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Phase reduction is an important tool for studying coupled and driven oscillators. The question
of how to generalize phase reduction to stochastic oscillators remains actively debated. In this
work, we propose a method to derive a self-contained stochastic phase equation of the form dϑ =
aϑ(ϑ)dt+

√
2Dϑ(ϑ) dWϑ(t) that is valid not only for noise-perturbed limit cycles, but also for noise-

induced oscillations. We show that our reduction captures the asymptotic statistics of qualitatively
different stochastic oscillators, and use it to infer their phase-response properties.

I. INTRODUCTION

Oscillatory behaviour is an ubiquitous phenomenon in
physical, biological, chemical and engineering systems [1].
A powerful way of approaching oscillations is by means
of a phase variable. In a purely deterministic system

ẋ = F(x), x ∈ Rn (1)

oscillatory behaviour corresponds to stable T -periodic so-
lutions of system eq. (1) around the attractor of the dy-
namics: the limit cycle (LC), which we denote as Γ. Typ-
ically, the existence of the attractor is used to provide a
simpler description of the oscillatory dynamics. Namely,
one parameterizes the LC, which is a closed curve in the
phase space, by means of an angular phase variable θ
such that Γ = {x | x = γ(θ)}. Therefore, assuming the
solutions are asymptotically close to the limit cycle, the
parameterisation γ(θ) allows to study the system (1) by
means of the phase reduction

dθ =
2π

T
dt, (2)

which is a one-dimensional description of the periodic dy-
namics. This phase reduction approach is a well-known
method to study complex oscillatory phenomena, such as
response to perturbations, phase locking or synchroniza-
tion [2, 3].

Since real-world systems are often intrinsically fluctu-
ating and noisy, it is natural to aim to extend the phase
reduction framework to stochastic oscillators. In princi-
ple, a meaningful stochastic phase reduction should pro-
vide a level of understanding of the dynamics similar
to the deterministic case, while incorporating the noisy
component observed in realistic oscillations.

A first approach to this question is to consider the noise
as a weak perturbation of the LC oscillator [4]. In this
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case, using a perturbative approach, one can describe the
stochastic system by means of the deterministic phase
[4–6]. Alternatively, extensions of phase reduction to
stochastic systems based on variational methods have
been proposed [7, 8]. However, perturbative and vari-
ational LC approaches require the existence of an under-
lying LC. Thus, they have trouble generalizing over the
important cases when the addition of noise to a non os-
cillatory deterministic system leads to noise-induced os-
cillations [9].

Therefore, a fundamental challenge for building a gen-
eral stochastic phase reduction is to define a phase ob-
servable that does not require the existence of an un-
derlying LC, and that is applicable in the wide range of
contexts in which LC and noise-induced oscillations can
emerge. Overcoming this challenge in a successful way
requires going back to the phase definition itself and up-
dating it. The deterministic phase is defined in terms
of two equivalent notions: either in terms of Poincaré
sections, or of the system’s asymptotic behaviour [10].
During the last decade, these two notions of phase have
been extended to stochastic oscillators. Ten years ago,
Schwabedal and Pikovsky [11] found the natural way of
extending Poincaré’s approach to noisy oscillators. To
this end, they constructed a system of isochrons (curves
of “equal timing”) with the mean return time property,
namely, that the average time it would take a trajectory
to complete one oscillation and return to some point on
the original isochron should equal the mean period of the
oscillator, a criterion that can be also related to the solu-
tion of a partial differential equation [12]. As an alterna-
tive to the mean-return-time phase, Thomas and Lindner
proposed that a meaningful phase observable (which they
denoted as the “stochastic asymptotic phase”) can be ex-
tracted from the asymptotic behaviour of the conditional
density [13].

However, while these two notions of phase solve the
problem of finding a phase observable that applies to the
many different mechanisms generating stochastic oscilla-
tions, a general method for finding a self-contained phase
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equation of the form

dϑ = aϑ(ϑ)dt+
√
2Dϑ(ϑ) dWϑ(t) (3)

is still missing. While there have been different attempts
in the past, they were built ad-hoc for specific classes of
stochastic oscillators [8, 14, 15].

In this paper, we aim to fill this gap by developing a
generalized reduction procedure: Given a phase observ-
able ϑ, we provide a way to obtain a self-contained phase
equation as in eq. (3). We show the generality of our
procedure by i) applying it to two different phase ob-
servables (the previously mentioned Mean-Return-Time
phase and the stochastic asymptotic phase) and ii) find-
ing self-contained phase equations of qualitatively differ-
ent noisy oscillators.

Our paper is organised as follows. In sec. II, we intro-
duce the mathematical background, which relies on the
Kolmogorov backwards operator L†. Next, in sec. III,
we introduce the main result of this work: the stochas-
tic phase reduction procedure. In sec. V, we define the
asymptotic statistics we use to evaluate the quality of our
reduction procedure. In sec. IV, we introduce two differ-
ent systems in which oscillations emerge from different
mechanisms, and to which we apply our framework. In
sec. VI, we show a direct application of our framework:
predicting the phase-dependent response of the reduced
oscillator to an external perturbation. We end with a
discussion of the results in sec. VII.

