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Abstract

Real-time semantic segmentation is a crucial research for real-world applications. However, many methods lay particular em-
phasis on reducing the computational complexity and model size, while largely sacrificing the accuracy. To tackle this problem,
we propose a parallel inference network customized for semantic segmentation tasks to achieve a good trade-off between speed
and accuracy. We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for
the reduced model capacity to improve accuracy. Specifically, we first design a dual-pyramidal path architecture (Multi-level Fea-
ture Aggregation Module, MFAM) to aggregate multi-level features from the encoder to each scale, providing hierarchical clues
for subsequent spatial alignment and corresponding in-network inference. Then, we build Recursive Alignment Module (RAM)
by combining the flow-based alignment module with recursive upsampling architecture for accurate spatial alignment between
multi-scale feature maps with half the computational complexity of the straightforward alignment method. Finally, we perform
independent parallel inference on the aligned features to obtain multi-scale scores, and adaptively fuse them through an attention-
based Adaptive Scores Fusion Module (ASFM) so that the final prediction can favor objects of multiple scales. Our framework
shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets.
We also conducted systematic ablation studies to gain insight into our motivation and architectural design. Code is available at:
https://github.com/Yanhua-Zhang/MFARANet.
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1. Introduction

Semantic segmentation, aiming to label every pixel in the
image, is one of the basic tasks of computer vision. Re-
cently, architectural advances in Deep Convolutional Neural
Networks (DCNNs) for image classification have greatly facili-
tated other visual recognition tasks[1, 2, 3], including semantic
segmentation[4, 5, 6]. Although DCNNs-based semantic seg-
mentation methods have significantly improved the accuracy,
they are difficult to be directly applied to real-world applica-
tions due to large model size or high complexity. Some ap-
plications, such as autonomous navigation or driver assistance
systems, require segmentation models to maintain real-time in-
ference speeds on large-size images to provide a wider field of
view, placing a greater computational burden on the system.
This makes real-time semantic segmentation a challenging re-
search topic.
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To achieve real-time inference speed on high-end Graphics
Processing Unit (GPU) cards, several models reduce computa-
tional complexity by adopting convolution factorization or de-
signing shallow architectures. Among them, ERFNet[7] de-
composes the standard 3 × 3 convolution into 3 × 1 and 1 ×
3 operations by asymmetric convolutions, which theoretically
reduces the computation by a factor of 1.5. ICNet [8] uses a
shallow network to obtain spatial details, and inputs downsam-
pled images into a deeper network for semantic information.
Although above methods significantly improve inference speed,
their accuracy is largely reduced. For some real-world applica-
tions, the segmentation accuracy is also important.

Obtaining multi-scale features is one of the key points to im-
prove segmentation accuracy, as objects appear at various scales
in the field of view [9, 10, 11]. As shown in Fig. 2(a), image
pyramid is a straightforward way to obtain hierarchical features.
It scales the original image to multiple resolutions to generate a
set of images, which are then independently fed into the same
neural network to obtain multi-scale scores [9, 12, 13]. Due
to its effectiveness in promoting performance, image pyramid-
based multi-scale inference has become a common operation
in the evaluation phase of accuracy-oriented methods [14, 15].
However, the high computational complexity and large memory
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cost make it difficult to be directly used in real-world applica-
tions and end-to-end network training.

Compared with image pyramid, utilizing the inherent multi-
scale property of DCNNs is a more efficient way to obtain
hierarchical features [16], which is widely used by accuracy-
oriented [17, 18, 19] and speed-oriented segmentation networks
[20, 21, 22]. By stacking strided convolution layers, different
stages of the DCNNs extract multi-level features with differ-
ent receptive fields and spatial resolutions. In segmentation
tasks, the most popular way to use this property is to aggre-
gate multi-stage features to the highest-resolution level, and
then make single-scale prediction upon the fused feature map
[23, 22, 24]. For example, DFA [21] designs a dual-path de-
coder to aggregate multi-level features of a lightweight back-
bone, while Panoptic FPN [25] directly fuses the upsampled
features through element-wise sum operation. However, such
feature-level fusion will lead to less efficiency of hierarchical
representation due to semantic gaps and spatial misalignment.

Instead of combining and predicting from the feature
pipeline, another way is to do parallel inference at each layer
of the encoder to generate multiple score maps, and then do a
late fusion over them. This in-network parallel inference ar-
chitecture proposed by FPN [16] (Fig. 2(b)) is widely used in
object detection tasks [26, 27, 28, 29]. However, the adaptation
of this architecture to semantic segmentation tasks has not been
deeply explored. Some segmentation networks either simply
treat multi-level predictions as an additional precision boost-
ing strategy [30, 11, 31], or focus on using the coarse to fine
strategy [32, 33, 34]. They perform predictions directly and in-
dependently at different stages of the encoder, thus generating
coarse or fine score maps based on the semantic or local spa-
tial detail information contained in the corresponding features.
Here, we point out that the FPN architecture designed for object
detection is not suitable to be directly applied to segmentation
tasks for two main reasons: firstly, it is a suboptimal choice to
obtain score maps at each level independently, because both
high-level semantic information and low-level spatial details
are important cues for segmentation [21, 22, 18]. The image
pyramid (Fig. 2(a)) performs inference of each scale on multi-
level features, while FPN lacks lower-level features in the top-
most and mid-scale inference; Secondly, FPN for object detec-
tion does not need to consider the fusion of multi-scale pixel-
level predictions, which is an important factor for fine-grand
segmentation tasks. When fusing score maps, the above men-
tioned segmentation methods simply upsample low-resolution
maps by bilinear interpolation, which is difficult to be used to
recover the spatial misalignment caused by long-distance con-
nections and repeated downsampling [35, 36, 37].

Differently, we design a parallel inference network cus-
tomized for semantic segmentation tasks that can provide rich
hierarchical features for the prediction at each level to obtain
multi-scale scores as if obtained from image pyramid while be-
ing more efficient than it. To this end, we propose a Multi-level
Feature Aggregation Module (MFAM) to aggregate hierarchi-
cal features of the encoder to each scale for further alignment
and inference. Upon the features obtained from MFAM, we
design a Recursive Alignment Module (RAM) to achieve spa-

Figure 1: Inference speed and Params vs. mIoU accuracy on the Cityscapes
test set. The size of the points indicates the model size. Purple points are
representative real-time methods in Table. 9. The red and green points represent
our MFARANet using 1024 × 1024 or the whole image (1024 × 2048) input for
inference, respectively. ’Pruned’ indicates the special network pruning method
used for our parallel inference network, which is shown in Fig. 9 and discussed
in Section. 4.2.8. All FPS are measured on a single GTX 3090 GPU with the
image resolution on which the inference is performed to calculate the accuracy.

tial alignment between multi-scale score maps, which has half
the computational complexity of the straightforward alignment
method. By combining the flow-based alignment module with
our proposed recursive upsampling architecture, the RAM em-
ploys intermediate features for stepwise alignment. Further-
more, by adopting the pixel-wise attention to fuse multi-scale
scores in an adaptive manner, the proposed Adaptive Scores
Fusion Module (ASFM) generates the final prediction that can
benefit the segmentation of objects of multiple scales. It is
worth mentioning that from the ablation experiments, we found
a pruning method specific to this parallel inference architec-
ture, that is, training on the entire network and removing certain
scales during testing phrase. However, using network pruning
to reduce model complexity is not the focus of this work, so it
is only illustrated in Fig. 9 and discussed in Section. 4.2.8. Fi-
nally, to enhance network training, we propose the Multi-scale
Joint Supervision (MJS) to add extra supervision at each scale
of the predictions. It employs Cross-Entropy (CE) to calculate
the loss of segmentation prediction and boundary prediction,
and uses a regularization term to maintain consistency between
them.

