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Abstract
We present a method to create storytelling visualization with time series data. Many personal decisions nowadays rely on
access to dynamic data regularly, as we have seen during the COVID-19 pandemic. It is thus desirable to construct storytelling
visualization for dynamic data that is selected by an individual for a specific context. Because of the need to tell data-dependent
stories, predefined storyboards based on known data cannot accommodate dynamic data easily nor scale up to many different
individuals and contexts. Motivated initially by the need to communicate time series data during the COVID-19 pandemic,
we developed a novel computer-assisted method for meta-authoring of stories, which enables the design of storyboards that
include feature-action patterns in anticipation of potential features that may appear in dynamically arrived or selected data.
In addition to meta-storyboards involving COVID-19 data, we also present storyboards for telling stories about progress in
a machine learning workflow. Our approach is complementary to traditional methods for authoring storytelling visualization,
and provides an efficient means to construct data-dependent storyboards for different data-streams of similar contexts.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Visualization techniques; • Computing methodologies →
Feature selection;

1. Introduction

Visualization provides a powerful means for telling stories about
data [KM13, GP01, TRB∗18, LRIC15]. In most workflows, the au-
thors and the developers of storytelling visualization are typically
given a complete dataset that is not expected to change after the
storyboard is constructed (e.g., [SXS∗21, OBCT24]). Figure 1(a)
illustrates such a workflow. With the rapid growth of data volume
and context, it is increasingly important to deliver data-driven sto-
rytelling visualization to different audiences. Moreover, individuals
will likely pay more attention to stories relevant to them, such as
those about happenings close to their location, information affect-
ing their decisions, or historical facts interesting to them.

Such requirements became strikingly noticeable during the
COVID-19 pandemic. Institutions, such as governments and news
outlets, were able to transfer data at the national level to stories ef-
fectively. Nevertheless, many members of the public found it diffi-
cult to access information of more immediate interest, such as find-
ing out what happened in their location, checking recent data re-
lated their planned journeys, or comparing historical data between
regions of interest. It is not scalable to author many different sto-
ryboards for every individual region or every pair of regions. Nor
is it scalable to change storyboards manually, whenever a dynamic
dataset is updated with newly-arrived data. Moreover, having mul-

(a) Typical development processes for storytelling visualization

(b) Meta-authoring and subsequent development processes for storytelling visualization
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Figure 1: (a) In a typical workflow for creating storytelling visual-
ization, an author defines a storyboard for a known dataset, which
is then developed as a web-based visualization, usually for a spe-
cific target audience. (b) With our approach, the author creates a
meta-storyboard that works with multiple, dynamic, and often not-
yet-inspected datasets. The storyboard is converted by a developer,
following rules that facilitate the automatic or semi-automatic de-
piction of user-driven stories, for different target audiences.

tiple storyboards and changing them frequently can be tedious for
developers who implement storytelling visualization software.

As illustrated in Figure 1(b), ideally, authors of storytelling vi-

ar
X

iv
:2

40
2.

03
11

6v
1 

 [
cs

.H
C

] 
 5

 F
eb

 2
02

4

https://orcid.org/0000-0002-6796-5670
https://orcid.org/0000-0002-2191-3170
https://orcid.org/0000-0002-9201-7744
https://orcid.org/0000-0002-2498-4214
https://orcid.org/0000-0001-5320-5729
https://orcid.org/0000-0001-7718-3181
https://orcid.org/0000-0002-2167-1343
https://orcid.org/0000-0001-9270-247X
https://orcid.org/0000-0001-9308-3885


2 Khan et al. / Feature-Action Design Patterns for Storytelling

sualization could construct a common storyboard, for multiple
datasets that may change dynamically and independently. When
the common storyboard is applied to multiple datasets at a partic-
ular moment (e.g., COVID-19 data streams for different regions
in a given period), there could be an efficient mechanism to gen-
erate different storytelling visualization for audiences in different
contexts (e.g., in different regions). We refer to such a common
storyboard as a meta-storyboard, while we refer to the process of
creating it as meta-authoring (outlined in Figure 2).

There are many technical challenges in enabling the devel-
opment workflow in Figure 1(b), including devising software
tools to support meta-authoring, mechanisms for mapping meta-
storyboards to different datasets to generate different stories, and
software platforms to deliver the resulting storytelling visualiza-
tions to audiences. Example outputs are frequently updated sto-
rytelling visualizations for different regions and/or periods, both
selected by the users. In such cases, if a developer had to read a
storyboard and manually transform it to a storytelling visualization
for each data stream and whenever new data arrives, it would not
be efficient or even feasible as the same process had to be repeated
again and again. It is thus desirable to have an automatic or semi-
automatic mechanism to combine a meta-storyboard with datasets
that may be changing.

While such difficulties may be caused by the differences between
datasets and time frames, many data patterns in these datasets are
expected to be similar. A meta-storyboard is defined for a group of
notionally-similar datasets, such as the time series of COVID-19
daily cases in different regions. Moreover, similar data patterns can
be depicted using similar visual patterns. The key to developing an
efficient mechanism for combining a meta-storyboard with individ-
ual datasets is to define, implement, and apply design patterns for
storytelling visualization [BSB∗18]. To avoid overusing the word
“pattern”, we use the term “data feature” in place of “data pattern”,
and “visualization action” in place of “visual pattern”. Hence the
design patterns in storytelling visualization are patterns of mapping
feature to action, i.e., “feature-action” design patterns.

As part of the RAMPVIS project [CARA∗22, DARA∗22] for
providing a variety of visualization capabilities to support epidemi-
ological modelling, a small team focused on devising novel tech-
niques for storytelling visualization, which enables meta-authoring,
by providing a production workflow as shown in Figure 1(b). Our
method is a novel addition to the emerging set of methods for au-
tomated storytelling (e.g., [WSZ∗20,SKH∗22]), and offers the first
scalable solution to the meta-authoring of stories about multiple dy-
namic time series datasets. While our approach was developed in
the context of the COVID-19 pandemic, it is generalisable beyond
this context, e.g., for visualising stories on carbon emissions, plas-
tic waste, personal financial spending, and so on. To demonstrate
the feasibility, we repurposed the software to provide storytelling
visualization of machine learning (ML) workflows.

Therefore, our contributions are: (i) meta-authoring as a new
method for creating storyboards for dynamic multi-stream data,
(ii) an algorithmic pipeline for using pre-defined feature-action pat-
terns for realising meta-storyboards in response to unseen data (ac-
companied by supplementary material), and (iii) six storyboards of
two case studies, as demonstration.

2. Related Work

Storytelling and visualization have a long history [TRB∗18], help-
ing to reveal information in ways that are intuitive and com-
pelling [GP01]. Employed techniques are wide ranging from
sketching [LKS13], slide shows [HDR∗13], comics [WRC∗21]
to investigating specific tasks in storytelling, such as link-
ing [ZOM19], collaboration [LRIC15], immersion [WFRR20] and
learning methods [TLW∗21].