II. THEORY & MATHEMATICAL
PRELIMINARIES

We consider the Itô stochastic differential equation
(SDE)

dX = f(X)dt+ g(X)dW(t), (4)

where X ∈ Rn is the state vector and W ∈ Rk is a col-
lection of IID Wiener processes with increments dW(t).
Instead of studying system eq. (4) by means of individ-

ual realisations (a pathwise approach), we adopt an en-
semble perspective: we consider a collection of trajecto-
ries described by the conditional probability density func-
tion P (x, t|x0, t0). This density obeys the Kolmogorov
forward and backward equations (the former also known
as Fokker-Planck equation) [16]:

∂

∂t
P (x, t|x0, t0) = L[P ]

= −∇x · (f(x)P ) +∇2
x(G(x)P ), (5)

− ∂

∂t0
P (x, t|x0, t0) = L†[P ]

= fT(x0) · ∇x0P + G(x0)∇2
x0
P, (6)

where G = 1
2gg

⊺. Note that L† is known as the generator
of the Markov process X(t) and is the infinitesimal gen-
erator of the stochastic Koopman operator [17, 18]. If we

define the Koopman semigroup of operators K∆t acting
on a real valued observable F (x) of system eq. (4) such
that

K∆t[F (x(t))] = ⟨F (x(t+∆t)⟩, (7)

then [18]

L†[F ] = lim
∆t→0

K∆t[F (x(t))]− F (x(t))

∆t
. (8)

We use the standard convention where X refers to the
random variable, while x refers to the independent ar-
gument of the corresponding probability density (X is
stochastic whereas x is a deterministic object).
We assume that the forward (L) and backward (L†)

Kolmogorov operators possess a discrete spectrum with a
one-dimensional null space, and eigenvalues λ and eigen-
functions Pλ, Q

∗
λ satisfying

L[Pλ] = λPλ, L†[Q∗
λ] = λQ∗

λ. (9)

Biorthogonality of the eigenfunctions under the natural
inner product follows:

⟨Qλ′ | Pλ⟩ =
∫
dxQ∗

λ′(x)Pλ(x) = δλ′λ. (10)

This relation allows to decompose the conditional prob-
ability density as follows [16]: for t > t0,

P (x, t|x0, t0) = P0(x) +
∑
λ̸=0

eλ(t−t0)Pλ(x)Q
∗
λ(x0), (11)

where P0 is the eigenfunction associated with eigenvalue
0. Properly normalized, it gives the stationary probabil-
ity density.
According to Itô’s chain rule [16], for any smooth (C2)

observable F (X)

dF (X) = L†[F (X)]dt+∇F (X)⊺g(X)dW(t). (12)

Thus, for any stochastic process, the ensemble proper-
ties and pathwise realizations of the system are linked
through the Kolmogorov backwards operator.

Following reference [13], we define system (4) to be
robustly oscillatory if the following conditions are met:

1. there exists a nontrivial eigenvalue of L† with least
negative real part λ1 = µ1 + iω1, which is complex
valued (ω1 > 0) and unique;

2. the oscillation is pronounced, i.e. the quality factor
|ω1/µ1| is much larger than 1;

3. all other nontrivial eigenvalues λ′ are significantly
more negative in their real parts, i.e. |ℜ[λ′]| ≥
2|ℜ[λ1]|.
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A. The Stochastic Asymptotic Phase

If these conditions are satisfied, there exists a long-
lived oscillatory mode Q∗

λ1
that dominates the approach

to the stationary distribution, even after all other modes
in eq. (10) have decayed. As discussed in [13], since Q∗

λ1

is complex, we can rewrite it in polar form:

Q∗
λ1

= u(x)eiψ(x), (13)

where ψ(x) is the stochastic asymptotic phase: at large
times, and provided the robustly oscillatory criterion is
met, if one considers the same system at initial time
t = t0 with two different initial conditions (x(t0) = x1)
and (x(t0) = x2), the respective probability densities
P (y, t|x1, t0) and P (y, t|x2, t0) will decay to the station-
ary state with an oscillatory offset given by ψ(x1)−ψ(x2).
Thus, ψ(x) defines level sets,

Iψ(x) = {x | ψ(x) = ψ}, (14)

corresponding to the sets of initial conditions such that
the main oscillatory component of their conditional prob-
ability densities will evolve in-phase with each other. In
the case of a system consisting of a limit cycle perturbed
by noise, we observe that ψ converges to the deterministic
asymptotic phase θ in the noise-vanishing limit in each
example we have studied. This relationship has already
been noted in the context of Koopman theory [19, 20].

Applying the Itô chain rule to this new observable
ψ(x), we extract its evolution law [21]

dψ(X) =
(
ω1 −

Ω(X)︷ ︸︸ ︷
2
∑
i,j

Gij(X)∂i ln(u(X))∂jψ(X)
)
dt

+∇ψ(X)⊺g(X)dW(t),

(15)

where we introduce the function Ω(x) to ease notation.

B. The Mean–Return-Time Stochastic Phase

An alternative definition for the phase of stochastic
oscillators was proposed by Schwabedal and Pikovsky in
[11], who constructed the Mean-Return-Time phase in
terms of a system of Poincaré sections {ℓMRT(ϕ), 0 ≤
ϕ ≤ 2π}, foliating a domain R ⊂ R2 and possessing
a Mean–Return-Time (MRT) property: a section ℓMRT

satisfies the MRT property if for all the points x ∈ ℓMRT

the mean return time from x back to ℓMRT, having com-
pleted one full rotation, is constant.

