
ar
X

iv
:2

40
2.

03
10

3v
2

 [
cs

.P
L

]
 2

0
M

ay
 2

02
4

Scoped Effects as Parameterized Algebraic Theories

CRISTINA MATACHE and SAM LINDLEY, University of Edinburgh, UK

SEAN MOSS, University of Birmingham, UK

SAM STATON, University of Oxford, UK

NICOLAS WU and ZHIXUAN YANG, Imperial College London, UK

Notions of computation can be modelled by monads. Algebraic effects offer a characterization of monads

in terms of algebraic operations and equational axioms, where operations are basic programming features,

such as reading or updating the state, and axioms specify observably equivalent expressions. However, many

useful programming features depend on additional mechanisms such as delimited scopes or dynamically

allocated resources. Such mechanisms can be supported via extensions to algebraic effects including scoped

effects and parameterized algebraic theories. We present a fresh perspective on scoped effects by translation

into a variation of parameterized algebraic theories. The translation enables a new approach to equational

reasoning for scoped effects and gives rise to an alternative characterization of monads in terms of generators

and equations involving both scoped and algebraic operations. We demonstrate the power of our approach

by way of equational characterizations of several known models of scoped effects.

CCS Concepts: • Theory of computation→ Denotational semantics; Categorical semantics.

Additional Key Words and Phrases: algebraic effects, scoped effects, monads, category theory, algebraic the-

ories

1 INTRODUCTION

The central idea of algebraic effects [28] is that impure computation can be built and reasoned about
equationally, using an algebraic theory. Effect handlers [32] are a way of implementing algebraic
effects and provide a method for modularly programming with different effects. More formally, an
effect handler gives a model for an algebraic theory. In this paper we develop equational reasoning
for a notion arising from an extension of handlers, called scoped effects, using the framework of
parameterized algebraic theories.
The central idea of scoped effects (Sec. 2.2) is that certain parts of an impure computation should

be dealt with one way, and other parts another way, inspired by scopes in exception handling.
Compared to algebraic effects, the crucial difference is that the scope on which a scoped effect
acts is delimited. This difference leads to a complex relationship with monadic sequencing (>>=).
The theory and practice of scoped effects [5, 25, 43–46] has primarily been studied by extending
effect handlers to deal with not just algebraic operations, but also more complex scoped opera-
tions. They form the basis of the fused-effects and polysemy libraries for Haskell. Aside from
exception handling, other applications include back-tracking in parsing [44] and timing analysis
in telemetry [42].
Parameterized algebraic theories (Sec. 2.3) extend plain algebraic theories with variable binding

operations for an abstract type of parameters. They have been used to study various resources
including logic variables in logic programming [37], channels in the c-calculus [38], code point-
ers [10], qubits in quantum programming [40], and urns in probabilistic programming [41].

Contributions. We propose an equational perspective for scoped effects where scopes are re-
sources, by analogy with other resources like file handles. We develop this perspective using the
framework of parameterized algebraic theories, which provides an algebraic account of effects with

Authors’ addresses: Cristina Matache; Sam Lindley, University of Edinburgh, UK; Sean Moss, University of Birmingham,

UK; Sam Staton, University of Oxford, UK; Nicolas Wu; Zhixuan Yang, Imperial College London, UK.

http://arxiv.org/abs/2402.03103v2

111:2 Matache et al.

resources and instances. We realize scoped effects by encoding the scopes as resources with open/-
close operations, analogous to opening/closing files. This paper provides:

• the first syntactic sound and complete equational reasoning system for scoped effects,
based on the equational reasoning for parameterized algebraic theories (Prop. 4.3, Prop. 4.6);

• a canonical notion of semantic model for scoped effects supporting three key examples
from the literature: nondeterminism with semi-determinism (Thm. 4.12), catching excep-
tions (Thm. 4.13), local state (Thm. 4.14), and nondeterminism with cut (Thm. 4.16); and

• a reconstruction of the previous categorical analysis of scoped effects via parameterized
algebraic theories: the constructors (⊳, ⊲) are shown to be not ad hoc, but rather the crucial
mechanism for arities/coarities in parameterized algebraic theories (Thm. 4.10).

or

fail or

or

1 2

or

3 4

once

Fig. 1. Illustrating (1)

Example: nondeterminism with semi-determinism. We now briefly il-
lustrate the intuition underlying the connection between scoped ef-
fects and parameterized algebraic theories through an example. (See
Examples 2.3 and 2.7 for further details.) Let us begin with two al-
gebraic operations: or(G,~), which nondeterministically chooses be-
tween continuing1 as computation G or as computation ~, and fail,
which fails immediately. We add semi-determinism in the form of a
scoped operation once(G), which chooses the first branch of the com-
putation G that does not fail. Importantly, the scope that once acts on
is delimited. The left program below returns 1; the right one returns 1
or 2, as the second or is outside the scope of once.

once(or(or(1, 2), or(3, 4))) once(or(1, 3)) >>= _G. or(G, G + 1)

Now consider a slightly more involved example, which also returns 1 or 2:

once(or(fail, or(1, 3))) >>= _G. or(G, G + 1) (1)

depicted as a tree in Fig. 1 where the red box delimits the scope of once. We give an encoding of
term (1) in a parameterized algebraic theory as follows:

once(0.or(fail, or(close(0, or(1, 2)), close(0, or(3, 4))))) (2)

where 0 is the name of the scope opened by once and closed by the special close operation. By
equational reasoning for scoped effects (§3) and the equations for nondeterminism (Fig. 2), we can
prove that the term (2) is equivalent to or(1, 2).

Changes from the conference version. This paper is an extended version of a “fresh perspective”
short paper published at ESOP 2024 [17]. The additions include the following:

• the scoped effect of explicit nondeterminismwith cut treated as a parameterized theory (Ex-
ample 3.9) and its free model (Section 4.3.4);

• a discussion about how monads support operations (Defs. 2.11 and 2.12), leading to a
comparison between models of algebraic theories and models of parameterized theories
in Props. 4.8 and 4.9;

• a new section about constructing a parameterized theory from an arbitrary scoped opera-
tion (Section 4.4) and how their models are related (Theorem 4.17);

1This continuation-passing style is natural for algebraic effects, but when programming one often uses equivalent direct-

style generic effects [30] such as or : unit → bool, where or(G, ~) can be recovered by pattern matching on the result of

or.

Scoped Effects as Parameterized Algebraic Theories 111:3

• proofs for the general theorems about models from Section 4.2, as well as proofs of freeness
for the examples of models from Section 4.3. The proofs of freeness involve exhibiting
normal forms for each parameterized theory;

• an expanded discussion of existing work about the higher-order syntax approach to scoped
effects, in Section 2.2;

• the observation that one of the equations in the parameterized theory on nondeterminism
with once is actually derivable from the others (Example 3.5);

• more details about the alternative definition of catching exceptions as a parameterized
theory (Remark 3.7); and

• a discussion of future research about combinations of scoped theories in Section 5.

2 BACKGROUND

2.1 Algebraic Effects

Moggi [22, 23] shows that many non-pure features of programming languages, typically referred
to as computational effects, can be modelled uniformly asmonads, but the question is — how do we
construct a monad for an effect, or putting it differently, where do the monads modelling effects come
from? A classical result in category theory is that finitary monads over the category of sets are
equivalent to algebraic theories [16, 18]: an algebraic theory gives rise to a finitary monad by the
free-algebra construction, and conversely every finitary monad is presented by a certain algebraic
theory. Motivated by this correspondence, Plotkin and Power [29] show that many monads that
are used for modelling computational effects can be presented by algebraic theories of some basic
effectful operations and some computationally natural equations. This observation led them to
the following influential perspective on computational effects [29], which is nowadays commonly
referred to as algebraic effects.

Perspective 2.1 (Plotkin and Power [29]). An effect is realized by an algebraic theory of its
basic operations, so it determines a monad but is not identified with the monad.

We review the framework of algebraic effects in the simplest form here and refer the reader to
Plotkin and Power [31] and Bauer [2] for more discussion.

Definition 2.2. A (first-order finitary) algebraic signature Σ = 〈|Σ|, ar〉 consists of a set |Σ|, whose
elements are referred to as operations, together with a mapping ar : |Σ| → N, associating a natural
number to each operation, called its arity.

Given a signature Σ = 〈|Σ|, ar〉, we will write $: = for an operation $ ∈ |Σ| with ar ($) = =.
The terms TmΣ (Γ) in a context Γ, which is a finite list of variables, are inductively generated by

Γ, G, Γ′ ⊢ G

$: = Γ ⊢ C8 for 8 = 1 . . . =

Γ ⊢ $ (C1, . . . , C=)
(3)

As usual we will consider terms up to renaming of variables. Thus a context Γ = (G1, . . . , G=) can
be identified with the natural number =, and TmΣ can be thought of as a function N→ Set.

Example 2.3. The signature of explicit nondeterminism has two operations:

or : 2 fail : 0.

Some small examples of terms of this signature are

⊢ fail G,~, I ⊢ or(G, or(~, I)) G,~, I ⊢ or(or(G,~), fail)

111:4 Matache et al.

Example 2.4. The signature of mutable state of a single bit has operations:

put0 : 1 put1 : 1 get : 2.

The informal intuition for a term Γ ⊢ put8 (C) is a program that writes the bit 8 ∈ {0, 1} to the
mutable state and then continues as another program C , and a term Γ ⊢ get(C0, C1) is a program
that reads the state, and continues as C8 if the state is 8 . For example, the term G,~ ⊢ put0 (get(G,~))
first writes 0 to the state, then reads 0 from the state, so always continues as G . For simplicity we
consider a single bit, but multiple fixed locations and other storage are possible [29].

Definition 2.5. A (first-order finitary) algebraic theory T = 〈Σ, �〉 is a signature Σ (Def. 2.2) and
a set � of equations of the signature Σ, where an equation is a pair of terms Γ ⊢ ! and Γ ⊢ ' under
some context Γ. We will usually write an equation as Γ ⊢ ! = '.

Example 2.6. The theory of exception throwing has a signature containing a single operation
throw : 0 and no equations. The intuition for throw is that it throws an exception and the control
flow never comes back, so it is a nullary operation.

Example 2.7. The theory of explicit nondeterminism has the signature in Example 2.3 and the
following equations saying that fail and or form a monoid:

G ⊢ or(fail, G) = G G ⊢ or(G, fail) = G G,~, I ⊢ or(G, or(~, I)) = or(or(G,~), I)

Following Plotkin and Pretnar [32] we refer to this as “explicit” non-determinism as it does not
include full symmetry laws (that is, or(G,~) = or(~, G)) or idempotence laws (or(G, G) = G).