2.1. Personalising Information Visualization

As many of our daily activities are mediated by some form of in-
teractive technology, recording, sharing and utilising data and re-
lated information about said activities has become more prevalent.
In particular, data-driven information that can be personal, i.e., con-
cern us either as individuals or some identifiable collective, is al-
ready driving our decision making. For instance, Yousuf and Con-
lan explore personal visual-learning narratives [YC18]. During the
COVID-19 pandemic, the degree of the technological mediation
increased, either as we started working and socialising more on-
line, or as we tried to follow the pandemic’s progression through
visualizations on public media. Looking at daily, national or local
infection rates, became a daily activity which often determined our
daily or monthly routine and choices.

Nevertheless, most of the visualizations that we had access to
provided either none or limited functionality, when it came to en-
abling personalised points of view. For instance, dashboards such as
the John Hopkins COVID-19 map [Cen22] provided only a world
and national overview, whereas Governmental portals, such as the
UK’s Coronavirus dashboard [UK 22] allowed the selection of lo-
cations (via post code) but did not provide any form of contextual-
isation, or a story. This is also true for visualization interfaces that
presents data on world events, which nonetheless affect our day to
day lives (e.g., world crises and impact on food pricing) and often
remain on national level averages.

Inevitably, providing more personalised storytelling requires: a)
the availability of data for a more personal point of view, e.g., spe-
cific to a location, person, communities etc. and b) mechanisms to
involve the users, and allow them to tailor their queries, explore
the resulting visual depictions, and involve and engage them on a
suitably personal level. Our work takes steps towards this direction.

2.2. Storytelling Concepts (especially Temporal Data)

Data-driven storytelling aims to provide a curated lens on evi-
dence in data. It does so through contextual information, a cu-
rated set of messages, compelling narrative devices [SH14], and
often a sequential ordering of information. It employs narra-
tive patterns [BSB∗18], such as gradual reveal, or juxtaposi-
tion, and communicates through a set of genres [SH10] such as
videos [ARL∗16], Data GIFs [SWT∗20], slideshows [HDR∗13,
WLF∗19], or data comics [BWF∗18]. Visual narratives help to ex-
plain ideas [RBSN22], which are especially useful in education set-
tings [YC18]. While studying data comics, Wang et al. [WWF∗19]
found that by breaking down the complexity of information into
individual steps, and presenting them sequentially (i.e., comics),
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readers could follow the story better, compared to infographics or
illustrated texts. Feature-action data patterns create such sequences
which a reader can navigate forwards and backwards.

A key point in storytelling is the relation between the story
and the audience. In author-driven stories, narration, sequence, and
content are defined by the author of the story, with little to no
agency from the audience. In reader-driven storytelling, readers
gain agency over the story and consequently can personalise it.
Agency usually is achieved through interaction, e.g., by navigat-
ing within the story, data selection or free exploration [WRC∗21].
However, one of the drawbacks of interactive storytelling is the dis-
coverability of interaction affordances [Cox11, BEDF15], risking
to impede personalised storytelling [MRL∗17]. With our approach,
we reduce the need for interaction and customization by creating
prescribed stories for a given set of input data. As shown in Sec-
tion 3, we keep interaction to a minimum and instead provide sto-
ries at different levels of granularity. While the sequence, narration,
and contents is fixed, said granularity, which is informed by our al-
gorithm (Section 4), defines how many messages the story has.

Storytelling of temporal data has a long tradition as demon-
strated through two comprehensive surveys [RG13, BLB∗17]
which feature many historic examples of time-lines. Through their
sequential nature, temporal data lends itself particularly well to
sequential and author-driven storytelling [WaCP∗15]. However,
these bespoke examples make generalisation to other datasets
hard. Commercial tools for creating visual timelines include Time-
lineJS [Nor18] and most recently Timeline Storyteller [BLB∗17].
Likewise, Timeline Curator supports the creation of visual time-
lines from text, extracting data from the latter, and enabling the
curation of the visual timeline [FBM15].

2.3. Automation in Storytelling

A good number of systems allow authors to create storytelling
visualizations interactively, e.g., [OBCT24, MBS24]. Meanwhile
automation for storytelling aims at increasing the access to in-
formation by lowering the burden for humans to create bespoke
stories. Some systems aim more at supporting analysts gain-
ing an overview over their data and personalising their interest
through interaction [SXS∗21], whereas other systems aim to sup-
port the creation of effective and compelling communication mate-
rial [WSZ∗20]. Other systems deal with fact extraction, as by Law
et al. [LES20, SyzZW24]. Facts can be selected based on statis-
tics and ordered based on a ranking score representing subjective
relevance, interesting-ness, and importance [SXS∗21, WSZ∗20].
User interaction can enable dynamic data selection [WGH∗24].
Our method works in a similar manner in that it provides a specific
routine for determining specific features, while ranking is defined
by a Gaussian function. To the best of our knowledge, all these
systems explicitly focus on tabular data. In this paper, we consider
storytelling visualization of temporal data.

Storytelling systems may group visual information into pan-
els based on category [DHPP17], create dashboards [WWZ∗21],
or generate infographic-like fact sheets of visualizations around
topics, featuring textual explanations [WSZ∗20]. To organise data
facts into sequences, graph-based approaches create a similarity

Data observation and analysis
• observe known data
• identify and anticipate features to be 

highlighted

Meta-storyboard construction
• specify feature-action patterns
• specify user interactions for data-stream 

selection 

meta-author

Software design
• determine if specified features and actions 

are already in the existing feature-action 
API

API extension
• implement additional software 

components for feature recognition and 
action display
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• implement storytelling VIS software by 

adapting an existing software template or 
writing a new one
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Figure 2: Overview of the proposed meta-authoring process, in-
volving a story meta-author and a developer. The resulting story-
telling visualization software can be applied to many similar, dy-
namic, and often not-yet-inspected data streams.

graph from all facts and consequently select a sequence of visu-
alizations (a path through the graph) based on minimising edge
weight [YLRC10, KWHH17]. Data facts can also be ordered us-
ing a logic-oriented Monte Carlo tree search algorithm [SXS∗21].

Closest to us, Parry et al. [PLC∗11] presented an automated
method to extract important frames from a video, for composing
a sports game summary storyboard. They used a Gaussian mixture
model to estimate the importance of individual frames. We adapted
their technique for time series data. With our approach, data facts
are extracted from the time series through analysis as well as com-
plemented through public information on policy decisions. A Gaus-
sian distribution defines which facts are shown for each given time-
line and user-defined granularity. Consequently, timelines are build
up step-by-step, progressing through identified breakpoints, while
contextual information is displayed in textual labels. For our data,
the narrative sequence follows the temporal order of breakpoints.

3. Meta-authoring

Our meta-authoring process enables story authors to define narra-
tives that can be applied in many similar, dynamic, and often not-
yet-inspected datas treams. As outlined in Figure 2, a meta-author
needs to (1) explore the data; (2) turn specific story items into
generalised data features F , and (3) map features to actions A .
A developer then uses feature-action APIs to transform a meta-
storyboard into a piece of generalised visualization software.