First defined by [11] by means of an algorithmic nu-
merical procedure, the MRT phase was later related to
the solution of a boundary value problem [12]. As the au-
thors in this paper showed, the ℓMRT sections correspond
to the level curves of a function T (x), with appropriate
boundary conditions, satisfying the following PDE asso-
ciated with a first-passage-time problem

L†T (x) = −1, (16)

where L† corresponds to the Kolmogorov backwards op-
erator defined in eq. (6). Imposing a boundary condition
amounting to a jump by T (the mean period of the oscil-
lator) across an arbitrary section transverse to the oscil-
lation, the unique solution of eq. (16), up to an additive
constant T0, is a version of the so-called MRT function,

Θ(x) = (2π/T )(T0 − T (x)). (17)

Hence, the MRT phase Θ(x) satisfies

L†[Θ(x)] =
2π

T
, (18)

and the transformation of X(t) in eq. (4) to the MRT
phase Θ obeys the stochastic differential equation

dΘ(X) =
2π

T
dt+∇Θ(X)⊺g(X)dW(t), (19)

so it evolves in the mean in a way which is formally anal-
ogous to the dynamics for the deterministic phase (see
eq. (2)). As for the stochastic asymptotic phase, it was
shown in [12] that the MRT phase converges to the de-
terministic phase θ as noise vanishes.

III. SELF-CONTAINED PHASE EQUATION

We have introduced two different phase mappings

x(t) → ψ(x(t)), x(t) → Θ(x(t)), (20)

the asymptotic phase and the MRT phase mappings, re-
spectively, which yield two different equations eq. (15)
and eq. (19). However, neither of these equations are
fully self-contained as they both depend on X(t) [22].
Ideally, given an arbitrary phase mapping

x(t) → ϑ(x(t)), (21)

we would like to have a self-contained equation for the
phase dynamics of the form

dϑ = aϑ(ϑ)dt+
√
2Dϑ(ϑ)dWϑ(t), (22)

where dWϑ is the increment of a single Brownian motion
(rather than k of them) andDϑ is a (phase-dependent) ef-
fective noise intensity. BothDϑ and the phase-dependent
local frequency aϑ should be smooth and periodic in ϑ.
While equation eq. (22) is a fully self-contained phase
equation, it presents the challenge of estimating these
new functions aϑ(ϑ) and Dϑ(ϑ).

A. Reduction framework

We will start by deriving the general reduction for any
phase observable, before applying it to the asymptotic
and MRT phases. Consider the general phase observable
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ϑ(x(t)) in eq. (21). Its evolution equation is derived by
means of the Itô chain rule:

dϑ(x) = L†[ϑ(x)]dt+∇ϑ(x)⊺g(x)dW(t). (23)

Given that the sum of uncorrelated Gaussian white noise
processes is Gaussian white noise, we rewrite this process
with one dimensional Gaussian white noise dW1D, such
that:

dϑ(x) = L†[ϑ(x)]dt+
√

2σ(x)dW1D, (24)

where the new noise amplitude term is given by

σ(x) =
1

2

∑
ijk

gij(x)gkj(x)∂iϑ(x)∂kϑ(x).

Let us assume there exists a transformation x =
x(η, ϑ) (where η refers to n − 1 phase transversal co-
ordinates). In what follows, we show a way in which the
system in eq. (24) can be approximated by a reduced,
self-contained equation of the form in eq. (22) where the
n − 1 transversal dimensions have been integrated out,
leaving only the phase dependency. For simplicity, we
assume that we are in the planar case (n = 2), so we
only have one transverse variable to integrate out.

We rewrite the stationary probability density P0(x) in
terms of this new set of coordinates x = x(η, ϑ), and
obtain the distribution P̄0(η, ϑ). We use it to define the
following conditional probability

P̄0(η|ϑ̄) ≡
P̄0(η, ϑ̄)

P̄0(ϑ̄)
, (25)

provided the density P̄0(ϑ) > 0, ∀ 0 ≥ ϑ ≥ 2π.
Consider the dynamics for dϑ(X) in eq. (24). If

we take the expected value of each side, using the
stationary probability density, since dW1D(t) is inde-
pendent of X(t) (and functions of X(t)), we see that

⟨
√
2σ(X(t))dW1D⟩ ≡ 0. This motivates our choice of

aϑ(ϑ): we want aϑ(ϑ) to represent the average rate of
increase of ϑ when we happen to be on a particular
isochron. That is,

aϑ(ϑ̄) =

∫
x∈Iϑ̄

L†[ϑ(x(η, ϑ̄))]P̄0(η|ϑ̄)dη, (26)

where L†[ϑ(x(η, ϑ̄))] is the drift of ϑ(x) in eq. (23), which
is averaged over the level curves of ϑ

Iϑ̄ = {x | ϑ(x) = ϑ̄}

that we parameterize by means of the transverse coordi-
nate η. The choice of aϑ(ϑ) in eq. (26) is meant to ensure
that our reduction captures the first moment of the short
term dynamics of ϑ. Indeed, one can easily show that,
assuming stationarity, eq. (26) is equivalent to

aϑ(ϑ̄) = lim
dt→0

1

dt
⟨∆ϑ(x(t))⟩ϑ(x(t))=ϑ̄ , (27)

where ∆ϑ(x(t)) = ϑ(x(t + dt)) − ϑ(x(t)) refers to the
increment of the phase variable between t and t + dt.
Equation eq. (27) makes explicit that with this choice of
aϑ, we match the expected rate of progress of the phase
angle for each phase ϑ.
Once our choice of aϑ(ϑ) is thus made, we choose

Dϑ(ϑ) such that we best capture the second moment of
the short-term dynamics of the phase:

Dϑ(ϑ̄) = lim
dt→0

1

2dt

〈
(∆ϑ(x(t))− aϑ(ϑ̄)dt)

2
〉
ϑ(x(t))=ϑ̄

.

