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Abstract

One of the main motivations of MTL is to develop neu-
ral networks capable of inferring multiple tasks simultane-
ously. While countless methods have been proposed in the
past decade investigating robust model architectures and ef-
ficient training algorithms, there is still lack of understand-
ing of these methods when applied on smaller feature ex-
traction backbones, the generalizability of the commonly
used fast approximation technique of replacing parameter-
level gradients with feature level gradients, and lack of com-
prehensive understanding of MTL challenges and how one
can efficiently and effectively identify the challenges. In this
paper, we focus on the aforementioned efficiency aspects of
existing MTL methods. We first carry out large-scale ex-
periments of the methods with smaller backbones and on a
the MetaGraspNet dataset as a new test ground. We also
compare the existing methods with and without using the
fast gradient surrogate and empirically study the generaliz-
ability of this technique. Lastly, we propose Feature Disen-
tanglement measure as a novel and efficient identifier of the
challenges in MTL, and propose Ranking Similarity score
as an evaluation metric for different identifiers to prove the
faithfulness of our method.

1. Introduction

Multi-task learning (MTL) is a learning paradigm that aims
to develop systems capable of performing multiple tasks
simultaneously. At a high-level, MTL designs systems
with two key components. They learn a single backbone
that encodes raw inputs into shared representations and ap-
pend prediction heads that consume the shared representa-

Figure 1. Illustration of feature disentanglement calculation. In
the above, p·j denotes the mapping i 7→ pij , which is the
(smoothened) distribution of feature saliency at location j across
all tasks. Same for p·(j−1) and p·(j+1). If an extracted feature is
disentangled for the T down stream tasks, then each distribution
p·j should be concentrated on fewer tasks and have lower entropy.

tion and each learning a different down stream task atop
the backbone. Multi-task models are efficient because the
majority of parameters lie in the feature extraction back-
bone and are shared parameters, while the task-specific pa-
rameters are usually very light-weighed. The merit of de-
signing MTL systems is believed to be two-fold. Firstly,
compared to developing a single-task model for each task,
multi-task models significantly reduces overall model size
because of shared backbone, and benefits of faster infer-
ence speed, reduced memory footprint, and lower power
consumption all follow. Secondly, it is a common belief
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that the more complex the supervision signals, the richer
the learned representation [2, 29, 31]. Introducing super-
vision signals from a diverse range of down stream tasks
has been proven to be an effective approach to improve per-
formance compared to training single-task learning systems
[4, 9, 19, 33, 35, 38, 42, 53, 57]. The idea of MTL has
already been exploited in classical discriminative computer
vision algorithms well before it becomes an active research
topic on its own [12, 15, 44].

Despite all the potential benefits MTL can bring, training
a multi-task models is also more challenging, as observed in
the fields of computer vision [15, 19, 20, 46, 47, 58], nat-
ural language processing [49, 50], meta learning [1], and
reinforcement learning [16, 34, 39, 40, 48]. Challenges of
MTL arise because it requires consideration of multiple ob-
jectives when training the single shared backbone. Given
vision tasks with a wide range of difficulties, output dimen-
sions, and types of training loss functions, it is rarely the
case that all tasks “align well” during training. Namely,
a parameter update on the backbone that improves perfor-
mance of one task may lead to worse performance of an-
other task at the same time. This phenomenon is known
as negative transfer or destructive interference [58]. It is
widely accepted that this phenomenon can be explained by
two factors: task conflicts and task dominance (Section 5.1).

Extensive research has delved into MTL techniques
aimed at mitigating the issues of task conflicts and task
dominance, as we will elaborate upon in more detail in
Section 2. However, the literature still lacks understand-
ing in the following 4 aspects. Firstly, the literature
has been focusing on ResNet50 [28, 42, 43] and SegNet
[23, 26, 32, 43, 55] backbones, but lack attention to smaller
backbones like ResNet18. Secondly, the existing liter-
ature is mostly focused on toy examples [5, 6, 22, 25–
27, 32, 43, 55], Celeb-A [6, 23, 27, 28, 42, 55], CityScapes
[19, 23, 26–28, 32, 42, 43, 55], NYU/NYU-v2 [5, 23, 26–
28, 32, 43, 47, 55, 56], Multi-MNIST [21, 42, 47, 55],
Multi-Fashion-MNIST [25, 26], Multi-Task CIFAR-100
[6, 55], and QM-9 [27, 32], but lack common test ground
on complex vision tasks across diverse range of tasks with
a large-scale dataset. Thirdly, prior work [6, 18, 42, 43]
have proposed the technique to use feature-level gradients
to replace parameter-level gradients for more efficient com-
putation, which we call the “Fast Gradient Surrogate” tech-
nique. However, some [18] lack theoretical guarantee or
solid empirical analysis to prove effectiveness of this sur-
rogate and others [32] have reported poor results when do-
ing so. A solid understanding of its generalizability is still
missing. Fourthly, prior work (Sections 2.1, 2.2, 2.3) hy-
pothesize that task conflicts and task dominance are the root
causes for poor performance of MTL models. But there is
lack of analysis on the causal relationship between these
claimed root cause and model performance. Moreover, both

of these measures require computing the gradients of all
losses w.r.t. shared parameters and hence requires back
propagation through the entire backbone T times if T is the
number of tasks, which is super computationally expensive
[18, 42, 43]. A more efficient way to understand MTL chal-
lenges is needed.