Firstly, a meta-author inspects some known data and ascertains
key features F anticipated in the data. One important challenge
that meta-authors face is to cope with the quantity, range of, and
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(a) highlight (b) label (c) mark (d) annotate

Figure 3: Actions in our implementation with their parameters:
(a) change the colour of a section of the time series line for high-
lighting. (b) draw a circle at a datapoint. (c) annotate the graph
with a line attached at a particular point. (d) While animating a
time series segment, place a text description on the opposite half of
the graph. It is possible to only animate a time segment or animat-
ing a segment and annotating a point.

precise values of the available data streams. Unlike in designing
traditional storytelling visualization – where authors and develop-
ers would have immediate access to the data – in meta-authoring, a
meta-author may not have (or do not need to have) seen all data in
detail. Hence, it is critical for the meta-author to be able to antici-
pate the potential features that the data may or may not have, and
create a story specification that can work either way.

Subsequently, the storyteller needs to express the features F in
a descriptive and generalisable form, that allows the detection of
said features without requiring knowledge of when (or whether)
they occur in each data stream. An example would be “find if the
data in each month featuring a rising slope above 15◦”.

Finally, the meta-author needs to consider what actions A occur
for each encountered feature. Each action may highlight the feature
visually and display a narrative (e.g., showing values and prede-
fined text strings). A few examples of implemented actions can be
seen in Figure 3. In the following sections, we outline three use
cases from the RAMPVIS project, created with our meta-authoring
process: (1) a story from single location with one time-series, (2) a
comparison story, and (3) a scrollable time-line story.

3.1. Single location and time Series

The first story (Figure 4) focuses on one location, the quantity of
positive COVID-19 cases and major events such as lockdowns, vac-
cination program progress, etc. The story involves two time series:
a) COVID-19 case data which is continuous and spread over time,
and b) related events, categorised in terms of importance.

In this case, the user can progress/rewind the story via buttons.
An importance ranking value determines which events will be dis-
played, i.e., whether all or more significant events are displayed.
The ranking of these events is decided by the author, whereas the
ranking mechanism is explained in Section 4.2. As features are en-
countered and actions initiated, text descriptions are concatenated
from author defined text strings, with location and data values from
the data enriching the story text. This is shown in a labelled text-box
linking the story text directly to the specified feature (Figure 4(c)).

This story’s author used a spreadsheet to organise and map fea-
tures and actions, which can be a suitable approach for several rea-
sons. Exemplar features can be added to the spreadsheet and then
edited into general ones. The order of the features can be readily
re-arranged, whereas different priorities that help to identify the

Figure 4: Demonstration of the single-location story. Programmed
features are located. When the Play button is pressed the delivery
system actions to progresses to the next feature, the appropriate text
is concatenated with real data, and placed in a suitable position (if
there is space it will be shown to the right of the vertical line, oth-
erwise to the left). (a) The full interface; (b) story start, (c) highest
deaths per day, (d) booster vaccination program starts.

importance and order of the story elements can also be added to
the spreadsheet. In addition, it is simple to map features alongside
actions, as different cells. Furthermore, code can be translated and
aligned closely to the spreadsheet content, or even parse it.

3.2. Comparative Storyboard: Two Numerical Time Series

The comparison story (Figure 5) allows viewers to compare two
different locations. In our example, a user selects Bedford (100,000
inhabitants, 50 miles from London) and Bradford (350,000 inhabi-
tants, 150 miles North of Bedford), both in England, under the same
COVID-19 restrictions and reasonably close; yet on different rail
routes to London and distant enough to have separate ecosystems.
Investigating them might indicate if the pandemic was moving to-
wards or away from London.

Similar to the previous example, each line-graph corresponds to
a location. Because there are two time series, the comparison be-
tween them is the key narrative element. The meta-author defined
the same set of features to be detected for both locations. When
the detected features were visualized, it appeared to alternate be-
tween features in the two line-graphs. Such features are relevant to
the characteristics of COVID-19 waves; e.g., cases increased in two
weeks. The meta-author defined actions according to features. Mes-
saging for this story has two main goals: (a) to highlight features
on each time series, in a similar manner to the previous story, and
(b) to highlight comparisons between the time series [GAW∗11].

This example explicates several key facets. First, the story starts
with the region that has the first significant event; in this case, it
starts with Bradford as shown in Figure 5(b). Second the animation
automatically alternates between regions and significant events.
The meta-author designed the story of each city around its major
COVID-19 waves, which are identified by matching peak-related
features in the data. The meta-author instructed that events for both
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Figure 5: Comparison story demonstration, where (a) depicts the
final frame. The story is shown in stages, moving key ‘features’,
and alternating ‘actions’ between region 1 and 2. The insets (b-f)
depict several key event features, which are incrementally shown as
the story progresses; (b) a single feature and action about Bradford
(region 2); (c) story action focusing on peaks, with data specific to
the local site; (d and f) comparison feature showing differences in
terms of days; (e) feature comparison based on calculated data.

cities were to be grouped around the same wave and to be played
in the order of waves. With such grouping, comparisons can be
made between the two cities. For example, in Figure 5(b) the story
focuses on Bradford, and then in Figure 5(c) the other region (Bed-
ford) catches up. Later, the developer implemented this instruction
by processing of features in two time series concurrently. The meta-
author also wished that the highest ranked features were shown and
highlighted. Our example depicts a few events from one region, be-
fore moving to events from the other. Regions with higher ranking,
or higher data values, will play first. Third, we compare events;
whether they are different, same or larger. We look at significant
rises, declines and peaks; see Figure 5 (d), (e) and (f), respectively.
For instance, Figure 5(d) shows how the text explicitly compares
two values (saying that Bedford was 14 days before Bradford). The
point of interest is indicated with red circle and a vertical text label
(generated from the data).

3.3. Scrollable Storyboard: Two Numerical Time Series

Our third demonstration provides a holistic scrolling story of the
events in England and includes three additional facets. First we dis-
play data as a line-graph, which provides an overview of all events
in the storyline. Second, we present text descriptions for the cur-
rent event and elided versions for the previous and the forthcom-
ing event. The text scrolls as the audience plays the story. In this
manner, the current story text is shown in the context of what has
happened, plus a hint of what is to come (Figure 6).

The scrollable story was designed with two abstractions in mind:
(a) the detail of individual, and (b) the overview of all, features
(cases and deaths time series). The design was captured using the
FDS [RHR16] method. Features were determined in relation to ei-
ther cases, deaths, or both, and an overview is depicted in the event-
line. Each highly-ranked feature is highlighted by a circle, with the
current one darker. Current, previous and next event text descrip-
tions are updated for each event.

Buttons to move to the next 
event, go to the beginning, 
or back one sep

Select country

(b) (c)

(a)

(d)

Timeline highliting 
key features

Dec 04 2020
With a daily average of 737; recorded 

hospital deaths surpass 10,000

Jan 19 2021
Deaths in England exceed one thousand.