(28)
Expanding this formula yields

Dϑ(ϑ̄) =
1

2

∑
ijk

∫
x∈Iϑ̄

gij(x)gkj(x)∂iϑ(x)∂jϑ(x)P̄0(η|ϑ̄)dη

+
1

2

(∫
x∈Iϑ̄

L†[ϑ(x)]2P̄0(η|ϑ̄)dη − aϑ(ϑ̄)
2
)
,

where again x = x(η, ϑ̄). Note that in this reduction
framework, the variability of single realizations around
the mean comes from two distinct sources: not only from
the average diffusion value, but also from the variance of
the drift along a given isochron. We note that equations
eq. (27) and eq. (28) show that this reduction procedure
makes it possible to extract aϑ and Dϑ from a stationary
time series ϑ(X(t)). Put differently, aϑ and Dϑ are ob-
tained as the first two Kramers-Moyal coefficients of the
trajectory ϑ(t), see [23, 24] (but also [25]) for examples
of how to extract them from stochastic trajectories.

B. Stochastic Asymptotic Phase Reduction

Let us now apply the general framework derived above
to obtain a reduced evolution equation for the stochastic
asymptotic phase ψ, in the form

dψ = aψ(ψ)dt+
√
2Dψ(ψ)dWψ(t). (29)

From equation eq. (15), we find that the drift term takes
the form

aψ(ψ) = ω1 −
∫
x∈Iψ

P̄0(η|ψ)Ω(x)dη,

where Ω(x) is defined at eq. (15). Similarly, the effective
noise term takes the form

Dψ(ψ̄) =
1

2

∑
ijk

∫
x∈Iψ̄

gij(x)gkj(x)∂iψ(x)∂jψ(x)P̄0(η|ψ̄)dη

+
1

2

(∫
x∈Iψ̄

(ω1 − Ω(x))2P̄0(η|ψ̄)dη − aψ(ψ̄)
2
)
,

where Iψ refers to

Iψ = {x | ψ(x) = ψ}.

As noted above, under the stationarity assumption, those
two expressions can be approximated from time series
realizations of ψ(X(t)) using expressions eq. (27) and
eq. (28).
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C. Mean–Return-Time Phase Reduction

Let us now derive a phase equation for the Mean–
Return-Time phase Θ in the form

dΘ = aΘ(Θ)dt+
√

2DΘ(Θ)dWϑ(t). (30)

Following the same general reduction procedure, we ob-
tain expressions for the corresponding drift and effective
noise functions

aΘ(Θ) =
2π

T
, (31)

and

DΘ(Θ) =
∑
i,j

∫
x∈IΘ

P̄0(η|Θ)∂iΘ(x)∂jΘ(x)Gij(x)dη, (32)

where, as for Iψ, IΘ accounts for the MRT sections

IΘ = {x | Θ(x) = Θ}.

One can also get these coefficients from data series
Θ(X(t)) (see eq. (27) and eq. (28)).

IV. NUMERICAL SIMULATIONS

We apply our framework to two systems exhibiting
canonical bifurcations and illustrating various mecha-
nisms of noisy oscillations.

Noisy Hopf bifurcation – We consider the canonical
model for a supercritical Hopf bifurcation endowed with
Gaussian white noise

ẋ = βx− y − x(x2 + y2) +
√
2σxξx(t),

ẏ = x+ βy − y(x2 + y2) +
√
2σyξy(t),

(33)

β ∈ R.
In the deterministic setting, there is a supercritical

Hopf bifurcation at β = 0. For β > 0, there is a sta-
ble limit cycle of radius

√
β and period T = 2π, which

can be parameterized using the polar phase [26]

θ = arctan
(y
x

)
.

The stochastic version has been studied for a long time,
especially with respect to its correlation statistics (see
e.g. [27–29]). In Fig. 1, we show simulations of the noisy
system above the bifurcation (β = 1). We observe that
for low noise (σx = σy = 0.01, panel 1) and high noise
(σx = σy = 0.08, panel 2), the phase functions ψ(x)
and Θ(x) still show the characteristic spokes of a wheel
structure (see panels 1-2 (a) and 1-2 (b)) that would be
present without noise.