In this paper, we conduct large-scale experiments to
address the efficiency issues of optimization algorithms
for MTL from the following angles: We provide compre-
hensive benchmark results with ResNet18 [14] backbones
on MetaGraspNet [11], CityScapes [7], and NYU-v2 [45]
datasets, compare existing methods with their fast gradient
surrogates, and propose Feature Disentanglement measure,
shown in Figure 1, as a novel perspective to identify MTL
challenges and propose Ranking Similarity as an evaluation
protocol for comparing different identifiers. Our contribu-
tion in this paper is three-fold:
• We complement the existing performance benchmarks in

the literature with smaller feature extraction backbones,
ResNet18 [14], and a more robust benchmark dataset,
MetaGraspNet [11]. (Section 3).

• We provide solid empirical evidence and show that the
fast gradient surrogate technique cannot not be general-
ized to all methods and has to be analyzed and tested de-
pending on the specific algorithm (Section 4);

• We propose Feature Disentanglement measurement that
can more efficiently and faithfully reflect MTL challenge
compared to traditional task conflicts and task dominance
measures, evaluated by Ranking Similarity against test-
time performance. (Section 5).

2. Problem Definition and Related Work
The problem of Multi-Task Learning aims to train a model
to learn several tasks simultaneously. Formally, we assume
for the following notations. T denotes the number of tasks.
X denotes the set of training inputs. Yi denotes the la-
bel space for task i and we define Y :=

⊕T
i=1 Yi as the

collection of all task labels. D ⊂ X × Y denotes the
training dataset. fθ : X → Y denotes a neural network
parametrized by θ ∈ Ω where Ω is the parameter space.
Li : Yi × Yi → R≥0 denotes the loss functions for the i-th
task. In general, multi-task learning can be formulated as
the following optimization problem:

min
θ∈Ω

∑
(x,y)∈D

L(fθ(x), y), (1)

where L is some loss function, either scalar-valued or
vector-valued, defined on Y × Y . The average of all task
losses L := 1

T

∑T
i=1 Li ∈ R≥0, or Equal Weighting (EW),

is the most commonly used baseline. Pareto optimization
minimizes the loss vector L := (L1, ...,LT )

⊤ ∈ RT
≥0 w.r.t.

the partial-order ≤K on RT induced by the pointed, closed,
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and convex cone K := RT
≥0 [25, 32, 42, 54]. As we discuss

in the remaining of this section, wealth of research has been
done on efficient and effective optimization algorithms that
solve Problem 1 and on designing the specific forms of the
loss function L.

We make two remarks here on the differences and rela-
tionships between gradient manipulation methods (Section
2.1) and gradient balancing methods (Section 2.2), before
we go into depth. (1) Due to the linearity of the gradient op-
erator ∇, scaling the loss function and scaling the gradients
are essentially the same. However, gradient manipulation
methods aim to manipulate the directions of the gradients
to resolve task conflicts, whereas gradient balancing meth-
ods aim to manipulate the magnitudes of the gradients to re-
solve task dominance. (2) Gradient manipulation methods
focus on manipulating gradients for the shared parameters
and tune the task-specific parameters as usual single-task
learning, whereas gradient balancing methods scales gradi-
ents for all model parameters.

Additional Notations and Terminologies. Through-
out, we adopt the following notations: (1) for any natu-
ral number n, [n] := {1, ..., n}, (2) θsh ∈ Rd denotes
shared parameters where d is the number of shared parame-
ters and Z denotes shared representation, (3) gi := ∇θshLi

denotes each task gradient, or “parameter-level gradients”,
and G := [g1, ..., gT ]

⊤ denotes the gradient matrix whose
columns are the task gradients, (4) ∇ZLi are the “feature-
level gradients”.

2.1. Gradient Manipulation

To update the shared parameters taking all tasks into con-
sideration, gradient manipulation methods [6, 10, 23, 26,
32, 42, 43, 51, 55] compute task gradients gi := ∇θshLi

and each propose different method to compute α =
(α1, ..., αT )

⊤ ∈ RT so that the final update on the shared
parameters is done by the aggregation ĝ :=

∑T
i=1 αigi.

