
Bluesky and the AT Protocol: Usable Decentralized Social Media
Martin Kleppmann

martin.kleppmann@cst.cam.ac.uk
University of Cambridge

Cambridge, UK

Paul Frazee
Jake Gold
Jay Graber

Daniel Holmgren
Bluesky Social PBC

United States

Devin Ivy
Jeromy Johnson
Bryan Newbold
Jaz Volpert

Bluesky Social PBC
United States

ABSTRACT
Bluesky is a new social network built upon the AT Protocol, a de-
centralized foundation for public social media. It was launched in
private beta in February 2023, and has grown to over 3 million
registered users in the following year. In this paper we introduce
the architecture of Bluesky and the AT Protocol, which is inspired
by the web itself, but modernized to include streams of real-time
updates and cryptographic authentication. We explain how the
technical design of Bluesky is informed by our goals: to enable de-
centralization by having multiple interoperable providers for every
part of the system; to make it easy for users to switch providers;
to give users agency over the content they see; and to provide a
simple user experience that does not burden users with complex-
ity arising from the system’s decentralized nature. The system’s
openness allows anybody to contribute to content moderation and
community management, and we invite the research community
to use Bluesky as a dataset and testing ground for new approaches
in social media moderation.

1 INTRODUCTION
Over the last two decades, social media services have evolved from
a fun curiosity into a cornerstone of civic life [5]. This development
has been accompanied by increasing unease that mainstream “dig-
ital town squares”, such as Twitter/X or Facebook, are under the
control of a single corporation, and may change their policies on
the whim of their leaders [62]. Their operations are opaque (e.g.
regarding which content is recommended to users), and their users
lack agency over their user experience. As a result, there has been
increasing interest in decentralized social networks, of which the
fediverse around the ActivityPub protocol [34] and the Mastodon
software [39] is perhaps the best known (we review a selection of
decentralized social networks in Section 4).

However, decentralization also introduces new challenges. For
example, in the case of Mastodon, a user needs to choose a server
when creating an account. This choice is significant because the
server name becomes part of the username; migrating to another
server implies changing username, and preserving one’s followers
during such a migration requires the cooperation of the old server.
If a server is shut down without warning, accounts on that server
cannot be recovered – a particular risk with volunteer-run servers.
In principle, a user can host their own server, but only a small
fraction of social media users have both the technical skills and the
inclination to do so.

The distinction between servers in Mastodon introduces com-
plexity for users that does not exist in centralized services. For
example, a user viewing a thread of replies in the web interface of

one server may see a different set of replies compared to viewing
the same thread on another server, because a server only shows
those replies that it knows about [2]. As another example, when
viewing the web profile of an account on another server, clicking
the “follow” button does not simply follow that account; instead,
the user needs to enter the hostname of their own server and be
redirected to a URL on their home server before they can follow
the account. In our opinion, it is undesirable to burden users with
such complexity arising from the federated architecture.

In this paper we introduce the AT Protocol (atproto), a decentral-
ized foundation for social networking, and Bluesky, a Twitter-style
social app built upon it. A core design goal of atproto and Bluesky
is to enable a user experience of the same or better quality as cen-
tralized services, while being open and decentralized on a technical
level. We introduce the user-facing features of Bluesky in Section 2,
and in Section 3 we explain the underlying systems architecture.
The AT Protocol is designed such that for every part of the system
there are multiple competing operators providing interoperable
services, making it easy to switch from one provider to another.

Decentralization alone is not able to solve some of the thorni-
est problems of social media, such as misinformation, harassment,
and hate speech [46]. However, by opening up the internals of a
service to contributors who are not employees of a particular com-
pany, decentralization can enable a marketplace of approaches to
these problems [38]. For example, Bluesky allows anybody to run
moderation services that make subjective decisions of selecting
desirable content or flagging undesirable content, and users can
choose which moderation services they want to subscribe to. Mod-
eration services are decoupled from hosting providers, making it
easy for users to switch moderation services until they find ones
that match their preferences. Our hope is that this architectural
openness enables communities to develop their own approaches to
managing problematic content, independently of what any particu-
lar service operator implements [38].

For example, researchers wanting to identify disinformation
campaigns can easily get access to all content being posted, the
social graph, and user profiles on Bluesky. If they are able construct
an algorithm to label suspected disinformation, they can publish
their labels in real time, and users who wish to see those labels can
enable them in their client software. One goal of this paper is to
bring Bluesky and the AT Protocol to the attention of researchers
working on such algorithms, and to invite them to use the rapidly
growing dataset of Bluesky content as a basis for their work.

ar
X

iv
:2

40
2.

03
23

9v
1

 [
cs

.D
C

]
 5

 F
eb

 2
02

4

https://orcid.org/0000-0001-7252-6958

Figure 1: Screenshot of the Bluesky home screen.

2 THE BLUESKY SOCIAL APP
Bluesky presents itself to users as a straightforward microblogging
application in the style of Twitter/X (see Figure 1). The “official”
client app is available on iOS, Android, and theweb; several indepen-
dently developed client apps are also available, such as Graysky [42]
and deck.blue [24]. Users can make public posts containing up to
300 characters of text, and up to four images, and they can interact
with posts by replying, reposting, or liking. A user can also follow
other users, and the default feed shows posts by accounts that the
user is following in reverse chronological order. There are also
alternative feeds that show content on various topics, without the
user needing to follow the poster (see Section 2.3), which helps
users discover each other.

Bluesky launched an invite-only beta release in February 2023,
and has grown to over 3 million registered users in January 2024, as
shown in Figure 2. Bluesky Social PBC (a public-benefit corporation)
develops the official client app and operates the core services; the
client and several server-side components are open source under
the MIT license [8]. The protocols they use are defined by open
specifications [7]. Several parts of the system, such as feed genera-
tors (Section 2.3) and various alternative clients [6] are developed
and operated by independent third parties.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024

Figure 2: Number of registered users on Bluesky since April
2023.

2.1 Moderation Features
Bluesky currently has the following moderation mechanisms (addi-
tional mechanisms are under discussion [14]):

Content filtering: Automated systems label potentially prob-
lematic content (such as images of a sexual or violent nature,
posts promoting hate groups, or spam), and the app’s pref-
erences allow users to choose whether to show or hide
content in each of these categories in their feeds.

Mute: A user can mute specific accounts or threads, which
hides the muted content from their own feeds and notifi-
cations. The content continues to be visible to other users,
and the target does not know that they were muted. A user
can also publish a mutelist of accounts, and other users can
subscribe to that list, which has the same effect as if they
individually muted all of the accounts on the list.

Block: One user can block another, which prevents all future
interactions (such as mentions, replies, or reposts) between
those accounts in addition to muting. Similarly to mutelists,
a user can also publish a list of accounts, and other users
can block all accounts on that list by subscribing to it.

Interaction gating: A user who makes a post can restrict
who is allowed to reply to it (anyone, anyone they follow,
anyone mentioned in the post, and/or anyone on a particu-
lar list of accounts) [11].

Takedown: Users can report content that violates the terms
of service to server operators, and the operators can take
down violating media, posts, or accounts.

Custom feeds: While the aforementioned mechanisms pro-
vide negative moderation (helping users avoid content they
do not want to see), feed generators (see Section 2.3) can
actively select high-quality content.