Jan 15 2022
50,000 total deaths in England.

Figure 6: The country story (in this example focusing on England).
(a) Shows is a screenshot near the end of the story. Insets (b-d)
highlight three features. As the reader plays the story, so the line-
graph animates to reveal the next part of the story, the text narrative
animates (sliding to reveal the next text). The text narrative shows
the current text bracketed by the previous and next story text.

Important features, such as “first recorded case”, number of
deaths or hospitalisation cases in tens of thousands, rise in cases
by 20% and so on, can be automatically detected respectively. By
defining features with notable pre-defined values it is possible to
signify interesting events from the time-series data as well. For ex-
ample, people will be interested in the first case, when cases (or
deaths) reach 100, 1000 and so on. Finally, events such as lockdown
start/end dates, vaccination start dates, quotes from parliamentari-
ans etc., can be ranked as in the previous examples.

4. Algorithmic Pipeline

In this section, we describe the underlying algorithmic pipeline of
our method. Figure 7 illustrates an overview of our method’s work-
flow. The orange boxes in the top row show the human inputs, of
the story viewer (data selection by virtue of story and location se-
lection, fetched from the data repository) and the storyteller (re-
maining inputs). The light green boxes along the thick brown line
is the data interface that translate the viewer’s and storyteller’s in-
puts to inputs algorithms can process. The remaining boxes, below
the light brown line, illustrate the data flow and algorithmic process
in the flow. We consider two categories of time series data:

Numerical time series (NTS) – This category includes commonly-
encountered time series during the COVID-19 pandemic, such as
daily, accumulated, normalised, and k-day moving average data,
with semantics such as number of cases, hospitalisations, fatalities,
vaccinations, etc. Figure 8(a) shows an example of a time series of
the infection rate in Aberdeen City between March 2020 and Oc-
tober 2021. A feature detection algorithm that searches for peaks
is applied to the data. Each detected peak is segmented and high-
lighted by a different colour and its apex indicated by a black dot.

Categorical time series (CTS) – This category extends the notion
of NTS by considering each data point at time t can have a categor-
ical or nominal value. Assuming that “null” or “no value” is a valid
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Figure 7: Overview of our system’s workflow. The author creates a story by selecting a data which require a specific dataset from the
repository. They then define features, determine the ranking (importance) of these features and map detected features F to specific actions
A . They also define the effective length of the story ( ). These are converted by the developer in lookup tables and lists used by the algorithm

( ). The lists are then used to process the different categorical and numerical time series ( ), by detecting and ranking the defined features (
stages). The time-series are then aggregated, and segmented based on the author-specified story length. Once the user selects the location(s)
of the story ( ) the story commences, and actions are invoked when any corresponding features are detected. The path for the simple story,
described in Section 3, is highlighted in green. Further technical details can be found in Appendices A and B in the supplementary materials.

categorical value, every data point in the time series has a value in
the same way as NTS. Fig. 8(b) shows an example of a categori-
cal time series, represented as a timeline featuring major healthcare
policy changes, such as “lockdown”. The example details events
between the period of March 2020 to October 2021. Each blue dot
on the timeline represents a different semantic event.

4.1. Feature Detection

Feature detection is a widely-used data analysis process in many
applications, such as signal, speech, and image processing. In a sto-
ryboard about time series, there are some common features, such as
“peaks”, “valleys”, “steep climb/fall”, data milestones, smoothness
of data, etc. Nevertheless, the design of a feature detection algo-
rithm may not always be straightforward. For example, a “peak’
may be defined a local maximum point in a time series – there
are usually a lot of them. Alternatively, it may be defined a global
maximum point – there is often just one such point, or if there are a
few, they are unlikely distributed sparsely in different periods. On
the other hand, a story author typically requires a more complex
feature definition, e.g., a local maximum that is of some distance
from other peaks. Furthermore, the way a human may identify a
peak is completely different to how a computer mathematically de-
fines one. In our case, the feature detection algorithms had to go
through several rounds of adjustments to match the desires of the
story designers. An example of the results of our peak detection al-
gorithm can be seen in Figure 8(a). The algorithm selects possible
peaks from the set of all maximal points in the data. In decreasing
height order, we traverse down the slopes to the left and right of
each maxima until a minimum point is reached. In doing so, the
bounds of the peak are found and any maxima along the way, con-
sidered part of the same peak, are removed from the selection pool.
The data is segmented into different peak regions, as can be seen in

Figure 8(a), with different colours representing different peaks. In
many ways, algorithms for detecting different features in an NTS
assign categorical values to the data points at different time points.
These categorical values collectively define a CTS.

4.2. Importance Ranking

Given a CTS with many different categorical values, a story de-
signer will almost always wish to place different levels of emphasis
on different data points according to their categorical values. For
example, a “full lockdown” event may be considered more impor-
tant than a minor policy change. Similarly, given an NTS, follow-
ing feature detection processes, the detected features can also be
associated with different levels of importance. As shown in Fig-
ure 7, we conveniently refer to the importance ranking for a CTS
as F eaturesemantic ranking, and that for an NTS as F eaturedata
ranking. In our system, importance ranking processes allows real-
value ranking with a maximum value (rmax > 0) that must be con-
sistently defined within each story. For all our case studies, we de-
fined rmax = 10. The black bars in Figure 8(c) indicate the impor-
tance ranking values assigned to each peak feature detected in Fig-
ure 8(a), and ranking takes into account the height of the peak.

Because the importance ranking is based on categorical values
of events and features, the ranking is somehow discrete and the in-
teractions between different raking values (e.g., the black bars in
Figure 8(c)) are difficult to compute numerically. We thus assign a
Gaussian component distribution (commonly referred to as a Gaus-
sian for short) to each ranking value as Gaussians indicate an inter-
action between two features/events and the level of interaction can
be numerically computed. In many cases, there could be many in-
teractions, such as Figure 8(d), where each Gaussian corresponds
to each categorical values (except null) in Figure 8(b).
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(a) A numerical time series and its detected features (b) A categorical time series and its defined features

(c) Rankings of the features in (a) and the corresponding Gaussians (d) The Gaussians of the features in (b)

(e) Obtaining an overall importance curve using Gaussian mixture models (f) Segmentation based on the overall Gaussian importance curve

Figure 8: Graphical depiction of the algorithmic pipeline for automated storytelling. (a) Peaks, and rising and falling segments of the time
series are detected. (b) Event features in the categorical time series are typically predefined and ranked. (c) Each detected data feature is given
a rank (illustrated as black bar). Each ranking value is converted to a Gaussian curve. (d) Likewise, ranked semantic events are converted
individually to Gaussian curves. (e) Gaussian curves are combined using Gaussian mixture models. Here a max-model is used within a time
series and a mean-model is used between time series. (f) The story is divided in segments according to the combined importance curve. The
number of segments is defined by a meta-author. In this example, the three green lines show the results of the segmentation algorithm, and
four yellow lines indicate the segmentation results if five segments are required (three yellow lines happen to coincide with the green lines).