Prediction heads are trained as in usual single-task learning,
each supervised by their own loss function. Computation of
α can be done either explicitly or implicitly.

Explicit Methods [6, 23, 51, 55] derive closed-form for-
mulae for α based on some heuristics and may rely on some
stochasticity. PCGrad [55] proposed to reduce task con-
flicts by projecting gradients onto the normal planes of each
other, whenever the angle between two gradient vectors is
obtuse. GradVac [51] expanded along this direction and
proposed to encourage acute angles between gradients by
maintaining an Exponential Moving Average (EMA) of co-
sine similarity between task gradients as upper bound on
angles between. GradDrop [6] propose to mask the gra-
dients with Gradient Sign Purity so that the gradient signs
are more aligned. Random Gradient Weighting (RGW) [23]
draws random samples from a Gaussian distribution, nor-
malize them into a probability simplex, and re-weigh the

task gradients with normalized samples.
Implicit Methods [10, 26, 32, 42, 43] hypothesize dif-

ferent objectives and compute the gradient weights α by
solving either an optimization problem or a system of equa-
tions. MGDA [42] re-weighs task gradients so that the re-
sult is the norm minimizer in the convex hull enclosed by
the task gradients. CAGrad [26] proposed to maximize the
minimum amount of decrease (in absolute value) in the in-
dividual losses and could be viewed as a generalized ver-
sion of MGDA by adding a search region. Nash-MTL [32]
follows a similar idea as CAGrad, but rather than maximiz-
ing the minimum amount of decrease, it maximizes the sum
of the log decreases in each individual loss. This eventu-
ally resolves to solving a (non-linear) system of equations.
Aligned-MTL [43] proposed to first approximate the gradi-
ent matrix G := [g1, ..., gT ] ∈ Rd×T with its best unitary
matrix approximation, which is sure to have stability num-
ber 1, and then use the summation of the approximated task
gradients to update θsh.

2.2. Gradient Balancing

Similar to gradient manipulation methods reviewed in the
previous section, gradient balancing methods [5, 13, 17, 19,
23, 25, 27, 28, 30, 37, 56], or loss balancing methods, aim
to assign weights w = (w1, ..., wT )

⊤ ∈ RT
≥0 to the loss

functions and solve the following optimization problem, so
that all tasks are learned at compatible pace:

min
θ∈Ω

∑
(x,y)∈D

T∑
i=1

wiLi(fθ(x), yi) (2)

Computation of w can be done either explicitly or implic-
itly, or even by an extra optimizer.

Explicit Methods [5, 13, 23, 28, 30, 56] compute w ex-
plicitly based on different heuristics. GradNorm [5] pro-
posed to control the learning pace of different tasks based
on the relative norm of the gradients and does so by assign-
ing task weights and updating them at each training itera-
tion. Exploiting the same idea as RGW [23], the same paper
also proposed Random Loss Weighting (RLW). In [30], the
authors propose yet another simple weighting mechanism
named Dynamic Weight Average (DWA) to re-weight the
losses based on the relative descending rate of each loss.

Implicit Methods [25, 27] compute the loss weights w
by solving an optimization subproblem at each training iter-
ation. In particular, FAMO [27] proposed that the parameter
update at each training step should maximize the lowest rel-
ative improvement of the task losses. The subtle difference
from CAGrad [26] is that FAMO uses relative improve-
ments, so that solving the optimization subproblem results
in reducing gradient dominance, whereas CAGrad uses ab-
solute improvements and would result in reduced gradient
conflicts.
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Optimization-Based Methods [17, 19] dynamically up-
date the loss weights with an extra set of objective and op-
timizer.

2.3. Gradient Regularization

Gradient regularization methods [18, 47] design regulariza-
tion terms in the loss function and solves the following op-
timization problem:

min
θ∈Ω

∑
(x,y)∈D

L(fθ(x), y) + Lreg(G) (3)

where G ∈ Rd×T is the gradient matrix. In particular, Suteu
[47] argues that orthogonal task gradients are beneficial to
learning and adds squared cosine similarity as a regulariza-
tion term. Javaloy [18] proposed to regularize the gradients
by minimizing the angles between each task gradient and
their average.

2.4. Fast Gradient Surrogate

Most of the existing MTL algorithms rely on comput-
ing parameter-level gradients ∇θshLi, which requires back
propagation through the entire backbone where the shared
parameters lie. Feature-level gradients ∇ZLi are a lot
cheaper to compute as back propagation is only required
through the prediction heads, which are usually very light-
weighed. However, some works [42, 43] provide theo-
retical reasoning that the optimization problem could be
solved with feature-level gradients ∇ZLi, as they define
an upper bound for the objective function. Other works
[18, 32] have also empirically investigated application of
this feature-level surrogate but [18] obtained reasonable re-
sults while [32] observed poor results.