2.2 User Handles
Like on Twitter/X, a Bluesky user has two names: the display name
can be almost any string, and the handle needs to uniquely identify a
user. A handle, prefixed with an @ sign, is used to mention another
user in a post. Examples can be seen in Figure 1 (the display name
is in bold, and the handle is in a smaller font and lighter color).

2

The need for handles to be unique creates challenges in decentral-
ized systems, since it requires an authority that determines which
handle is assigned to which user. Mastodon’s approach is to include
the server name in the handle, which makes it difficult to move to
another server. An alternative would be to use a blockchain-based
naming system, such as the Ethereum Name System (ENS) [19]; this
has the disadvantage of requiring the user to buy cryptocurrency
in order to create an account, which we wanted to avoid.

Instead, Bluesky and atproto use DNS domain names as han-
dles. If a user already owns a domain name, they can claim it as
their Bluesky handle by adding a DNS record or by hosting a file
under a /.well-known/ HTTPS URL on that domain [37]. Users
can also buy a new domain name within Bluesky, via a partnership
with a domain registrar [15]. Alternatively, users can sign up for a
subdomain of .bsky.social for free.

Using DNS domain names as handles has several advantages:

• We leverage the existing infrastructure of ICANN, regis-
trars, and name servers, including for example the dispute
resolution procedures for trademarks.

• Domain names are a well-known concept even among non-
technical users, and they are short and simple.

• A user can move to a different server without changing
their handle (see Section 3.5).

• Users do not need to host their own server to use their own
domain name; a DNS record requires only a one-time setup
and no ongoing maintenance.

• For organizations and people that already have a well-
known domain name, using that name makes it easy for
users to check that their Bluesky account is genuine. For
example, the New York Times’ handle is @nytimes.com.

• An organization can easily allow their staff to demonstrate
their affiliation by granting them handles that are subdo-
mains of the organization’s main domain name (comparable
to institutional email addresses). For example, a journal-
ist’s handle may indicate that they are at a particular news
organization.

• Providers wanting to offer free subdomains can do so at
very little cost.

2.3 Custom Feeds and Algorithmic Choice
Several decentralized social networks choose to offer only a reverse-
chronological feed of posts from accounts the user is following – a
backlash against the opaque content recommendation algorithms
employed by mainstream centralized social networks. For example,
Mastodon advertises itself as having “no algorithms or ads to waste
your time” [39].

Our belief is that the problem lies not with algorithms per se, but
rather with centrally controlled, opaque algorithms that remove
user agency and prioritize user engagement over all else, e.g. by
promoting controversial posts. Good recommendation algorithms
can help users discover content that is relevant to them and find
new accounts to follow – especially important for new users who
are not yet following many accounts. They are also helpful for
surfacing content on a particular topic, whereas following a user
means seeing all of their posts, which might be on a mixture of
topics, not all necessarily interesting to all followers. Giving users

the ability to choose their algorithms lets them control what they
want to see, rather than having the platform decide for them.

Bluesky Social PBC offers a selection of feed algorithms of its
own, and also allows anybody to create their own feed generator [9].
Tens of thousands of custom feeds have already been created. Our
goal is to offer an open and diverse marketplace of algorithms
in which communities can adapt the system to suit their needs,
and users have more agency over how they spend their time and
attention [26]. Section 3.4 explains how feed generators work.

In Figure 1, a selection of bookmarked feeds is given at the
top of the screen; in this example, the selected “Following” feed
is the default reverse-chronological timeline, while “Week Peak
Feed” (network-wide posts with many likes from the last week) and
“Birds!” (photos and posts from birdwatchers) are third-party feeds.
A feed generator can use arbitrary criteria to select its content.
For example, the birdwatching feed uses a manually curated list
of accounts, and selects posts from those accounts that contain a
#birds hashtag or a feather emoji character. Alternative approaches,
such as machine learning algorithms, are equally possible.

3 THE AT PROTOCOL ARCHITECTURE
Bluesky is the social app with the features explained in Section 2,
while the AT Protocol is the underlying decentralized foundation.
We maintain this separation because the AT Protocol is designed to
support multiple social modes, not just Bluesky. For example, besides
a Twitter-style microblogging app, atproto could also be used to
implement Reddit-style forums, long-form blogs with comments,
or domain-specific social applications such as link sharing or book
reviews. The same user identity, social graph, and user data storage
servers can be shared between all of these apps.

The data types and concepts for a particular social mode are
defined by a lexicon, which specifies the schema of the data and the
request endpoints involved in providing that social mode [7]. At the
moment, the com.atproto lexicon defines the core AT Protocol con-
cepts such as user identity (Section 3.5), and the app.bsky lexicon
defines the microblogging mode. Anyone can define a new lexi-
con, allowing new social modes to coexist alongside the Bluesky
social app on a shared infrastructure. The purpose of a lexicon
is to provide documentation, to allow code generation and type-
checking in applications, and to facilitate the process of specifying
and versioning an interoperable protocol.

The biggest constraint for new social modes is that atproto is cur-
rently designed for content that users want to make publicly avail-
able. In particular, Bluesky user profiles, posts, follows, and likes
are all public. Blocking actions are also currently public; however,
we are investigating mechanisms for making these private [16, 41].
At present, Bluesky does not support private communications, such
as direct messages, though we plan to add this in the future. Only a
small amount of user state is currently private: any muted accounts
and threads, notifications and their read/unread status, and user
preferences such as pinned feeds and content filtering settings.

3.1 User Data Repositories
All data that a user wishes to publish is added to their repository,
which stores a collection of records. Whenever a user performs some
action –making a post, liking another user’s post, following another

3

Bluesky PDS

Bluesky PDS

Alternative PDS

Self-hosted PDS

Relay

Labelers

Feed generators

Bluesky Social
mobile/web
app and
other clients

Services hosted by Bluesky Social PBC

Alternative
relay

Bluesky
App View

Alternative App View

streams of
records

(p
la

nn
ed

)

App View for other
social mode

Bluesky PDS

Bluesky PDS

Alternative PDS

Self-hosted PDS

�r
eh

os
e

custom feeds

custom feeds

alternative �rehose

fo
llo

w
s,

et
c.

lik
es

,
ac

tio
ns

:
po

st
s,

us
er

re
ad

 v
ie

w
s:

lik
e

co
un

ts
,

et
c.

th
re

ad
s

of
 re

pl
ie

s,

Figure 3: The main services involved in providing Bluesky, and data flows between them. Icons from Flaticon.com.

user, etc. – that action becomes a record in their repository. Records
are encoded in DAG-CBOR [45], a restricted form of CBOR [17], a
compact binary data format. The schema of records is defined by
the lexicon, and a repository may contain a mixture of records from
several different lexicons, representing user actions in different
social modes. Media files (e.g. images) are stored outside of the
user’s repository, but referenced by their CID [32] (essentially a
cryptographic hash) from a record in the repository. Similarly, a
reference to a record in another repository (e.g. identifying a post
being liked) also includes its CID.

Each user account has one repository, and it contains all of the
actions they have ever performed, minus any records they have
explicitly deleted. A Personal Data Server (PDS) hosts the user’s
repository and makes it publicly available as a web service; we
discuss PDSes in more detail in Section 3.2.