In storytelling visualization, Gaussian mixture models were pre-
viously applied to video data [PLC∗11]. As Gaussians are contin-
uous curves in [−∞,∞], we can use Gaussian mixture models to
obtain a continuous importance curve by combining all Gaussians
within a time series and an overall importance curve by combining
the importance curves of all NTS and CTS related to a storyboard.
For example, in Figure 8(e), the light red time series is the mixed
importance curve of the Gaussians in Figure 8(c), while the light
blue time series is that of the Gaussians in Figure 8(d). A max()
Gaussian mixture function is used in both cases. These two mixed
importance curves are then mixed using a mean() Gaussian mixture
function, yielding the purple overall importance curve that encodes
the importance features in Figure 8(a) and events in Figure 8(b).

4.3. Timeline Segmentation

Once we have obtained the overall importance curve for a story-
board, we can start the process of generating a storytelling visual-
ization. Similar to telling a story in speech or writing, we would like
to select relatively more important features to be “mentioned visu-
ally” in a story according to the time or other resources available
to the story. In this work, we consider two types of resources, the
number of button pressing actions in interactive story progression,
and the total animation time in fully automated story progression.
If there were too many button pressing actions or the animation
were too long, the viewers would become weary or impatient. If
there were too few interactions or the animation were too short, the

viewers may find the information provided inadequate. Technically,
we would like to divide the timeline of a storyboard into k sections.
In interactive story progression, k sections require k button press-
ing actions (including the start). In automated story progression, k
determines the total animation time as k×“unit section time”. Fig-
ure 8(f) shows two possible segmentation results with k = 3 and
k = 5 respectively.

We developed an algorithm to segment the timeline of a story-
board by considering the peaks in the overall importance curve of
the storyboard. The algorithm selects the top k − 1 peaks with a
maximal gap ∆max between neighbouring peaks. In this way, we
ensure that the most important temporal points are selected and lo-
cated at the section boundaries, where we can insert more visual-
ization actions. With interactive story progression, users can spend
more time to view the current visualization before pressing the but-
ton for progression. In automated story progression, we can slow
the animation at each boundary between the two sections.

4.4. Feature-Action Profiling

As aforementioned, the output of the meta-authoring process is a
feature-action specifications expressed by the story author in dif-
ferent ways (e.g., textual descriptions, pseudocode and sketches).
A developer translates the specifications to feature-action data pat-
terns in a lookup table, where features are categorical labels of all
features that might be detected in the NTS and CTS select by story
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viewers, and actions are calls to appropriate functions of the soft-
ware components, for displaying various visual artefacts (Figure 3)
as well as exhibit the desired software behaviours in terms of inter-
action, graphics, and animation.

The story’s length is controlled by how many segments the Gaus-
sian curve is split into and how many features there are in the
lookup table. A story designer can extend the time a story takes to
complete, by increasing the number of features in the table to pick
up on. This timing can also be controlled using the feature rankings.
For instance, to decrease the time to complete a story one could re-
strict the algorithm to showing only the most important events, say
the top three events in a segment or maybe just those with a ranking
of 8 or greater.

The algorithm for feature-action profiling visits each segment
one-by-one. Within segments each feature is visited in chronolog-
ical order. Each time, it refers to the feature-action lookup table
to check if the current feature matches any entry. If so the visual
action is initiated.

4.5. Generation of Storytelling Visualization

After all sections have been profiled, the “play” button becomes
available to users. In the mode of interactive story progression, a
viewer presses the button to activate the storytelling visualization
of a section. In response, the underlying algorithm visits the NTS
and CTS of user-selected region in the order of time. For any fea-
ture (or event) that is marked as being included in the story, the
algorithm invokes the corresponding action. When the end of the
section is encountered, the algorithm waits until the viewer presses
the “play” button, to proceed to the next section. In the mode of
automated story progression, instead of waiting for a viewer’s in-
teraction, the algorithm waits for a short time span, and continues
to the succeeding section automatically. To make all stories have a
consistent look and feel, this mode is not currently deployed.

5. Evaluation and Reflection

To evaluate our approach, we grouped stakeholders of this work
according three perspectives: (i) story authors, (ii) software devel-
opers, and (iii) public members and one public engagement expert.
The first two roles are the intended users of our approach, where
as the latter were chosen to provide insight on the viewer-centric
nature of our method’s outcomes. We requested their written feed-
back, using a shared online document and collected their comments
as evaluation and reflection, similar to a retrospective verbal proto-
col analysis. While we provided five questions for each group as
prompts, we gave explicitly the direction “please feel free to add
any comment.” The full text of the prompts and feedback is given
in Appendix C in the supplementary materials. The main feedback
points are summarised below, with direct extractions from stake-
holders’ input in italics.

5.1. From the Perspective of Story Authors

Three story authors (who created the stories in Section 3) pro-
vided feedback of more than 1400 words. The main points are sum-
marised below:

• Meta-authoring can be more challenging than telling a story
about a single dataset. Authors need to think about the story
holistically, and how different data, say from different regions,
may support key messages. It forces authors to consider the un-
derlying data in detail, which is a good practice in storytelling.
Generalizing the story is definitely a gain from using this ap-
proach. Creating a draft storyline helped think about how to gen-
eralise and abstract the information into the meta-instructions.

• Creating feature-action design patterns can be somewhat chal-
lenging. Certainly some of the key features were obvious, such
as a peak, rise and fall. But not all were easy to define. It seems
to make an author consider the progression of the story in a
more “mathematical” way. Information needs to be abstracted
or generalised into instructions for software developers.

• The workflow relies on the software engineer to both interpret
the design and create code. It is appropriate at the moment with
the state of the art technology for storytelling visualization, but
there are opportunities for further automation. The approach of
having software engineer in-the-loop may work for large organ-
isations, but independent meta-authors or those in small organi-
sations can benefit from meta-authoring tools.

• In the future, an advanced interface could be developed for
meta-authors to create these feature-action design patterns. One
could envision an interface where storytellers can pick and
match story segments and combine them sequentially or hier-
archically. Feature-action abstraction can be exploited to create
a more modular approach for the end users (i.e., meta-authors).

5.2. From the Perspective of the Developer

Two research software developers were directly involved in devel-
oping the pipeline in Figure 7, various feature detection algorithms,
and visualization components. They, together with a third stake-
holder who helped design the algorithmic pipeline, provided feed-
back totalling more than 1200 words. The main points include:

• It is not difficult for a technical developer to support the meta-
authors in general. Given a storyboard and visualization guid-
ance from the meta-authors, a programmer can create the story-
telling visualization easily. The notion of feature-action design
patterns was accepted by both meta-authors and technical de-
velopers. The technical developers were able to translate meta-
authors’ qualitative specification of design patterns to the actual
implementation in a look-up table relatively easily.

• An implication of creating stories for the public is that features
must understandable and simple. Developing such feature detec-
tion algorithms varied from taking a few hours to a few days.