Example 2.8. The theory of mutable state of a single bit has the signature in Example 2.4 and
the following equations for all 8, 8′ ∈ {0, 1}:

G0, G1 ⊢ put
8 (get(G0, G1)) = put8 (G8) (4)

G ⊢ put8 (put8
′

(G)) = put8
′

(G) (5)

G ⊢ get(put0 (G),put1(G)) = G (6)

The conspicuously missing equation for a get after a get

G00, G01, G10, G11 ⊢ get(get(G00, G01), get(G10, G11)) = get(G00, G11)

can be derived in the equational logic of algebraic theories, which will be introduced in a more
general setting later in Section 3, from the equations above:

get(get(G00, G01), get(G10, G11)) via eq. (6), calling this term by C

= get(put0(C), put1(C)) via eq. (4) for put0(C) and put1 (C)

= get(put0(get(G00, G01), put
1(get(G10, G11))) via eq. (4) again

= get(put0(G00), put
1(G11)) via eq. (4) right-to-left

= get(put0(get(G00, G11)), put
1 (get(G00, G11))) via eq. (6)

= get(G00, G11)

Remark 2.9. Every algebraic theory gives rise to a monad on the category Set of sets by the
free-algebra construction, which we will discuss in a more general setting in Section 4.2. The three
examples above respectively give rise to the monads (1 + −), List, and (− × 2)2 which are used to
give semantics to the respective computational effects in programming languages [22, 23].

Scoped Effects as Parameterized Algebraic Theories 111:5

In this way, the monad for a computational effect is constructed in a remarkably intuitive man-
ner, and this approach is highly composable: one can take the disjoint union of two algebraic
theories to combine two effects, and possibly add more equations to characterise the interaction
between the two theories [13]. By contrast, coproducts of monads, which correspond to taking the
disjoint union of algebraic theories, are much harder to describe explicitly even when they exist.
The kind of plain algebraic theory encapsulated by Def. 2.5 above is not, however, sufficiently

expressive enough for some programming language applications. In this paper we focus on two
problems with plain algebraic theories:

(1) Firstly, monadic bind for the monad generated by an algebraic theory is defined using
simultaneous substitution of terms: given a term C ∈ TmΣ (Γ) in a context Γ and a mapping
f : Γ → TmΣ (Γ

′) from variables in Γ to terms in some context Γ′, the monadic bind C >>=f
is defined to be the simultaneous substitution C [f] of f in C :

G [f] = f (G) $ (C1, . . . , C=) [f] = $ (C1 [f], . . . , C= [f]).

Monadic bind for a monad is used for interpreting sequential composition of computations.
Therefore, the second clause above implies that every algebraic effect operationmust com-
mute with sequential composition. However, in practice not every effectful operation en-
joys this property.

(2) Secondly, it is common to have multiple instances of a computational effect that can be
dynamically created. For example, it is typical in practice to have an effectful operation
openFile that creates a “file descriptor” for a file at a given path, and for each file descriptor
there is a pair of read and write operations that are independent of those for other files.

These two restrictions have been studied separately, and different extensions to algebraic theo-
ries generalising Def. 2.5 have been proposed for each: scoped algebraic effects for the first problem
above and parameterized algebraic effects for the second. At first glance, the two problems seem
unrelated, but the key insight of this paper is that scoped effects can be fruitfully understood as a
non-commutative linear variant of parameterized effects.

2.2 Scoped Effects

The first problem with plain algebraic theories above is that operations must commute with se-
quential composition. Therefore an operation$ (01, . . . , 0=) is “atomic” in the sense that it may not
delimit a fresh scope. Alas, in practice it is not uncommon to have operations that do delimit scopes.
An example is exception catching: catch(?,ℎ) is a binary operation on computations that first tries
the program ? and if ? throws an exception then ℎ is run. The catch operation does not commute
with sequential composition as catch(?,ℎ) >>= 5 behaves differently from catch(? >>= 5 , ℎ >>= 5).
The former catches only the exceptions in ? whereas the latter catches exceptions both in ? and
in 5 . Further examples include operations such as opening a file in a scope, running a program
concurrently in a scope, and looping a program in a scope.
Operations delimiting scopes are treated as handlers (i.e. models) of algebraic operations by

Plotkin and Pretnar [32], instead of operations in their own right. The following alternative per-
spective was first advocated by Wu et al. [44].

Perspective 2.10 (Wu et al. [44]). Since sequential composition of monads generated from alge-
braic theories is substitution, scoped operations are operations that do not commute with substitu-
tion.

Operations that do not commute with substitution arise in contexts other than computational
effects as well, for example, the later modality in guarded dependent type theory [4].

111:6 Matache et al.

We can use the results of Plotkin and Power [30] to give a precise phrasing of this on the side
of semantics. For simplicity we restrict this definition to the case of monads on Set.

Definition 2.11 (Plotkin and Power [30]). A monad) on Set can be said to support an algebraic
operation $: = if it is equipped with a natural transformation

$̂� : ()�)= →)�

which moreover satisfies
`� ◦ $̂)� = $̂� ◦ (`�)

=. (7)

For example, any free monad) determined by an algebraic theory T = 〈Σ, �〉 according to
Remark 2.9 supports all the operations in the signature Σ. As shown by Plotkin and Power [30],
equation (7) is another phrasing of commuting with sequential composition, and indeed to give
such a support for a signature Σ is to simply give a family ($̌ ∈) (=) | ($: =) ∈ Σ) of “generic

effects”, for then we can write $̂� (®C) = $̌ >>= ®C . Hence we can make a precise definition of scoped
operations by dropping (7), following Yang and Wu [46]:

Definition 2.12 (Yang and Wu [46]). Let) be a monad on Set. A scoped operation on the monad
) , of arity : ∈ N, is a family of functions:

f� : ()�): →)�

subject only to naturality in � (but not (7)).

Extensions of effect handlers to natively accommodate scoped operations were first studied by
Wu et al. [44] in Haskell, where the authors proposed two approaches:

(1) The bracketing approach uses a pair of algebraic operations beginB and endB to encode a
scoped operation B . For example, consider the program B (put0); put1; G , expressed in direct
style, which writes the value 0 in the scope B , then writes the value 1 outside of that scope
and continues with the rest of the program G . This can be encoded formally as:

beginB (put
0(endB (put

1(G)))).

(2) The higher-order syntax approach directly constructs the syntax for programs with alge-
braic and scoped operations as an initial algebra of an endofunctor over the category of
(finitary) endofunctors over Set. Elementarily, this amounts to adding the following rule,
for every scoped operation (that delimits = scopes, to the rules in eq. (3) generating terms:

(: = G1, . . . , G< ⊢ C8 for 8 = 1 . . . = Γ ⊢ : 9 for 9 = 1 . . .<

Γ ⊢ ((C1, . . . , C=){:1, . . . , :<}

The intuition is that ((C1, . . . , C=){:1, . . . , :<} is the term applying the scoped operation (to
the terms C1, . . . , C= followed by a formal substitution that replaces the< variables in C8 with
the terms :1, . . . , :< respectively (c.f. explicit substitution [11] and delayed substitution
[4]). Since substitutions get stuck at scoped operations, they need to be kept in terms, if we
want to have a monad of terms with scoped operations.

Moreover, to model the intuition that the number of internal variables< after a “substitu-
tion” should not be visible in the result of “substitution” ((C1, . . . , C=){:1, . . . , :<}, the terms
are further quotiented by (the congruence relation generated by) the following rule: for all
<,<′ ∈ N and functions 5 : {1 . . . <} → {1 . . .<′},

(: = G1, . . . , G< ⊢ C8 for 8 = 1 . . . = Γ ⊢ : 9 ′ for 9
′
= 1 . . .<′

Γ ⊢ ((C1, . . . , C=){:5 (1) , . . . , :5 (<) } = ((C1 [5], . . . , C= [5]){:1, . . . , :<′ }

Scoped Effects as Parameterized Algebraic Theories 111:7

where the terms G1 . . . G<′ ⊢ C8 [5] are obtained by replacing each variable G 9 in C8 with G 5 (9) ,
for 1 ≤ 9 ≤ <. This rule can be motivated as follows: in the left-hand side, every variable
G 9 in each C8 is formally replaced by :5 (9) according to the formal substitution, while in the
right-hand side, G 9 is first replaced by G 5 (9) by the true substitution [5], and then formally
replaced by :5 (9) according to the formal substitution. These two results should be exactly
the same since we would like our formal substitution to behave like true substitutions.

Terms in a context Γ obtained in this way also form a monad [45].

The higher-order syntax approach was regarded the more principled one since in the first ap-
proach ill bracketed pairs of beginB and endB are possible, such as

endB (put
0(beginB (beginB (put

1 (G))))).

In subsequent work, both of these two approaches received further development [25, 43, 45, 46]
and operational semantics for scoped effects has also been developed [5]. Of particular relevance
to the current paper is the work of Piróg et al. [25], which we briefly review in the rest of this
section.

Related work on models for scoped effects. Piróg et al. [25] fix the ill-bracketing problem in the
bracketing approach by considering the category SetNwhose objects are sequences- = (- (0), - (1), . . .)
of sets and morphisms are just sequences of functions. Given - ∈ SetN, the idea is that - (=) rep-
resents a set of terms at bracketing level = for every = ∈ N.
On this category, there are two functors (⊲), (⊳) : SetN → SetN, pronounced “later” and “earlier”,

that shift the bracketing levels:

(⊲-) (0) = ∅, (⊲-) (= + 1) = - (=), (⊳-) (=) = - (= + 1). (8)

These two functors are closely related to the bracketing approach (1): a morphism 1 : ⊳- → - for
a functor- opens a scope, turning a term C at level =+1 to the term begin(C) at level =. Conversely,
a morphism 4 : ⊲- → - closes a scope, turning a term C outside the scope, so at level = − 1, to the
term end(C) at level =.
Given two signatures Σ and Σ

′ as in Def. 2.2 for algebraic and scoped operations respectively,
let Σ̄, Σ̄′ : SetN → SetN be the functors given by

(Σ̄-) (=) =
∐

>∈ |Σ | - (=)ar (>) and (Σ̄′-) (=) =
∐

B∈ |Σ′ | - (=)ar (B) .

Moreover, for every � ∈ Set, let ↾� ∈ SetN be given by

(↾�) (0) = � (↾�) (= + 1) = 0,

and conversely for every - ∈ SetN, let ⇂- ∈ Set be given by ⇂- = - (0). These are actually
adjoint functors ↾⊣ ⇂. Now Prop. 2.13 constructs the syntactic monad for programs with the given
algebraic and scoped operations, without taking into account any equations.

Proposition 2.13 (Piróg et al. [25]). The following functor can be extended to a monad that is
isomorphic to the monad obtained by the higher-order syntax approach (2):

⇂ ◦
(
Σ̄ +

(
Σ̄′ ◦ ⊳

)
+ ⊲

)∗
◦ ↾ : Set → Set

where (−)∗ is the free monad over an endofunctor.