A user only updates their own repository; for example, if user
𝐴 follows user 𝐵, this results only in a follow record in user 𝐴’s
repository, and no change to 𝐵’s repository. To find all followers of
user 𝐵 requires indexing the content of all repositories. This design
decision is similar to the way hyperlinks work on the web: it is
easy to find all the outbound links from a web page at a given URL,
but to find all the inbound links to a page requires an index of the
entire web, which is maintained by web search engines.

The AT in atproto stands for Authenticated Transfer, which re-
flects the fact that repositories are cryptographically authenticated.
The records in a repository are organized into a Merkle Search Tree
(MST), a type of Merkle tree that remains balanced, even as records
are inserted or deleted in arbitrary order [3]. After every change to

a repository, the root hash of the MST is signed; the public verifi-
cation key for this signature is part of the user identity described
in Section 3.5. This enables an efficient cryptographic proof that a
given record appears within a given user’s repository. Moreover,
when a user updates or deletes a record, the MST enables a proof
that the old record no longer appears in the repository.

3.2 Personal Data Servers (PDS)
A PDS stores repositories and associated media files, and allows
anybody to query the data it hosts via a HTTP API. Moreover, a
PDS provides a real-time stream of updates for the repositories it
hosts via a WebSocket. Indexers (see Section 3.3) subscribe to this
stream in order to find out about new or deleted records (posts,
likes, follows, etc.) with low latency. This architecture is illustrated
in Figure 3.

Hosting a PDS for a small number of users requires only small
computing resources, even if those users have a large number of
followers. Users who wish to self-host their own PDS can there-
fore do so on a cheap virtual machine in the cloud, or even on a
Raspberry Pi connected to their home internet router. However, we
expect that most users will sign up for an account on a shared PDS
run by a professional hosting provider – either Bluesky Social PBC,
or another company.

Compared to choosing a Mastodon server, the user’s choice of
PDS hosting provider is fairly inconsequential. The PDS URL is
internal to the system, and is not normally visible to users. It makes
no difference whether two users are on the same PDS or different

4

PDSes, since interaction between users goes via the indexing infras-
tructure in any case. A user can migrate from one PDS to another
by simply copying their repository and media files to the new PDS,
and pointing their account ID at the new PDS URL (see Section 3.5).
Even if a PDS shuts down without warning, users can upload a
backup of their repository to a new PDS, and thus recover their
account without losing any of their posts or their social graph.

PDS operators will generally want to perform some basic moder-
ation by deleting any illegal content hosted on their servers. How-
ever, PDS-level moderation is much less important than server-level
moderation in Mastodon, because in atproto, the primary modera-
tion role is taken on by seperate actors in the system – the labelers
and feed generators (see Section 3.4). This allows different sets of
people to offer server hosting andmoderation services, respectively;
we believe this separation is valuable since operating a server and
moderating a community require largely disjoint sets of skills [46].

At the time of writing, Bluesky’s indexing infrastructure (see
Section 3.3) only indexes repositories on PDS instances hosted by
Bluesky Social PBC itself; this limitation exists to limit infrastruc-
ture load and abuse problems during the beta period. In that sense,
Bluesky is not yet fully decentralized. Support for third-party PDS
operators is already implemented and enabled in Bluesky’s sand-
box (testing) environment, and a PDS implementation suitable for
self-hosting is already open source [8]. We plan for the Bluesky
indexing infrastructure to begin indexing repositories on other PDS
operators (indicated by dashed arrows in Figure 3) in early 2024.

3.3 Indexing Infrastructure
On the web, websites are crawled and indexed by search engines,
which then provide web-wide search and discovery features that
the websites alone cannot provide. The AT Protocol is inspired by
this architecture: the repositories hosted by PDSes are analogous to
websites, and the indexing infrastructure is analogous to a search
engine. User repositories are primary data (the “source of truth”),
and the indexes are derived from the content of the repositories.

At the time of writing, most of Bluesky’s indexing infrastructure
is operated by Bluesky Social PBC (indicated by a shaded area in
Figure 3). However, the company does not have any privileged
access: since repositories are public, anybody can crawl and index
them using the same protocols as our systems use. Client apps can
switch to reading from a different index, or use a combination of
multiple indexes.

While operating a small PDS is designed to be cheap, operating
an indexer that ingests the entire network requires greater comput-
ing resources. We therefore expect that there will be fewer hobbyist
indexers than self-hosted PDSes. Nevertheless, as Bluesky grows,
there are likely to be multiple professionally-run indexers for var-
ious purposes. For example, a company that performs sentiment
analysis on social media activity about brands could easily create a
whole-network index that provides insights to their clients. Web
search engines can incorporate Bluesky activity into their indexes,
and archivists such as the Internet Archive can preserve the activity
for posterity.

The indexing infrastructure operated by Bluesky Social PBC is
illustrated in Figure 3. It is composed of multiple services that have
integration points for external services.

3.3.1 The Relay. The first component is the Relay, which crawls
the user repositories on all known PDSes and consumes the streams
of updates that they produce. The Relay checks the signatures and
Merkle tree proofs on updates, andmaintains its own replica of each
repository. From this information, the Relay creates the firehose: an
aggregated stream of updates that notifies subscribers whenever
records are added or deleted in any of the known repositories.

The firehose is publicly available. Consuming the firehose is an
easier way of building an index over the whole network, compared
to directly subscribing to the source PDSes, since the Relay performs
some initial data cleaning such as discarding malformed updates
and filtering out high-volume spam. The firehose can optionally
include Merkle proofs and signatures along with records, allowing
subscribers to check that they are authentic.

The Relay does not interpret or index the records in repositories,
but simply stores and forwards them. Any developers wanting to
create a new social mode on top of atproto can define a new lexicon
with new record types, and these records can be stored in existing
repositories and aggregated in the firehose without requiring any
changes to the Relay.

3.3.2 The App View. The App View is a service that consumes the
firehose, and processes the records that are relevant to the Bluesky
social app (records in the com.atproto and app.bsky lexicons).
For example, the App View counts the number of likes on every
post, and it collates the thread of replies to each post. The App View
also maintains the set of followers for each user, and constructs the
timeline containing the posts by the accounts that each user is fol-
lowing. It then offers a web service through which this information
can be queried. When a record contains references to images, the
App View fetches those files from the original PDS, resizes them if
necessary to reduce the file size, and makes them available via a
content delivery network (CDN).

To display this information in the user’s client app, the client
queries the user’s own PDS, which then fetches the neccessary data
from an App View. The App View is also responsible for enforcing
moderation controls: for example, if one user has blocked another,
and one of the users’ repositories contains a record of an interaction
that should not have been allowed due to the block, then the App
View drops that interaction so that nobody can see it in the client
apps. This behavior is consistent with how blocking works on
Twitter/X [61], and it is also the reason why blocks are public
records in Bluesky: every protocol-conforming App View needs to
know who is blocking who in order to enforce the block [16, 41]. If
users are unhappy with the moderation rules applied by the App
View operated by Bluesky Social PBC, it is always possible for
third parties to operate alternative App Views that index the same
firehose and present the data in a different way.

If the AT Protocol is used to implement another social mode
besides microblogging, that application will most likely require
an App View service of its own, which can be hosted by anyone.
This service can then interpret and index the records in users’
repositories in whatever way is required for that application.