• Regarding software components that implement actions, while
it is not hard to implement them individually, it can take up to
a week to put them together for a story. Among our stories, the
longest development, for an entire story took roughly four days.

• Observable is a very good “drafting” software. It would take
less than a day to implement a story in Observable if the story
requires no new feature or action. However, it was not feasible
for us to place many dynamic data streams on Observable. We
had to develop and deploy storytelling visualization on an infras-
tructure that keeps the dynamic data streams.

• the visualization software components (e.g., multi-line time se-
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ries plots, textual annotations, timelines, animation, etc.) are
implemented using D3.js [BOH11]. With the existing software
code and programming experience, developing new software
components using D3.js had been quick and easy. These soft-
ware components were implemented as reusable classes and
functions. Gradually, the time for implementing new software
components for a new story can be reduced significantly.

• In the future, it will be desirable and feasible to develop soft-
ware systems to support the workflow from meta-authoring to
story deployment. Developers and meta-authors have suggested
a number of options, including (i) visual programming environ-
ment, (ii) object-oriented/template-based programming environ-
ment, (iv) scripting language, (v) markup language (e.g., XML),
(vi) declarative data interchange format (e.g., JSON, YAML),
and (vii) form-like webpage. the software components developed
in this project can provide a good basis for future developments.

5.3. From the Perspective of Public Engagement

We were interested in hearing from those stakeholders who had
expertise in public engagement as well as who are the potential
viewers of storytelling visualization. One expert of public engage-
ment provided feedback directly, and two members of the public
provided verbal feedback, which were transcribed by a co-author.
Together the three stakeholders provided feedback totalling more
than 900 words. The main points in the feedback include:

• There has been a surfeit of data relating to COVID-19 in the
public domain, which may well seem like information overload
to members of the public. Without context, a time series may
not convey much meaning. The story telling both provides con-
text and divides the data into digestible segments, allowing the
viewer to look at the situation leading up to an event and fol-
lowing after it, and to understand/reflect on each segment before
moving on to the next. ... Because the stories are told linearly
and from a local area perspective, the user can situate them-
selves both in place and time in relation to the events, which
adds to the human interest and relatability of the data.

• Because it takes only one selection button for a region and then
the play button to start, it is actually slightly easier than many
search interfaces. If it were available some time in 2020 (and
perhaps the early part of 2021), it would get used a lot.

• In the stories, the event descriptions are simple and effective,
giving clear information about key landmarks. The speed of the
animation provides momentum, and the event pauses give the
user control over how fast to move on with the story.

• The stories are likely to appeal to members of the public who are
regular news viewers, who listen to scientific podcasts, and who
take an interest in the local or regional context of the pandemic
and how policies or actions affect its progress.

• This form of location-dependent, data-driven storytelling would
be useful and of interest to members of the public, and could be
used to visualise housing, energy and fuel prices, school per-
formance, crime rate, and transport statistics. Comparison of
different cities, areas, or regions would be useful.

• Would it be possible for an individual to create such a story to
share with friends? Some people are quite keen to share data,
such as their daily walking step counts.

6. Further Application and Evaluation

While the aforementioned meta-authoring method for creating sto-
rytelling visualization was developed during the COVID-19 pan-
demic, we have always been keen to apply the method to other do-
mains, and demonstrate its generalisability. An opportunity arose
when one of our visualization (VIS hereafter) researcher joined a
ML team in the Science and Technology Facilities Council (STFC)
in the UK. The ML team has been providing physics, nuclear,
space, and astronomy scientists with ML models for processing a
variety of data captured using different sensory modalities (e.g.,
[HBJT20]). One R&D strand of the team has been to develop and
analyse ML benchmarks as the basis for providing guidelines and
best practices in AI for Science [HPT∗21, TSFH22].

Requirements Analysis. Two VIS researchers met the ML team
leader and identified general requirements for using automated vi-
sualization tools in ML workflows, as well as several specific re-
quirements for using storytelling visualization. As the team always
has a few ongoing ML workflows concurrently and each may last
up to 18 months, they need to observe their progress and prove-
nance frequently, preferably though dynamically-updated stories.
Following this meeting, one VIS researcher collaborated closely
with an ML researcher working on ML benchmarks. The VIS re-
searchers designed and implemented two storyboards initially as
shown in Figure 9(a,c). During one evaluation meeting, we identi-
fied the need for an analytical dashboard with storytelling on de-
mand. This became a new storyboard, shown in Figure 9(b).

Meta-Storyboards. The STFC ML team has an established pro-
cess for storing log data for ML training and testing. When a model
is tested, each logged event consists of data such as date, time,
hyperparameters, and accuracy measures. To re-purpose the meta-
authoring software developed in the context of COVID-19, we fo-
cused on log data featuring time series.

A Provenance Story (Figure 9(a)) was designed around the
provenance and progress of an ML workflow. A viewer can select a
story to be told from the perspective of a specific hyperparameter.
The animated visualization shows the logged chronological events
focuses on those related to the selected hyperparameter. Interesting
data features include, for instance, when the accuracy has a signifi-
cant improvement or reaches a peak point. Visual actions (e.g., text
message, colour highlighting) are triggered by such features.

An Analytical Dashboard & Story (Figure 9(b)) enables in-
dividual ML researchers to visualise logged events in both static
and storytelling manner. Whenever a model-testing process is com-
pleted, the ML researcher concerned needs to observe the new
logged event. To prevent the storytelling mechanism from slow-
ing down the routine VIS tasks, the storyboard makes static visu-
alization as default, with a visual design that focuses on the or-
dered values of a selected hyperparameter rather than event date
and time. Drawing our experience of working on COVID-19 data
[KNAR∗22,BFAR∗23,KNA∗22], we introduced elements of dash-
board design to improve the efficiency of the routine VIS tasks. The
storytelling mechanism can be activated when the ML researcher
wishes to be reminded of the provenience, or other team members
wish to be told stories about individual hyperparameters.

Finally, a Multivariate Story (Figure 9(c)) tells stories about
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(a) provenance story

(b) analytical dashboard & story (c) multivariate story

Figure 9: Screenshots of three stories implemented for supporting ML workflows developed using our approach.

multiple hyperparameters through a parallel coordinates plot
(PCP). Viewers can select a specific hyperparameter to inform the
importance ranking of features (see Section 4.2). The animated
visualization shows the logged events chronologically, but unlike
Figure 9(a), viewers can see all hyperparameters in the same visu-
alization. As the visualization is more complex, the feature-action
patterns involve more frequent pause-and-continue actions.

Evaluation and Improvement. In the STFC ML team, the VIS re-
searcher was in contact with ML colleagues regularly, discussing
requirements and design options while conducting frequent bite-
sized evaluations. In addition, there were two formal evaluation
meetings. In the first meeting, ML researchers were shown a first-
draft working version of the Provenance and Analytics Dashboard
stories (Figure 9(a,c)), which prompted them to make a number of
revision suggestions. We also noticed that different team members
suggested a revision on the requirements of the Provenance Story.
Moreover, the team wanted to observe the progress and provenance
of all ML workflows in a single storytelling visualization. Finally,
individual ML developers wanted to observe new results quickly
whenever a trained model has been tested and observe the prove-
nance data on demand. We decided to create a separate storyboard
for these, i.e., the Analytical Dashboard & Story (Figure 9(b)).