Our main contributions are summarized as follows.

1. We propose MFAM to fuse multi-level features in an in-
formation flowing manner through the dualpath architec-
ture and the lateral connections. With this simple and effi-
cient structure, we can aggregate low-level spatial details
and high-level semantic information at each scale to al-
leviate the semantic gaps, facilitating subsequent spatial
alignment and prediction.

2. To avoid spatial misalignment between scaled features, the
RAM is designed to adopt intermediate features for step-
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(a) Image Pyramid (b) Feature Pyramid Networks (c) Our Network

Figure 2: The comparison between different parallel inference networks. The boxes represent feature maps, and their length and number roughly reflect the relative
spatial resolution between them. (a) Independently passing the scaled images through the whole segmentation network (omitted for simplicity) to obtain multi-scale
predictions. (b) The in-network parallel inference architecture proposed by Feature Pyramid Networks (FPN) [16] for object detection tasks. (c) Our custom-
designed parallel inference network for fine-grained real-time semantic segmentation tasks, which is much faster than image pyramid.

wise alignment, which is more accurate and faster than
straightforward alignment. Furthermore, combined with
MFAM, our RAM can align multi-scale score maps with-
out being disturbed by semantic gaps.

3. Instead of fusing and inferring from the feature pipeline,
we design a parallel inference network customized for se-
mantic segmentation tasks to obtain multi-scale scores,
and also build the pixel-wise attention based ASFM to
adaptively fuse them to improve accuracy.

4. Finally, we use the MJS to jointly supervise segmentation
prediction and boundary prediction at each scale to en-
hance feature representation and boost network training.

2. Related Works

There is a vast DCNNs-based literatures on accuracy-
oriented or speed-oriented semantic segmentation. In the fol-
lowing, we mainly review the techniques of multi-scale/parallel
inference, multi-level feature aggregation and feature alignment
in semantic segmentation, which are related to our method.

2.1. Multi-scale/Parallel Inference
Due to the high intra-class and inter-class scale variations

of objects, obtaining multi-scale features or predictions is one
of the key points to improve accuracy in semantic segmenta-
tion [11, 10, 16]. Performing multi-scale inference on the im-
age pyramid (Fig. 2(a)) is the most straightforward way to ob-
tain multi-scale score maps. DeepLabv2 [38] extracts multiple
score maps from a group rescaled original images through a
shared network, and then performs cross scale fusion on them
by maximum operations. Chen et al. [9] proposed using an at-
tention mechanism to soft-weight each pixel between the score
maps. Tao et al. [13] combined pixel-wise attention with the
chain structure to fuse multi-scale predictions. At present, the
multi-scale inference operation based on image pyramid has
been widely used in the evaluation phase to boost segmenta-
tion accuracy [14, 15]. However, this method independently

passes multiple scaled images through the network, which ex-
ponentially increases the computational complexity and mem-
ory consumption, making it difficult to be applied to end-to-end
network training and real-time required applications.

To promote efficiency, some networks perform parallel in-
ference on multi-level feature maps of the encoder to gener-
ate multiple score maps. FCN8s [30] and Hypercolumns [11]
are early attempts to fuse the top-most prediction with middle-
layer high-resolution predictions to generate the final predic-
tion, with the aim of enabling their networks to learn finer de-
tails. Similarly, DAG-RNN [31] and DeepLab [39] directly em-
ploy this multi-level parallel inference method as an additional
performance boosting strategy. NDNet [40] uses convolutional
layers to perform weighted fusion of multi-scale scores, and
adapts separable convolutions to build a lightweight FCN8 to
achieve real-time inference speed. GCN [32], CGBNet [33],
and SABNet [34] all follow a similar network structure design
pipeline and adopt a coarse to fine strategy, which utilizes high-
resolution fine predictions from middle layers to gradually re-
fine the topmost low-resolution coarse prediction.

It is a suboptimal choice to infer independently on single-
level features of the encoder to obtain coarse or fine score maps,
because multi-level features together provide rich cues for seg-
mentation. Differently, we propose MFAM to aggregate multi-
level features of the encoder to each scale, providing hierarchi-
cal information for further prediction. Besides, by using the
RAM, we solve the spatial misalignment problem in the fusion
process of multi-scale scores, which is ignored by the above
methods.

2.2. Multi-level Feature Aggregation

As an effective method to improve accuracy, multi-level fea-
ture aggregation is used by both accuracy-oriented [25, 19] and
speed-oriented segmentation methods [21, 41, 22]. The top-
down path is used by FPN [16] (Fig. 2(b)) to aggregate other
levels of features to the lowest-level feature in an information
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Figure 3: Overall architecture of our approach. (a) The details of MFAM. S i, Di and Ui represent multi-level features from different stages of ResNet-18, Bottom-up
path and Top-down path, respectively. (b) The process of aligning low-resolution features with the highest-resolution feature F1. The detailed structure of RAM is
illustrated in Fig. 4(b). Fi indicates the i-th scale feature obtained from MFAM, and Pi denotes the corresponding aligned feature. (c) The architecture of ASFM.
“Seg Head” and “Attention Head” represent the modules for obtaining the score map (Scorei) and weight map (Weighti) of the i-th scale, which are shown in detail
in Fig. 6.

flow manner, in which mid-level features are fused through lat-
eral connections. Based on FPN-like architecture, lots of meth-
ods directly adopt element-wise sum [25] or channel concate-
nation [42, 19] to fuse multi-level features. Among the sophis-
ticated methods, feature reuse is a commonly utilized mech-
anism. PANet [23] and SGCPNet [43] add a bottom-up path
to integrate the middle layer features of the top-down path.
In contrast, DFANet [21] and RGPNet [24] first employ the
bottom-up path to aggregate features from the encoder, and
then adopt a top-down path to refuse features of the bottom-up
path. ShelfNet [41] uses three overlapping paths to reuse fea-
tures from the previous path. For approaches different from fea-
ture reuse, Lin et al. [17] proposed an intertwining architecture
to exchange information between adjacent scales in a bidirec-
tional fashion. ZigZagNet [44] employs dense connections to
blend feature maps between top-down and bottom-up networks.
Weng et al. [22] used a long-distance skip connection to fuse
the lowest-level feature with the middle-level features in the
top-down path for real-time segmentation. All the above meth-
ods integrate multi-level features into the highest-resolution
feature to obtain a single score map, while our MFAM aggre-
gates multi-level features to each scale to generate multi-scale
score maps.

2.3. Feature Alignment/Upsampling

DCNNs need to enlarge the receptive field through repeated
max-pooling or stride convolution, so the high-level features

(a)

(b)

Figure 4: The comparison between Straightforward Alignment and Recursive
Alignment. The red dashed box indicates the flow based alignment module.
Up represents bilinear interpolation. Concat denotes the channel concatenation
operation. f is the alignment function in Eq. 4. (a) Straightforward Alignment
Module. (b) Our proposed Recursive Alignment Module (RAM).

of the encoder and the final predictions are inevitably down-
sampled. Bilinear interpolation is widely used to upsample fea-
ture/score maps [38, 10, 12], as it is simply and fast. However, it
is oversimple and data-independent, making it difficult to align
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multi-level features. To avoid the spatial misalignment, Noh et
al. [45] adopted unpooling layers and deconvolution layers to
build the decoder to recover the details of low-resolution feature
maps. To ensure efficiency, SegNet [46] uses the pooling posi-
tions stored in the encoder to achieve nonlinear upsampling of
the corresponding level features of the decoder. Recently, GUN
[35] proposes a transformation module to learn 2D offsets to
guide upsampling between two different resolution features for
real-time segmentation. AlignSeg [47], FaPN [48] and SFNet
[42] share a similar motivation and all propose using flow-based
alignment module to estimate 2D transformation offsets to im-
plement learnable interpolation. The above flow-based align-
ment methods fuse features between different levels of the en-
coder, so they need to bridge the semantic gap when perform-
ing spatial alignment. The semantic gap between multi-level
features may mislead the transform offset learning in the align-
ment module. Furthermore, they are used for adjacent features
without large resolution differences, while our RAM is specifi-
cally designed for aligning long-distance feature maps.

