition of VA2
that corresponds to the parabolic-type

subVOA VP in Section 4 and 5. Consider the following sub-semigroups of A2:

N+ := Zα ⊕ Z>0β, T := Zα, N− := Zα ⊕ Z<0β. (6.6)

Again, it follows from Proposition 2.2 that VN± =
⊕
γ∈N± Mĥ(1, γ) are sub-vertex algebras

without vacuum of VA2
, and VT =

⊕
θ∈T Mĥ(1, θ) is a subVOA of VA2

.
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α−α
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Figure 4.

In figure 4, the red dots represent elements in N+, blue dots represent elements in N−, and

black dots represent elements in T . The following lemma follows immediately from (6.5) and

figure 4:

Lemma 6.5. With notations as above, let V± := VN± and VH := VT . Then VA2
= V+ ⊕ VH ⊕ V−

is a quasi-triangular decomposition of VA2
, with VP = V+ ⊕ VH.

Remark 6.6. The quasi-triangular decompositions in Lemma 6.3 and 6.4 are compatible with

the triangular decomposition of the first-level Lie algebras of the corresponding lattice VOAs.

Indeed, assume (α|α) = 2 for the rank-one lattice Zα, then by figure 3 we have

(VZα)1 = sl2(C) = Ceα ⊕ Cα(−1)1 ⊕ Ce−α = (V+)1 ⊕ (VH)1 ⊕ (V−)1,

(VA2
)1 = sl3(C) =

(
Ceα + Ceβ + Ceα+β

)
⊕ h ⊕

(
Ce−α + Ce−β + Ce−α−β

)
= n+ ⊕ h ⊕ n−

= (V+)1 ⊕ (VH)1 ⊕ (V−)1.

However, the quasi-triangular decomposition of VA2
= V+ ⊕ VH ⊕ V− given by figure 4 and

Lemma 6.3 is not compatible with the triangular decomposition of first-level Lie algebra, since

the “Cantan-part” VH is not the Heisenberg subVOA Mĥ(1, 0).

In the representation theory of Lie algebras (finite or infinite-dimensional), the triangular

decomposition g = n+ ⊕ h ⊕ n− is used to construct Verma modules and irreducible highest-

weight modules over g. With our definition and examples, it is natural to ask the following:

Question 6.7. Is there a construction of “Verma-type” modules for VOAs arising from the

quasi-triangular decomposition in Definition 6.1?

There is a notion of generalized Verma module for a VOA V given by Dong, Li, and Mason

in [DLM98]. A generalized Verma module M̄(U) was constructed from a module U over Zhu’s

algebra A(V) (see [DLM98] Section 5). We suspect that one can use modules over Zhu’s algebra

A(VH) of VH in the quasi-triangular decomposition of V to construct Verma-type modules.

6.2. Borel-type and parabolic-type subalgebras of affine vertex operator algebras. The

vertex operator realization of the highest weight representations of affine Kac-Moody algebras

in [FK80] indicates that there is an isomorphism Lĝ(1, 0) � VQ of VOAs, where VQ is the lattice

VOA associated to the root lattice Q of g, and Q is of A,D, E-type.

Inspired by this isomorphism of VOAs and our previous examples, it is reasonable to define

Borel and parabolic-type subalgebras for general affine VOAs of arbitrary level.
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6.2.1. Definition of affine vertex operator algebras. We first recall the definition of affine vertex

operator algebras of positive integer level k defined by Frenkel and Zhu in [FZ92].

Let g be a finite-dimensional semisimple Lie algebra with a Cartan subalgebra h, and let ∆

be the root system associated to h with root lattice Q ⊂ h∗. Normalize the invariant bilinear

form on g so that (θ|θ) = 2, where θ is the longest root of ∆. Let ĝ = g ⊗ C[t, t−1] ⊕ CK be its

affinization, with Lie bracket given by

[K, ĝ] = 0, [a(m), b(n)] = [a, b](m + n) + mδm+n,0(a|b)K, a, b ∈ g, m, n ∈ Z.

Let C1 be a ĝ≥0-module with K.1 = k1 and g ⊗ C[t].1 = 0. The Weyl vacuum module

Vĝ(k, 0) = U(ĝ) ⊗U(ĝ≥0) C1

is a VOA, with 1 = 1 ⊗ 1 and ωaff =
1

2(h∨+k)

∑dim g

i=1
ui(−1)ui(−1)1, called the vacuum module

vertex operator algebra of level k, where h∨ is the dual Coxeter number of ∆, and {ui} and {ui}
are dual orthonormal basis of g.

Vĝ(k, 0) has a unique maximal ĝ-submodule W(k, 0) = U(ĝ)xk+1
θ (−1)1, where xθ ∈ gθ. The

quotient module Lĝ(k, 0) = Vĝ(k, 0)/W(k, 0) is also a VOA called the affine vertex operator

algebra of level k.