Piróg et al. [25] defines amodel of a scoped effect as an algebra for the monad
(
Σ̄ +

(
Σ̄′ ◦ ⊳

)
+ ⊲

)∗
on SetN. This is a notion of handler accommodating both algebraic and scoped effects. In Theo-
rem 4.10 we show that this monad on SetN arises as a special case of the free monad for a parame-
terized algebraic theory. In Thms. 4.12–4.14, we show that three examples of models of Piróg et al.
[25] are actually free algebras on ↾� ∈ SetN for an appropriate set of equations for each example.

111:8 Matache et al.

2.3 Parameterized Algebraic Theories

Recall that our second problem with plain algebraic theories is that they do not support the dy-
namic creation of multiple instances of computational effects. This problem, sometimes known as
the local computational effects problem, was first systematically studied by Power [35] in a purely
categorical setting. A syntactic framework extending that of algebraic theories, called parameter-
ized algebraic theories, was introduced by Staton [37, 38] and is used to give an axiomatic account
of local computational effects such as restriction [27], local state [29], and the c-calculus [21, 36].
Operations in a parameterized theory are more general than those in an algebraic theory be-

cause they may use and create values in an abstract type of parameters. The parameter type has
different intended meanings for different examples of parameterized theories, typically as some
kind of resource such as memory locations or communication channels. In this paper, we propose
to interpret parameters as names of scopes.

Perspective 2.14. Scoped operations can be understood as operations allocating and consuming
instances of a resource: the names of scopes.

In the case of local state, the operations of Example 2.4 become get(0, G0, G1) and put8 (0, G),
now taking a parameter 0 which is the location being read or written to. In a sense, each memory
location 0 represents an instance of the state effect, with its own get and put operations. We also
have a term new8 (0.G (0)) which allocates a fresh location named 0 storing an initial value 8 , then
continues as G ; the computation G might mention location 0. The following is a possible equation,
which says that reading immediately after allocating is redundant:

new8 (0.get(0, G0(0), G1(0))) = new8 (0.G8 (0)).

For the full axiomatization of local state see [38, §V.E]. A closed term can only mention locations
introduced by new8 , meaning that type of locations is abstract.
Tomodel scoped operations, we think of them as allocating a new scope. For example, the scoped

operation once, which chooses the first non-failing branch of a nondeterministic computation, is
written as once(0.G (0)). It creates a new scope 0 and proceeds as G . As in §1, there is an explicit
operation close(0, G) for closing the scope 0 and continuing as G .
Well-formed programs close scopes precisely once and in the reverse order to their allocation.

Thus in §3 we will discuss a non-commutative linear variation of parameterized algebraic theories
needed to model scoped effects. With our framework we then give axiomatizations for examples
from the scoped effects literature (Thms. 4.12–4.14).
Our parameters are linear in the same sense as variables in linear logic and linear lambda cal-

culi [3, 12], but with an additional non-commutativity restriction. Non-commutative linear systems
are also known as ordered linear systems [24, 33]. A commutative linear version of parameterized
algebraic theories was considered by Staton [40] to give an algebraic theory of quantum computa-
tion; in this case, parameters stand for qubits.

Remark 2.15. Parameterized algebraic theories characterize a certain class of enriched mon-
ads [37], extending the correspondence between algebraic theories and monads on the category of
sets, and the idea of Plotkin and Power [29] that computational effects give rise tomonads (see §2.1).
Thus, the syntactic framework of parameterized theories has a canonical semantic status. We can
use the monad arising from a parameterized theory to give semantics to a programming language
containing the effects in question.

The framework of parameterized algebraic theories is related to graded theories [14], which
also use presheaf-enrichment; second-order algebra [7–9], which also use variable binding; and
graphical methods [19], which also connect to presheaf categories.

Scoped Effects as Parameterized Algebraic Theories 111:9

3 PARAMETERIZED THEORIES OF SCOPED EFFECTS

In order to describe scoped effects we use a substructural version of parameterized algebraic theo-
ries [37]. A theory consists of a signature (Def. 3.1) and equations (Def. 3.4) between terms formed
from the signature. Terms contain two kinds of variables: computation variables (G , ~, . . .), which
each expect a certain number of parameters, and parameter variables (0, 1, . . .). In the case of
scoped effects, a parameter represents the name of a scope.
Any scoped signature gives rise to a parameterized algebraic signature (Section 3.1). But a param-

eterized algebraic theory includes equations as well as operations. In Section 3.2 we propose equa-
tional theories for various scoped effects: exceptions, state, and non-determinism. In Section 4.3 we
show that the free models of these theories completely capture these notions from the literature.

3.1 Parameterized Algebraic Theories with Non-Commutative Linear Parameters

Definition 3.1. A (parameterized) signature Σ = 〈|Σ|, ar〉 consists of a set of operations |Σ| and
for each operation O ∈ |Σ| a parameterized arity ar (O) = (? | <1 ...<:) consisting of a natural
number ? and a list of natural numbers <1, ... ,<: . This means that the operation O takes in ?

parameters and : continuations, and it binds<8 parameters in the 8-th continuation.

Remark 3.2. Given signatures for algebraic and scoped operations, as in Def. 2.2 and §2.2, we
can translate them to a parameterized signature as follows:

• for each algebraic operation (op : :) of arity : ∈ N, there is a parameterized operation
with arity (0 | 0 ... 0), where the list 0 ... 0 has length :;

• for each scoped operation (sc : :) of arity : ∈ N, there is a parameterized operation
sc : (0 | 1 ... 1), where the list 1 ... 1 has length :;

• there is an operation close : (1 | 0), which closes the most recent scope, and which all the
different scoped operations share.

Not every parameterized signature arises from a scoped signature, because in general we may
have operations where the arguments have different valences (e.g. <1 ≠ <2). So parameterized
signatures give some more flexibility. We explore this point more in Remark 3.2.

Example 3.3. The algebraic theory of explicit nondeterminism in Example 2.3 can be extended
with a semi-determinism operator once:

or : (0 | 0, 0) once : (0 | 1) fail : (0 | −) close : (1 | 0)

(We write − for an empty list or context.) The continuation of once opens a new scope, by binding
a parameter. Inside this scope, only the first successful branch of or is kept.
We consider the terms and equations in Example 3.5 and Fig. 2.

For a given signature, we define the terms-in-context of algebra with non-commutative linear
parameters. A context Γ of computation variables is a finite list G1 : ?1, . . . , G= : ?= , where each
variable G8 is annotated with the number ?8 of parameters it consumes. A context Δ of parameter
variables is a finite list 01, . . . , 0< . Terms Γ | Δ ⊢ C are inductively generated as follows:

Γ, G : ?, Γ′ | 01 ... 0? ⊢ G (01 ... 0?)
(16)

Γ | Δ, 11 ... 1<1 ⊢ C1 . . . Γ | Δ, 11 ... 1<:
⊢ C: O : (? | <1 ...<:)

Γ | Δ, 01 ... 0? ⊢ O(01 ... 0? , 11 ... 1<1 .C1 . . . 11 ... 1<:
.C:)

(17)

In the conclusion of the last rule, the parameters 01 ... 0? are consumed by the operation O. The
parameters 11 ... 1<8

are bound in C8 . As usual, we treat all terms up to renaming of variables. When
? = : = 0, i.e. O is a constant symbol, we omit the parentheses.

111:10 Matache et al.

G : 0,~ : 0, I : 0 | − ⊢ or(or(G,~), I) = or(G, or(~, I)) (9)

G : 0 | − ⊢ or(G, fail) = G (10)

G : 0 | − ⊢ or(fail, G) = G (11)

− | − ⊢ once(0.fail) = fail (12)

G : 1 | − ⊢ once(0.or(G (0), G (0))) = once(0.G (0)) (13)

G : 0 | − ⊢ once(0.close(0, G)) = G (14)

G : 0,~ : 1 | − ⊢ once
(
0.or(close(0, G), ~(0))

)
= G (15)

Fig. 2. The parameterized theory of explicit nondeterminism (9–11) and once (12–15).

The context Γ of computation variables admits the usual structural rules: weakening, contrac-
tion, and exchange; the context Δ of parameters does not. All parameters in Δmust be used exactly
once, in the reverse of the order in which they appear. Intuitively, a parameter in Δ is the name of
an open scope, so the restrictions on Δmean that scopes must be closed in the opposite order that
they were opened, that is, scopes are well-bracketed. The arguments C1, ... , C: of an operation O

are continuations, each corresponding to a different branch of the computation, hence they share
the parameter context Δ.
Compared to the algebra with linear parameters used for describing quantum computation [40],

our syntactic framework has the additional constraint that Δ cannot be reordered. Given these
constraints, the contextΔ is in fact a stack, so inside a term it is unnecessary to refer to the variables
in Δ by name. We have chosen to do so anyway in order to make more clear the connection to
non-linear parameterized theories [37, 38].
The syntax admits the following simultaneous substitution rule:

(G1 :<1 ... G; :<;) | Δ ⊢ C Γ
′ | Δ′, 01 ... 0<1 ⊢ C1 . . . Γ

′ | Δ′, 01 ... 0<;
⊢ C;

Γ
′ | Δ′,Δ ⊢ C

[
(Δ′, 01 ... 0<1 ⊢ C1)/G1 . . . (Δ′, 01 ... 0<;

⊢ C;)/G;
] (18)

In the conclusion, the notation (Δ′, 01 ... 0<8
⊢ C8)/G8 emphasizes that the parameters (01 . . . 0<8

)
in C8 are replaced by the corresponding parameters that G8 consumes in C , either bound parameters
or free parameters from Δ. To ensure that the term in the conclusion is well-formed, we must
substitute a term that depends on Δ

′ for all the computation variables in the context of C .
An important special case of the substitution rule is where we add a number of extra parame-

ter variables to the beginning of the parameter context, increasing the sort of each computation
variable by the same number. The following example instance of (18), where ar (O) = (1 | 1),
illustrates such a “weakening” by adding two extra parameter variables 0′1, 0

′
2 and replacing G : 2

by G ′ : 4.

G : 2 | 01, 02 ⊢ O(02, 1.G (01, 1)) G ′ : 4 | 0′1, 0
′
2, 11, 12 ⊢ G

′(0′1, 0
′
2, 11, 12)

G ′ : 4 | 0′1, 0
′
2, 01, 02 ⊢ O(02, 1.G

′(0′1, 0
′
2, 01, 1))

Definition 3.4. An algebraic theory T = 〈Σ, �〉 with non-commutative linear parameters is a pa-
rameterized signature Σ together with a set � of equations. An equation is a pair of terms Γ | Δ ⊢ !

and Γ | Δ ⊢ ' in the same context (Γ | Δ). We write an equation as Γ | Δ ⊢ ! = '.

We will omit the qualifier “with non-commutative linear parameters” where convenient and
refer to “parameterized theories” or just “theories”.