2.5. Saliency Maps in Explainable AI

Explainable AI seeks to explain behaviours of AI systems.
The representative work, GradCam [41], of top-down ap-
proaches proposed to compute a saliency map for the inter-
mediate activations via the (absolute value of) gradients of
class scores w.r.t. the activations. This has inspired us to
quantify feature disentanglement by measuring the saliency
for each task. More details are explained in Section 5.

3. Benchmarks
In this section, we carry out large-scale experiments to com-
plement the understanding of MTL optimization algorithms
in the following two dimensions: (1) application on smaller
models, namely ResNet18 backbones, and (2) application
in efficiency demanding robotics vision application, on a
more complex and super large-scale real-world dataset, the
MetaGraspNet dataset [11]. We also provide results on
CityScapes [7] and NYU-v2 [45] for completeness.

Figure 2. Illustration of model architecture used on the Meta-
GraspNet [11] benchmark.

Selected Methods. We studied 15 MTL optimization algo-
rithms, from three categories: (1) we selected PCGrad [55],
GradVac [51], GradDrop [6], RGW [23], MGDA [42], CA-
Grad [26], Nash-MTL [32], and Aligned-MTL [43] from
the gradient manipulation category (8 in total), (2) we se-
lected Uncertainty [19], GradNorm [5], IMTL [28], FAMO
[27], RLW [23], and DWA [30] from the gradient balancing
category (6 in total), and (3) CosReg [47] from the gradi-
ent regularization category. Among these methods, MGDA
and Aligned-MTL have provided theoretical analysis on re-
placing parameter-level gradients with feature-level gradi-
ents, known as MGDA-UB and Aligned-MTL-UB, respec-
tively. These variants are also benchmarked. A comprehen-
sive study on this fast approximation technique is reported
in Section 4.
General Setup. For stochasticity consideration, all experi-
ments were repeated 3 times and all results in this paper are
average results across the 3 repetitions. As the focus of this
paper is to study relative performance as compared to the
baseline, rather than proposing novel MTL methods, we fo-
cus our experiments on the early stage of training. We refer
the readers to Appendix 7 for more details.

3.1. Experiments on MetaGraspNet Dataset

The Dataset. We provide a new test ground for multi-task
learning on the MetaGraspNet dataset [11], due to its sig-
nificantly larger dataset size, increased task complexity, and
higher real-world value.
Network Architecture. We follow [3, 52] and utilize two
ResNet [14] backbones, one for RGB image input and one
for depth map input. Results at each stage of the ResNet
from the RGB image input and the depth map input are
fused by convolution layers. These fused features collec-
tively yield the output from the backbone network. Then
we feed the backbone outputs to a Feature Pyramid Net-
work (FPN) [24] to fuse the features from different levels.
On top of this extracted feature from the FPN neck we at-
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tach Region Proposal Network (RPN) [36] and UOAISNet
[3] as prediction heads for amodal object bounding boxes,
visible object masks, amodal object masks, and occlusion
predictions. An architecture overview is shown in Figure 2.
Training Objective and Baseline Definition. We follow
[52] and use the following loss functions: Lrcls and Lrdet for
foreground/background classification and bounding boxes
regression by the RPN head and Lcls, and Ldet by the amodal
detection head; Lvsb for visible object masks prediction,
Lamd for amodal object masks prediction, and Locc for ob-
ject occlusion prediction. We set the baseline loss function
to be

Ltot := Lrcls +Lrdet +Lcls +Ldet +Lvsb +Lamd +Locc, (4)

i.e., the sum of all 7 loss functions.
Experiment Results. Note that experiments are not meant
to replicate existing results but rather comparing perfor-
mance of different MTL optimization algorithms against
the baseline. However, we observed extremely poor per-
formance with GradNorm [5] and Nash-MTL [32], and the
feature-level gradient counterpart of GradDrop [6], which is
what originally proposed, so these methods are not reported
on MetaGraspNet dataset. Results have shown that Grad-
Vac [51], GradDrop [6], IMTL [28], DWA [30], MGDA-UB
[42], (rep) CAGrad [26], and (rep) CosReg [47] achieved
consistent performance gain compared to the baseline on
all 6 evaluation metrics. GradVac [51], IMTL [28], and
(rep) MGDA achieved top-three performance under a ma-
jority (≥ 3) of the metrics. Full results on MetaGraspNet
are summarized in Table 1.

3.2. Experiments on CityScapes and NYU-v2

We largely base our experiment setup for these two datasets
on existing work in the literature and refer the readers to Ap-
pendix 7 for details. Full results on CityScapes and NYU-
v2 are summarized in Tables 2 and 3, respectively. Results
have shown that CosReg [47] consistently reaches top 3 on
both datasets and all evaluation metrics. Moreover, Grad-
Drop [6] also achieved top 3 scores except normal estima-
tion (NE) on NYU-v2 [45], but still improved the baseline.

