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Abstract

This document explores the connections between singular value decomposition
(SVD) and various tensor operations in the context of quantum state calcula-
tions and tensor networks. The relationships between SVD and quantities such
as trace, trace distance, Frobenius norm, and fidelity are examined, highlight-
ing their similarities and differences. The intuition behind these mathematical
connections is explained, providing insights into the underlying principles and
applications of SVD and tensor operations in quantum physics and computa-
tional mathematics.

1 Introduction

Singular value decomposition (SVD) is a powerful matrix decomposition tech-
nique that has found numerous applications in various fields, including quantum
physics and computational mathematics. In parallel, tensor operations play a
crucial role in quantum state calculations and tensor network computations.
This document aims to explore the connections between SVD and tensor oper-
ations, shedding light on their similarities and differences.

In tensor networks, the singular value decomposition (SVD) plays a crucial
role in representing and manipulating quantum states. The SVD is a factoriza-
tion of a matrix or tensor into three components: U, S, and V†, where U and V
are unitary matrices and S is a diagonal matrix with non-negative entries called
singular values.

The concept of Schmidt rank is specific to bipartite quantum systems and is
related to the entanglement between the two subsystems. It refers to the number
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of non-zero singular values obtained from the SVD of the state’s density matrix
when the system is divided into two parts.

The quantum state of the bipartite system, lets call it ψ, can be said to be
entangled if its Schmidt rank (i.e. number of singular values) is strictly greater
than 1, and is not entangled otherwise. Hence Schmidt ranks for networks are
an important product of SVD for networks to determine their ”entanglement
conductivity” as it were.

2 Motivations

Understanding the relationships between SVD and tensor operations is of great
interest due to several motivations. Firstly, these connections provide a deeper
insight into the mathematical foundations of quantum state calculations and
tensor networks. By leveraging the principles of SVD, researchers can gain a
better understanding of the underlying structures and properties of quantum
states and tensors.

Secondly, the exploration of these connections offers practical benefits in
computational mathematics. The use of SVD in computing quantities such as
trace, trace distance, Frobenius norm, and fidelity provides efficient and accurate
methods for evaluating these metrics in tensor networks. This line of reasoning
can lead to improved algorithms and computational techniques for analyzing
and manipulating tensors.

3 Observed relations so far

1. SVD and Trace:

• The trace of a matrix can be obtained by summing the singular values
(diagonal elements) of its SVD [1].

• For a tensor network, the trace of a tensor contraction can be com-
puted by performing SVD on the resulting tensor and summing the
singular values [3].

2. SVD and Trace Distance:

• The trace distance between two quantum states can be computed as
the sum of the absolute differences between the singular values of
their SVD [2].

• In tensor network calculations involving quantum states, the SVD
can be used to compute the trace distance between two states by
comparing their singular values [3].

3. SVD and Frobenius Norm:

• The Frobenius norm of a matrix is equal to the square root of the
sum of the squares of its singular values [1].
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• Similarly, in tensor networks, the SVD can be used to compute the
Frobenius norm of a tensor by taking the square root of the sum of
the squares of its singular values [3].

4. SVD and Fidelity:

• The fidelity between two quantum states can be computed as the
square root of the sum of the squares of the singular values of their
SVD [2].

• In tensor network calculations involving quantum states, the SVD
can be used to compute the fidelity between two states by considering
their singular values [3].

4 intuition behind the maths

1. SVD and Trace: For a matrix A ∈ Cm×n, its singular value decomposition
(SVD) is given by A = UΣV ∗, where U ∈ Cm×m and V ∈ Cn×n are unitary
matrices, and Σ ∈ Rm×n is a diagonal matrix containing the singular values
of A on its diagonal. - The trace of a matrix A can be computed as tr(A) =∑min(m,n)

i=1 σi, where σi are the singular values of A.
2. SVD and Trace Distance: - The trace distance between two quantum

states ρ and σ can be computed as Tr|ρ−σ|, where |·| denotes the absolute value
and Tr represents the trace operation. - In tensor network calculations involving
quantum states, the SVD can be used to compute the trace distance between two
states by comparing the singular values obtained from their respective SVDs.

3. SVD and Frobenius Norm: - The Frobenius norm of a matrix A ∈ Cm×n

is defined as ∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2, where aij represents the entries of A.

- Similarly, in tensor networks, the SVD can be used to compute the Frobenius
norm of a tensor by taking the square root of the sum of the squares of its
singular values.

4. SVD and Fidelity: - The fidelity between two quantum states ρ and σ is
defined as F (ρ, σ) = Tr

√√
ρσ

√
ρ, where

√
· denotes the matrix square root. -

In tensor network calculations involving quantum states, the SVD can be used
to compute the fidelity between two states by considering the singular values
obtained from their respective SVDs.

5 Applications

The understanding of the connections between SVD and tensor operations has
several valuable applications. In quantum physics, these connections enable
researchers to compute and compare quantities like trace distance and fidelity
between quantum states. This information is crucial for analyzing the similarity
or distinguishability of quantum systems and for measuring the accuracy of
quantum state preparation and manipulation.
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Table 1: Differences and Similarities between SVD and Tensor Operations
Differences Similarities
SVD is a matrix decomposition tech-
nique

Both SVD and tensor operations are
used in quantum state calculations and
tensor networks

SVD decomposes a matrix into three
separate matrices

Both SVD and tensor operations in-
volve the use of singular values

Tensor operations involve various oper-
ations on tensors

SVD provides a mathematical frame-
work for computing quantities in tensor
networks

SVD is primarily used for analyzing and
manipulating matrices

Both SVD and tensor operations can
compute quantities like trace, trace dis-
tance, Frobenius norm, and fidelity

SVD involves unitary and diagonal ma-
trices

Tensor operations can involve reshap-
ing, tensor contractions, and other op-
erations specific to tensors

In the field of tensor networks, these connections allow for efficient compu-
tation of important metrics such as trace, Frobenius norm, and fidelity. These
metrics play a vital role in assessing the quality and accuracy of tensor network
approximations, enabling researchers to optimize tensor network calculations
and improve the efficiency of computational simulations.