5

{
 "id": "did:plc:eclio37ymobqex2ncko63h4r",
 "alsoKnownAs": ["at://nytimes.com"],
 "verificationMethod": [
 {"publicKey": "zQ3shXjHeiBuR...", ...}
],
 "service": [
 {"serviceEndpoint": "https://bsky.social", ...}
],
 ...
}

DID Document
nytimes.com

DNS domain name
did:plc:eclio37ymobqex2ncko63h4r

DID

references

resolves to (via DNS TXT

or HTTPS request)

resolves to (via did:web or

did:plc directory server)

Figure 4: A handle resolves to a DID, and a DID resolves to a DID document, which in turn references the handle, DID, and the
user’s public key. Icons from Flaticon.com.

3.4 Labelers and Feed Generators
Relay and App View aim to provide a mostly “unopinionated” ser-
vice: they compute indexes over repositories in a neutral way, with-
out attempting to rank or classify content. However, a good user
experience also requires “opinionated” judgements for the purposes
of content filtering (e.g. detecting sexually explicit images or spam)
and curation (e.g. selecting posts on a particular topic).

The AT Protocol seperates out the “opinionated” aspects of the
system into separate services: labelers and feed generators. These
services typically take the firehose as their input. Labelers produce
a stream of judgements about content (e.g. “this post is spam”),
whereas feed generators return a list of post IDs they have selected
for inclusion in a custom feed, as described in Section 2.3. Users
can choose in their client app which feeds and which labelers they
want to use. The output of labelers is consumed by App Views or
PDSes in order to apply content filtering [12]. For a feed generator,
an App View expands the post IDs into full posts before sending
them to the client app of users who have subscribed to that feed.

Having labeler and feed generator services that are separate from
App Views has several advantages:

• Anyone can run such services, which enables a pluralistic
ecosystem in which different parties may make different
judgements about the same piece of content. Users, as well
as the operators of App Views and PDSes, can decide whose
judgements they want to trust, and it is easy for them to
switch to alternative labeling and feed generation services
if their current providers fail to meet their expectations.

• It becomes easier to set up alternative App View providers:
since any App View can consume the publicly available
output from labelers and feed generators, there is less pres-
sure for each App View to develop its own content filtering
infrastructure. Having alternative App Views is important
for a healthy, decentralized marketplace.

Feed generators can be implemented in code using our starter
kit [10], or created with a third-party service such as Skyfeed [13].

3.5 User Identity
As explained in Section 2.2, user handles in Bluesky and atproto
are DNS domain names. Any number of identity providers can
coexist in the system: Bluesky Social PBC allows users to register
subdomains of .bsky.social, but the indexing infrastructure does
not treat users differently based on their handle.

We want a user to be able to change their handle without af-
fecting their social graph. Therefore, when a record in user 𝐴’s
repository indicates that 𝐴 is following 𝐵, that record must iden-
tify 𝐵 in a way that is more long-lived than specifying 𝐵’s handle.
For this reason, every Bluesky/atproto account has an immutable,
unique identifier: a decentralized ID or DID, which is a URI starting
with the prefix did:. The record that 𝐴 follows 𝐵 then contains 𝐵’s
DID. DIDs are a recent W3C standard [50].

Moreover, we want a user to be able to migrate to a different
PDS without changing either their DID or their handle. The DID
specification provides a mechanism for resolving a DID into a DID
document, a JSON document containing information about the user
identified by that DID, as illustrated in Figure 4. In atproto, a DID
document specifies (among other things) the handle of the user, the
URL of their PDS, and the public key that is used to sign the Merkle
tree root of their repository every time they add or delete a record.
To change their handle or their PDS, the user needs to update their
DID document to the new value.

For a user to successfully claim a particular handle, they must
have a bidirectional link between their DID and their domain name
handle, as shown in Figure 4:

• A link from the handle to the DID is established either by
storing the DID in a DNS TXT record on that domain name,
or by returning the DID in response to a HTTPS request to
a /.well-known/ URL on that domain name [37].

• A link from the DID to the handle is established by including
the handle in the DID document that is returned when the
DID is resolved.

3.5.1 Resolving DID documents. The W3C DID specification [50]
does not directly specify the mechanism for resolving a DID into
a DID document. Rather, the first substring after did: in a DID
indicates the DID method, and the specification of the DID method
defines the protocol for obtaining the DID document. Hundreds of
DID methods have been defined [54], many of which are dependent
on specific blockchains or other external systems. To avoid atproto
implementations having to support so many resolution methods,
our services currently only accept DIDs based on either did:web
(defined by the the W3C Credentials Community Group [27]) or
did:plc (defined by ourselves for atproto [31]). Support for more
DID methods might be added in the future.

The did:web method is very simple: the part of the DID after
did:web: is a domain name, and the DID document is resolved by
making a HTTPS request to a /.well-known/ URL on that domain

6

name (a path can optionally be included). The security of a did:web
identity therefore assumes that the web hosting provider for that
domain is trusted, and also relies on trusting the TLS certificate
authorities that may authenticate the HTTPS request.

did:web identities are therefore similar to domain name handles,
with the difference that the name cannot be changed, since a DID
is an immutable identifier. This makes did:web appropriate for the
identity of organizations that are already strongly linked to a par-
ticular domain name. For most users, did:plc is more appropriate,
since it uses a domain name only as a handle that can be changed.

3.5.2 The did:plc DID method. When a user creates an account
on the Bluesky social app, they are by default assigned a DID of
the form did:plc:eclio37ymobqex2ncko63h4r, where the string
after the prefix did:plc: is the SHA256 hash of the initial DID doc-
ument, truncated to 120 bits and encoded using base32 [31]. A DID
of this form can be resolved to the corresponding DID document
by querying a server at https://plc.directory/, which is currently
operated by Bluesky Social PBC; in the future we plan to establish
a consortium of independent operators that collectively provide
the PLC directory service.

The PLC directory server plays an authoritative role similar to
the DNS root servers, but it is mostly untrusted because PLC DID
documents are self-certifying. If the DID document has not changed
since its initial creation, it is easy to verify that a DID has been
correctly resolved to a DID document by recomputing its hash.
To support changes to the DID document, the initial version of a
user’s DID document contains a public key that is authorized to
sign a new version of the DID document. Any new version of the
DID document is only valid if it has been signed by the key in the
previous version. The directory server returns all DID document
versions for a given DID, allowing anybody to check the chain of
signatures.

If the directory server were to be malicious, it would not be able
to modify any DID documents – it could only omit valid DID docu-
ment versions from its responses, or fail to respond at all. Moreover,
if there were to be a fork in DID document history such that two
correctly signed successor versions for some DID document exist,
the directory server could choose which one of these forks to serve.
To mitigate the risk of such attacks, we anticipate that a future
version of the PLC directory will use techniques from certificate
transparency [33] to ensure that DID document updates form an
append-only log.

3.5.3 Authentication. In principle, the cryptographic keys for sign-
ing repository updates and DID document updates can be held
directly on the user’s devices, e.g. using a cryptocurrency wallet, in
order to minimize trust in servers. However, we believe that such
manual key management is not appropriate for most users, since
there is a significant risk of the keys being compromised or lost.