4. Generalizability of Fast Gradient Surrogate
It has been a common technique to replace ∇θshLi with
∇ZLi for reduced computation cost [18, 42, 43]. While
it might be reasonable to do so due to chain rule and sub-
additivity of norms [42, 43], other methods [32] has re-
ported significant performance degrade with feature-level
gradients in their method. To the best of our knowledge,
there is no prior work addressing the generalizability of this
approximation via comprehensive empirical study across a
large basket of existing algorithms.

We compared the performance using ∇θshLi versus
∇ZLi on 8 optimization algorithms on the MetaGraspNet

[11] dataset. Full results are summarized in Table 4. Results
have displayed the following: Firstly, only MGDA [42]
and Aligned-MTL [43] achieved consistent performance
gain under all evaluation metrics, and these are exactly the
two selected methods that argued that feature-level gradi-
ents could be used as an upper bound (up to scaling) dur-
ing the optimization process. On the other hand, Grad-
Vac [51], RGW [23], and IMTL [28] got significant perfor-
mance degradation and hence this surrogate is clearly not
applicable to these algorithms. We conclude that this fast
gradient surrogate is not generalizable and we encourage
more theoretical analysis to be done for each method.

5. Feature Disentanglement Measure
In this section, we propose a novel measurement using fea-
ture disentanglement for identifying the challenges in MTL
problems. To the best of our knowledge, we are the first to
explicitly quantify the severity of feature disentanglement
and to monitor its training dynamics.

The intuition behind lies in the gap between Single-task
Learning (STL) and MTL. STL is easier in the sense that
each task could be solved independently. The gap between
MTL and STL could be bridged by allocating disjoint sub-
sets of the extracted features for each task, while still using
a single backbone. We propose to understand the challenges
in MTL from the perspective of learnt shared representation
and study MTL by asking fundamental question: what kind
of features are beneficial for a given set of tasks?

5.1. Preliminaries

The literature is familiar with how task conflicts and task
dominance are defined for two tasks. In this section, we
make it clear how these measures are defined for a set of T
tasks.
Task Conflicts. We follow [47, 51, 55] and define the Gra-
dient Direction Similarity (GDS) measure for T tasks as

αij :=
⟨∇θshLi,∇θshLj⟩

∥∇θshLi∥2∥∇θshLj∥2
for i, j ∈ [T ]; (5a)

GDS :=
1

T (T − 1)

∑{
αij : i, j ∈ [T ], i ̸= j

}
, (5b)

where αij ∈ [−1,+1] is the cosine value of the angle
between ∇θshLi and ∇θshLj and quantifies the relation-
ship between the directions of the task gradients. A lower
GDS score indicates less agreement between the supervi-
sion from different losses.
Task Dominance. We follow [55] and define the Gradient
Magnitude Similarity (GMS) measure for T tasks as

βij :=
2∥∇θshLi∥2∥∇θshLj∥2
∥∇θshLj∥22 + ∥∇θshLj∥22

, for i, j ∈ [T ]; (6a)

GMS :=
1

T (T − 1)

∑{
βij : i, j ∈ [T ], i ̸= j

}
(6b)

5



BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
Baseline 0.383 0.519 0.518 0.647 0.490 0.617

RGW [23] 0.358 (↓) 0.513 (↓) 0.490 (↓) 0.644 (–) 0.462 (↓) 0.614 (–)
PCGrad [55] 0.370 (↓) 0.526 (↑) 0.500 (↓) 0.657 (↑) 0.454 (↓) 0.595 (↓)
GradVac [51] 0.393 (↑) 0.560 (↑) 0.521 (–) 0.680 (↑) 0.495 (–) 0.654 (↑)
MGDA [42] 0.371 (↓) 0.531 (↑) 0.452 (↓) 0.594 (↓) 0.430 (↓) 0.564 (↓)
CAGrad [26] 0.411 (↑) 0.557 (↑) 0.522 (–) 0.648 (–) 0.488 (–) 0.604 (↓)
GradDrop [6] 0.399 (↑) 0.541 (↑) 0.533 (↑) 0.666 (↑) 0.505 (↑) 0.634 (↑)

Aligned-MTL [43] 0.400 (↑) 0.547 (↑) 0.477 (↓) 0.610 (↓) 0.460 (↓) 0.580 (↓)
IMTL [28] 0.410 (↑) 0.534 (↑) 0.550 (↑) 0.667 (↑) 0.541 (↑) 0.658 (↑)
RLW [23] 0.360 (↓) 0.504 (↓) 0.499 (↓) 0.649 (–) 0.466 (↓) 0.614 (–)
DWA [30] 0.390 (↑) 0.533 (↑) 0.533 (↑) 0.664 (↑) 0.499 (↑) 0.628 (↑)