Scoped Effects as Parameterized Algebraic Theories 111:11

Given a theory T = 〈Σ, �〉, we form a system of equivalence relations =T,(Γ |Δ) on terms in each
context (Γ | Δ), by closing substitution instances of the equations in � under reflexivity, symmetry,
transitivity, and congruence rules:

Γ | Δ ⊢ ! = !

Γ | Δ ⊢ ! = '

Γ | Δ ⊢ ' = !

Γ | Δ ⊢ ! = ' Γ | Δ ⊢ ' = '′

Γ | Δ ⊢ ! = '′

Γ | Δ, 11 ... 1<1 ⊢ !1 = '1 . . . Γ | Δ, 11 ... 1<:
⊢ !: = ': O : (? | <1 ...<:) ∈ Σ

Γ | Δ, 01 ... 0? ⊢ O(01 ... 0? , 11 ... 1<1 .!1 . . . 11 ... 1<:
.!:) = O(01 ... 0? , 11 ... 1<1 .'1 . . . 11 ... 1<:

.':)

3.2 Examples of Equations for Scoped Theories via Parameterized Presentations

Example 3.5. We continue Example 3.3, semi-determinism, with or, once, fail and close. The term
formation rules in Section 3.1 allow the most recently opened scope to be closed using the close
operation by consuming the most recently bound parameter; close has one continuation which
does not depend on any parameters.
Examples of equations, i.e. pairs of terms in the same context, are given in Figure 2. As an

illustration, we note that Equation (14) is derivable from the others:

once(0.close(0, G)) = once(0.or(close(0, G), fail)) via (10)

= G via (15).

Example 3.6. As we mentioned earlier, exception catching is not an ordinary algebraic operation.
The signature for throwing and catching exceptions is the following:

throw : (0 | −) catch : (0 | 1, 1) close : (1 | 0)

The throw operation uses no parameters and takes no continuations. The catch operation uses no
parameters and takes two continuations which each open a new scope, by binding a fresh parame-
ter. Exceptions are caught in the first continuation, and are handled using the second continuation.
The close operation uses one parameter and takes one continuation binding no parameters.

The term close(0, G) closes the scope named by 0 and continues as G . For example, in the term
catch(0.close(0, G), 1.~(1)), exceptions in G will not be caught, because the scope of the catch

operation has already been closed. The equations are:

~:0 | − ⊢ catch(0.throw, 1.close(1,~)) = ~ (19)

− | − ⊢ catch(0.throw, 1.throw) = throw (20)

G :0,~:1 | − ⊢ catch
(
0.close(0, G), 1.~(1)

)
= G (21)

Remark 3.7. The arity of catch from Ex. 3.6 corresponds to the signature used in [25, Example
4.5]. Using the extra flexibility of parameterized algebraic theories, we could instead consider the
arity varcatch : (0 | 1, 0). Equations (19)–(21) become

~:0 | − ⊢ varcatch(0.throw, ~) = ~

G :0, ~:1 | − ⊢ varcatch
(
0.close(0, G), ~

)
= G

This seems more natural as there is no need to delimit a scope in the second continuation, which
handles the exceptions.
We could also encode varcatch in the theory of catch by making the following definition:

varcatch(0.G (0), ~) = catch(0.G (0), 1.close(1,~))

and deducing the two equations for varcatch from eqs. (19) and (21).

111:12 Matache et al.

Example 3.8 (Mutable state with local values). The theory of (boolean) mutable state with one
memory location (Ex. 2.4) can be extended with scoped operations local0 and local1 that write
respectively 0 and 1 to the state. Inside the scope of local, the value of the state just before the
local is not accessible anymore, but when the local is closed the state reverts to this previous
value.

local8 : (0 | 1) put8 : (0 | 0) get : (0 | 0, 0) close : (1 | 0)

The equations for the parameterized theory of state with local comprise the usual equations for
state in the literature [20, 29]:

I : 0 | − ⊢ get(put0 (I), put1(I)) = I (22)

I : 0 | − ⊢ put8 (put9 (I)) = put9 (I) (23)

G0 : 0, G1 : 0 | − ⊢ put8 (get(G0, G1)) = put8 (G8) (24)

together with equations for local/close, and the interaction with state:

G : 0 | − ⊢ local8 (0.close(0, G)) = G (25)

G0 : 1, G1 : 1 | − ⊢ local8 (0.get(G0(0), G1(0))) = local8 (0.G8 (0)) (26)

I : 1 | − ⊢ local8 (0.put 9 (I(0))) = local9 (0.I(0)) (27)

I : 0 | 0 ⊢ put8 (close(0, I)) = close(0, I) (28)

This extension of mutable state is different from the one discussed in §2.3, wherememory locations
can be dynamically created.

Example 3.9 (Explicit nondeterminism with cut). The theory of explicit nondeterminism given
by eqs. (9) to (11) can be extended with an operation that prunes the list of possible results, similar
to cut in Prolog:

cut : (0 | 0) or : (0 | 0, 0) fail : (0 | −)

The cut operation is algebraic and has one continuation; cut(G) intuitively discards the choices
that have not been explored yet, and returns all the possible results of G . The behaviour of cut has
been axiomatized in [26, Sec. 6]:

G : 0,~ : 0 | − ⊢ or(cut(G),~) = cut(G) (29)

G : 0,~ : 0 | − ⊢ or(G, cut(~)) = cut(or(G,~)) (30)

G : 0 | − ⊢ cut(cut(G)) = cut(G) (31)

To delimit the scope in which cut discards choices, we add an operation that opens a scope, and
a close operation for closing scopes:

scope : (0 | 1) close : (1 | 0)

We propose the following equations for scope:

− | − ⊢ scope(0.fail) = fail (32)

G : 0 | − ⊢ scope(0.cut(G (0))) = scope(0.G (0)) (33)

G : 0,~ : 1 | − ⊢ scope(0.or(close(0, G), ~(0))) = or(G, scope(0.~(0))) (34)

Intuitively, eq. (33) says that when a cut reaches the boundary of a scope, the cut is erased so it
cannot affect choices outside of the scope. The Haskell implementation of the scope function by
Piróg and Staton [26] has similar behaviour.

Scoped Effects as Parameterized Algebraic Theories 111:13

Equation (34) axiomatizes the interaction between opening and closing a scope. From it, we can
derive the following:

scope(0.close(0, G)) = scope(0.or(close(0, G), fail)) via (10)

= or(G, scope(0.fail)) via (34)

= or(G, fail) via (32)

= G via (10)

Remark 3.10. We can almost encode the theory of once from Example 3.5 into the theory for
cut and scope (Example 3.9), by defining once to be scope, and defining the close(0, G) of the
once theory to be cut(close(0, G)). Then we can recover eqs. (12), (14) and (15) from Figure 2, by
using eqs. (29) to (34); but we cannot recover eq. (13), which is idempotence of or inside a once.

4 MODELS OF PARAMETERIZED THEORIES

4.1 Models in SetN

Models of first-order algebraic theories [2] consist simply of a set together with specified interpre-
tations of the operations of the signature, validating a (possibly empty) equational specification.
The more complex arities and judgement forms of a parameterized theory require a correspond-
ingly more complex notion of model. Rather than simply being a set of abstract computations, a
model will now be stratified into a sequence of sets - = (- (0), - (1), . . .) ∈ SetN where - (=) rep-
resents computations taking = parameters. In §2.2 we described Piróg et al’s somewhat different
use of SetN [25]. We connect the two approaches in Thm. 4.10 below.
At first glance, a term G1 : <1, . . . , G: : <: | 01, . . . , 0? ⊢ C should denote a function - (<1) ×

. . . × - (<:) → - (?), since a :-tuple of possible continuations that consume different numbers
of parameters is mapped to a computation that consumes ? parameters. However, the admissible
substitution rule (18) shows us that actually such a term must also denote a sequence of functions

JG1 :<1, ... , G: :<: | 01, ... , 0? ⊢ CKX,= : - (= +<1) × . . . × - (= +<:) → - (= + ?).

Definition 4.1. Let Σ be a parameterized signature (Def. 3.1). A Σ-structure X is an - ∈ SetN

equipped with, for each O : (? | <1 ...<:) and = ∈ N, a function

OX,= : - (= +<1) × . . . × - (= +<:) → - (= + ?).

The interpretation of terms is now defined by structural recursion in a standard way, where the
interpretation of a computation variable term such asG1 :<1, . . . , G: :<: | 01, . . . , 0<8

⊢ G8 (01, . . . , 0<8
)

is given by the sequence of product projections

- (= +<1) × . . . × - (= +<8) × . . . × - (= +<:) → - (= +<8).

Definition 4.2. Let T be a parameterized theory over the signature Σ. A Σ-structureX is amodel
of T if for every equation Γ | Δ ⊢ B = C in T , and every = ∈ N, we have an equality of functions
JΓ | Δ ⊢ BKX,= = JΓ | Δ ⊢ CKX,= .

Proposition 4.3. The derivable equality (=T) in a parameterized algebraic theory T is sound:
every T -model satisfies every equation of =T .

Proof notes. By induction on the structure of derivations. �

Remark 4.4. A more abstract view on models is based on enriched categories, since parame-
terized algebraic theories can be understood in terms of enriched Lawvere theories [15, 34, 37].
This is useful because, by interpreting algebraic theories in different categories, we can combine
the algebra structure with other structure, such as topological or order structure for recursion [1,

111:14 Matache et al.

§6], or make connections with syntactic categories [39]. Recall that the category SetN has a ‘Day
convolution’ monoidal structure [6]: (- ⊗ .) (=) =

∑
<1+<2== - (<1) × . (<2). With this structure,

we can interpret a parameterized algebraic theory T in any SetN-enriched category C with prod-
ucts, powers, and copowers. A T -model in C comprises an object - ∈ C together with, for each
O : (? | <1 ...<:), a morphism y(?) ·

(
[y(<1), -] × · · · × [y(<:), -]

)
→ - , making a diagram

commute for each equation in T . (Here, we write y(<) ≔ N(<,−), and (� · -) and [�,-] for
the copower and power.) The elementary notion of model (Def. 4.2) is recovered because, for the
symmetric monoidal closed structure on SetN itself, ([y(<), -]) (=) = - (=+<). This also connects
with (8), since (⊲-) = y(1) ⊗ - and (⊳-) = [y(1), -].

4.2 Free Models and Monads

Strong monads are of fundamental importance to computational effects [23]. Algebraic theories
give rise to strong monads via free models.
In slightly more detail, there is an evident notion of homomorphism applicable to Σ-structures

and T -models, and thus we can sensibly discuss Σ-structures and T -models that are free over
some collection - ∈ SetN of generators.

Definition 4.5. Consider a T -model Y with carrier . ∈ SetN and a morphism [- : - → . in
SetN. Then Y is free on - , if for any other model Z and any morphism 5 : - → / in SetN, there

exists a unique homomorphism of models 5̂ : Y → Z, that extends 5 , meaning 5̂ ◦[- = 5 in SetN.