The Bluesky PDSes therefore hold these signing keys custodially
on behalf of users, and users authenticate themselves to their home
PDS via username and password. This provides a familiar user
experience to users, and enables standard features such as password
reset by email. The AT Protocol does not make any assumptions
about how PDSes authenticate their users, and other PDS operators
are free to use different authentication methods.

4 RELATEDWORK
Several other decentralized social networks are in development.
We believe that there is no single optimal design: different systems
make different trade-offs, and are therefore suitable for different
purposes. Bluesky and the AT Protocol aim to provide a good user
experience by making moderation a first-class concern, by having
clients that are lightweight and fast, and by providing a global
view over the whole network. For example, conversation threads
include all replies (unless removed by moderation), regardless of
the server on which they were posted. To achieve this goal we rely
on an indexing infrastructure that is more centralized than some
other designs. However, we emphasize that there can be multiple
competing indexers, and third-party client apps are free to show
data from whichever indexers they wish.

In 2021 some of our team published a review of the decentralized
social ecosystem [25]. In this section we summarize some recent
developments that have happened since, and we refer to the review
for a more comprehensive comparison of protocols and systems.

Many decentralized social networking projects have ideas in
common. For example, the idea of using DNS domain names as
usernames also appears in Nostr [23]. An atproto PDS has sim-
ilarities to Git repository hosting (e.g. GitHub/Gitlab) or a Solid
pod [49]. There are also federated chat systems such as Matrix [40],
IRC [43], and XMPP [47], but we focus on systems that provide a
Twitter-like model where users follow each other.

4.1 Scuttlebutt
Secure Scuttlebutt (SSB) is a peer-to-peer social networking proto-
col [1]; Manyverse [57] and Planetary [59] are social applications
built upon the SSB protocol. It optionally uses relay servers called
pubs to store messages from peers that are offline, and to enable user
discovery. The client software downloads the feeds from accounts
that the user is explicitly following, and from accounts followed by
followed accounts (up to three hops by default). This can require
significant amounts of storage and bandwidth on the client.

Any messages from users outside of the third-degree network
are not shown, which effectively limits the set of people who can
mention or reply to a user to the third-degree network. This delib-
erate design decision is intended to reduce moderation problems
by prioritizing conversation between people who already know
each other [53]. In contrast, Bluesky/atproto are designed to allow
anybody to talk to anybody else. This requires more explicit mod-
eration to manage unwanted content, but we believe it also enables
serendipity and is a prerequisite for any “digital town square”.

Since SSB is built upon append-only logs and gossip replication,
it is not possible to delete content once it has been posted [56]. User
identity is tied to a cryptographic key on the user’s device, requiring
manual key management for moving to another device. Posting
from multiple devices is not possible, as sharing the same key
between devices can make an account unrecoverable [55]. A work-
in-progress successor protocol to SSB, called PPPPP, is designed to
address these issues [52].

4.2 Nostr
Nostr also began as a revision of SSB, replacing the append-only
logs with individual signed messages [30]. It leans more heavily

7

https://plc.directory/

on relay servers instead of peer-to-peer communication: clients
publish and fetch messages on relays of their choice, and there
is no federation among relays [21]. The protocol is deliberately
simple, and it prioritizes censorship resistance over moderation:
relays can block users, but users can always move to a new relay,
and use multiple relays at the same time. Communication (e.g. reply
threads) is only possible between users who have at least one relay
in common. Although some services index thewhole Nostr network,
these indexes are not used for user-to-user interaction. As a result,
it is unpredictable who will see which message. The creator of Nostr
writes: “there are no guarantees of anything [. . .] to use Nostr one
must embrace the inherent chaos” [22]. Key management is manual
in Nostr, and facilities for key rotation are still under discussion [4].

4.3 Farcaster and blockchain-based systems
Farcaster [60] has some architectural similarities to Bluesky/atproto,
although it was developed independently. It has storage servers
called hubs, which store the state of the entire network similarly to
an atproto Relay, and it has a concept of hosted app servers that are
similar to our App View [51]. Farcaster user IDs are similar to our
DIDs, and they are mapped to public keys using a smart contract
on the Ethereum Optimism blockchain that is functionally similar
to our PLC directory. Usernames can be either ENS names [19],
or names within an off-chain namespace managed centrally by
Farcaster, similarly to .bsky.social subdomains in Bluesky [20].

A difference is that Farcaster has no equivalent to atproto’s PDS;
instead, client apps publish signed messages directly to a hub, and
hubs synchronize messages using a convergent gossip protocol.
Users must pay in cryptocurrency to register their public key, and
for hub data storage (at the time of writing, Ethereum equivalent
to $5 USD/year); when a user exceeds their storage allowance, old
messages are deleted. Fees are currently collected centrally by the
Farcaster team [29]. In contrast, the AT Protocol does not specify
storage limitations, but leaves it to providers of PDS and indexing
services to define their own business model and abuse-prevention
policies. We also prefer to avoid a dependency on a cryptocurrency.

The Lens protocol [35] is more strongly blockchain-based than
Farcaster: it even stores high-volume user actions such as posts
and follows on Polygon, a proof-of-stake blockchain. DSNP takes
a similar approach [44]. Placing high-volume events directly on a
blockchain incurs orders of magnitude higher per-user costs than
atproto, and is likely to run into scalability limits as the number of
users grows. Lens is adopting a layer-3 blockchain that provides
better scalability and lower cost [36], but weaker security properties.
Linking social accounts to cryptocurrency wallets and NFTs enables
users to monetize their content, but this is not a goal of atproto.

4.4 ActivityPub and Mastodon
ActivityPub [34] is a W3C standard for social networking, and
Mastodon [39] is its most popular implementation. We have high-
lighted aspects of their design in Sections 1, 2.3, and 3.2. Mastodon
gives a lot of power to server administrators: for example, a server
admin can choose to block another server, preventing all communi-
cation between users on those servers. There is a degree of lock-in
to a server because moving to another server is intrusive: the user-
name changes, moving posts to the new server currently requires an

experimental command-line tool [48, 58], and other users’ replies
to those posts are lost. These risks can be mitigated by self-hosting;
managed providers exist [28], but they still require some expertise
and cost money. The AT Protocol separates the roles of moderation
and hosting, and aims to make it easier to change providers.

When user 𝐴 follows user 𝐵, 𝐴’s server asks 𝐵’s server to send it
notifications of 𝐵’s future posts via ActivityPub. This architecture
has the advantage of not requiring awhole-network index. However,
replies to a post notify the server of the original poster, but not
necessarily every server that has a copy of the original post, leading
to inconsistent reply threads on different servers. Notifications can
be forwarded, but in the limit this leads to each server having a
copy of the whole network, which would make it expensive to run
a server. Viral posts can generate a lot of inbound requests to a
server from people liking, replying, and boosting (reposting). The
Bluesky indexing infrastructure is also fairly expensive, but a PDS is
cheap to run. Since users can choose their moderation preferences
independently from their indexing provider (App View), we believe
that the ecosystem can be healthy with a small number of indexing
providers.

5 CONCLUSIONS
Bluesky and the AT Protocol are a new approach to social media.
While some decentralized systems prioritize censorship resistance,
we believe that a good user experience requires explicitly address-
ing problematic content such as harassment and misinformation.
We therefore make moderation a first-class concern that is han-
dled separately from infrastructure hosting, and we provide strong
mechanisms for users to control the content they see.