Uncertainty [19] 0.206 (↓) 0.349 (↓) 0.345 (↓) 0.507 (↓) 0.319 (↓) 0.482 (↓)
FAMO [27] 0.431 (↑) 0.564 (↑) 0.517 (–) 0.623 (↓) 0.510 (↑) 0.613 (–)
CosReg [47] 0.387 (–) 0.545 (↑) 0.522 (–) 0.672 (↑) 0.488 (–) 0.631 (↑)

Table 1. Benchmark results of all selected methods with ResNet-18 backbone on MetaGraspNet [11] dataset. Performance increase (with
↑) or decrease (with ↓) that’s more than 0.01 are shown in brackets after each table entry. Scores within 0.01 offset from the baseline are
treated as comparable performance and labeled by “–”. Best viewed in color.

DE (↓) SS (↑) IS (↓)
Baseline 1.453 15.0% 0.131

RGW [23] 1.465 14.9% 0.131
PCGrad [55] 1.462 15.0% 0.133
GradVac [51] 1.466 15.0% 0.132
MGDA [42] 1.490 15.1% 0.134
CAGrad [26] 1.446 15.3% 0.128
GradDrop [6] 1.367 15.5% 0.117

Nash-MTL [32] 1.472 15.1% 0.132
Aligned-MTL [43] 1.499 14.8% 0.134

IMTL [28] 1.467 15.0% 0.128
RLW [23] 1.507 14.6% 0.133
DWA [30] 1.457 15.0% 0.131

Uncertainty [19] 15.597 1.4% 0.158
GradNorm [5] 1.454 15.0% 0.133

FAMO [27] 15.059 1.3% 0.055
CosReg [47] 1.344 16.6% 0.081

Table 2. Benchmark results with ResNet18 backbone on
CityScapes [7]. DE stands for depth estimation, evaluated by
L1 distance; SS stands for semantic segmentation, evaluated by
mIoU; and IS stands for instance segmentation, evaluated by L1

distance.

where βij ∈ [0, 1] quantifies the relationship between the
magnitudes of the task gradients. A lower GMS score indi-
cates less aligned learning pace between the losses.

5.2. Method: Feature Disentanglement Measure

Our method, Feature Disentanglement measure, is defined
as follows. Given an extracted feature Z and a task loss Li,
how much a change in Zj can affect Li can be measured by
|∇ZjLi| ∈ R≥0, and the tensor |∇ZLi| of gradient mag-
nitudes, which has the same shape as Z , can be interpreted
as a saliency map on Z , as inspired by GradCam [41] in

DE (↓) NE (↓) SS (↑)
Baseline 1.116 44.227 2.7%

RGW [23] 1.111 43.759 2.7%
PCGrad [55] 1.125 43.834 2.7%
GradVac [51] 1.118 43.954 2.8%
MGDA [42] 1.155 44.632 2.6%
CAGrad [26] 1.143 44.042 2.7%
GradDrop [6] 1.093 43.912 2.9%

Nash-MTL [32] 1.119 44.013 2.7%
Aligned-MTL [43] 1.149 46.168 2.7%

IMTL [28] 1.120 44.040 2.6%
RLW [23] 1.541 43.524 2.4%
DWA [30] 1.120 44.196 2.6%

Uncertainty [19] 9.099 47.985 0.3%
GradNorm [5] 1.115 45.786 2.6%

FAMO [27] 1.097 39.148 0.5%
CosReg [47] 0.896 40.586 3.5%

Table 3. Benchmark results with ResNet18 backbone on NYU-v2
[45]. DE stands for depth estimation, evaluated by L1 distance;
NE stands for normal estimation, evaluated by angle in degrees,
and SS stands for semantic segmentation, evaluated by mIoU.

the Explainable AI (XAI) literature. At location j, we can
quantify the entropy of the saliencies across T tasks by

Ej(Z) := −
T∑

i=1

pij log pij , where (7a)

pij := |∇ZjLi|/
T∑

k=1

|∇ZjLk| (7b)

The feature disentanglement measure for the entire shared
representation Z is defined to be the average entropy across
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BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
RGW [23] -6.4% -3.6% -6.9% -4.2% -5.9% -3.4%

PCGrad [55] -1.4% -0.7% 0.7% -0.2% 3.2% 3.0%
GradVac [51] -13.9% -7.8% -11.2% -7.6% -14.2% -10.6%
MGDA [42] 14.3% 6.8% 17.8% 12.0% 19.8% 14.1%
CAGrad [26] -0.9% -2.9% 2.9% 2.6% 5.1% 4.8%

Aligned-MTL [43] 2.5% 1.3% 8.1% 5.9% 8.3% 7.7%
IMTL [28] -7.4% -1.5% -8.2% -1.6% -8.1% -1.1%

CosReg [47] 0.2% -2.3% 1.5% 0.3% 0.8% -0.4%

Table 4. Benchmark results with ResNet18 backbone on MetaGraspNet dataset but all gradients in the algorithms replaced with feature-
level gradients. Table entries are relative performance change compared to their parameter-level gradient counterparts.