3. Methods

3.1. Overview

As shown in Fig. 3, three complementary modules are pro-
posed to build our parallel inference network: MFAM, RAM
and ASFM. For MFAM, we build it through top-down and
bottom-up paths, as well as the lateral connections for infor-
mation exchange between paths. Such a structure has three
advantages. Firstly, compared to long-range skip connections
(Fig. 5), it can aggregate long-distance features in an infor-
mation flow manner to narrow the semantic gap. Secondly, by
aggregating hierarchical features of the encoder to each scale,
this architecture can provide both high-level semantic informa-
tion and low-level spatial details for the prediction of the cor-
responding scale. Thirdly, since each feature map from MFAM
aggregates multi-level features of the same encoder, we have
reason to believe that the semantic gap between the output fea-
tures is largely narrowed. This will benefit the transform offset
learning in the following spatial alignment module. Upon the
multi-scale features obtained from MFAM, we build four inde-
pendent parallel paths to perform multi-scale inference. Before
ASFM, we first design RAM to combine flow-based alignment
module with the recursive upsampling architecture to address
the spatial misalignment between multi-scale score maps. In
the end, we propose ASFM to do adaptive fusion over multi-
scale scores, and the training is carried out by our customized
supervision function MJS.

3.2. Multi-level Feature Aggregation Module (MFAM)

We start with the encoder to describe how to build our
MFAM. There are two main reasons for choosing ResNet-18
as the backbone to obtain multi-level features. First, it is a good
fit for fine-tuning since the pre-trained parameters are publicly
available. Our network can benefit from knowledge transfer by
loading their weights trained on imageNet. Second, due to the

moderate depth and residual structure, it promotes training ef-
ficiency and has low model complexity, which can be used to
build real-time segmentation networks. The ResNet-18 has four
stages (a.k.a., blocks), which extract multi-level feature maps
with spatial resolutions of 1/4, 1/8, 1/16, and 1/32 of the input
image (S 1 ∼ S 4 in Fig. 3(a)). Additionally, we use two atrous
convolutional layers [38] with dilation rate of 2 and 4 to replace
the stride convolutions in the last two stages of the backbone to
enlarge receptive field. Differently, we do not change the stride
length of stride convolutions from 2 to 1 as done in [38, 10],
thus increasing the receptive field of the last two stages with-
out changing the feature size (still 1/16 and 1/32 of the input
image). This can significantly increase accuracy with a slight
decrease in inference speed (Table. 1, native FPN vs. improved
FPN).

Upon multi-level features of the encoder, we flow the
topmost-level feature to the lowest-level feature through the
top-down path. In this process, we utilize feature fusion mod-
ules to aggregate mid-level features and pass them to the lower-
level features, so that the outputs of top-down path fuse higher-
level features (e.g., U2 aggregates S 2 ∼ S 4). It is worth not-
ing that all the features from the encoder use a 1×1 convolu-
tional layer to adjust the channel dimension before inputting
the top-down path or bottom-up path, which is omitted in Fig.
3(a) for brevity. For the feature fusion modules in top-down
path, we adopt a simple and general design to ensure efficiency.
We use bilinear interpolation to upsample higher-level features,
and then use element-wise addition followed by a 3×3 convo-
lutional layer to fuse features. This process can be expressed
mathematically as:

Un = conv3×3(Up(Un+1) + conv1×1(S n)), n = 3, 2, 1. (1)

Here, we directly get U4 from S 4: U4 = conv1×1(S 4). conv1×1
represents a 1×1 convolutional layer for feature channel ad-
justment. conv3×3 is a 3×3 convolutional layer for feature fu-
sion. Up means bilinear upsampling. Similarly, we construct a
bottom-up path to flow the lowest-level feature in the encoder
to the topmost feature, so that the resulting features aggregate
the lower-level features. We still employ a simple feature fusion
module to fuse adjacent-level features, but we use bilinear in-
terpolation to downsample features instead of upsampling. This
can be mathematically expressed as:

Dn+1 = conv3×3(Down(Dn) + conv1×1(S n+1)), n = 1, 2, 3, (2)

where D1 = conv1×1(S 1); Down means bilinear downsample.
By using the above two paths, the lowest-level feature (U1) in
the top-down path and the topmost-level feature (D4) in the
bottom-up path aggregate the features of all levels in the en-
coder, but it has not been done in the mid-scale features (e.g.,
D2 fuses S 1, S 2 but lacks S 3, S 4). Therefore, we add two
lateral connections between two paths to flow information be-
tween them, so that the mid-scale features (F2 and F3) could
contain full-level features. For example, D3 aggregates S 1, S 2
and S 3, while U3 includes S 4. Then, we can obtain F3 that
fuses S 1 ∼ S 4 through the lateral connection between D3 and
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Figure 5: Long-range Skip Connection based Aggregation architecture (our
initial design).

U3. This can be expressed as:

Fn = conv3×3(Dn + Un), n = 2, 3. (3)

We compare our MFAM with FPN-like architecture [16, 25,
19, 42] (Fig. 2(b)) and Long-range Skip Connection based Ag-
gregation (LSCA) architecture illustrated in Fig. 5 to give read-
ers a clearer understanding of the motivations of our design.
FPN-like architecture utilizes the top-down path with lateral
connections to obtain high-level semantic features at all stages,
while its topmost and mid-scale features lack low-level infor-
mation. The LSCA is the one we originally designed for fusing
multi-level features. Although it could fuse multi-level features
in an explicit manner, using the long skip connections between
long-distance features (e.g., S 4 to S 1) for fusion will lead to a
larger semantic gap and misalignment than fusion between ad-
jacent features. Quantitative comparisons are given in Table.
2.

3.3. Recursive Alignment Module (RAM)

Inspired by [47, 48, 42], we adopt a flow-based alignment
module in RAM to learn 2D transformation offsets to guide
the upsampling between features with different resolutions.
However, we have noticeable differences from above methods.
Firstly, the aim of our RAM is to achieve spatial alignment be-
tween score maps by aligning features before the segmentation
head, not for feature fusion. Secondly, the previous MFAM is
complementary to our RAM, which can narrow the semantic
gap between multi-scale features to prevent the offset learning
from being misguided. Thirdly, we align features in a stepwise
manner specifically designed for long-distance feature maps,
while the above methods use their flow-based alignment mod-
ule for adjacent features without large resolution differences.

As illustrated in the red dashed box in Fig. 4(a), the flow-
based alignment module can be mathematically formulated as:

∆ = conv3×3(concat(Fh,Up(Fl))),
F̂l = f (Fl,∆). (4)

Here, we use a 3 × 3 convolutional layer to learn the offset
(∆) between the high-resolution feature (Fh) and low-resolution
feature (Fl). concat represents channel concatenation opera-
tion and Up refers to the bilinear interpolation upsampling. f
denotes the alignment function for aligning feature with the
learned offsets, and F̂l is the aligned feature.