Panels (1-2(c)) show the stationary probability densi-
ties. As these panels show, the trajectories are dispersed
around the LC with radial symmetry dispersion which

increases with the level of noise. Indeed, because of the
symmetry of both the model and the noise, both the drift
terms and the effective diffusion terms are constant (see
panels (d)). Indeed, we note aψ = aΘ = 1, indicating a

T = 2π mean rotation rate.
For β < 0, the deterministic system has a stable focus

at the origin. Hence, in the absence of noise, the trajec-
tories exhibit damped oscillations decaying towards the
origin, and the asymptotic phase would not be well de-
fined [30]. The addition of noise perturbs trajectories
away from the stable steady state, creating a quasicy-
cle [14, 31]. This is an example of noise-induced oscil-
lations, leading to a non zero probability of finding the
system away from that fixed point. Indeed, as can be
seen in Fig. 2, panels c, the probability density has a 2D
Gaussian-like profile the maximum of which is located at
the origin, where the deterministic fixed point is found.
Despite the noise-induced character of the oscillation, the
phase functions ψ(x) and Θ(x) have a ‘spokes of a wheel’
structure similar to those of the LC case (panels (a) and
(b)). Drift and effective noise functions, similarly to the
noisy LC case, are constant (Fig. 2 panels 1-2 (d)). How-
ever, we note that for the same levels of noise, the effec-
tive noise intensities Dψ and DΘ are much larger than in
the LC case.
Saddle-node on an invariant circle – Next, we con-

sider a system that, in the deterministic case, undergoes
a saddle-node bifurcation on an invariant circle (SNIC)

ẋ = nx−my − x(x2 + y2) +
y2√
x2 + y2

+
√
2σxξx(t),

ẏ = mx+ ny − y(x2 + y2)− xy√
x2 + y2

+
√
2σyξy(t),

(34)
with m,n ∈ R.
In the noiseless case with n = 1, the SNIC bifurcation

occurs at m = 1 and it separates an oscillatory LC state
(m > 1) (Fig. 3) from a saddle-node regime (m < 1)
(Fig. 4). The addition of noise to the saddle-node regime
induces a non-zero probability that the system will leave
the stable point and jump onto the circle, leading to os-
cillations. We refer to this state as the excitable regime
of the system.
Let us now present how our phase reduction applies

to system eq. (34) in the oscillatory and excitable cases.
We consider parameter values close to the bifurcation
(m = 1.03 and m = 0.999, respectively). In the low noise
case (panels 1 in Fig. 3 and Fig. 4), we observe that the
phase functions we consider, that is ψ(x) (panel (a)) and
Θ(x) (panel (b)), have a similar structure reflecting the
asymmetries in the velocity of the system during a cycle.
Indeed, as the trajectories slow down near the ghost of
the saddle-node, the phase sections appear more densely
packed in this area of the phase space. By contrast, as
trajectories speed up far from the ghost, we observe that
the phase sections are more broadly separated.
Those velocity variations are also reflected in the drift

term of the asymptotic phase reduction aψ, which is
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FIG. 1. Hopf above bifurcation. For the noisy Hopf bi-
furcation model in eq. (33) with β = 1 we show for two levels
of noise (panel 1, above σx = σy = 0.01 and panel 2, below
σx = σy = 0.08): (a) The asymptotic phase function ψ(x).
(b) The MRT phase function Θ(x). (c) The stationary prob-
ability distribution. (d) Top panel shows the functions aψ
and

√
2Dψ (blue and orange curves, respectively) and bottom

panel shows aΘ and
√
2DΘ (blue and orange curves, respec-

tively), abscissa shared.

smaller near the phase values corresponding to the lo-
cations of the saddle node, indicating the slowness of the
system. Interestingly, we observe that, below the bifurca-
tion, the asymptotic phase drift aψ has two zero crossings
(indicating two fixed points) (Fig. 4.1-d), which disap-
pear above bifurcation, where the drift becomes purely
positive (Fig. 3.1-d). We interpret this as a sign that, in
the case of the stochastic asymptotic phase ψ, our phase
reduction technique captures the transition from the ex-
citable regime to the oscillatory regime. This result for
the excitable SNIC can be seen as a formulation of noise
induced oscillations in excitable systems as a one dimen-
sional escape problem. Indeed, there is a phase inter-
val for which the drift aψ(ψ) term becomes negative: in
that range, the phase ψ behaves like a particle stuck in a
one dimensional potential well and subjected to thermal

FIG. 2. Hopf below bifurcation. For the noisy Hopf bi-
furcation model in eq. (33) with β = −0.001 we show for two
levels of noise (panel 1, above σx = σy = 0.01 and panel 2,
below σx = σy = 0.08): (a) The asymptotic phase function
ψ(x). (b) The MRT phase function Θ(x). (c) The stationary
probability distribution. (d) Top panel shows the functions aψ
and

√
2Dψ (blue and orange curves, respectively) and bottom

panel shows aΘ and
√
2DΘ (blue and orange curves, respec-

tively), abscissa shared.

fluctuations with noise intensity Dψ(ψ). A full rotation
occurs when the fluctuations manage to push the phase
out of the well.

When the parameters are varied so that the system
goes above the bifurcation, this feature disappears as
both aψ and

√
2Dψ are positive everywhere, consistent

with the purely oscillatory regime (Fig. 5-right). We
check in Fig. 5 that this transition seems to be contin-
uous, as the drift appears to smoothly move across the
0-line as the bifurcation parameter m is increased.

This distinction between excitable and oscillatory
regimes does not hold anymore when noise levels get too
large. Indeed, looking at Fig. 3 and 4, panels 2, the drift
and effective noise coefficients become qualitatively very
similar: the drift terms aψ show zero-crossings both be-
low and above bifurcation. We interpret this result as
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FIG. 3. SNIC above bifurcation. For the noisy SNIC bi-
furcation model in eq. (34) with n = 1, m = 1.03 we show for
two levels of noise (panel 1, above σx = σy = 0.01 and panel
2, below σx = σy = 0.08): (a) The asymptotic phase function
ψ(x). (b) The MRT phase function Θ(x). (c) The stationary
probability distribution. (d) Top panel shows the functions aψ
and

√
2Dψ (blue and orange curves, respectively) and bottom

panel shows aΘ and
√
2DΘ (blue and orange curves, respec-

tively), abscissa shared.

follows: we are considering two cases that are very close
in the parameter space, therefore, large levels of noise
effectively blur the distinction between the two sides of
the bifurcation.