Our open architecture allows a pluralistic system in which there
is no global consensus on what content is acceptable. A user on
a self-hosted or loosely moderated PDS may post controversial
content, but they are not entitled to the attention of others: App
Views may choose not to index the content, and clients may ignore
it depending on the user’s moderation settings. This philosophy is
sometimes described as “free speech, but not free reach” [18].

The AT Protocol provides cryptographically authenticated data,
but our implementation pairs it with custodial key management
to provide a familiar user experience. The system is open to third-
party clients and alternative PDS hosts, and anybody can index
the network using real-time streams for low-latency updates. This
reduces the dependency on any one provider, since every part of
the system can be run by multiple competing providers, and users
can switch providers with minimal friction (in particular, without
changing username, and without losing any of their content or
social graph). The AT Protocol is also extensible to other social
modes besides microblogging.

ACKNOWLEDGMENTS
Martin Kleppmann is supported by the Volkswagen Foundation
and crowdfunding supporters including Mintter and SoftwareMill.

REFERENCES
[1] [n. d.]. Scuttlebutt Protocol Guide. https://ssbc.github.io/scuttlebutt-protocol-

guide/
[2] Ben Adida. 2022. Don’t let federation make the experience suck. https://benlog.

com/2022/12/28/dont-let-federation-make-the-experience-suck/ Archived at

8

https://ssbc.github.io/scuttlebutt-protocol-guide/
https://ssbc.github.io/scuttlebutt-protocol-guide/
https://benlog.com/2022/12/28/dont-let-federation-make-the-experience-suck/
https://benlog.com/2022/12/28/dont-let-federation-make-the-experience-suck/

https://perma.cc/W7CY-TF23.
[3] Alex Auvolat and François Taïani. 2019. Merkle Search Trees: Efficient State-

Based CRDTs in Open Networks. In 38th Symposium on Reliable Distributed
Systems (SRDS 2019). IEEE, 221–230. https://doi.org/10.1109/srds47363.2019.
00032

[4] Cat Ball, fiatjaf, Kevin Smith, Vitor Pamplona, et al. 2022. Nostr issue #45: Key
distribution, rotation, and recovery. https://github.com/nostr-protocol/nostr/
issues/45 Archived at https://perma.cc/26TW-ME48.

[5] Chelsea Barabas, Neha Narula, and Ethan Zuckerman. 2017. Defending Internet
Freedom through Decentralization: Back to the Future? Technical Report. MIT
Media Lab. https://dci.mit.edu/decentralizedweb Archived at https://perma.cc/
Q8CJ-D44Y.

[6] Bluesky Social PBC. [n. d.]. AT Protocol Community Projects. https://atproto.
com/community/projects Archived at https://perma.cc/X88A-9XM4.

[7] Bluesky Social PBC. [n. d.]. AT Protocol Specification. https://atproto.com/
specs/atp

[8] Bluesky Social PBC. [n. d.]. GitHub repositories. https://github.com/bluesky-
social

[9] Bluesky Social PBC. 2023. Algorithmic Choice with Custom Feeds. https:
//blueskyweb.xyz/blog/7-27-2023-custom-feeds Archived at https://perma.cc/
Z6U4-VMY8.

[10] Bluesky Social PBC. 2023. ATProto Feed Generator. https://github.com/bluesky-
social/feed-generator

[11] Bluesky Social PBC. 2023. Bluesky Proposal 0001: User Lists, Reply-Gating, and
Thread Moderation. https://github.com/bluesky-social/proposals/tree/main/
0001-user-lists-replygating-and-thread-moderation

[12] Bluesky Social PBC. 2023. Bluesky Proposal 0002: Labeling and Moderation
Controls. https://github.com/bluesky-social/proposals/tree/main/0002-labeling-
and-moderation-controls

[13] Bluesky Social PBC. 2023. Featured Community Project: SkyFeed. https:
//atproto.com/blog/feature-skyfeed Archived at https://perma.cc/AYR8-AY5K.

[14] Bluesky Social PBC. 2023. Moderation in a Public Commons. https://blueskyweb.
xyz/blog/6-23-2023-moderation-proposals Archived at https://perma.cc/XFX2-
CCFJ.

[15] Bluesky Social PBC. 2023. Purchase and Manage Domains Directly Through
Bluesky. https://blueskyweb.xyz/blog/7-05-2023-namecheap Archived at
https://perma.cc/QUA7-L8QJ.

[16] Bluesky Social PBC. 2023. Why are blocks on Bluesky public? https://atproto.
com/blog/block-implementation Archived at https://perma.cc/2ZQX-KTNJ.

[17] Carsten Bormann and Paul Hoffman. 2020. RFC 8949: Concise Binary Object
Representation (CBOR). IETF Standards Track. https://datatracker.ietf.org/doc/
html/rfc8949

[18] Renee DiResta. 2018. Free Speech Is Not the Same As Free Reach. WIRED. https:
//www.wired.com/story/free-speech-is-not-the-same-as-free-reach/ Archived
at https://perma.cc/ZF5R-USHM.

[19] ENS Labs Limited. [n. d.]. Ethereum Name Service. https://ens.domains/about/
[20] Farcaster Team. [n. d.]. Farcaster Architecture. https://docs.farcaster.xyz/

protocol/architecture.html Archived at https://perma.cc/7PDP-ATTH.
[21] fiatjaf. [n. d.]. nostr - Notes and Other Stuff Transmitted by Relays. https:

//github.com/nostr-protocol/nostr Archived at https://perma.cc/6YCW-VERW.
[22] fiatjaf. 2023. A vision for content discovery and relay usage for basic social-

networking in Nostr. https://fiatjaf.com/3f106d31.html Archived at https:
//perma.cc/9N8B-DLXW.

[23] fiatjaf and Michael Dilger. 2021. NIP-05: Mapping Nostr keys to DNS-based
internet identifiers. https://github.com/nostr-protocol/nips/blob/master/05.md

[24] Gildásio Filho. [n. d.]. deck.blue. https://deck.blue/
[25] Jay Graber. 2021. Ecosystem Review. https://gitlab.com/bluesky-community1/

decentralized-ecosystem Archived at https://perma.cc/RJ2Y-H6YT.
[26] Jay Graber. 2023. Algorithmic choice. https://blueskyweb.xyz/blog/3-30-2023-

algorithmic-choice Archived at https://perma.cc/WQR6-5QJF.
[27] Christian Gribneau, Michael Prorock, Orie Steele, Oliver Terbu, Mike Xu, and

Dmitri Zagidulin. 2023. did:web Method Specification. W3C Credentials
Community Group. https://w3c-ccg.github.io/did-method-web/ Archived
at https://perma.cc/WB8M-8ECW.

[28] Grow your own services. [n. d.]. Grow your own social network. https:
//growyourown.services/grow-your-own-social-network/ Archived at https:
//perma.cc/KS4A-RAEW.

[29] Cassie Heart, horsefacts, and Varun Srinivasan. 2023. FIP-6: Flexible Storage.
https://github.com/farcasterxyz/protocol/discussions/98 Archived at https://
perma.cc/9JT5-DR3V.