To achieve our recursive alignment, we adopt intermediate
features to learn offsets. Specifically, we learn the offsets be-
tween F1 and F2, F2 and F3, F3 and F4, and then use these off-
sets to align the features in a step-wise manner. Therefore, the
function for calculating the offset in Eq. 4 needs to be rewritten
as:

∆n = conv3×3(concat(Fn,Up(Fn+1))), n = 1, 2, 3. (5)

After obtaining the offsets, we align low-resolution features
(F4, F3, F2) to F1 respectively. It is worth noting that these
offsets only need to be calculated once and can be shared by
all three alignment processes. Fig. 4(b) shows an example of
aligning F4 to F1: we first use ∆3 to align F4 to F3, then use
∆2 to align the output to F2, and finally use ∆1 to align the
previous output to F1. The aforementioned processes can be
mathematically written as:

Pn =
{
F̂i = f (F̂i+1,∆i), i = n − 1, · · · , 1

}
n=2,3,4

, (6)

where the initial value F̂n = Fn; Pn is the final aligned fea-
ture map corresponding to Fn; {·} represents the recursive pro-
cess. As for f , AlignSeg [47] modifies bilinear interpolation as
their alignment function, while SFNet [42] and FaPN [48] em-
ploy the differentiable bi-linear sampling mechanism and de-
formable convolutions [49], respectively. With the demand for
keeping efficiency, we directly use the alignment function pro-
posed in SFNet. After having calculated ∆n, the warped grid
between Fn+1 and Fn can be calculated as:

warpn =
gn + ∆n(gn)

2
, (7)

where gn represents each position in spatial grid. In the end, we
adopt the bi-linear sampling function to align features:

F̂n+1 = f (Fn+1,∆) =
∑

i∈N(warpn)

wiFn+1(i), (8)

where N(warpn) indicates the neighbors of warpn in Fn+1, and
wi is the kernel weight estimated by warped grid.

In Fig. 4, we take the alignment between F4 and F1 as an ex-
ample to compare our proposed RAM with the straightforward
alignment method. As shown in Fig. 4, the straightforward
method puts F4 and F1 into the flow-based alignment module
to learn the corresponding offset, and then use the alignment
function to directly align F4 to F1 without using intermediate
features. Compared with the straightforward alignment, our de-
signed RAM is not only more accurate but also more efficient.
Here, we give computational complexity analysis. Since the
complexity of other operations in RAM and the straightforward
alignment method is negligible compared to the 3 × 3 convo-
lutional operation, the overall complexity can be estimated by
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Figure 6: Detailed design of Attention Head, Segmentation Head and Boundary
Head. Pi is the aligned feature at i-th scale. BN denotes the batch normaliza-
tion. H ×W × C represents the height, width and channels of the input tensor.
N means the number of classes. (a) Attention Head. (b) Segmentation Head.
(c) Boundary Head.

3 × 3 convolutional operations. Therefore, the complexity of
computing the offset between F4 and F3 can be expressed as
W ×H ×Cin ×Cout × 3× 3, which can be simplified as 9WHC2.
Here, H and W denote the height and width of F3, and Cin and
Cout represent the channels of input and output features of the
convolutional layer. Since the height and width of F1 are in-
creased by 4 times compared to F3, the complexity of inputting
upsampled F4 and F1 into the 3 × 3 convolutional layer can be
expressed as 4W × 4H × Cin × Cout × 3 × 3. Ultimately, the
ratio between the overall complexity of RAM and the straight-
forward alignment method is: (9WHC2 + 4 × 9WHC2 + 16 ×
9WHC2)/(3 × 16 × 9WHC2) = 7/16. In terms of accuracy, the
quantitative comparison and corresponding analyses are given
in Section. 4.2.3.

3.4. Adaptive Scores Fusion Module
Predictions at certain scales are better at solving objects of a

specific scale. In detail, large-scale features are more suitable
for segmenting small-scale objects due to their large resolution
and small receptive field, while small-scale features with larger
receptive field and rich context information are better at seg-
menting large-scale objects. Therefore, we design ASFM to
fuse multi-scale scores to favor objects of various scales. In-
spired by [13, 9], we employ the pixel-wise attention mech-
anism for adaptive fusion. Differently, we adopt this mecha-
nism to fuse multiple scores obtained from our designed single
pass network rather than image pyramids, greatly prompting ef-
ficiency. Besides, by combining with RAM, we avoid the spa-
tial misalignment between multi-resolution score maps, which
is not addressed by previous methods. As shown in Fig. 3(c),
this mechanism can be easily implemented in our network. We

use a 1 × 1 convolutional layer to build the segmentation heads
(Fig. 6(b)) to obtain score maps, and use a 3 × 3 convolutional
layer followed by a 1 × 1 convolutional layer to build the at-
tention head (Fig. 6(a)) to obtain the weight map at each scale.
This process can be expressed mathematically as:

Scoren = conv1×1(Pn),
Weightn = conv1×1(conv3×3(Pn)). (9)

Then, ASFM uses the weight maps to linearly fuse multi-
scale scores to obtain the final segmentation result:

Output =
4∑

n=1

Scalen ⊙Weightn, (10)

where ⊙ is element-wise multiplication.

3.5. Multi-scale Joint Supervision

To further improve segmentation accuracy, we propose the
Multi-scale Joint Supervision (MJS) as our booster training
strategy. Additional supervision during the training phase is
a cheap way to improve segmentation accuracy as it can be dis-
carded during the inference phase. Inspired by [50, 51], we
supervise both segmentation and boundary prediction at each
scale to enhance feature representation. Similar to the seg-
mentation head, we directly add a boundary head (Fig. 6(c))
on the feature of each scale to produce the s-th scale bound-
ary map fbs. The ground-truth semantic labels ŷ are passed
through a Sobelfilter [52] to produce a binary boundary label ŷb.
At the s-th scale, our MJS uses balance Binary Cross-Entropy
(BCE) loss on the binary boundary prediction fbs and stan-
dard Cross-Entropy (CE) loss on segmentation prediction f s.
Besides, we adopt a regularization term proposed by GSCNN
[50] in our loss function, which is used to keep consistency
between boundary prediction fbs and segmentation prediction
f s = ps(y |Ps ):

Ls
reg =

∑
c,i

1
i
fb s
[
−ŷc

i log ps(yc
i |Ps )

]
, (11)

where i and c run over all image pixels and C semantic classes.
1 fb s =

{
1 : f s

b > ths
}

is the indicator function, and the threshold
(ths) is set to 0.8 according to GSCNN. The final MJS can be
written as:

L=

4∑
s=1

(λ1LBCE( fbs, ŷb) + λ2LCE( f s, ŷ) + λ3L
s
reg), (12)

where λ1, λ2, λ3 are three hyperparameters that control the
weights between losses, and we set them to 0.3, 1, 0.1, re-
spectively, according to the settings in GSCNN. In addition,
Online Hard Example Mining (OHEM) [53] is applied to mit-
igate overfitting and data imbalance. Following [54], we set
the threshold for selecting hard pixels as 0.7, and keep at least
100,000 pixels within each minibatch.
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(a) Image (b) Ground Truth (c) Improved FPN (d) MFARANet

Figure 7: Qualitative results on the valuation set of Cityscapes. Compared with
the strong baseline, our method shows significant improvement on small-scale
(pole, traffic sign), middle-scale (rider, bus) and large-scale (bus, train) objects.

4. Experiments

In this section, we first introduce the datasets, metrics, and
implementation details of our experiments. Then, we con-
duct ablation experiments on the Cityscapes validation set.
Finally, comprehensive experiments are conducted on three
benchmarks: Cityscapes, CamVid, and PASCAL-Context to
compare with state-of-the-art methods.