BBox mAP BBox mAR VMask mAP VMask mAR AMask mAP AMask mAR
GDS 64.3% 63.3% 50.5% 60.0% 56.7% 51.0%
GMS 67.6% 70.5% 53.8% 59.5% 50.5% 59.0%
FD 56.7% 58.6% 65.7% 65.7% 65.2% 69.0%

Table 5. Ranking similarity results on MetaGraspNet [11] dataset.

all positions:

FD := mean

{
Ej(Z) : j ∈ [dim(Z)]

}
, (8)

where dim(Z) denotes the dimension of the Euclidean
space Z lies in. A lower feature disentanglement measure-
ment indicates that activations are salient to fewer tasks,
and hence larger disentangled-ness. Note that monitoring
task conflicts and task dominance is extremely expensive as
they require back propagation through until the first layer
T times to compute ∇θshLi. However, the feature disentan-
glement measure (ours) is a lot cheaper as it only replies on
∇ZLi and only need to back propagates through the T pre-
diction heads. An illustration of this definition is shown in
Figure 1.

5.3. Evaluation Protocol: Ranking Similarity

In order to quantitatively evaluate the faithfulness of differ-
ent measures (GDS, GMS, and FD) for revealing the chal-
lenges in MTL problems, we propose Ranking Similarity to
quantify the alignment against test-time performance.
Definition. Given a set of n scalars A := {a1, ..., an} ⊂ R
and two rankings R1, R2 : A → [n] on A, we define the
ranking similarity S(R1, R2) between R1 and R2 to be the
following average:

S(R1, R2) :=

1

n(n− 1)

n∑
i,j=1
i ̸=j

I
[
R1 and R2 agree on ai and aj

]
, (9)

where for any i, j ∈ [n] with i ̸= j, R1 and R2 agree on
ai and aj if and only if “R1(ai) > R1(aj)” and “R2(ai) >
R2(aj)” have the same truth value. i.e., S(R1, R2) is the

Figure 3. Training dynamics of GDS using gradients w.r.t. shared
parameters.

percentage of pairs (ai, aj) with the same ordering under
R1 and R2. Larger ranking similarity means more agree-
ment under different ranking methods.
Symmetry. Let R1 and R2 be two arbitrary rankings and
let R′

2 be the reverse of R2. Then R1 and R2 agree on
(ai, aj) if and only if R1 and R′

2 disagree. So S(R1, R
′
2) =

1 − S(R1, R2). As we can always reverse a ranking when
making comparisons, we only consider |S(R1, R2) − 0.5|.
The larger the absolute value, the clearer R1 and R2 aligns.
We only report this symmetric version between test-time
performance scores and MTL challenge measures.

5.4. Qualitative Results

We show interesting examples and qualitatively demon-
strate the effectiveness of our method from the training
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Figure 4. Training dynamics of GMS using gradients w.r.t. shared
parameters.

Figure 5. Training dynamics of Feature Disentanglement (FD) us-
ing gradients w.r.t. shared parameters.

dynamics on MetaGraspNet [11] dataset. Trajectories are
plotted in Figures 3, 4, and 5. For clarity, we only plot
the relative values to the baseline method. All curves are
smoothened by taking the moving average with window
size equal to 1/10 of the total trajectory length. We also
added transparency to those not of interest and emphasized
ones from which we make important qualitative observa-
tions. See Appendix 8 for more details on how trajectories
were plotted.
Task Conflicts and Task Dominance. Figure 3 and Table
1 have shown that Uncertainty Weighting, which had poor
performance on the test set (Table 1), and GradVac, which
had stronger performance, both achieved high GDS scores.
In contrast, PCGrad and Aligned-MTL, which are hard to
conclude one is superior to the other on the test set, lie far

DE SS IS
GMS 56.8% 58.2% 61.3%
GDS 58.2% 55.3% 55.7%
FD 57.3% 59.0% 61.3%

Table 6. Ranking similarity results on CityScapes [7].