[30] Evan Henshaw-Plath. 2023. Pivoting Protocols, from SSB to Nostr. https://www.
nos.social/blog/pivoting-from-ssb-to-nostr Archived at https://perma.cc/9Y63-
28YM.

[31] Daniel Holmgren, Bryan Newbold, Devin Ivy, and Jake Gold. 2023. DID PLC
Method (did:plc). https://github.com/did-method-plc/did-method-plc

[32] IPFS Documentation. [n. d.]. Content Identifiers (CIDs). https://docs.ipfs.tech/
concepts/content-addressing/ Archived at https://perma.cc/65PP-ZRQW.

[33] Ben Laurie. 2014. Certificate Transparency. ACM Queue 12, 8 (Aug. 2014), 10–19.
https://doi.org/10.1145/2668152.2668154

[34] Christine Lemmer-Webber, Jessica Tallon, Erin Shepherd, Amy Guy, and Evan
Prodromou. 2018. ActivityPub. W3C Recommendation. https://www.w3.org/
TR/2018/REC-activitypub-20180123/

[35] Lens Protocol. [n. d.]. Lens Protocol Overview. https://github.com/lens-protocol/
core Archived at https://perma.cc/SFA7-7CQ6.

[36] Lens Protocol. 2023. Introducing Momoka to Scale Lens. https://mirror.xyz/
lensprotocol.eth/3Hcl0dGE8AOYmnFolzqO6hJuueDHdsaCs3ols2ruc9E Archived
at https://perma.cc/5SY9-PCP3.

[37] Emily Liu. 2023. How to set your domain as your handle. https://blueskyweb.
xyz/blog/4-28-2023-domain-handle-tutorial Archived at https://perma.cc/4LNR-
6YC5.

[38] Mike Masnick. 2019. Protocols, Not Platforms: A Technological Approach to
Free Speech. Technical Report. Knight First Amendment Institute at Columbia
University. https://knightcolumbia.org/content/protocols-not-platforms-a-
technological-approach-to-free-speech Archived at https://perma.cc/2V36-
FKV3.

[39] Mastodon gGmbH. [n. d.]. Mastodon. https://joinmastodon.org/
[40] Matrix.org Foundation. [n. d.]. Matrix: An open network for secure, decentralised

communication. https://matrix.org/
[41] Bryan Newbold. 2023. Mechanisms for private “block” relationships between

Bluesky accounts. https://github.com/bluesky-social/atproto/discussions/1131
Archived at https://perma.cc/2FWX-NPAX.

[42] Samuel Newman. [n. d.]. Graysky: Bluesky, like you’ve never seen it before.
https://graysky.app/

[43] Jarkko Oikarinen and Darren Reed. 1993. RFC 1459: Internet Relay Chat Protocol.
IETF Network Working Group. https://datatracker.ietf.org/doc/html/rfc1459

[44] Project Liberty. 2020. Decentralized Social Networking Protocol (DSNP). https:
//dsnp.org/dsnp_whitepaper.pdf Archived at https://perma.cc/RD62-RCKA.

[45] Protocol Labs. [n. d.]. Specification: DAG-CBOR. https://ipld.io/specs/codecs/
dag-cbor/spec/ Archived at https://perma.cc/D7UV-EUFL.

[46] Yoel Roth and Samantha Lai. 2023. Collective Security in a Federated World.
In Scaling Trust on the Web. Atlantic Council, Chapter Annex 5. https://www.
atlanticcouncil.org/in-depth-research-reports/report/scaling-trust/ Archived at
https://perma.cc/CT3R-DCF5.

[47] Peter Saint-Andre. 2011. RFC 6120: Extensible Messaging and Presence Protocol
(XMPP): Core. IETF Standards Track. https://datatracker.ietf.org/doc/html/
rfc6120

[48] SilverWolf32 et al. 2019. Mastodon issue #12423: Support Post Migration. https:
//github.com/mastodon/mastodon/issues/12423

[49] Solid Project. [n. d.]. Solid. https://solidproject.org/
[50] Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie Steele,

and Christopher Allen. 2022. Decentralized Identifiers (DIDs) v1.0: Core ar-
chitecture, data model, and representations. W3C Recommendation. https:
//www.w3.org/TR/did-core/

[51] Varun Srinivasan. [n. d.]. Farcaster: A Decentralized Social Network. https:
//github.com/farcasterxyz/protocol/blob/main/docs/OVERVIEW.md

[52] André Staltz. 2023. Manyverse Blog: June 2023 update. https://www.manyver.
se/blog/2023-06-05 Archived at https://perma.cc/D568-KD26.

[53] André Staltz. 2023. Manyverse Blog: May 2023 update. https://www.manyver.
se/blog/2023-05-05 Archived at https://perma.cc/9D7E-E8EH.

[54] Orie Steele and Manu Sporny. 2023. DID Specification Registries: The inter-
operability registry for Decentralized Identifiers. W3C DID Working Group.
https://w3c.github.io/did-spec-registries/#did-methods Archived at https://
perma.cc/LM4T-JTZ5.

[55] The Manyverse Authors. [n. d.]. FAQ: How can I use my account on many
devices? https://www.manyver.se/faq/account-on-many-devices Archived at
https://perma.cc/5S9S-NA9U.

[56] The Manyverse Authors. [n. d.]. FAQ: How do I delete content? https://www.
manyver.se/faq/permanence Archived at https://perma.cc/DSB4-6H78.

[57] The Manyverse Authors. [n. d.]. Manyverse. https://www.manyver.se/
[58] Tokyo Outsider. 2023. MastodonContentMover. https://mastodoncontentmover.

github.io/ Archived at https://perma.cc/EGM8-RM8U.
[59] Verse Communications Inc. [n. d.]. Planetary Social. https://www.planetary.

social/
[60] Warpcast. [n. d.]. Farcaster: A protocol for decentralized social apps. https:

//www.farcaster.xyz/
[61] X Help Center. [n. d.]. How to block accounts on X. https://help.twitter.com/en/

using-x/blocking-and-unblocking-accounts Archived at https://perma.cc/VZZ6-
CSCM.

[62] Douglas Yeung. 2023. The ‘Digital Town Square’ Problem. The RANDBlog. https:
//www.rand.org/blog/2023/01/the-digital-town-square-problem.html Archived
at https://perma.cc/3GM7-3VPP.