4.1. Training Protocol

1) Dataset: Cityscapes [55]: It is a widely used dataset in
semantic segmentation, focusing on semantic understanding of
urban street scenes. It contains 20K coarsely annotated images
and 5K finely annotated images, and we only use the finely an-
notated images to train and validate our network. The finely
annotated images are split into 2, 975, 500 and 1, 525 sub-
sets for training, validation and testing, respectively. 19 seman-
tic classes are picked for the segmentation task. The dataset
samples have a high resolution of 1, 024 × 2, 048, which is
challenging for real-time semantic segmentation. We randomly
crop all images to 1, 024 × 1, 024 for training.

CamVid [56]: It is another road scene dataset, which con-
tains 701 images with 960 × 720 resolution. According to [57],
367, 101 and 233 images are selected for training, validation
and testing, respectively. We use 11 semantic classes for seg-
mentation task and employ random cropping of 640 × 640 crop
size during training.

PASCAL-Context [58]: It has 10103 images, out of which
4998 images are used for training. Each image has approxi-
mately 375 × 500 pixels, which are randomly cropped to 480 ×
480 for training. Following [33, 59, 60, 61], we only consider
the most frequent 59 classes in the dataset for evaluation.

2) Metrics: We use the most commonly used class-wise mean
Intersection over Union (mIoU) to evaluate segmentation accu-

Table 1: Comparison with the baseline method. MSL: Multi-Stage Loss. MJS:
Multi-scale Joint Supervision. OHEM: Online Hard Example Mining.

Name MSL MJS + OHEM mIoU Speed FLOPs Params
(%) (FPS) (G) (M)

native FPN ✓ 72.3 54.2 112.1 12.5
improved FPN ✓ 74.7 50.8 112.1 12.5
MFARANet ✓ 77.0 52.2 101.6 13.0
MFARANet ✓ 78.2 52.2 101.6 13.0

Table 2: Comparison with different multi-level feature aggregation methods.
FPN-like: the FPN-like Network shown in Fig. 2(b). LSCA: the Long-range
Skip Connection based Aggregation Architecture in Fig. 5.

FPN-like LSCA MFAM RAM ASFM MSL mIoU Speed FLOPs Params
(%) (FPS) (G) (M)

✓ ✓ ✓ ✓ 76.3 57.5 95.8 12.3
✓ ✓ ✓ ✓ 75.4 52.5 96.0 12.4

✓ ✓ ✓ ✓ 77.0 52.2 101.6 13.0

racy. The formula is:

mIoU =
1
C

C∑
i=1

Nii∑C
j=1 Ni j +

∑C
j=1 N ji − Nii

, (13)

where C represents total categories; Ni j is the number of pix-
els of class i being predicted to be the class j;

∑C
j=1 Ni j is the

number of pixels of class i;
∑C

j=1 N ji refers to the false negative.
To evaluate the model complexity, we use the number of

parameters (Params) to measure the size of networks and the
Floating Point Operations (FLOPs) to calculate computational
complexity. Besides, since the FLOPs poorly corresponds with
the actual processing time on GPU platforms, we additionally
use Frames Per Second (FPS) to measure execution speed. Fol-
lowing [62, 12], we exclude the batch normalization layers
when measuring FPS, as these layers can be fused with pre-
ceding convolutional layers during inference.

3) Implementation Details: We conduct experiments based
on PyTorch 1.8.1. The inference speed is measured on
one NVIDIA GeForce GTX 3090 with the CUDA 11.1 and
CUDNN 8.0. Following the prior protocol [10], we employ
the “poly” learning rate policy by 1 −

(
iter

max iter

)power
, in which

we set base learning rate to 0.005 for Cityscapes and 0.001 for
CamVid and PASCAL-Context. The value of power is 0.9.
During training, the network is optimized using the Stochastic
Gradient Descent (SGD) algorithm, of which the momentum
is 0.9 and weight decay is 5e-4. For data augmentation, we
employ random horizontal flip, random rotation from -10 to 10
degrees and random scale from 0.5 to 2.0. The batch size is 14
for Cityscapes and 16 for CamVid and PASCAL-Context. The
epochs for Cityscapes, CamVid and PASCAL-Context are set to
200, 120, and 100, respectively. For inference, we do not adopt
time-consuming evaluation tricks (e.g., horizontal flipping and
multi-scale testing) to improve accuracy. Instead, we use the
whole picture as input to compute mIoU unless explicitly men-
tioned.

4.2. Ablation Studies
In this section, we conduct the ablation experiments to ver-

ify the effectiveness of each module in our MFARANet. In the
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Table 3: Ablation study on RAM. Bilinear: bilinear interpolation. SA: Straight-
forward Alignment.

MFAM Bilinear SA RAM ASFM MSL mIoU Speed FLOPs Params
(%) (FPS) (G) (M)

✓ ✓ ✓ ✓ 75.5 55.2 100.6 12.9
✓ ✓ ✓ ✓ 76.5 49.6 102.7 13.0
✓ ✓ ✓ ✓ 77.0 52.2 101.6 13.0

Table 4: Comparison between three multi-scale scores fusion methods: Aver-
age, Maximum, and ASFM.

MFAM RAM Max Average ASFM MSL mIoU Speed FLOPs Params
(%) (FPS) (G) (M)

✓ ✓ ✓ ✓ 75.8 57.5 83.3 12.7
✓ ✓ ✓ ✓ 75.9 57.0 83.3 12.7
✓ ✓ ✓ ✓ 77.0 52.2 101.6 13.0

following, we train our models on the training set of Cityscapes
and evaluate on the validation set. FLOPs and FPS are com-
puted on a single GPU with an input size of 1024 × 1024.

4.2.1. Comparison with the Baseline Methods
Here, we choose a modified version of FPN network adapted

for segmentation tasks as the baseline method (named as ’native
FPN’ in Table. 1), which aggregates the multi-level outputs of
FPN to the highest resolution feature for single-scale prediction
[25, 19, 42]. For a fair comparison, we also adopt two atrous
convolutional layers to the backbone of the baseline, following
the way described in Section. 3.2. Furthermore, we add three
additional segmentation heads at different stages of the base-
line to compute auxiliary loss to boost network training, which
is named Multi-Stage Loss (MSL). Notably, by inferring on
multi-scale features, our MFARANet can calculate MSL with-
out adding additional segmentation head. As shown in Table. 1,
through the above operations, we improve the accuracy of the
native FPN from 72.3% to 74.7% of the improved FPN with a
slight decrease in inference speed. Using the same backbone
and MSL, our method can achieve 77.0% mIoU, which is 2.3%
higher than the strong baseline. At the same time, the com-
putational complexity is reduced by 10.5 GFLOPs, achieving
a faster inference speed. Furthermore, by combining MJS and
OHEM to boost the training process, our method further im-
proves the accuracy to 78.2%, which is 5.9% and 3.5% higher
than native FPN and improved FPN, respectively. Qualitative
segmentation comparison results between our method and the
baseline on Cityscapes validation set are shown in Fig. 7. Our
method shows improvement on multi-scale objects.

4.2.2. Ablation Study for MFAM
To demonstrate the superiority of MFAM, we compare it with

the other two feature aggregation methods: FPN-like architec-
ture (Fig. 2(b)) and LSCA (Fig. 5). In Table. 2, we replace the
MFAM in our network with FPN and LSCA, respectively, and
all other components remain unchanged. From the results, our
method improves the accuracy by 0.7% and 1.6% compared to
FPN and LSCA, respectively, with less than 6 GFLOPs increase
in computational complexity. We attribute the superiority of our
MFAM as two aspects: a) The topmost and mid-scale features

Table 5: Ablation study on importance of each component. ”-”: Indicates that
the corresponding experiment directly utilizes the features of the encoder for
alignment and prediction. Bilinear: bilinear interpolation. Cancat: the channel
concatenation operation for feature fusion.