Informally, for a theory T we define �T- ∈ SetN by taking �T- (=) to be the set of =T-
equivalence classes of terms with parameter context 01, . . . , 0= whose <8-ary computation vari-
ables come from - (<8). More formally, we let

�T- (=) = {〈[G1 :<1, . . . , G: :<: | 01, . . . 0= ⊢ C]=T , 21, . . . , 2:〉 | 28 ∈ - (<8)}/∼

where the equivalence relation ∼ allows us to U-rename context variables in the term judgements
and apply permutation, contraction or weakening to the computation context paired with the
corresponding transformation of the tuple 21, . . . , 2: . It is straightforward to make �T- into a Σ-
structure.

Proposition 4.6.

(1) �T- is a T -model, and moreover a free T -model over - .
(2) �T extends to a monad on SetN, strong for the Day tensor.
(3) The derivable equality (=T) in a parameterized algebraic theory T is complete: if an equation

is valid in every T -model, then it is derivable in =T .

A monad) on SetN strong for the Day tensor is a monad in the usual sense equipped with a
strength - ⊗). →) (- ⊗ .), where ⊗ is the Day tensor defined in Rem. 4.4.

Proof. The first part of (1) is straightforward and standard: the interpretation of operation
symbols is read off from (17). For the second part, we use the variable introduction rule (16) to
define [- : - → �T- by sending 2 ∈ - (=) to the class of 〈[G : = | 01, . . . , 0= ⊢ G]=T , 2〉. Then, for
any T -model Y and map q : - → . , we extend (uniquely) to a homomorphism �T- → Y by
sending an element of �T- (=) represented by 〈[G1 : <1, . . . , G: : <: | 01, . . . 0= ⊢ C]=T , 21, . . . , 2:〉

to J®G | ®0 ⊢ CKY,0 (q<1 (21), . . . , q<:
(2:)) ∈ . (=). Claim (3) follows since all terms are interpreted

in free models “as themselves”, and two terms are derivably equal iff their denotations in the free
model are equal.
For (2), the[- just defined becomes themonadic unit, and bind is defined in terms of substitution

as usual (rule (18)). By the general properties of the Day tensor product, the strength is determined

Scoped Effects as Parameterized Algebraic Theories 111:15

by a natural transformation

- (?) ⊗ �T. (=) → �T (- ⊗ .) (? + =).

This map sends 2 ∈ - (?) paired with an element represented by 〈[~1 :<1, . . . ,~: :<: | 11, . . . 1= ⊢

C]=T , 31, . . . , 3:〉 where 38 ∈ . (<8) to the class of

〈[~1 : ? +<1, . . . , ~: : ? +<: | 01, . . . , 0? , 11, . . . 1= ⊢ C ′]=T , 〈〈?,<1〉, 〈2, 31〉〉, . . . , 〈〈?,<:〉, 〈2, 3:〉〉〉

where C ′ = C [. . . , (01, . . . , 0? , 21, . . . , 2<8
⊢ ~8 (01, . . . , 0? , 21, . . . , 2<8

))/~8 , . . .] and the 〈〈?,<8〉, 〈2, 38〉〉

are elements of (- ⊗ .) (? +<8) =
∑

ℎ1+ℎ2=?+<8
- (ℎ1) × . (ℎ2) that lie within the - (?) × . (<8)

summand. It is straightforward to check the required laws. �

In Section 4.3 we will consider explicit syntax-free characterizations of the free models for par-
ticular scoped theories. For completeness, we mention that �T is part of an equivalence between
such sifted-colimit-preserving strong monads and parameterized theories, e.g. [40, §5]. We omit
details as this will not be used in the rest of this paper.

Proposition 4.7. The functor �T preserves sifted colimits. Moreover, there is an equivalence be-
tween parameterized algebraic theories and monads on SetN strong for the Day tensor and whose
functor part preserves sifted colimits.

Relating parameterized theories and algebraic theories. In Prop. 4.8 and theorem 4.10 we relate the
free model construction �T to monads on Set that support algebraic and scoped operations, as
discussed in Section 2.2. We also discuss an encoding of algebraic theories as parameterized theo-
ries (Prop. 4.9), which will be extended to include scoped operations in Section 4.4.
Recall from Section 2.2 that the functors ↾ : Set → SetN and ⇂ : SetN → Set form an adjunction.

The monad �T induces a monad on Set:

� ′T ≔ ⇂ ◦ �T ◦ ↾ (35)

Proposition 4.8. Let T = 〈Σ, �〉 be a parameterized algebraic theory arising from signatures for
algebraic and scoped operations (Remark 3.2).

(1) For each algebraic operation (> : :), the monad � ′T supports an algebraic operation of the
same arity, in the sense of Def. 2.11.

(2) For every scoped operation (B : :), the monad � ′
T
supports a scoped operation of the same

arity, in the sense of Def. 2.12.

Proof. We have a natural transformation (�T-)
: → �T- given by substituting terms into the

operation> and this is “algebraic” in the sense of commutingwith postcomposition by the monadic
multiplication, so (1) follows easily. In general, an operation B : (0 | 1, ... , 1) appears as a natural
transformation (⊳ �T-)

: → �T- . However, it is easy to show that ⊳ preserves T -models, and in

the setting of (2) we have can use close : (1 | 0) to get a map -
[-
−−→ �T-

JcloseK
−−−−−→ ⊳ �T- . By the

universal property of free models, this induces another map �T- → ⊳ �T- . This map adds a close
at the leaves of each syntax tree, as opposed to at the root. Postcomposing �T- → ⊳ �T- with
the scoped operation (⊳ �T-)

: → �T- , we have a natural transformation (�T-)
: → �T- which

restricts to the desired scoped operation on � ′T . �

Prop. 4.8 (1) is still true when applied to operations with arity (0 | 0, ... , 0) part of an arbitrary
parameterized signature.
Key to Perspective 2.1 is that an algebraic theory determines a monad on Set. An ordinary

algebraic theory T can be considered as a parameterized algebraic theory in at least two ways.
Let T1 be the “minimal translation”: the parameterized theory whose signature consists only of

111:16 Matache et al.

operations of arity (0 | 0, ... , 0) plus all equations; and let T2 be T1 together with an operation
close : (1 | 0). Thus T2 arises when translating into a parameterized theory via a scoped signature
as in Remark 3.2, albeit with no scope-opening operations.

Proposition 4.9. Let T = 〈Σ, �〉 be an algebraic theory and inducing a monad) on Set. Then
) is isomorphic to the Set restriction of the monads induced by the parameterized theories T1 and T2
(defined in eq. (35)), respectively:

) � � ′T1 � � ′T2 .

Proof. We will prove something stronger. It is easy to see that for any - ∈ SetN, (�T1-) (=) �
) (- (=)), since a T1-algebra structure on . ∈ SetN is equivalent to a T -algebra structure on each
. (=) with no compatibility requirements. Then by definition of the functors ↾and ⇂ we obtain that
� ′
T1
(�) �) (�) for any set �.

For T2, we can at least characterize �T2 (↾�), for a set �. It is given by)̄� ≔ _=.)=+1�, with the
obvious interpretation of the algebraic operations in Σ, and close)̄�,= :)=+1� →)=+2� given by

the monadic unit [)=+1�. To see that)̄� is the free model of T2, given any T2-model . with a map
↾� → . , we define a map)̄� → . as follows. Since each. (=) is, in particular, a) -algebra, we get
a unique) -homomorphism)� → . (0). Now we can inductively construct) -homomorphisms
)=+2� → . (= + 1): composing)=+1� → . (=) constructed so far with close.,= : . (=) → . (= + 1),
and extending uniquely to a) -homomorphism)=+2� → . (= + 1). The resulting map)̄� → . a
T2-homomorphism since it commutes with the interpretations of close by construction. �

This establishes the connection with monads for ordinary algebraic theories. Finally, we will
connect �T with the scoped monad of Prop. 2.13 that was first given by Piróg et al. [25].

Theorem 4.10. Consider signatures for algebraic Σ and scoped Σ′ effects with no equations, induc-
ing a parameterized algebraic theory T (via Rem. 3.2). We have an isomorphism of monads

�T �
(
Σ̄ +

(
Σ̄′ ◦ ⊳

)
+ ⊲

)∗
.

Proof. To see this, we use the description of �T- (=) as a set of equivalence classes of T -
terms with computation variables coming from - . We show that �T- (=) is isomorphic to the
set

(
Σ̄ +

(
Σ̄′ ◦ ⊳

)
+ ⊲

)∗
(-) (=). Consider the outermost operation of a term in �T- (=): it is either

algebraic, scoped or close. Each component of the sum on the right-hand-side, Σ̄,
(
Σ̄′ ◦ ⊳

)
and ⊲ cor-

responds to one of these three possibilities. Scoped operations bind a parameter hence the need for
the ⊳ functor which increases the index = by 1. The close operation consumes a parameter which
corresponds to the fact that ⊲ decreases the index = by 1. Note that according to Def. 4.1, for an
arbitrary carrier. , the interpretation of close has type. → ⊳. , which is equivalently a morphism
⊲. → . . Both ⊳/⊲ are characterized in Rem. 4.4 in terms of the Day tensor of SetN. �

4.3 Free Models for Scoped Effects

We now turn to some concrete models from Piróg et al. [25]. To characterize them as certain free
models of parameterized algebraic theories, we need the following notion.

Definition 4.11. - ∈ SetN is truncated if - (= + 1) = ∅ for all = ∈ N.

Equivalently, - is truncated if - = ↾ (- (0)). The free model on a truncated - corresponds to
the case where computation variables can only denote programs with no open scopes. This is the
case in the development of Piróg et al. [25], where if the programmer opens a scope, a matching
closing of the scope is implicitly part of the program.

Scoped Effects as Parameterized Algebraic Theories 111:17

4.3.1 Nondeterminism with once. Recall the parameterized theory for nondeterminism with once

(signature in Ex. 3.3 and equations in Fig. 2). It follows from Prop. 4.6 that this theory has a free
model on each - in SetN, with carrier denoted by)o (-) ∈ SetN. For - truncated, the free model
on - has an elegant description:

)o (-) (=) = List=+1(- (0)).

Here List(�) is the set of lists over �. (So List=+1(- (0)) can be thought of as the set of balanced
trees of depth exactly = + 1 but with arbitrary degree, and leaves labelled by - (0), where we
distinguish between nodes with zero degree and leaf nodes.)
In this case the interpretation of once chooses the first element of a list and closing a scopewraps

its continuation as a singleton list. Choice is interpreted as list concatenation (++), and failure as
the empty list []:

once= :)o (-) (= + 1) →)o (-) (=) once= ([]) = [], once= ([G, . . .]) = G

close= :)o (-) (=) →)o (-) (= + 1) close= (G) = [G]

or= :)o (-) (=) ×)o (-) (=) →)o (-) (=) or= (G1, G2) = G1 ++ G2

fail= : 1 →)o (-) (=) fail= () = []

In fact the model)o (-) we just described is the same as the model for nondeterminism of Piróg
et al. [25, Example 4.2]:

Theorem 4.12. For a truncated - ∈ SetN,)o (-) is the free model of the parameterized theory of
nondeterminism with once (Example 3.5 and Figure 2). Moreover, the model for nondeterminism with
once from [25, Example 4.2], starting from a set �, is the free model on ↾� ∈ SetN.