In the study of parafermion vertex operator algebras (see, for example, [DW10, DR17]), the

following decomposition of Vĝ(k, 0) and Lĝ(k, 0) were frequently used:

Vĝ(k, 0) =
⊕

λ∈Q

Vĝ(k, 0)(λ) =
⊕

λ∈Q

Mĥ(k, 0) ⊗ Nλ, (6.7)

Lĝ(k, 0) =
⊕

λ∈Q

Lĝ(k, 0)(λ) =
⊕

λ∈Q

Mĥ(k, 0) ⊗ Kλ, (6.8)

where Nλ = {v ∈ Vĝ(k, 0) : h(m)v = δm,0v, for h ∈ h,m ∈ Z} and Kλ = {v ∈ Lĝ(k, 0) : h(m)v =
δm,0v, for h ∈ h,m ∈ Z} are subspaces of ĥ-highest-weight vectors of weight λ ∈ Q in Vĝ(k, 0)

and Lĝ(k, 0), respectively, and

Vĝ(k, 0)(λ) = {v ∈ Vĝ(k, 0) : h(0)v = λ(h)v, for h ∈ h} = Mĥ(k, 0) ⊗ Nλ, (6.9)

Lĝ(k, 0)(λ) = {v ∈ Lĝ(k, 0) : h(0)v = λ(h)v, for h ∈ h} = Mĥ(k, 0) ⊗ Kλ, (6.10)

for any λ ∈ Q. Note that K(g, k) := K0 is the parafermion vertex operator algebra.

Similar to Proposition 2.2, we have the following fact about the decomposition (6.7) and

(6.8):

Proposition 6.8. Let k be a positive integer, and let V be Vĝ(k, 0) or Lĝ(k, 0), with V(λ) =

Vĝ(k, 0)(λ) or Lĝ(k, 0)(λ) for λ ∈ Q, respectively.
Assume M ≤ Q is an abelian sub-monoid of the root lattice Q, with identity 0 ∈ Q. Then

V M :=
⊕
λ∈M V(λ) is a subVOA of (V, Y, ωaff, 1). We call V M the subVOA associated to M.

Proof. Let λ, µ ∈ M, and a ∈ V(λ), b ∈ V(µ). For any h ∈ h, since

h(0)(anb) = anh(0)b + (h(0)a)nb = (λ + µ|h)anb, n ∈ Z,

and M is a sub-monoid, we have anb ∈ V(λ + µ) ⊂ V M. Moreover, since ωaff , 1 ∈ V(0) ⊂ V M, it

follows that VM is a subVOA of V . �

Remark 6.9. Note that V(0) is a tensor product of (Mĥ(k, 0), Y, ωh, 1) and (N0(or K0), Y, ωaff −
ωh, 1). Unlike the lattice case in Proposition 2.2, the sub-vertex algebra V M :=

⊕
λ∈M V(λ)

could have multiple Virasoro elements. We say that V M a subVOA of V only if it has ωaff as the

Virasoro element.
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6.2.2. Borel and parabolic-type subalgebras of Vĝ(k, 0) and Lĝ(k, 0). Recall the definitions of

a Borel-type sub-monoid B and a parabolic-type sub-monoid P of the root lattice Q in Defini-

tion 2.5.

Definition 6.10. Let k be a positive integer, and let V be the vacuum module or affine VOA

Vĝ(k, 0) or Lĝ(k, 0). A subVOA VB (resp. VP) associated to a Borel-type (resp. parabolic-type)

sub-monoid B (resp. P) ≤ Q is called a Borel-type (resp. parabolic-type) subVOA of V .

Example 6.11. Similar to the Borel-type subVOA VZ≥0α of lattice VOA VA1
in Sections 3 and

the parabolic-type subVOA VZα⊕Z≥0α of lattice VOA VA2
Sections 4 and 5, we have the following

examples of Borel and parabolic-type subVOAs of affine VOAs:

VB = Lŝl2(C)(k, 0)Z≥0α =
⊕

n≥0

Lŝl2(C)(k, 0)(nα), (6.11)

VP = Lŝl3(C)(k, 0)Zα⊕Z≥0β =
⊕

m∈Z,n≥0

Lŝl3(C)(k, 0)(mα + nβ). (6.12)

Clearly, the first-level Lie algebra VB
1
= Ch(−1)1 + Ce(−1)1 is a Borel subalgebra of sl2(C),

and first-level Lie algebra VP
1
= Chα(−1)1 + Chβ(−1)1 + Cxα(−1)1 + Cx−α(−1)1 + Cxβ(−1)1 +

Cxα+β(−1)1 is a parabolic subalgebra of sl3(C).

Given our main results in Sections 3–5, it is natural to ask the following:

Question 6.12. Find a concrete description (by generators and relations) of the Zhu’s algebra

of VB in (6.11) and VP in (6.12). Moreover, find and classify all the irreducible modules over

these Borel and parabolic-type subVOAs of the affine VOAs.
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