MFAM RAM ASFM MSL mIoU
(%)

Speed
(FPS)

FLOPs
(G)

Params
(M)

- ✓ ✓ ✓ 74.4 61.3 84.0 11.8
✓ Bilinear ✓ ✓ 75.5 55.2 100.6 12.9
✓ ✓ concat ✓ 76.4 44.5 118.8 13.3
✓ ✓ ✓ ✓ 77.0 52.2 101.6 13.0

Table 6: Ablation Study for booster training strategy. OHEM: Online Hard
Example Mining.

Name MSL MJS OHEM mIoU(%)

MFARANet

✓ 77.0
✓ 76.1

✓ ✓ 77.1
✓ ✓ 78.2

of FPN lack low-level features, while each feature from MFAM
aggregates full-level features of the encoder. b) We aggregate
long-distance features in an information flow manner, which
narrows the semantic gap compared to using long-range skip
connections.

4.2.3. Ablation Study for RAM
We propose RAM to align scaled features and carry out sev-

eral ablation studies to reveal its effectiveness. First, we utilize
bilinear interpolation to replace RAM for upsampling, and the
first row in Table. 3 has a decrease in accuracy of 1.5% com-
pared to the third row. This shows that spatial misalignment is
one of the key issues for multi-scale scores fusion and can be ef-
ficiently solved by our RAM. Second, we compare Straightfor-
ward Alignment (Fig. 4(a)) with our proposed Recursive Align-
ment (Fig. 4(b)), and our RAM improves the accuracy and in-
ference speed by 0.5% and 2.6 FPS, respectively. We attribute
this to adopting the stepwise alignment to replace direct align-
ment between long-distance features. Adjacent features have
less spatial misalignment due to smaller scale differences com-
pared to long-range features, leading to more accurate offsets
learning. Computational complexity analysis has been given in
Section. 3.3.

4.2.4. Ablation Study for ASFM
We design ASFM to fuse multi-scale scores in an adaptive

manner. Three fusion methods are compared in Table. 4:
Average, Maximum (Max), and ASFM. When using Average
or Max operations, the score maps at each scale are either
equally important or sparsely selected, making them a subop-
timal choice. ASFM improves the segmentation accuracy by
more than 1.0% over the other two methods, demonstrating the
effectiveness of this adaptive fusion strategy. Compared with
the promotion of accuracy, the increase in computational com-
plexity is acceptable, as the inference speed is only reduced by
around 5 FPS and remains above the real-time speed.
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Figure 8: Comparison of segmentation accuracy on different classes at each
scale and the final prediction. Scale1 ∼ Scale4 indicate the corresponding
predictions of Score1 ∼ Score4 in Fig. 3(c). ”Final” represents the fusion
result of Scale1 ∼ Scale4 using ASFM. Categories marked in red, blue, and
green are small-scale, middle-scale, and large-scale objects, respectively.

Table 7: Ablation for Multi-scale predictions. ”-”: The corresponding score
map and weight map are discarded during training and inference phase. The
proposed MJS + OHEM is used to supervise the training of each experiment.

Scale1 Scale2 Scale3 Scale4 mIoU
(%)

Speed
(FPS)

FLOPs
(G)

Params
(M)

✓ - - - 76.93

56.9 83.3 12.7- ✓ - - 77.20
- - ✓ - 76.72
- - - ✓ 76.51

- ✓ ✓ ✓ 77.67

53.2 97.0 12.9✓ - ✓ ✓ 77.12
✓ ✓ - ✓ 77.61
✓ ✓ ✓ - 77.57

✓ ✓ ✓ ✓ 78.16 52.2 101.6 13.0

4.2.5. Importance of each Module
In Table. 5, we conduct three experiments to reveal the im-

portance of feature aggregation, spatial alignment and adaptive
score-level fusion. In the first row, we directly input the features
from each level of the encoder into subsequent modules. This
results in a significant reduction in accuracy of 2.6%, suggest-
ing that aggregating multi-level features at each scale can ben-
efit spatial alignment and inference. In the second experiment,
we utilize bilinear interpolation to replace RAM for upsampling
low-resolution features, which decreases the accuracy by 1.5%.
This result reveals that spatial misalignment is the key factor
limiting scores fusion, and our RAM can effectively address this
problem. Finally, we use concatenation operation followed by
a 3 × 3 convolutional layer to fuse multi-scale features first, and
then use a segmentation head to obtain the prediction. We con-
duct this experiment to compare the commonly used feature-
level fusion with our in-network score-level fusion. Our ASFM
reduces the computational complexity by 17.2 GFLOPs while
improving the accuracy by 0.6%, which proves the effectiveness
and efficiency of the adaptive score-level fusion mechanism.

4.2.6. Ablation Study for Booster Training Strategy
Table. 6 gives the performance comparison of MSL and MJS

with and without OHEM, respectively. Compared to MSL, our
MJS brings a 0.9% reduction in accuracy. This may be due
to the fact that directly adding boundary supervision at each

Table 8: Experiments for the scale selection during the inference to further
reduce model complexity. All ablations are trained on the complete architecture
with four scales and discarded certain scales only during the inference phase.
The results reaching the best trade-off are bolded.

Scale1 Scale2 Scale3 Scale4 mIoU
(%)

Speed
(FPS)

FLOPs
(G)

Params
(M)

✓ - - - 77.10 70.0 76.1 11.9
- ✓ - - 77.94 64.4 81.3 12.2
- - ✓ - 77.73 61.0 82.7 12.5
- - - ✓ 77.01 57.9 82.8 12.7

- ✓ ✓ ✓ 78.06 53.4 96.9 12.9
✓ - ✓ ✓ 77.93 53.6 96.9 12.9
✓ ✓ - ✓ 78.07 53.3 96.9 12.9
✓ ✓ ✓ - 78.10 55.1 96.7 12.8

✓ ✓ ✓ ✓ 78.16 52.2 101.6 13.0

Figure 9: The illustration of one of the ablations in Table. 8. All dashed boxes
are removable components that do not participate in the forward propagation to
calculate the score map Scale2 during the inference process of MFARANet.
This demonstrates a unique pruning method dedicated to the MFARANet,
which is training on the whole network and removing certain scales during
inference.

scale will lead to a more serious class imbalance problem, since
boundary pixels only occupy a small part of the whole im-
age. Boundary pixels are difficult training examples, so we
employ OHEM to training on hard pixels selected by current
loss to alleviate the class imbalance problem. After combing
with OHEM, the accuracy of MJS + OHEM exceeds MSL +
OHEM. The accuracy increase of MJS is 2.1%, while MSL
only improves by 0.1%. This proves that our MJS is highly
complementary to OHEM, and using them together maximizes
the accuracy of our model. By adopting the booster training
strategy, our model finally achieves a segmentation accuracy of
78.2% with real-time speed on the validation set of Cityscapes.

4.2.7. Ablation for Multi-scale Predictions
In Fig. 8, we compare the segmentation accuracy of different

classes at each scale from the same trained model. From the re-
sults, Scale4 achieves higher segmentation accuracy than other
scales on relative large objects marked in green. This due to the
fact that the successive strided convolutional layers in DCNNs
bring a large receptive field, which can reduce the intra-class
confusion of large-scale objects. Scale2 and Scale3 have bet-
ter accuracy on objects marked in blue and red because these
middle or small-scale objects require a smaller receptive field
and higher spatial resolution to segment details. Interestingly,
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Table 9: Comparison with real-time methods on the Cityscapes dataset. In
addition to using the whole picture as input to compute mIoU, we also provide
single-scale inference accuracy on the crop size 1024 × 1024. ’MFARANet-
Pruned’ indicates the pruning method specific to MFARANet, which is shown
in Fig. 9 and discussed in Section. 4.2.8.