Although that meeting was the first time when the ML re-
searchers worked with a PCP, without much explanation by VIS
researchers, they found the Multivariate Story particularly useful
for observing the combined impact caused by different hyperpa-
rameters. This was somewhat unexpected, since many visualiza-
tion students and users often encounter difficulties in learning to
work with PCPs. We hypothesised that because storytelling shows
data-events line-by-line, this may make the concept of PCPs more

intuitive. Animation might also reduce the confusion caused by
cluttering, while enabling viewers to pay attention to the interest-
ing data-events without much visual searching effort. In the sec-
ond evaluation meeting, we focused on the Analytical Dashboard
& Story (Figure 9(b)). The ML experts were enthusiastic about the
dashboard and discussed the ideal data to be shown in the infor-
mation boxes, and the interesting features in the plot, so that the
storytelling mechanism highlights them automatically.

7. Conclusion

In this work, we presented a new method for creating story-
telling visualizations, based on a workflow for meta-authoring with
feature-action design patterns. We have demonstrated the feasibil-
ity of this new method through three storyboards developed in the
COVID-19 visualization context, followed by three storyboards de-
scribing ML workflows. Our work addresses the challenge of cre-
ating generic storyboards that can be applied to different yet sim-
ilar, often partially unknown data streams and can respond to dif-
ferent (data) features automatically using different (visualization)
actions. As summarised in Section 5 and Section 6, the method has
been welcomed by different stakeholders, who have already looked
ahead to the potential applications in the future as well as more ad-
vanced technologies that can provide system-level support to meta-
authoring workflows. Building on this work, we hope to continue
improve techniques for storytelling visualization.
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Introduction to Appendices

These set of appendices provide further details about the techni-
cal aspects of the method that is described in Section 4 and illus-
trated in Figure 7, including:

• Appendix A: The general structure of a feature-action table il-
lustrated in the top-right of Figure 7.

• Appendix B: The general structure of a meta-storyboard program
for the algorithmic workflow illustrated in the lower-half of Fig-
ure 7.

Appendix A: Feature Action Tables

As shown in Figure 2 (the 2nd box) and Figure 7 (top-right), a
meta-author formulates the specification of a set of feature-action
patterns, and then discusses the specification with a developer, who
defines a feature-action table that can be read by a program. Nor-
mally, the program encodes a meta-storyboard and is used to create
storytelling visualization.

The meta-author’s specification can be documented in many
forms, such as word files, spreadsheets, hand-written and hand-
drawn notes, and so on, while the feature-action table, defined
by the developer, must be in a format that the meta-storyboard pro-
gram can read. We currently use CSV files for feature-action tables.
Each feature-action table has the following columns:

1. TimeSeriesId: <id> of a time series in the storyboard.
2. Feature: <name> of a feature extraction function in the Meta-

Storyboard Features API (MSB Features).
3. FeatureParams: a list of parameters for the feature concerned in

the form of <parameter name>:<parameter value>,
<parameter name>:<parameter value>, ....

4. Rank: a rank value ∈ [1,10] assigned to the action for the de-
tected feature.

5. Action: <name> of an action function in the Meta-Storyboard
Actions API (MSB Actions).

6. ActionParams: a list of parameters for the action concerned in
the form of <parameter name>:<parameter value>,
<parameter name>:<parameter value>, ....

7. Text: a text section in the form of <text> defined as string
template. Note that the list of parameters for the action is in the
column ActionParams.

8. Comments: optional comments by the meta-author or the de-
veloper. These are not designed to be understood by computer
programs.

A meta-authoring storyboard may need to deal with multiple
time series, e.g., a categorical time series for dates and events, two
numerical time series for the number of cases in two different re-
gions, and the “difference time series” derived from the numerical

time series. Features can be defined for each time series indepen-
dently. The current version of the software assumes that complex
features for characterizing interactions among two or more time
series are detected in two ways: (a) through a derived time series
resulting from a subroutine that processes two or more time series,
such as a difference function, (b) through the Gaussian mixture pro-
cess following the feature extraction step.

A.1 Meta-Storyboard Features API

Conceptually, features are defined as functions in the MSB Features
API, and the function names and their parameter names are used
as predefined constants in feature-action tables. Note that develop-
ers may include undefined feature names or parameter names in a
feature-action table during their communication with meta-authors
with the knowledge that they will add such features and/or param-
eters into the MSB Features API. Meanwhile, all our storyboard
programs are able to ignore undefined features and parameters in a
way similar to web browsers ignoring unknown HTML tags.

In order to implement and manage similar feature functions in
an object-oriented manner, we group similar feature functions us-
ing a high-level feature construct. Table 1 shows a list of high-level
feature constructs. Each construct is defined in conjunction with a
list of parameters, such as (GTE:1000, LTE:2000) for a value
range [1000, 2000]. This allows high-level constructs to be decom-
posed into low-level constructs. For example, the PEAK feature
has low-level constructs for detecting, e.g., the k-th peak or a peak
with additional slope criterion. For each construct, a pre-defined
function, detectFeatures(), analyzes the given time series
according to the feature parameters in the feature-action table.

Table 1: The main features implemented in the MSB Features API
for specifying time series features.

Feature Name Description
numerical features

FIRST encountering the first data point
CURRENT setting action location at the current data point
SEARCH setting a search range (default: to the end)
LAST encountering the last data point
MIN encountering the MIN value
MAX encountering the MAX value
VALUE encountering a segment with specified value range
STDEV encountering a segment with specified STDEV range
PEAK encountering a peak (not necessarily MAX)
VALLEY encountering a valley (not necessarily MIN)
RISE encountering a rising segment
FALL encountering a falling segment
SLOPE encountering a segment with specified slope range

categorical features
EVENT encountering an event with a specific event label

A.2 Meta-Storyboard Actions API

Similar to features, actions are conceptually defined as functions in
the MSB Actions API, and the function names and their parame-
ter names are used as predefined constants in feature-action tables.
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Similarly, all our storyboard programs are able to ignore undefined
actions and parameters. Similar action functions are also grouped
together using a high-level feature construct. Table 2 shows a list
of high-level action constructs. Action parameters facilitate the de-
composition of a high-level construct into low-level constructs.

When a feature is detected, the corresponding action is not ac-
tivated immediately in order for all feature-action patterns to be
further processed (e.g., Gaussian mixture, segmentation, and rank-
based event selection). Hence when a feature is detected, a function
registerActions() registers an action at the data point where
the feature is encountered.

Table 2: The main actions implemented in the MSB Actions API for
specifying visualization actions.