Proof notes. It is easy to show that the operations on)o (-) defined in this section satisfy the
equations in Figure 2, and therefore)o (-) is a model. Denote by �o(-) the free model in the sense
of Prop. 4.6. We apply the definition of freeness to the map - →)o (-) that sends each 2 ∈ - (0)

to the singleton list [2], to obtain a homomorphism of models d : �o (-) →)o (-). To show)o (-)
is free, we show that d has an inverse f :)o (-) → �o(-).
Recall that �o (-) (=) contains equivalence classes of terms in context, with computation vari-

ables taken from - . We use representatives of these equivalence classes where the context Γ-
contains a variable (G : 0) for each element of - (0). We define f by induction:

f= ([]) = Γ- | 01, ... , 0= ⊢ fail

f0(x :: xs) = Γ- | − ⊢ or(x, f0 (xs))

f=+1(x :: xs) = Γ- | 01, ... , 0=+1 ⊢ or
(
close(0=+1, f= (G)), f=+1(xs)

)

The terms in the image of f are essentially normal forms for the parameterized theory, when
computation variables only have arity 0.
We show that f is a homomorphism of models, meaning it commutes with the operations in the

theory, using the equations in Figure 2. The case for once also requires an induction on lists.
To show d ◦f = id)o (-) , we use induction on = ∈ N, followed by induction on lists, and the fact

that d is a homomorphism. To show f ◦ d = id�o (-) , we do induction on the term formation rules,
and use the fact that f is a homomorphism. �

4.3.2 Exceptions. Recall the parameterized theory of throwing and catching exceptions in Ex. 3.6
and (19–21). For truncated - ∈ SetN, the free model of the theory of exceptions has carrier:

)c (-) (=) = - (0) + {40, . . . , 4=}

where 4=−8 corresponds to the term (in normal form) that closes 8 scopes then throws.

111:18 Matache et al.

To define the operations catch= and close= we pattern match on the elements of)c (-) (= + 1)
using the isomorphism)c (-) (= + 1) �)c (-) (=) + {4=+1}. Below, G is an element of)c (-) (=),
standing for a computation in normal form:

catch= :)c (-) (= + 1) ×)c (-) (= + 1) →)c (-) (=)

catch= (G,−) = G, catch= (4=+1, G) = G, catch= (4=+1, 4=+1) = 4=

close= :)c (-) (=) →)c (-) (= + 1) close= (G) = G

throw= : 1 →)c (-) (=) throw= () = 4=

The cases in the definition of catch= correspond to equations (21), (19), (20) respectively. In the
third case, an exception inside = + 1 scopes in the second argument of catch becomes an exception
inside = scopes.

Theorem 4.13. For a truncated - ∈ SetN,)c (-) is the free model for the parameterized theory of
exceptions (19–21). The model for exception catching from [25, Example 4.5], which starts from a set
�, is the free model on ↾� ∈ SetN.

Proof notes. We follow the same outline as for the proof of Theorem 4.12. Consider the map
- →)c (-) that maps each element of - (0) to itself. This has a unique extension to a map out of
the free model on - , d : �c(-) →)c (-). We define f :)c (-) → �c (-) to be the candidate inverse
for d . Note that it is enough to show that f is an inverse in SetN. Using the intuition of normal
forms and the isomorphism)c (-) (=) � - (0) + {40, . . . , 4=}:

f= (G) = Γ- | 01, ... , 0= ⊢ close(0=, ... close(01, G) ...)

f= (4=−8) = Γ- | 01, ... , 0= ⊢ close(0=+1, ... close(0=−8+1, throw) ...), for each 0 ≤ 8 ≤ =

If we consider an element I ∈)c (-) (=), and the isomorphism)c (-) (= + 1) �)c(-) (=) + {4=+1},
the following equation holds:

f=+1(I) = Γ- | 01, ... , 0=+1 ⊢ close(0=+1, f= (I)) (36)

To show d ◦ f = id)c (-) we use that d is a homomorphism. For f ◦ d = id�c (-) , we proceed by
induction on the term formation rules.We use eq. (36), and in the catch casewe also use the eqs. (19)
to (21) from the parameterized theory. �

4.3.3 State with local values. Recall the parameterized theory of mutable state with local values in
Ex. 3.8 and its equations (22–28). The free model, in the sense of Prop. 4.6, on a truncated- ∈ SetN

has carrier:

)l (-) (0) =
(
2 ⇒ - (0) × 2

)
)l (-) (= + 1) =

(
2 ⇒)l (-) (=))

)

The operations on this model are

local8= :)l (-) (= + 1) →)l (-) (=) local8= (5) = (5 8)

close= :)l (-) (=) →)l (-) (= + 1) close= (5) = _B. 5

put8= :)l (-) (=) →)l (-) (=) put8= (5) = _B. 5 8

get= :)l (-) (=)
2 →)l (-) (=) get= (5 , 6) = _B.

{
5 B B = 0

6 B otherwise

Notice that the continuation of local8 uses the new state 8 , whereas close discards the state B which
comes from the scope that is being closed.

Scoped Effects as Parameterized Algebraic Theories 111:19

If we only consider equations (22–27), omitting (28), the carrier of the free model on a truncated
- ∈ SetN is:

) ′
l (-) (0) =

(
2 ⇒ - (0) × 2

)
=)l (-) (0)) ′

l (-) (= + 1) =
(
2 ⇒) ′

l (-) (=) × 2
)

In fact,) ′
l
(-) is the model of state with local proposed in [25, §7.1]:

Theorem 4.14. Given a truncated - ∈ SetN,)l (-) is the free model of the parameterized theory
of state with local values, eqs. (22) to (28). Moreover,) ′

l
(-) is the free model for eqs. (22) to (27).

Consider the example of state with local variables from Piróg et al. [25, §7.1], specialized to one
memory location storing one bit, reading the return type (there ‘0’) as a set �. The model proposed
in [25, §7.1] is the free model on ↾� for the parameterized theory with equations (22–27).

Proof notes. We show that)l (-) is the free model following the same proof outline as for The-
orems 4.12 and 4.13. It is easy to equip) ′

l
(-) with operations and do a similar proof of freeness.

Consider the map - →)l (-) that sends each G ∈ - (0) to the function _B. (G, B), and let d :

�l(-) →)l (-) be its unique extension out of the free model. We define a candidate inverse for d
using the intuition of normal forms, f :)l (-) → �l(-):

f0(5) = Γ- | − ⊢ get
(
putc2 (5 0) (c1(5 0)), put

c2 (5 1) (c1 (5 1))
)

f=+1(5) = Γ- | 01, ... , 0=+1 ⊢ get
(
close(0=+1, f= (5 0)), close(0=+1, f= (5 1))

)

where we identified the elements of - (0) with the variables in Γ- .
We can show that f is a homomorphism using eqs. (22) to (28) from the parameterized theory. To

show d ◦f = id)l (-) , we proceed by induction on = ∈ N and use the fact that d is a homomorphism.
For f ◦ d = id�l (-) , we use induction on terms and that both d and f are homomorphisms. For the
variable case, we use eq. (22). �

The interpretations in)l (-) and)
′
l
(-), i.e that of Piróg et al. [25], of programs with no open

scopes agree:

Proposition 4.15. Consider a fixed context of computation variables Γ = (G1 : 0, ... , G= : 0) and a
truncated - ∈ SetN. For any term Γ | − ⊢ C , the following two interpretations coincide at index 0:

JCK)l (-),0 = JCK) ′
l
(-),0 :)l (-) (0)

= →)l (-) (0),

under the identification)l (-) (0) =) ′
l
(-) (0).

Proof. The local operation binds parameters so we use a logical relation indexed by the length
of the parameter context ? ∈ N. The relation has type

R? ⊆
(
)l- (0)= →)l- (?)

)
×
(
)l- (0)= →) ′

l - (?)
)

and is defined as

R0
= {(5 , 5) | 5 :)l- (0)= →)l- (0)}

R?+1
=

{
(5 , 6) | ∀B ∈ 2.

(
_(G1, ... , G=). 5 (G1, ... , G=) (B), _(G1, ... , G=). c16(G1, ... , G=) (B)

)
∈ R?

}

where (G1, ... , G=) ∈)l- (0)=.
The fundamental property for this logical relation says that for all terms Γ | 01, ... , 0? ⊢ C , the

two interpretations are related:
(
JCK)l (-),0, JCK) ′

l
(-),0

)
∈ R? . If ? = 0, this is enough to deduce the

interpretations are equal. The fundamental property is proved by induction on C . �

The restriction of Γ in Prop. 4.15 to computation variables that do not depend on parameters and
of Δ to be empty are reasonable because in the framework of Piróg et al. [25], only programs with
no open scopes are well-formed. Therefore, only such programs can be substituted in C , justifying
the restriction of JCK) ′

l
(-) to index 0.

111:20 Matache et al.

4.3.4 Nondeterminism with cut. Recall the parameterized theory of explicit nondeterminism with
cut from Example 3.9. According to Prop. 4.6, this theory has a free model for each - ∈ SetN,
denoted by)cs (-).
Define a functor on sets Idem:

Idem(�) = � ⊎ {0∗ | 0 ∈ �}.

Here in the notation 0∗, the ∗ is just a flag. It is a semantic counterpart of cut, meaning ‘discard
the yet uninspected choices and continue with 0’, following [26, §6]. (It is not the Kleene star of
Prop. 2.13.)
If - is truncated, the carrier of the free model on - is:

)cs (-) (=) = (Idem ◦ List)=+1(- (0)).

(So these can be thought of as balanced binary trees, depth =+1, leaves labelled by- (0), and where
each non-leaf node is optionally flagged with ∗.)
When writing the interpretation of operations, we use the isomorphism

)cs (-) (0) � Idem(List(- (0)))))cs (-) (= + 1) � Idem(List()cs (-) (=)))

so an element of)cs (-) (=) is either a list xs or a starred list xs∗.
The interpretation of cut and or in the free model is the following:

cut= :)cs (-) (=) →)cs (-) (=) cut= (xs) = xs∗, cut= (xs
∗) = xs∗

or= :)cs (-) (=) ×)cs (-) (=) →)cs (-) (=)

or= (xs, ys) = xs ++ ys, or= (xs, ys
∗) = (xs ++ ys)∗, or= (xs

∗,−) = xs∗

The cut operation marks a list with a star; the second clause in the definition of cut corresponds
to the idempotence equation (31). Similarly to Section 4.3.1, or performs list concatenation, but
now stars need to be taken into account as well. The second clause in definition of or corresponds
to eq. (30), and the third clause to eq. (29).
The operation of opening a scope is interpreted as:

scope= :)cs (-) (= + 1) →)cs (-) (=)

scope= (xs
∗) = scope= (xs), scope= ([]) = [], scope= (x :: xs) = or= (x, scope= (xs))

The first clause corresponds to erasing cuts as in eq. (33). The second clause corresponds to eq. (32).
The third clause uses the interpretation of or to concatenate lists while taking into account cuts;
it corresponds to eq. (34).
The close and fail operations have the same interpretation as in the nondeterminism with once

example from Section 4.3.1:

close= :)cs (-) (=) →)cs (-) (= + 1) close= (G) = [G]

fail= : 1 →)cs (-) (=) fail= () = []

Theorem 4.16. If - ∈ SetN is truncated, then)cs (-) is the free model of the parameterized theory
of nondeterminism with cut, defined in Example 3.9.