Name
mIoU(%)

Params(M) Resolution
Val Test

Speed-Orient:

ENet [63] - 58.3 0.4 360 × 640
ESPNet [64] - 60.3 0.4 512 × 1024
BiSeNetV1-1 [54] 69.0 68.4 5.8 768 × 1536
ContextNet [65] - 66.1 0.9 1024 × 2048
Fast-SCNN [66] 68.6 68.0 1.1 1024 × 2048
DFANetB [21] - 67.1 4.8 1024 × 1024
EDANet [67] - 67.3 0.7 512 × 1024
CGNet M3N21 [68] - 64.8 0.5 360 × 640
CIFReNet [69] 72.9 70.9 1.9 512 × 1024
NDNet [40] - 65.7 1.1 1024 × 2048
MiniNet-V2 [70] - 70.5 0.5 512 × 1024
AGLNet [71] - 70.1 1.1 512 × 1024
SGCPNet2 [43] - 69.5 0.6 768 × 1536

Good Trade-Off:

SegNet [46] - 57.0 29.5 360 × 640
ERFNet [7] 70.0 68.0 20.0 512 × 1024
ICNet [8] - 69.5 26.5 1024 × 2048
BiSeNetV1-2 [54] 74.8 74.7 49.0 768 × 1536
SwiftNet-18 [12] 75.5 75.4 11.8 1024 × 2048
SwiftNet-18pyr [12] 74.4 75.1 12.9 1024 × 2048
ShelfNet [41] - 74.8 23.5 512 × 512
BiSeNetV2-L [72] 75.8 75.3 - 512 × 1024
SFNet(DF1) [42] - 74.5 9.0 1024 × 2048
STDC2-Seg75 [73] 77.0 76.8 12.5 768 × 1536
RGPNet [24] 74.1 - 17.8 1024 × 2048
FaPN2 [48] 75.6 75.0 12.6 768 × 1536
DMA-Net [22] - 75.6 14.6 768 × 1536

MFARANet-Pruned
77.7 76.8

12.2
1024 × 1024

77.9 77.0 1024 × 2048

MFARANet
77.9 77.1

13.0
1024 × 1024

78.2 77.3 1024 × 2048

Scale1 has a smaller receptive field and higher spatial resolution
than Scale2, but performs worse on small-scale objects. We at-
tribute this to inputting very large-scale images of size 1024
× 2048 for inference, which may cause the receptive field of
Scale1 to be too small for small-scale objects. It is worth not-
ing that the final prediction achieves the highest segmentation
accuracy in almost all classes. Combined with the visualization
results in Fig. 7, the above results indicate that our MFARANet
can achieve the goal of fusing multi-scale scores to favor ob-
jects of multiple scales.

Furthermore, we conduct several ablation experiments in Ta-
ble. 7 on how multi-scale maps contribute to the final results.
When removing the score map at a certain scale, we addition-
ally add a segmentation head and a boundary head to calculate
auxiliary loss, ensuring that all ablations can use the same loss
MJS+OHEM introduced in Section. 3.5. This also helps main-

Table 10: Comparison with accuracy-oriented methods on the Cityscapes test
set. All models are trained using only the finely annotated dataset and the results
are reported using multi-scale testing. FLOPs and FPS are computed on a
single GTX 3090 GPU with an input size of 1024 × 1024.

Name
FLOPs
(G)↓

Speed
(FPS)↑

Params
(M)↓

mIoU
(%)

FCN8s [30] 654.9 12.3 50.5 65.3
DeepLab-V2 [38] 1236.8 4.1 44.0 70.4
RefineNet [74] 979.1 9.8 118.4 73.6
SAC [75] - - - 78.1
DepthSeg [76] - - - 78.2
PSPNet [10] 696.2 8.5 65.7 78.4
ResNet38 [77] 2231.1 3.4 - 78.4
BiSeNet-V1 [54] 193.4 25.8 51.0 78.9
DFN [78] 1006.3 8.2 90.7 79.3
PSANet [79] 806.0 - 85.6 80.1
DANet [80] 1052.1 5.4 66.6 81.5
HRNet-V2 [15] 348.1 14.1 65.9 81.6

MFARANet-Pruned 81.3 64.4 12.2 78.5
MFARANet 101.6 52.2 13.0 78.7

tain the structural integrity of the MFAM and RAM. The re-
sults show that training on a single-scale map reduces the accu-
racy by 0.96%-1.65% with a promotion of only 4.7 FPS, while
discarding one of the four score maps results in a decrease of
0.49%-1.04% with almost the same model complexity. There-
fore, we can conclude that training on full-scale score maps is
necessary as it achieves a better trade-off than the above abla-
tions.

4.2.8. Ablation for Scale Selection
We conduct experiments in Table. 8 for the scale selection to

further enhance the real-time performance. Since the results in
Table. 7 have proved that training on full-scale score maps is
necessary, we discard certain scales only during the inference
phase from the trained complete architecture with four scales.
Different with the experiments in Table. 7 that only discard
the segmentation head and the attention head, the ablations in
Table. 8 can remove all components that do not participate in
the forward propagation of the network to calculate the score
maps (illustrated in Fig. 9). From the results, inference on
the single-scale score map Scale2 reaches the best trade-off,
which is only 0.22% lower in the accuracy than the complete
network with a promotion of 12.2 FPS. This can be seen as a
pruning method dedicated to the MFARANet to reduce model
complexity, which is training on the whole network and pruning
during inference. The results of MFARANet-Pruned in Table.
9 can also prove the effectiveness of this pruning method on the
Cityscapes test set.

4.3. Comparison With State-of-the-Arts on the Cityscapes

4.3.1. Accuracy Comparison
We compare our method with other real-time semantic seg-

mentation methods in Table. 9. We roughly split them into two
categories: the first one is speed-oriented, which has extremely
low model complexity (FLOPs or Params); the other achieves

11



Table 11: Performance on CamVid. We use the whole picture as input to com-
pute mIoU.

Name Backbone mIoU(%) Params(M)

ENet [63] - 51.3 0.4
SegNet [46] - 55.6 29.5
BiSeNetV1-1 [54] Xception-39 65.6 5.8
BiSeNetV1-2 [54] ResNet-18 68.7 49.0
ICNet [8] ResNet-50 67.1 26.5
DFANetA [21] Xception-A 64.7 7.8
DFANetB [21] Xception-B 59.3 4.8
SwiftNetRN-18 [12] ResNet-18 72.6 11.8
CAS [81] - 71.2 -
EDANet [67] - 66.4 0.7
BiSeNet-V2 [72] - 72.4 -
SFNet(DF2) [42] DFNet-V2 70.4 10.5
CIFReNet [69] Mobilenet-V2 64.5 1.9
NDNet45-FCN8-LF [40] - 57.5 1.1
RGPNet [24] - 66.9 17.8
CGNet M3N21 [68] - 65.6 0.5

MFARANet ResNet-18 72.9 13.0

a good trade-off and can reach relatively high accuracy with
moderate model complexity. Compared to these speed-oriented
method, our network improves segmentation accuracy by at
least 6.4% on the test dataset while maintaining real-time speed
on a relatively high-resolution image of 1024 × 2048. In par-
ticular, we outperform the well-known ENet by a large margin
of 19.0%. As for the balance-oriented methods, they improve
the accuracy as much as possible while keeping a real-time
inference speed of over 24 FPS. SwiftNet and SFNet achieve
close accuracy to our method, but both of them employ mod-
ified versions of Pyramid Pooling Module (PPM) [10] on top
of their backbone to obtain multi-scale features, significantly
improving their performance. Overall, without using additional
modules (e.g., Atrous Spatial Pyramid Pooling [38], PPM) or
their modified versions, our method with moderate model size
achieves the highest segmentation accuracy among all real-time
methods.