Furthermore, the insights gained from understanding the connections be-
tween SVD and tensor operations can be applied to various other domains in-
volving matrix and tensor analysis. This includes applications in signal process-
ing, image and video compression, machine learning, and data analysis, where
SVD and tensor operations are commonly used for dimensionality reduction,
feature extraction, and data compression.

The formula for SVD is as follows: Singular Value Decomposition (SVD):

A = UΣV T (1)

=

r∑
i=1

uiσiv
T
i ([1])

The Schmidt rank is closely related to the singular value decomposition
(SVD). When we perform the SVD on a bipartite state, it essentially

decomposes the state into a sum of rank-1 terms. These rank-1 terms are the
product of one singular value (also known as Schmidt coefficient) and the
corresponding column vectors from the left and right singular matrices.

In Equation [1], A is decomposed into the matrices U , Σ, and V T , where r
represents the rank of the matrix. Here, U and V are unitary matrices, and Σ
is a diagonal matrix containing the singular values (Schmidt coefficients) in
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non-increasing order. The rank of A is equal to the number of non-zero
singular values, which is also referred to as the Schmidt rank.

To obtain the Schmidt rank decomposition, we can rewrite the SVD equation
in terms of the Schmidt coefficients:

Schmidt Rank Decomposition:

|Ψ⟩ =
r∑

i=1

σi|ui⟩ ⊗ |vi⟩ (2)

=

r∑
i=1

√
λi|i⟩ ⊗ |i⟩ ([2])

In Equation [2], |Ψ⟩ represents a quantum state that is decomposed into the
Schmidt coefficients σi, and the corresponding orthogonal states |ui⟩ and |vi⟩.
The sum over i runs from 1 to r, and λi represents the eigenvalues associated
with the Schmidt coefficients.

Here, r is the Schmidt rank, and ui and vi are the ith columns of U and
V respectively. Each term σiuiv

T
i represents a rank-1 contribution to the over-

all state. Therefore, the Schmidt rank decomposition expresses the bipartite
state |Ψ⟩ as a sum of rank-1 terms, where the Schmidt coefficients σi and the
corresponding vectors ui and vi capture the entanglement structure of the state.

Some code listing in python is shown below for common tensor operations.
In this code, some tensor operations are shown along with the SVD operation
‘np.linalg.svd(A)‘, performed on the matrix ‘A‘, and the resulting matrices ‘U‘,
‘S‘, and ‘VT‘ represent the left singular vectors, singular values, and right sin-
gular vectors, respectively:

Listing 1: Tensor operations code

import numpy as np

# Perform tensor dot product
r e s u l t = np . t ensordot ( tensor1 , tensor2 , axes=1)

# Perform tensor con t rac t i on
r e s u l t = np . einsum ( ’ i j k , j k l−> i l ’ , tensor1 , t ensor2 )

# Perform SVD decomposi t ion
U, S , VT = np . l i n a l g . svd (A)

For furthering applications we also seek to borrow some concepts that bear
similarities to the products of SVD, i.e. the Schmidt rank, from other fields to
provide benchmarks of quantum networks. In this we are inspired to treat the
quantum networks as if they are many-body quantum systems seen in the field
of particle physics and quantum chemistry.
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For instance, in quantum chemistry there is a very useful concept known as
the Slater rank.

The Slater rank can be a measure of entanglement or correlation in a many-
body wave function. It is defined as the minimum number of determinants
required to represent the wave function accurately. A determinant in this con-
text refers to a Slater determinant, which is a specific type of wave function
used to describe the behavior of fermions.

The Slater rank can be related to the Schmidt rank in bipartite systems. In
the case of a bipartite system, the Schmidt rank corresponds to the number of
singular values obtained from the SVD of the density matrix when the system
is divided into two parts. Similarly, the Slater rank corresponds to the number
of determinants needed to accurately represent the many-body wave function.

In tensor network methods, such recent developments in the Multi-Scale
Entanglement Renormalization Ansatz (MERA) [4], method has given new im-
petus to its application for strongly correlated systems. In the developments
of MERA The Slater rank plays a crucial role in approximating the wave func-
tion using tensor networks [5]. By limiting the Slater rank, one can efficiently
represent highly entangled states and capture the relevant physics of the system.

6 Tensor network diagrams

adopting the use of Tensor network diagrams can be a useful way to saliently un-
derstand some of the operations discussed here and develop a bit more intuition
about their use in quantum networks.

This is a maturing branch of mathematical representation and a lot can be
gleaned from literature while at the same time a particular flavour can be added
by our own exploration into the utility of tensor and matrix operations that are
being developed into practical benchmarks for quantum networks.

We employ the TIKz graph package to start to draw some of the established
tensor network diagrams and attempt to draw a new diagram for representing
the ranks discussed.
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1. Singular Value Decomposition (SVD):

U S V †

2. Schmidt Decomposition:

A B

C

3. Rank:

T R

4. SVD and Trace-Distance:

A S B

7 Conclusions

In conclusion, the exploration of the connections between SVD and tensor oper-
ations provides valuable insights into the mathematical foundations and practi-
cal applications of quantum state calculations and tensor networks. This line of
reasoning has the potential to enhance our understanding of quantum physics,
improve computational techniques, and find applications in a wide range of
domains involving matrix and tensor analysis.
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