Proof. We explained in this subsection why)cs (-) together with its interpretation of opera-
tions respects the equations of the parameterized theory. Therefore,)cs (-) is a model of the theory,
in the sense of Def. 4.2.
Denote by �cs(-) the free model on - for nondeterminism with cut, in the sense of Prop. 4.6.

Consider the map- →)cs (-) that sends each element of- (0) to the singleton list containing that

Scoped Effects as Parameterized Algebraic Theories 111:21

element. By freeness (Def. 4.5), this map has a unique extension to a homomorphism of models
d : �cs (-) →)cs (-). To show)cs (-) is free, it is enough to show that d has an inverse.
Recall that)cs (-) (=) is isomorphic to (Idem ◦ List)=+1(- (0)), and �cs (-) (=) contains equiv-

alence classes of terms in context, where the computation variables come from - . We define a
candidate inverse f :)cs (-) → �cs (-) by induction on = ∈ N and on lists. For simplicity, we use
representatives of equivalence classes from �cs(-) (=) where the context Γ- contains one variable
G8 : 0 for each 28 ∈ - (0), so we identify G8 and 28 in the definition below:

f0(xs
∗) = Γ- | − ⊢ cut(f0(xs)) where xs ∈ List(- (0))

f0([]) = Γ- | − ⊢ fail
f0(x :: xs) = Γ- | − ⊢ or(x, f0 (xs))

f=+1(xs
∗) = Γ- | 01, ... , 0=+1 ⊢ cut(f=+1(xs))

f=+1([]) = Γ- | 01, ... , 0=+1 ⊢ fail
f=+1(x :: xs) = Γ- | 01, ... , 0=+1 ⊢ or

(
close(0=+1, f= (x)), f=+1(xs)

)

The terms in the image of f can be seen as the normal forms for the parameterized theory, defined
recursively.
To show that f is a section, d ◦ f = id)cs (-) , we use induction on = ∈ N. For both the base case

and the induction step, we first consider the case where the input is a list xs and use induction on
lists. We use this intermediate result to prove the case of a starred list xs∗. Throughout, we use the
fact that d is a homomorphism.
To show f ◦ d = id�cs , we fist show f is a homomorphism of models, i.e that it commutes with

all the operations. The or and scope cases require induction on lists. Most importantly, we make
use of equations from the parameterized theory of cut (Example 3.9). We then show by induction
on the term formation rules that:

f=
(
d= (Γ- | 01, ... , 0= ⊢ C)

)
=cs

(
Γ- | 01, ... , 0= ⊢ C

)

where the equality =cs is in the theory of cut. We use the equations in the theory and the fact that
f is a homomorphism. The scope case also requires an induction on lists. �

4.4 Generating a Parameterized Theory from an Arbitrary Scoped Operation

In Remark 3.2 we showed how to translate signatures of arbitrary algebraic and scoped (Def. 2.2
and section 2.2) operations into parameterized signatures. We then showed in Section 3.2 how to
encode the behaviour of several examples of scoped operations using equations that form parame-
terized theories. In Section 4.3, we constructed freemodels for these examples of scoped operations.
In this section, we show how to obtain a parameterized theory from an arbitrary scoped operation,
and discuss the free model of such a theory.
Recall from Perspective 2.10 that a scoped operation is one that does not commute with substi-

tution, and more precisely from Def. 2.12 that a scoped operation on a monad) on Set is a natural
transformation f� : ()�): →)�.
Starting from an algebraic theory T = 〈Σ, �〉, with monad) supporting a scoped operation f

with arity : , we can construct a parameterized theory Tparam in the sense of Def. 3.4. The signature
of Tparam is constructed using Remark 3.2 applied to the algebraic signature Σ, first extended to
a scoped signature with one scoped operation symbol sc (standing for f) with arity (0 | 1 ... 1),
where the list 1 ... 1 has length k.

The equations of the parameterized theory Tparam come in two kinds. First, each equation in �

gives an equation in Tparam in the evident way. Second, for each = ∈ N and each :-tuple of Σ-terms

(G1, ... , G= ⊢ C1, ... , C:), theT -equality class of those terms gives an argument forf= :) (=): →) (=),

111:22 Matache et al.

andf= ([C1], . . . , [C:]) = [C ′] for some G1, ... , G= ⊢ C ′ . For each such argumentTparam gets an equation

G1 : 0, ... , G= : 0 | − ⊢ sc(0.C1 [close(0, G8)/G8]1≤8≤=, . . . , 0.C: [close(0, G8)/G8]1≤8≤=) = C ′ . (37)

Let �Tparam- be the free model over - of the parameterized theory Tparam from Prop. 4.6. Both -

and �Tparam- are objects in SetN. From the free model of Tparam we can recover the free model of
the algebraic theory T that we started with.

Theorem 4.17. Let T = 〈Σ, �〉 be an algebraic theory inducing a monad) on Set, supporting a
scoped operation f of arity : . With Tparam constructed as above, we have the following isomorphism:

) � � ′Tparam = ⇂ ◦ �Tparam ◦ ↾.

Moreover, the scoped operation on � ′
Tparam

corresponding to sc, as constructed in Prop. 4.8, agrees with

the operation f .

Proof. In fact, we will show that the free model �Tparam on a truncated object ↾�, for a set �, is

)̄� ≔ _<.)<+1�, from the proof of Prop. 4.9. We first note that)̄� supports an interpretation of
sc by the follow morphism:

(
()̄�) (< + 1)

):
=
(
)<+2 (�))

): f
)<+1 (�)

−−−−−−−→)<+2 (�)
`
)<+1 (�)

−−−−−−−→)<+1 (�) = ()̄�) (<).

To check that)̄� is a model of Tparam, we need to see that all instances of (37) are validated.
Note that, for terms G1 : 0, ... , G= : 0 | − ⊢ C8 ,

JC8 [close(0, G8)/G8]1≤8≤=K< = ()<+1�)=
JC8K<
−−−−→)<+1 (�)

)[)<�

−−−−−→)<+2 (�)

and ` ◦ f ◦)[= ` ◦)[◦ f = f by naturality of f and the monad laws.
Since)̄� is free on ↾� for the theory T2 of Prop. 4.9, which omits sc and the equations (37), we

only need to show that aT2-homomorphism)̄� → . into aTparam-model is always aTparam-homomorphism,

i.e. that it commutes with sc. But every element of)̄�(< + 1) =) ()̄�(<)) is in the image of
JCK<+1 ◦ JcloseK< for some Σ-term G1, ... , G= ⊢ C , thus this amounts to the hypothesis that . vali-
dates all instances of eq. (37). �

Remark 4.18. Whereas in Section 3.2 we constructed scoped theories out of particular algebraic
theories whose monads support a scoped operation, the recipe for Tparam constructs a scoped the-
ory in the general case. However, the presentation of Tparam typically includes infinitely many
equations whereas the theories in Section 3.2 are given finite presentations. For example, in the
case of once (Figure 2), eqs. (13) and (15) are not part of Tparam but infinitely many substitution in-
stances of them are. The free models of Tparam and that in Section 4.3.1 agree on truncated- , (since
the free model of the algebraic theory of explicit nondeterminism is List), which shows that the
theory of once admits derivations of all equations of the corresponding Tparam. However, eqs. (13)
and (15) are not derivable in Tparam. We argue that the full behaviour of once is captured by the
theory in Figure 2, rather than by Tparam.

5 SUMMARY AND RESEARCH DIRECTIONS

We have provided a fresh perspective on scoped effects in terms of the formalism of parameterized
algebraic theories, using the idea that scopes are resources (Rem. 3.2). As parameterized algebraic
theories have a sound and complete algebraic theory (Props. 4.3, 4.6), this carries over to a sound
and complete equational theory for scoped effects. We showed that our approach recovers the
earlier models for scoped non-determinism, exceptions, and state (Thms. 4.12–4.14).
Here we have focused on equational theories for effects alone. But as is standard with algebraic

effects, it is easy to add function types, inductive types, and so on, together with standard beta/eta

Scoped Effects as Parameterized Algebraic Theories 111:23

theories (e.g. [30],[40, §5]). This can be shown sound by the simple models considered here, as
indeed the canonical model SetN is closed and has limits and colimits.

Combinations of theories. Amore concrete research direction is to define combinations of param-
eterized theories, and hence of scoped effects, using sum and tensor, generalizing combinations
of algebraic effects [13]. Informally, the tensor corresponds to all the operations from one theory
commuting with the operations from the other. But in the case of parameterized theories in SetN,
defining what this means for operations to commute is delicate because substitution, eq. (18), is
more complex than in the algebraic case (but see [38, Def. 2]).
For example, consider the commuting combination of explicit nondeterminism with once (fig. 2)

and global state (Example 2.8). In the resulting theory, the state is rolled back when a computation
fails. For example, the fact that put0 commutes with fail means we can prove:

put1
(
or(put0(fail), get(G0, G1))

)
= put1

(
or(fail, get(G0, G1))

)

= put1
(
get(G0, G1)

)

= put1(G1)

using commutativity of put0 and fail for the first step. The fact that put and get commute with
once and closemeans the state operations are independent of scopes.

Our work opens up new directions for scoped effects, in theory and in practice. By varying
the substructural laws of parameterized algebraic theories, we can recover foundations for scoped
effects where scopes (as resources) can be reordered or discarded, i.e. where they are not well-
bracketed, already considered briefly in the literature [25]. For example, the parameterized alge-
braic theory of qubits [40] might be regarded as a scoped effect, where we open a scope when
a qubit is allocated and close the scope when it is discarded; this generalizes traditional scoped
effects as multi-qubit operations affect multiple scopes.

ACKNOWLEDGMENTS

We are grateful to many colleagues for helpful discussions and to the ESOP 2024 reviewers for
their helpful comments and suggestions. This work was supported by the UKRI Future Leaders Fel-
lowship “Effect Handler Oriented Programming” (reference number MR/T043830/1), ERC Project
BLAST, and AFOSR Award No. FA9550–21–1–003.