Finally, we comment on how the reduction appears
through the lens of the MRT phase in place of the asymp-
totic phase. By construction, the MRT phase defines sec-
tions with uniform mean return times. For this reason,
one should not be surprised to find a constant drift term.
In this case, all the variability in the velocity along the
cycle is carried by the effective noise term DΘ. We also
see that the mean-return-time period T reflects the dif-
ference between regimes: it is larger below bifurcation
than above.

FIG. 4. SNIC below bifurcation. For the noisy SNIC bi-
furcation model in eq. (34) with n = 1,m = 0.999 we show for
two levels of noise (panel 1, above σx = σy = 0.01 and panel
2, below σx = σy = 0.08): (a) The asymptotic phase function
ψ(x). (b) The MRT phase function Θ(x). (c) The stationary
probability distribution. (d) Top panel shows the functions aψ
and

√
2Dψ (blue and orange curves, respectively) and bottom

panel shows aΘ and
√
2DΘ (blue and orange curves, respec-

tively), abscissa shared.

V. LONG TERM STATISTICS

Our choice for the drift and effective noise coefficients
of the reduced phase equation ensures our reduction ac-
curately captures the short term (lim dt → 0) statistics
of the full phase evolution. However, a meaningful phase
reduction should also be able to reliably capture the long
term (asymptotic) statistics of the evolution of the full
system. For that reason, given a general phase mapping
as in eq. (21), we will consider the following statistics:
the mean rotation rate

ωϑeff = lim
t→∞

1

t
⟨ϑ(t)− ϑ(0)⟩ , (35)
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FIG. 5. Transition across the SNIC bifurcation.
Asymptotic stochastic phase ψ drift function aψ(ψ̄) (blue)

and effective diffusion term
√

2Dψ(ψ̄) (orange) for the SNIC
for n = 1 and increasing values of m around the bifurcation.
The phase reduction captures the bifurcation from the ex-
citable to the oscillating state. Left: m = 0.999. Middle: m
= 1.0. Right: m = 1.03

and the phase diffusion coefficient

Dϑ
eff = lim

t→∞

1

2t

〈
[ϑ(t)− ϑ(0)− ωϑefft]

2
〉
. (36)

When considering the long-term statistics, we take ϑ
in the preceding expressions to represent the unwrapped
phase. That is, rather than taking ϑ mod 2π (mapping x
to the circle) we omit any phase “reset” at 2π and instead
map x to the line ϑ ∈ R. We will numerically compare
those two quantities for the full mapping eq. (23) and
the self-contained phase reduction eq. (22). We expect
that the more similar those quantities are for the full
and reduced system, the better our reduction captures
the dynamics of the full system.

Additionally, since the general phase reduction is a 1D
SDE with periodic drift and noise coefficients, we can use
the results in [32], which give us the following expressions
for the mean rotation defined in eq. (35)

ωϑeff =
2π(1− eV (2π))∫ 2π

0
I+(ϑ̃)dϑ̃/

√
D(ϑ̃)

, (37)

and the diffusion coefficient in eq. (36)

Dϑ
eff =

4π2
∫ 2π

0
I-(ϑ̃)I

2
+(ϑ̃)dϑ̃/

√
D(ϑ̃)[∫ 2π

0
I+(ϑ̃)dϑ̃/

√
D(ϑ̃)

]3 , (38)

where

V (ϑ) = −
∫ ϑ

0

a(ϑ̃)

D(ϑ̃)
dϑ̃,

and

I±(ϑ) = ±e∓V (ϑ)

∫ ϑ±2π

ϑ

e±V (ϑ̃)√
D(ϑ̃)

dϑ̃.

The evaluation of the corresponding integrals is feasible
as long as the noise intensity is not too small.

FIG. 6. Long term statistics of the asymptotic phase
ψ. (a) Hopf bifurcation in the LC case; (b) Hopf bifurcation
in the focus case; (c) SNIC in the LC case; (d) SNIC in the
excitable case. We compute each statistic for: the full phase
equation eq. (15) (thick line), its phase reduction equation
eq. (29) (narrow line) and the theoretical formulas eq. (37)
and eq. (38) (dots). Results for the MRT are similar and can
be found in the Supplemental.

Hopf bifurcation – As results in Fig. 6 panel (a) show,
for the Hopf system in the LC case, our phase reduction
captures both the mean rotation rate ωeff and the dif-
fusion constant Deff: we only observe small deviations
in Deff for high values of noise. However, in the qua-
sicyclic regime, our phase reduction underestimates the
long term diffusion coefficient of the Hopf below bifur-
cation, even though it systematically captures its mean
rotation rate (see Fig. 6 (b)). We interpret this mismatch
as a consequence of the pronounced fluctuations of the
system’s dynamics around the fixed point. For this par-
ticular system, our one-dimensional projection to a line
cannot capture all details of the dynamics, as amplitude
fluctuations play an important part in the system’s dy-
namics. This leads to an underestimation of the long-
term phase fluctuations.