9

https://perma.cc/W7CY-TF23
https://doi.org/10.1109/srds47363.2019.00032
https://doi.org/10.1109/srds47363.2019.00032
https://github.com/nostr-protocol/nostr/issues/45
https://github.com/nostr-protocol/nostr/issues/45
https://perma.cc/26TW-ME48
https://dci.mit.edu/decentralizedweb
https://perma.cc/Q8CJ-D44Y
https://perma.cc/Q8CJ-D44Y
https://atproto.com/community/projects
https://atproto.com/community/projects
https://perma.cc/X88A-9XM4
https://atproto.com/specs/atp
https://atproto.com/specs/atp
https://github.com/bluesky-social
https://github.com/bluesky-social
https://blueskyweb.xyz/blog/7-27-2023-custom-feeds
https://blueskyweb.xyz/blog/7-27-2023-custom-feeds
https://perma.cc/Z6U4-VMY8
https://perma.cc/Z6U4-VMY8
https://github.com/bluesky-social/feed-generator
https://github.com/bluesky-social/feed-generator
https://github.com/bluesky-social/proposals/tree/main/0001-user-lists-replygating-and-thread-moderation
https://github.com/bluesky-social/proposals/tree/main/0001-user-lists-replygating-and-thread-moderation
https://github.com/bluesky-social/proposals/tree/main/0002-labeling-and-moderation-controls
https://github.com/bluesky-social/proposals/tree/main/0002-labeling-and-moderation-controls
https://atproto.com/blog/feature-skyfeed
https://atproto.com/blog/feature-skyfeed
https://perma.cc/AYR8-AY5K
https://blueskyweb.xyz/blog/6-23-2023-moderation-proposals
https://blueskyweb.xyz/blog/6-23-2023-moderation-proposals
https://perma.cc/XFX2-CCFJ
https://perma.cc/XFX2-CCFJ
https://blueskyweb.xyz/blog/7-05-2023-namecheap
https://perma.cc/QUA7-L8QJ
https://atproto.com/blog/block-implementation
https://atproto.com/blog/block-implementation
https://perma.cc/2ZQX-KTNJ
https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8949
https://www.wired.com/story/free-speech-is-not-the-same-as-free-reach/
https://www.wired.com/story/free-speech-is-not-the-same-as-free-reach/
https://perma.cc/ZF5R-USHM
https://ens.domains/about/
https://docs.farcaster.xyz/protocol/architecture.html
https://docs.farcaster.xyz/protocol/architecture.html
https://perma.cc/7PDP-ATTH
https://github.com/nostr-protocol/nostr
https://github.com/nostr-protocol/nostr
https://perma.cc/6YCW-VERW
https://fiatjaf.com/3f106d31.html
https://perma.cc/9N8B-DLXW
https://perma.cc/9N8B-DLXW
https://github.com/nostr-protocol/nips/blob/master/05.md
https://deck.blue/
https://gitlab.com/bluesky-community1/decentralized-ecosystem
https://gitlab.com/bluesky-community1/decentralized-ecosystem
https://perma.cc/RJ2Y-H6YT
https://blueskyweb.xyz/blog/3-30-2023-algorithmic-choice
https://blueskyweb.xyz/blog/3-30-2023-algorithmic-choice
https://perma.cc/WQR6-5QJF
https://w3c-ccg.github.io/did-method-web/
https://perma.cc/WB8M-8ECW
https://growyourown.services/grow-your-own-social-network/
https://growyourown.services/grow-your-own-social-network/
https://perma.cc/KS4A-RAEW
https://perma.cc/KS4A-RAEW
https://github.com/farcasterxyz/protocol/discussions/98
https://perma.cc/9JT5-DR3V
https://perma.cc/9JT5-DR3V
https://www.nos.social/blog/pivoting-from-ssb-to-nostr
https://www.nos.social/blog/pivoting-from-ssb-to-nostr
https://perma.cc/9Y63-28YM
https://perma.cc/9Y63-28YM
https://github.com/did-method-plc/did-method-plc
https://docs.ipfs.tech/concepts/content-addressing/
https://docs.ipfs.tech/concepts/content-addressing/
https://perma.cc/65PP-ZRQW
https://doi.org/10.1145/2668152.2668154
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://github.com/lens-protocol/core
https://github.com/lens-protocol/core
https://perma.cc/SFA7-7CQ6
https://mirror.xyz/lensprotocol.eth/3Hcl0dGE8AOYmnFolzqO6hJuueDHdsaCs3ols2ruc9E
https://mirror.xyz/lensprotocol.eth/3Hcl0dGE8AOYmnFolzqO6hJuueDHdsaCs3ols2ruc9E
https://perma.cc/5SY9-PCP3
https://blueskyweb.xyz/blog/4-28-2023-domain-handle-tutorial
https://blueskyweb.xyz/blog/4-28-2023-domain-handle-tutorial
https://perma.cc/4LNR-6YC5
https://perma.cc/4LNR-6YC5
https://knightcolumbia.org/content/protocols-not-platforms-a-technological-approach-to-free-speech
https://knightcolumbia.org/content/protocols-not-platforms-a-technological-approach-to-free-speech
https://perma.cc/2V36-FKV3
https://perma.cc/2V36-FKV3
https://joinmastodon.org/
https://matrix.org/
https://github.com/bluesky-social/atproto/discussions/1131
https://perma.cc/2FWX-NPAX
https://graysky.app/
https://datatracker.ietf.org/doc/html/rfc1459
https://dsnp.org/dsnp_whitepaper.pdf
https://dsnp.org/dsnp_whitepaper.pdf
https://perma.cc/RD62-RCKA
https://ipld.io/specs/codecs/dag-cbor/spec/
https://ipld.io/specs/codecs/dag-cbor/spec/
https://perma.cc/D7UV-EUFL
https://www.atlanticcouncil.org/in-depth-research-reports/report/scaling-trust/
https://www.atlanticcouncil.org/in-depth-research-reports/report/scaling-trust/
https://perma.cc/CT3R-DCF5
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6120
https://github.com/mastodon/mastodon/issues/12423
https://github.com/mastodon/mastodon/issues/12423
https://solidproject.org/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://github.com/farcasterxyz/protocol/blob/main/docs/OVERVIEW.md
https://github.com/farcasterxyz/protocol/blob/main/docs/OVERVIEW.md
https://www.manyver.se/blog/2023-06-05
https://www.manyver.se/blog/2023-06-05
https://perma.cc/D568-KD26
https://www.manyver.se/blog/2023-05-05
https://www.manyver.se/blog/2023-05-05
https://perma.cc/9D7E-E8EH
https://w3c.github.io/did-spec-registries/#did-methods
https://perma.cc/LM4T-JTZ5
https://perma.cc/LM4T-JTZ5
https://www.manyver.se/faq/account-on-many-devices
https://perma.cc/5S9S-NA9U
https://www.manyver.se/faq/permanence
https://www.manyver.se/faq/permanence
https://perma.cc/DSB4-6H78
https://www.manyver.se/
https://mastodoncontentmover.github.io/
https://mastodoncontentmover.github.io/
https://perma.cc/EGM8-RM8U
https://www.planetary.social/
https://www.planetary.social/
https://www.farcaster.xyz/
https://www.farcaster.xyz/
https://help.twitter.com/en/using-x/blocking-and-unblocking-accounts
https://help.twitter.com/en/using-x/blocking-and-unblocking-accounts
https://perma.cc/VZZ6-CSCM
https://perma.cc/VZZ6-CSCM
https://www.rand.org/blog/2023/01/the-digital-town-square-problem.html
https://www.rand.org/blog/2023/01/the-digital-town-square-problem.html
https://perma.cc/3GM7-3VPP

	Abstract
	1 Introduction
	2 The Bluesky Social App
	2.1 Moderation Features
	2.2 User Handles
	2.3 Custom Feeds and Algorithmic Choice

	3 The AT Protocol Architecture
	3.1 User Data Repositories
	3.2 Personal Data Servers (PDS)
	3.3 Indexing Infrastructure
	3.4 Labelers and Feed Generators
	3.5 User Identity

	4 Related Work
	4.1 Scuttlebutt
	4.2 Nostr
	4.3 Farcaster and blockchain-based systems
	4.4 ActivityPub and Mastodon

	5 Conclusions
	Acknowledgments
	References