DE NE SS
GMS 61.3% 57.5% 67.8%
GDS 70.0% 72.7% 60.5%
FD 67.9% 70.6% 57.9%

Table 7. Ranking similarity results on NYU-v2 [45].

apart in the GDS plot. Figure 4 and Table 1 have shown that
MGDA and FAMO achieved almost the same GDS curves,
but FAMO achieved significantly better performance results
than MGDA.
Feature Disentanglement. Figure 5 and Table 1 have
show that most methods applied parameter-level gradients
achieved feature entangled-ness lower than baseline close
to the end of training, with the exception for RGW, PC-
Grad, MGDA, and Aligned-MTL These four methods form
exactly the complement of the three methods that achieved
performance gain among the gradient manipulation meth-
ods, as reported in Table 1. Nevertheless, clear decrease
trends are displayed in PCGrad, MGDA, and Aligned-
MTL. This provides strong evidence that the previous suc-
cess in these methods can be attributed to learning disentan-
gled features for down stream tasks.

5.5. Quantitative Results

When defining the ordering of training trajectories, we took
the mean of the last 50 elements, which is the closest to the
end of training. With RS, we are able to quantitatively re-
port the faithfulness of the MTL measures. Results on three
datasets are summarized in Tables 5, 6, and 7. Results have
shown that on MetaGraspNet [11] dataset, FD has lower
ranking similarities for bounding box predictions compared
to GDS or GMS, but consistently out-performs traditional
GDS and GMS for visible and amodal mask predictions).
On CityScapes [7], FD out-performed GMS and GDS on
semantic segmentation and instance segmentation, and out-
performed GMS on depth estimation. On NYU-v2, FD still
out-performed GMS on depth estimation and normal esti-
mation.

6. Conclusions
In this paper, we first conducted large-scale experiments
with ResNet18 [14] backbone on CityScapes [7], NYU-v2
[45], a new large-sized and complex test ground, Meta-
GraspNet [11] dataset. We showed that GradDrop [6]
and CosReg [47] were the best-performing methods on all
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three datasets. Secondly, we compared each method with
parameter-level gradients versus feature-level gradients
and showed that only MGDA [42] and Aligned-MTL [43]
which have theoretical guarantees achieved a performance
gain, while others were either similar or had significant
performance degrade. Lastly, we proposed a novel efficient
method to identify the challenges in MTL, and showed its
faithfulness for visible and amodal mask predictions on
MetaGraspNet and for semantic and instance segmentation
on CityScapes. We leave proposing improved mea-
sures based on shared representations as a future direction.
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bonell. Characterizing and avoiding negative transfer. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11293–11302, 2019. 2

[50] Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov. On neg-
ative interference in multilingual models: Findings and a
meta-learning treatment. arXiv preprint arXiv:2010.03017,
2020. 2

[51] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao.
Gradient vaccine: Investigating and improving multi-task
optimization in massively multilingual models. arXiv
preprint arXiv:2010.05874, 2020. 3, 4, 5, 6, 7

10



[52] Alexander Wong, Yifan Wu, Saad Abbasi, Saeejith Nair,
Yuhao Chen, and Mohammad Javad Shafiee. Fast graspnext:
A fast self-attention neural network architecture for multi-
task learning in computer vision tasks for robotic grasping
on the edge. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2292–
2296, 2023. 4, 5

[53] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe.
Pad-net: Multi-tasks guided prediction-and-distillation net-
work for simultaneous depth estimation and scene parsing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 675–684, 2018. 2

[54] Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo,
Qiao Xiao, and Yu Zhang. Multi-objective meta learning.
Advances in Neural Information Processing Systems, 34:
21338–21351, 2021. 3

[55] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 2, 3, 4, 5, 6, 7

[56] Hayoung Yun and Hanjoo Cho. Achievement-based training
progress balancing for multi-task learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16935–16944, 2023. 2, 3

[57] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3712–3722, 2018. 2

[58] Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang,
and Ying Wu. A modulation module for multi-task learning
with applications in image retrieval. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
401–416, 2018. 2

11



Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on
Light-Weighed Backbones and Effective Measurement of Multi-Task Learning

Challenges by Feature Disentanglement

Supplementary Material

7. Experiment Setup for Benchmark Results
All experiments were done on a pool of GPUs including
NVIDIA RTX 6000 Ada Generation, NVIDIA RTX A6000,
and NVIDIA GeForce RTX 4090. Throughout, we fixed
the backbone to be ResNet18 [14] with weights pretrained
on ImageNet [8], and fixed the optimizer to be the PyTorch
SGD optimizer with learning rate 1.0 × 10−4 and momen-
tum 0.9. Linear warmup learning rate scheduler was also
applied in all experiments. All images, including train-
ing, validation, and testing, are resized to 512 × 512. We
used batch size of 4 for experiments on MetaGraspNet [11]
and batch size of 32 for experiments on CityScapes [7] and
NYU-v2 [45].

8. Experiment Setup for Training Dynamics of
MTL Measures

To save computation, we only compute these measures ev-
ery 10 training iterations. With around 3k training iterations
on the MetaGraspNet [11] dataset, we get around 300 data
points on the trajectories.
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