SNIC bifurcation – As our calculations for the long
term statistics show (Fig. 6 panels c and d), our phase
reduction accurately captures the mean rotation, both
above and below the SNIC bifurcation. However, for
larger levels of noise, it underestimates the mean diffu-
sion, for reasons similar to those described above: the
reduction to the line breaks down when fluctuations are
too large, which is the case when the noise strength in-
creases.
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VI. INFERRING PHASE RESPONSE
PROPERTIES

We will now show how our stochastic phase reduction
framework can be applied to infer the phase response to
weak external perturbations at linear order.

In the case of a deterministic oscillator parameterized
with phase θ, the phase response to a weak perturba-
tion can be linearized around the LC such that it is pro-
portional to the gradient of the phase. This quantity is
known as the infinitesimal phase response curve (iPRC)
[33]

iPRC(θ) = ∇θ(x)|x=γ(θ). (39)

where we assume the existence of a parameterisation x =
γ(θ) for x ∈ LC.

The main obstacle in finding a stochastic analogue of
this quantity is the phase variability inherent to stochas-
tic oscillators. As there is no LC, trajectories may visit
any point x of the phase space with a given probability
P0(x). As a consequence, perturbing the system at the
same phase will generally yield different phase responses.

Consistent with our averaging approach to obtain a
one-dimensional phase description, we postulate that,
given a stochastic phase function ϑ, a meaningful curve
describing the mean response properties of the system
can be obtained by averaging its gradient along a given
isochron. We call this quantity the averaged iPRC
(aiPRC), and can write it either in integral form

aiPRC(ϑ̄) =

∫
x∈Iϑ̄

∇ϑ(x(η, ϑ̄))P̄0(η|ϑ̄)dη, (40)

or as an average across realizations

aiPRC(ϑ̄) = ⟨∇ϑ(x(t))⟩ϑ(x(t))=ϑ̄ . (41)

We remark that in the vanishing noise limit (as σ →
0), for systems with an underlying LC, P0(x) → 0 for
x /∈ LC. Therefore, in this limit, the aiPRC definition in
eq. (40) (or eq. (41)) converges to the deterministic iPRC
in eq. (39).

We show that our aiPRC provides the expected un-
wrapped phase shift ∆ϑ(ϑ̄) = ϑnew − ϑ̄ of an oscillator
subjected to a weak external pulse ϵδ(t− t0) as

∆ϑ(ϑ̄) ≈ ϵ · aiPRC(ϑ̄). (42)

In Fig. 7, we plot the aiPRC and compare it with nu-
merical estimates of the average phase response, obtained
by perturbing the system with a weak pulse at random
phases, computing the individual phase shift and binning
the responses by phase. For each bin, we compute the av-
erage response using the circular mean [34]. In panel (a)
we compute the aiPRC for the Hopf normal form in the
LC case (above the bifurcation). In this case, we observe
that the aiPRC shows the characteristic sinusoidal Type
II shape. Interestingly, a similar sinusoidal structure is

FIG. 7. Averaged iPRCs for the asymptotic phase ψ
Blue - response to a pulse in the X direction (amplitude ϵx =
0.02); Green - response to a pulse in the Y direction (ϵy =
0.02) a) Hopf above bifurcation b) Hopf below bifurcation c)
SNIC above bifurcation d) SNIC below bifurcation. External
level of noise used for all systems: σ = 0.01

found for the Hopf normal form for β = −0.001, when
no LC exists. We note, however, that the amplitude of
the mean response is larger in the excitable case than in
the LC case. This result seems to be consistent with our
definition based on averages. For the focus (excitable)
case, the phase gradients dramatically increase near the
origin where the probability density has a pronounced
maximum. For the SNIC in the LC case (panel (c)),
we observe that the aiPRC exhibits a Type I structure,
very similar to the deterministic case (see [35] where this
particular example is studied). Interestingly, this struc-
ture is not much altered when the same object is studied
below the bifurcation.
We observe similar behavior for the aiPRC computed

for the MRT phase, see Supplemental Fig. 7.

VII. DISCUSSION

a. Summary. In this paper, we developed a gener-
alized self-contained stochastic phase reduction frame-
work. Specifically, we provided a method for finding an
approximate, self-contained phase reduction of stochas-
tic oscillators subjected to Gaussian white noise. To
illustrate our framework, we considered two mappings
ϑ : (x) ∈ Rn → S1 ≡ [0, 2π), namely the “Mean–return-
time” phase Θ(x) introduced in [11] and the “stochastic
asymptotic phase” ψ(x) introduced in [13]. Even though
our framework can be applied to n-dimensional systems,
for clarity, we focused on examples with two-dimensional
stochastic oscillators.
Our reduction is built by considering the short term

dynamics of the full phase variable. In order to test the
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accuracy of our reduction, we considered two well-known
long-term statistics: the mean rotation ωϑeff, and the dif-
fusion constant Dϑ

eff. We consider the reduction to be
better, the closer the agreement of these two statistics
for i) the full phase system and ii) its reduced version.
We observe in Fig. 6 that the accuracy of the reduction
decreases as the level of noise increases. This observation
is not surprising since, when reducing, we are restricting
dynamics to a circle. However, it is important to point
out that while our reduction underestimates the effec-
tive diffusion constant Dϑ

eff for larger levels of noise, it
consistently captures the mean rotation rate ωϑeff. We
consider this underestimation of the long term diffusion
coefficient as a trade-off of our reduction procedure: our
framework aims to construct the one dimensional SDE
that best captures the local first and second moments of
the full oscillatory dynamics. Our method satisfies this
condition, at the cost of underestimating the long-term
fluctuations. A better estimate of the fluctuations might
be obtained by incorporating an amplitude term, which
would come at the cost of having a higher dimensional
reduction (see Future Directions). Indeed, while it is gen-
erally possible to match the short-term (local) and long-
term (global) mean phase dynamics, it is generally not
possible to match both the short-term variability and the
long-term phase diffusion statistics, without taking into
account additional degrees of freedom transverse to the
phase variable.