REFERENCES

[1] Samson Abramsky and Achim Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science, S. Abramsky,

Dov M. Gabbay, and T. S. E. Maibaum (Eds.). Vol. 3.

[2] Andrej Bauer. 2019. What is algebraic about algebraic effects and handlers? https://doi.org/10.48550/arXiv.1807.05923

arXiv:1807.05923 [cs.LO]

[3] Nick Benton and Philip Wadler. 1996. Linear logic, monads and the lambda calculus. In Proceedings 11th Annual IEEE

Symposium on Logic in Computer Science. 420–431. https://doi.org/10.1109/LICS.1996.561458

[4] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg, and Lars Birkedal. 2016. Guarded De-

pendent Type Theory with Coinductive Types. In Foundations of Software Science and Computation Structures (Lecture

Notes in Computer Science, Vol. 9634), Bart Jacobs and Christof Löding (Eds.). Springer Berlin Heidelberg, Berlin, Hei-

delberg, 20–35. https://doi.org/10.1007/978-3-662-49630-5_2

[5] Roger Bosman, Birthe van den Berg, Wenhao Tang, and Tom Schrijvers. 2023. A Calculus for Scoped Effects &

Handlers. https://doi.org/10.48550/arXiv.2304.09697 arXiv:2304.09697 [cs.PL]

[6] Brian Day. 1970. On closed categories of functors. In Reports of the Midwest Category Seminar IV, S. MacLane, H. Ap-

plegate, M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street, M. Tierney, and S. Swierczkowski (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 1–38.

[7] Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal metatheory of second-order abstract syntax. Proc. ACM

Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498715

https://doi.org/10.48550/arXiv.1807.05923
https://arxiv.org/abs/1807.05923
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.48550/arXiv.2304.09697
https://arxiv.org/abs/2304.09697
https://doi.org/10.1145/3498715

111:24 Matache et al.

[8] Marcelo P. Fiore and Chung-Kil Hur. 2010. Second-Order Equational Logic (Extended Abstract). In Computer Science

Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-

27, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6247), Anuj Dawar and Helmut Veith (Eds.). Springer,

320–335. https://doi.org/10.1007/978-3-642-15205-4_26

[9] Marcelo P. Fiore and Ola Mahmoud. 2010. Second-Order Algebraic Theories - (Extended Abstract). In Mathematical

Foundations of Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27,

2010. Proceedings (Lecture Notes in Computer Science, Vol. 6281), Petr Hlinený and Antonín Kucera (Eds.). Springer,

368–380. https://doi.org/10.1007/978-3-642-15155-2_33

[10] Marcelo P. Fiore and Sam Staton. 2014. Substitution, jumps, and algebraic effects. In Proc. CSL-LICS2014.

[11] Neil Ghani, Tarmo Uustalu, and Makoto Hamana. 2006. Explicit substitutions and higher-order syntax. Higher-Order

and Symbolic Computation 19, 2–3 (2006), 263–282. https://doi.org/10.1007/s10990-006-8748-4

[12] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102.

[13] Martin Hyland, Gordon D. Plotkin, and John Power. 2006. Combining Effects: Sum and Tensor. Theor. Comput. Sci.

357, 1 (July 2006), 70–99. https://doi.org/10.1016/j.tcs.2006.03.013

[14] Shin-ya Katsumata, Dylan McDermott, Tarmo Uustalu, and Nicolas Wu. 2022. Flexible Presentations of Graded

Monads. Proc. ACM Program. Lang. 6, ICFP, Article 123 (aug 2022), 29 pages. https://doi.org/10.1145/3547654

[15] G.M. Kelly and A.J. Power. 1993. Adjunctions whose counits are coequalizers, and presentations of finitary enriched

monads. Journal of Pure and Applied Algebra 89, 1 (1993), 163–179. https://doi.org/10.1016/0022-4049(93)90092-8

[16] F. William Lawvere. 1963. Functorial Semantics of Algebraic Theories. Proceedings of the National Academy of Sciences

50, 5 (1963), 869–872. https://doi.org/10.1073/pnas.50.5.869

[17] Sam Lindley, Cristina Matache, Sean K. Moss, Sam Staton, Nicolas Wu, and Zhixuan Yang. 2024. Scoped Effects as

Parameterized Algebraic Theories. In ESOP 2024.

[18] F. E. J. Linton. 1966. Some Aspects of Equational Categories. In Proceedings of the Conference on Categorical Algebra,

S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 84–94.

https://doi.org/10.1007/978-3-642-99902-4_3

[19] Paul-André Melliès. 2014. Local States in String Diagrams. In Rewriting and Typed Lambda Calculi, Gilles Dowek (Ed.).

Springer International Publishing, Cham, 334–348.

[20] Paul-André Melliès. 2010. Segal Condition Meets Computational Effects. In 2010 25th Annual IEEE Symposium on

Logic in Computer Science. 150–159. https://doi.org/10.1109/LICS.2010.46

[21] Robin Milner. 1999. Communicating and Mobile Systems: The c -calculus. Cambridge University Press, United States.

[22] Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings. Fourth Annual Symposium on

Logic in Computer Science. 14–23. https://doi.org/10.1109/LICS.1989.39155

[23] Eugenio Moggi. 1991. Notions of Computation and Monads. Information and Computation 93, 1 (1991), 55 – 92.

https://doi.org/10.1016/0890-5401(91)90052-4 Selections from 1989 IEEE Symposium on Logic in Computer Science.

[24] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. 2003. A type theory for memory allocation and data

layout. In POPL 2003.

[25] Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics for Oper-

ations with Scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science

(Oxford, United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 809–818.

https://doi.org/10.1145/3209108.3209166

[26] Maciej Piróg and Sam Staton. 2017. Backtracking with cut via a distributive law and left-zero monoids. J. Funct.

Program. 27 (2017), e17.

[27] Andrew M. Pitts. 2011. Structural recursion with locally scoped names. Journal of Functional Programming 21, 3

(2011), 235–286. https://doi.org/10.1017/S0956796811000116

[28] Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In FOSSACS 2001 (Lecture Notes in Computer

Science, Vol. 2030), Furio Honsell and Marino Miculan (Eds.). Springer, 1–24. https://doi.org/10.1007/3-540-45315-6_1

[29] Gordon D. Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Foundations of Software

Science and Computation Structures, 5th International Conference (FOSSACS 2002), Mogens Nielsen and Uffe Engberg

(Eds.). Springer, 342–356. https://doi.org/10.1007/3-540-45931-6_24

[30] Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures

11 (2003), 69–94.

[31] Gordon D. Plotkin and John Power. 2004. Computational Effects and Operations: An Overview. Electr. Notes Theor.

Comput. Sci. 73 (10 2004), 149–163. https://doi.org/10.1016/j.entcs.2004.08.008

[32] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4

(Dec 2013). https://doi.org/10.2168/lmcs-9(4:23)2013

[33] Jeff Polakow. 2001. Ordered linear logic and applications. Ph. D. Dissertation. USA.

[34] John Power. 1999. Enriched Lawvere theories. Theory and Applications of Categories 6, 7 (1999), 83–93.

https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/s10990-006-8748-4
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1145/3547654
https://doi.org/10.1016/0022-4049(93)90092-8
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1109/LICS.2010.46
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1017/S0956796811000116
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1016/j.entcs.2004.08.008
https://doi.org/10.2168/lmcs-9(4:23)2013

Scoped Effects as Parameterized Algebraic Theories 111:25

[35] John Power. 2006. Semantics for Local Computational Effects. Electronic Notes in Theoretical Computer Science 158

(May 2006), 355–371. https://doi.org/10.1016/j.entcs.2006.04.018

[36] Ian Stark. 2008. Free-algebra models for the pi -calculus. Theor. Comput. Sci. 390, 2-3 (2008), 248–270.

https://doi.org/10.1016/j.tcs.2007.09.024

[37] Sam Staton. 2013. An Algebraic Presentation of Predicate Logic - (Extended Abstract). In FOSSACS 2013.

[38] Sam Staton. 2013. Instances of Computational Effects: An Algebraic Perspective. In LICS 2013.

[39] Sam Staton. 2014. Freyd categories are Enriched Lawvere Theories. Electronic Notes in Theoretical Computer Science

303 (2014), 197–206. https://doi.org/10.1016/j.entcs.2014.02.010 Proceedings of theWorkshop on Algebra, Coalgebra

and Topology (WACT 2013).

[40] Sam Staton. 2015. Algebraic Effects, Linearity, and Quantum Programming Languages. In POPL 2015.

[41] S. Staton, D. Stein, H. Yang, N. L. Ackerman, C. Freer, and D. Roy. 2018. The Beta-Bernoulli Process and Algebraic

Effects. In Proc. ICALP 2018.

[42] Patrick Thomson, Rob Rix, Nicolas Wu, and Tom Schrijvers. 2022. Fusing Industry and Academia at GitHub (Experi-

ence Report). Proc. ACM Program. Lang. 6, ICFP, Article 108 (aug 2022), 16 pages. https://doi.org/10.1145/3547639

[43] Birthe van den Berg and Tom Schrijvers. 2023. A Framework for Higher-Order Effects & Handlers.

https://doi.org/10.48550/arXiv.2302.01415 arXiv:2302.01415 [cs.PL]

[44] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell - Haskell ’14, 1–12. https://doi.org/10.1145/2633357.2633358

[45] Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den Berg, and Tom Schrijvers. 2022. Structured Handling of

Scoped Effects. Springer-Verlag, Berlin, Heidelberg, 462–491. https://doi.org/10.1007/978-3-030-99336-8_17

[46] Zhixuan Yang and Nicolas Wu. 2023. Modular Models of Monoids with Operations. Proc. ACM Program. Lang. 7,

ICFP, Article 208 (aug 2023), 38 pages. https://doi.org/10.1145/3607850

https://doi.org/10.1016/j.entcs.2006.04.018
https://doi.org/10.1016/j.tcs.2007.09.024
https://doi.org/10.1016/j.entcs.2014.02.010
https://doi.org/10.1145/3547639
https://doi.org/10.48550/arXiv.2302.01415
https://arxiv.org/abs/2302.01415
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1007/978-3-030-99336-8_17
https://doi.org/10.1145/3607850

	Abstract
	1 Introduction
	2 Background
	2.1 Algebraic Effects
	2.2 Scoped Effects
	2.3 Parameterized Algebraic Theories

	3 Parameterized theories of scoped effects
	3.1 Parameterized Algebraic Theories with Non-Commutative Linear Parameters
	3.2 Examples of Equations for Scoped Theories via Parameterized Presentations

	4 Models of parameterized theories
	4.1 Models in SetN
	4.2 Free Models and Monads
	4.3 Free Models for Scoped Effects
	4.4 Generating a Parameterized Theory from an Arbitrary Scoped Operation

	5 Summary and research directions
	Acknowledgments
	References