Action Name Description
DRAW_DATA display a set of data points
DRAW_AXIS display an axis or all axes
TEXT_BOX display a text string in a predefined message box
TEXT_POS draw or remove a text string on the plotting canvas
LINE draw or remove a highlighting line
CIRCLE draw or remove a highlighting circle
RECTANGLE draw or remove a highlighting rectangle
ARROW draw or remove a highlighting arrow
NTS highlight or dehighlight a numerical TS segment
CTS highlight or dehighlight a categorical TS segment
NODE highlight or dehighlight a graph node
CONNECTOR highlight or dehighlight a graph edge (connector)
AXIS highlight, or dehighlight a section of an axis
PAUSE pause the animation for a specific amount of time

A.3 Example Feature-Action Tables

We present two example feature-action tables, Tables 3 and 4. They
are for illustration and they are simpler than the meta-storyboards
that were developed in our case studies.

Appendix B: Meta-Storyboard Programs

B.1 Generic Meta-Storyboard Program

Programs for meta-storyboards have very similar structures. A new
program can be implemented easily by adapting an existing pro-
gram. The structure of a meta-storyboard program typically has the
following six steps:

STEP 1: Data Selection and Preprocessing

• Based on a user’s input, the program selects the data. For ex-
ample, with COVID-19 data, a user may select a region, the pro-
gram assigns the time series for the selected region to TS1, which
is the ID used in the feature-action table.

• For a more complicated storyboard, this step may include pro-
cesses for creating derived data, e.g., computing the difference
between two time series selected by a user.

STEP 2: Processing Feature-Action Table

• For each row in the feature-action table, the program

– detects the specified feature,
– registers the specified action against the feature, and
– assigns the specified rank to the action.

• In addition to the parameters for features and actions, there is
a data buffer shared by the feature detection function detect-
Features() and the action registration function register-
Actions(). The buffer allows registerActions() to ac-
cess information such as the current data point, the previous data
point before the feature detection (excluding the dummy feature
CURRENT), and so on.

• When there are multiple time series specified in the feature-
action table, this step processes all time series concurrently.

STEP 3: Integrated Multiple Time Series

• If there are multiple time series, the program creates an inte-
grated time series with combined ranks and all registered ac-
tions. The ranks are combined using a Gaussian Mixture Model
(GMM).

STEP 4: Segmentation and Action Selection

• The program determines the number of time segments according
to the length of the animation to be created. The default number
is 1 segment, i.e., no segmentation is required.

• The program applies a segmentation algorithm to divide the inte-
grated time series according to the specified number of segments.

• For each time series, the program selects the important feature-
action pairs (with higher ranks) according to the time allowed
for the animation of this segment.

STEP 5: Create Animated Visualization

• The program displays the selected actions as an animated se-
quence.

B.2 Software Prototyping, Adaption, and Generalisation

We implemented six different meta-storyboards, with different set-
tings in terms of instructions from the meta-authors, application
data, target users, feature-action tables, and visual representations.
Three meta-authors were involved in creating the three storyboards
for COVID-19. One developer wrote programs for prototyping
these meta-storyboards initially, and a second developer ported the
programs to the RAMPVIS server with some adaptation. The sec-
ond developer subsequently implemented three ML storyboards,
which were created by two meta-authors. The generic program de-
scribed in Appendix B.1 was formulated by the developers after
bringing all these programs and the associated experience together.
We are continuing this development as part of an ML infrastructure.
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Table 3: An example of a feature action table used to create a single-region meta-storyboard with COVID-19 data. The visual results are
similar to the screens shown in Figures 4 and 6. Empty cells are interpreted as null values.

ID Feature Feature Parameters Rank Action Action Parameters Text Comment

TS1 FIRST 10 DRAW_AXIS

TS1 VALUE GT:0 5 DRAW_DATA > 0

TS1 CURRENT 5 TEXT_BOX BOX:1 {REGION} recorded its first COVID-19 case.

TS1 SEARCH UPTO:28 10 DRAW_DATA up to 28 days

TS1 RISE SLOPE_GTE:15 5 TEXT_BOX BOX:1 The number of cases grew.

TS1 SEARCH UPTO:28 10 DRAW_DATA up to 28 days

TS1 SLOPE GTE:10 6 TEXT_BOX
By {DATE}, the number of cases continued to climb
higher. Let us all make a great effort to help bring the
number down. Be safe and support the NHS.

case A

TS1 SLOPE LTE:-10 6 TEXT_BOX
By {DATE}, the number of cases dropped noticeably.
Excellent effort. Be safe and support the NHS.

case B

TS1 SLOPE GT:-10, LT:10 3 TEXT_BOX
By {DATE}, the number of cases remained low. We
should continue to be vigilant.

case C

TS1 PEAK 10 DRAW_DATA default parameters

TS1 CURRENT 10 TEXT_BOX By {DATE}, the number of peaks at {HEIGHT}.

TS1 CURRENT 10 CIRCLE
SIZE:10, STROKE_WIDTH:3,
COLOR:#E84A5F, OPACITY:0.6

TS1 CURRENT 5 PAUSE TIME:10 10 sec.

TS1 SEARCH UPTO:28 5 DRAW_DATA up to 28 days

TS1 FALL SLOPE_LTE:-15 5 TEXT_BOX
By {DATE}, the number of cases came down notice-
ably. We should continue to be vigilant.

... ... ... ... ... ... ... ...

Table 4: An example feature action table for the ML provenance story as shown in Figure 9(a).

ID Feature Feature Parameters Rank Action Action Parameters Text Comment

TS1 FIRST 10 DRAW_DATA

TS1 CURRENT 10 TEXT_BOX BOX:1
A newly-trained model achieved testing accu-
racy of {TEST}% and training accuracy of
{TRAIN}%, denoted {TEST}% [{TRAIN}%].

TS1 CURRENT 10 CIRCLE
SIZE:10, OPACITY:0.6, STROKE_WIDTH:3,
COLOR:#FFA500

TS1 CURRENT 10 NODE SIZE:5, COLOR:#FFA500, OPACITY:0.6

TS1 CURRENT 10 TEXT_POS
X:10, Y:180, COLOR_TEXT:#EC5800,
COLOR_BG:#808080, FONT_SIZE:13

Accuracy: {TEST}%

TS1 CURRENT 10 NODE SIZE:5, COLOR:#FFA500, OPACITY:0.6

TS1 MAX 10 DRAW_DATA

TS1 CURRENT 10 TEXT_BOX BOX:1
On {DATE}, a model achieved the best testing
accuracy {TEST}% [{TRAIN}%].

TS1 CURRENT 10 CIRCLE
SIZE:10, COLOR:#008000, OPACITY:0.6,
STROKE_WIDTH:3, VISIBLE:TRUE

TS1 CURRENT 10 NODE
SIZE:5, COLOR:#008000, OPACITY:0.6, VISI-
BLE:TRUE

TS1 CURRENT 5 PAUSE TIME:15 15 sec.

TS1 LAST 10 DRAW_DATA