Table. 10 shows the comparison of accuracy and model com-
plexity with accuracy-oriented methods, most of which use a
very deep classification network (e.g., ResNet-101) or a well-
designed large-scale network (e.g., HRNet) as the backbone.
Our method shows a very competitive result with these state-
of-the-art methods with much smaller model complexity. Com-
pared to the most accurate method HRNet-V2, our network re-
duces the accuracy by less than 3.0% at 19.7% of the model
size, 29.2% of the FLOPs and 3.7× FPS. Furthermore, our
network reaches a higher segmentation accuracy with a much
smaller model complexity than most methods, including the
well-known DeepLab, RefineNet, PSPNet, etc. For example,
our model outperforms PSPNet by 0.3% mIoU with 14.6%
FLOPs, 19.8% Params and 6.2× FPS of it. The above results
show that our network has a light-weight and effective decoder,
and demonstrates this multi-scale parallel inference architecture
is one way to achieve efficient semantic segmentation.

Table 12: Performance on PASCAL-Context. All results are reported using
multi-scale testing. We also report the performance of our model with different
backbones.

Name Backbone mIoU(%) Params(M)

FCN-8s [30] VGG 37.8 134.0
CRF-RNN [82] - 39.3 -
ParseNet [83] - 40.4 -
HO-CRF [84] - 41.3 -
Piecewise [85] - 43.3 -
VeryDeep [86] - 44.5 -
DeepLab-v2 [38] ResNet-101 45.7 43.9
Global Context [87] ResNet-101 46.5 -
DenseDecoder [18] ResNeXt-101 47.8 -
RefineNet [74] ResNet-101 47.1 118.0
RefineNet [74] ResNet-152 47.3 134.0
ShelfNet50 [41] ResNet-50 45.6 38.7
ShelfNet101 [41] ResNet-101 48.4 57.7
EncNet [14] ResNet-50 49.2 35.5
EncNet [14] ResNet-101 51.7 54.5

Our MFARANet ResNet-18 46.7 13.0
ResNet-50 49.6 25.7

ResNet-101 50.9 44.7

4.3.2. Trade-off between Speed and Accuracy
Fig. 1 reflects the trade-off between FPS and accuracy, from

which we have the following observations: 1) Our MFARANet
and its pruned versions using different input size reach the high-
est accuracy among all real-time methods. 2) Only STDC2-
Seg75 could reach competitive accuracy with our model (only
0.3% lower than us) on the test set at a similar inference speed,
while lower than us by 0.9% on the valuation set (Table. 9). Ad-
ditionally, our pruned-model has the same accuracy as STDC2-
Seg75 on the test set, and reaches 0.7% higher accuracy on the
valuation set with a speed increase of 12.1 FPS. 3) For methods
having a faster inference speed, our MFARANet-pruned at 64.4
FPS achieves 1.2%-9.5% accuracy improvement on the test set.
Thus, we can draw the conclusion that our framework exhibits
a better trade-off than the compared methods.

4.4. Evaluation on Other Datasets

4.4.1. Performance on CamVid
CamVid is another dataset of road scene from a car perspec-

tive, which has much fewer training and testing samples than
Cityscapes. We report the results on it in Table. 11 to prove the
generality of our approach, from which we can draw similar
conclusions as on the Cityscapes dataset. Compared to speed-
oriented methods, our method shows a large increase in accu-
racy. For example, compared to ENet and CGNet, the accu-
racy of our method improves by 21.6% and 7.3%, respectively.
Among methods aiming at good trade-off, we achieve the high-
est accuracy with a moderate model size.

4.4.2. Performance on PASCAL-Context
PASCAL-Context is a very challenging scene understanding

dataset. Quantitative results are shown in Table. 12, and all
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comparisons are picked from accuracy-oriented methods. Us-
ing ResNet-18 as the encoder, our method can outperform half
of the accuracy-oriented methods in the table with very few
parameters. By employing ResNet-50, the MFARANet can
exceed the performance of all methods except EncNet using
ResNet-101, including RefineNet adopting the very deep clas-
sification network ResNet-152 as the backbone. In particular,
when using the same ResNet-50 as the encoder, our method im-
proves the accuracy by 0.4% and 4% compared to EncNet and
ShelfNet50, while having a much smaller model size (25.7M
vs. 35.5M and 38.7M). The above results demonstrate the effi-
ciency and effectiveness of our method.

5. Discussion

Our work conducts an in-depth and detailed study of the
parallel inference architecture to make it suitable for real-time
segmentation tasks. In this section, combined with the ex-
perimental results, we summarize the overall performance of
MFARANet, and mainly discuss the motivation and substanti-
ation of the three core components proposed for building our
parallel inference network. As for the analysis of Multi-scale
Joint Supervision and the proof that ASFM can favor objects of
multiple scales, we provide them in Section. 4.2.6 and Section.
4.2.7 respectively.

The results in Table. 9 and Table. 11 show that our network
achieves the highest accuracy with a moderate model complex-
ity among all real-time methods on the Citysapes and CamVid
datasets. The trade-off comparison in Fig. 1 further prove that
our model achieves the best balance between performance and
model complexity. Besides, we achieve better or competitive
performance with much smaller model complexity compared
to accuracy-oriented methods in Table. 10 and Table. 12. The
above results demonstrate the efficiency of the proposed multi-
scale parallel inference network, and show its potential in com-
bination with more advanced backbones for accuracy-oriented
methods.

The MFAM, RAM, and ASFM are specially designed for
parallel inference segmentation network. Firstly, Table. 2
proves that the MFAM is more suitable for segmentation than
FPN because of aggregating multi-level features to each scale to
provid hierarchical clues for inference. Secondly, by comparing
RAM with bilinear interpolation and Straightforward Align-
ment, Table. 3 demonstrates that spatial misalignment is one of
the key issues for pixel-level scores fusion and can be efficiently
alleviated by our RAM. Finally, for ASFM, Table. 4 and Table.
7 show the effectiveness of adaptive fusion and the necessity of
the prediction at each scale. Furthermore, the third row of Ta-
ble. 5 proves that this adaptive score-level fusion is more effec-
tive and efficient than the feature-level fusion and single-scale
prediction used by most segmentation networks [25, 19, 42].

Our network has some limitations that can be improved. The
pixel-level attention mechanism in ASFM helps improve the
performance, but it also increases the computational budget of
the network. Although the pruning method shown in Fig. 9 and
discussed in Section. 4.2.8 largely reduces model complexity,
it is highly specific for our parallel inference architecture and

its generality need to be further studied. Therefore, designing
a fast attention mechanism has the potential to further improve
the speed and generality of our networks. Another future work
is to build Transformer branches upon the MFAM to explore
the combination of this parallel inference architecture with the
self-attention mechanism [88].

6. Conclusion

In this paper, we present a Multi-level Feature Aggrega-
tion and Recursive Alignment Network (MFARANet) to per-
form multi-scale parallel inference in a single-pass network,
a novel architecture for accurate real-time semantic segmenta-
tion. Specifically, our method consists of three core compo-
nents: Multi-level Feature Aggregation Module (MFAM), Re-
cursive Alignment Module (RAM) and Adaptive Scores Fusion
Module (ASFM). MFAM is proposed to aggregate the hier-
archical features of the encoder into four independent scales,
which not only provides multi-level information for accurate
segmentation, but also benefits the following spatial alignment
operation. Combining the flow-based alignment module with
the recursive upsampling architecture, our RAM can perform
efficient and accurate spatial alignment between scaled score
maps. Finally, we design ASFM to adaptively fuse multi-scale
scores to generate the final prediction that favor objects of vari-
ous scales. Experiments on three challenging datasets show that
our MFARANet can provide a general and effective solution for
real-time semantic segmentation.
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