b. Alternative phase descriptions. As previously
mentioned, we have studied our reduction method for
two different phase functions Θ(x) and ψ(x). Even if the
long term statistics are almost identical for both phases,
we have found important differences in their drift func-
tions (aΘ and aψ). The MRT phase shows a constant
drift term, so it carries all the variability in the effec-
tive noise term

√
2DΘ(Θ). By contrast, the stochastic

asymptotic phase ψ, shows a non-constant drift term.
As we have shown in Fig. 5, this variable drift term is
able to encode important dynamical information about
the system, namely the transition from an excitable to
an oscillatory regime.

A way to understand this difference between drift func-
tions is by relating our approach to the noise-induced
frequency shift (NIFS) phenomenon [5]: in a determin-
istic LC oscillator with phase θ, adding white noise typ-
ically causes a shift in the average frequency [36]. The
new average frequency is given by the ensemble average,
ω = ⟨θ̇⟩. Generalizing to stochastic oscillators, we see
that, by construction, the MRT phase Θ takes the ef-
fect of noise on the frequency into account by setting
its instantaneous frequency to the average frequency:
aΘ(Θ) = ω = 2π

T
,∀Θ. By contrast, the asymptotic phase

ψ has an additional degree of variability, as it has an
instantaneous average frequency value aψ(ψ) for all ψ
which need not equal ω. Thus, we can understand the
MRT phase approach as a “coarser grained” description
of the oscillation cycle. In contrast, the asymptotic phase
ψ keeps track of finer details arising from the interaction

between noise and deterministic dynamics, at the cost of
added complexity in the equation.

c. Future Directions. In this paper, we have applied
our method to systems whose SDE was known. However,
both the MRT phase and the stochastic asymptotic phase
can be extracted from data. For example, the original
procedure to extract the MRT was built upon an itera-
tive method that can accommodate both simulated and
real-world data [11]. The stochastic asymptotic phase
was first extracted from data by fitting the oscillatory-
exponential asymptotic decay of the probability density
to its stationary state [13]. Dynamic Mode Decompo-
sition (DMD) based methods, based on an eigenfunc-
tion decomposition of the Koopman operator (which is
closely related to the Kolmogorov backwards operator for
stochastic systems) offer an alternative approach to ob-
taining these functions, see [18]). Thus, they should allow
one to recover an estimation of the spectral properties of
L† from data, most particularly of the Q∗

λ1
eigenfunction

that carries the stochastic asymptotic phase. This con-
nection would allow application of our framework to real
world oscillatory data, to be explored in future work.

In the deterministic case, adding an amplitude vari-
able can extend the domain of accuracy of the phase
description [19, 26, 37, 38]. We believe our construc-
tion may benefit from a similar approach. Recently, the
stochastic amplitude has been found [20, 39]. In related
work, it has been shown that a different observable, the
slowest decaying complex eigenfunction Q∗

λ1
of the Kol-

mogorov backwards operator, yields a universal descrip-
tion of stochastic oscillators [40]. This complex phase
function, Q∗

λ1
, allows comparison of stochastic oscilla-

tors regardless of their underlying oscillatory mechanism
[40]. Written in polar form, the complex phase function
Q∗
λ1

= ueiψ defines both a notion of phase ψ ∈ [0, 2π)
and an amplitude u that captures the concentration or
coherence of an oscillator’s probability density. Both the
stochastic analogues of the phase-amplitude description
and the complex phase ideas appear as interesting targets
for future research.

An additional interesting question arising from this
work is the exploration of the averaged infinitesimal
phase response curve (aiPRC) function defined in
sec. VI. We have shown that it provides a meaningful
estimation of the average phase response of a stochastic
oscillator to a small pulselike perturbation. Being able to
compute the average response of stochastic oscillators to
external perturbations by means of the aiPRC is a first
step towards the analysis of complex noisy oscillatory
phenomena, such as synchronization among oscillators
connected on networks [2, 41, 42]. In the past, defining
those phenomena, such as noisy phase and frequency
synchronization [43], or noise-enhanced phase-locking
[44], required using a deterministic notion of phase, such
as the Hilbert phase, and extending it to the noisy case.
The work we put forward in this manuscript builds
upon recent notions of stochastic phase [11, 13]. Thus,
obtaining a reduction for those stochastic phases will
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allow to revisit those earlier results in a purely stochastic
setting. Moreover, Adams and MacLaurin have recently
proposed a formal approach to deriving a self-contained
stochastic differential equation for what they term the
“isochronal phase”, for systems that have a particular
invariant manifold structure (such as system with an
underlying LC) see [45]. Application of their methods,
drawn from rigorous analysis of stochastic partial
differential equations, to the examples we present here,
is an interesting opportunity for future investigation.
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