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Abstract. The reionization of the second electron of helium (HeII) leaves important im-
prints on the thermal and ionization state of the intergalactic medium (IGM). Observational
evidence suggests that HeII reionization ended at z ≃ 3 due to ionizing photons emitted
predominantly by quasars. We present efficient semi-numerical simulations of helium reion-
ization in a 230 h−1 Mpc box, that takes into account the spatial patchiness of reionization
coupled with photoheating of the IGM. Dark matter haloes are assigned quasars using em-
pirical measurements of the quasar luminosity function, assuming a universal quasar lifetime
consistent with duty cycle values inferred from measurements of the quasar clustering. The
ionizing photon field from quasars is then included in the semi-numerical Code for Reion-
Ization with PhoTon conservation (SCRIPT), which was originally developed for modeling
hydrogen reionization. In this work, we make appropriate modifications to SCRIPT for mod-
eling inhomogenous HeII reionization and the corresponding thermal history of the IGM is
modelled via a subgrid prescription. Our model has three main free parameters i.e. the global
clumping factor CHeIII , the temperature increase due to photoheating T re

He and the quasar
spectral energy distribution (SED) index, αUV . Our fiducial model with CHeIII = 15.6
and T re

He ∼ 6000 K gives reasonable values for the empirical measurements of the tem-
perature density equation of state at these redshifts, assuming that quasars brighter than
M1450 < −21 and having αUV = 1.7 contribute to HeII reionization. The efficiency of our
code shows promising prospects for performing parameter estimation in future, for models
of HeII reionization using observations of the Lyα forest.
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1 Introduction

The evolution of the intergalactic medium (IGM) in the post cosmic dawn era is characterized
by two major baryonic phase transitions. The first of these transitions corresponds to the
ionization of intergalactic hydrogen (and the first electron of helium) [1–3], while the second
transition occurs at a later cosmic time due to the ionization of singly ionized helium. The
relatively high ionization energy of HeII (Eγ = 54.4 eV) and faster recombinations (∼ 5.5
times faster than the recombination of HII), requires ionizing photons from sources with a
harder spectra. Since a significant fraction of such photons is produced by quasars [4], helium
reionization occurs at a later epoch (2.5 ≲ z ≲ 4) when the quasar number densities become
high enough to produce the bulk of HeII ionizing photons [5, 6].

Observationally, the most direct probe of helium reionization is the HeII Lyα forest, seen
bluewards of the HeII Lyα resonance at 304 Å in the spectra of distant (z ≳ 2) quasars. A
small fraction of HeII is sufficient to produce a HeII Gunn-Peterson trough [7, 8]. Therefore,
the HeII forest allows for probing the tail end of helium reionization. The trough was first
observed in the far UV along the line of sight of quasar Q0302-003 at z=3.285 [9, 10] by the
Hubble Space Telescope’s (HST) Faint Objective Camera (FOC). Quantitative measurements
of the HeII forest along different quasar sightlines were later enabled by the HST’s Cosmic
Origin’s Spectrograph (COS) and the Far Ultraviolet Spectroscopic Explorer(FUSE) satellite.
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The HeII opacity along multiple sightlines is statistically measured in terms of the effective
optical depth τeff . The number of quasars that show emission at HeII Lyα resonance is
limited by the decreasing quasar number densities with increasing redshifts (z ≳ 3) and
intervening systems with Lyman continuum absorption (at λ ≥ 912 Å). As a result, so far
there are only 25 high signal to noise HeII sightlines at 2.3 ≲ z ≲ 3.8 which have been used for
statistical study of the HeII Lyα forest probing the end stages of helium reionization [11–17].
The sightline to sightline variation of τeff for this sample indicates that HeII reionization
is an extended process that ended at z ≲ 2.7 [18]. This was further corroborated by recent
measurements of the transmission spikes of the HeII Lyα forest [19, 20] for about 10 of these
sightlines between 2.5 ≲ z ≲ 3.8, which indicated that HeII reionization had progressed
sufficiently at these redshifts.

Given that quasars are the main drivers of helium reionization, their relatively lower
prevalence along with the inhomogeneity of the IGM makes helium reionization a patchy
process. The metagalactic UV background from galaxies and quasars is responsible for keep-
ing the IGM ionized after reionization. The UV background models are an important input
to hydrodynamical simulations of structure formation to efficiently model the ionization and
thermal state of the IGM [21–24]. The patchy nature of helium reionization induces large
fluctuations in this UV background. These fluctuations in the ionizing UV background have
important implications for interpreting the Lyα forest measurements at z ≳ 2 [25–27]. Ad-
ditionally, the inhomogenous photoheating of the IGM due to photons having energies in
excess of the ionization energy of HeII raises the temperature of the gas considerably and is a
dominant heating mechanism especially at low densities relevant for Lyα forest studies. This
heating impacts the width and depth of the small scale features in the HI Lyα forest. A sim-
ilar heating event occurs during hydrogen reionization [e.g. 28]. After the epoch of hydrogen
reionization, the temperature and density of the adiabatically expanding ionized gas at low
densities (ρ/ρ̄ ≲ 10) settles down to a tight power law relation [4, 29–32]. Statistics of the
HI Lyα forest are used for putting constraints on the temperature-density equation of state
of the IGM, which would be altered due to the subsequent photoheating of the IGM during
helium reionization [33–36]. The most recent measurements of the amplitude and slope of
the temperature density equation of state show a peak in the temperature evolution at z ∼ 3
[37] attributed to helium reionization.

The impact of helium reionization on the structure of the IGM makes it pertinent to
model the sources, timing and duration of this epoch in a way that it is consistent with ob-
servational constraints. A self consistent modelling of helium reionization must incorporate
the impact of inhomogenous ionization and heating of the IGM across a wide range of scales.
On one hand, this requires modelling scales as large as a Gpc in order to account for the
clustering properties of quasars which determine the topology of helium reionization. On the
other hand, such models must be able to reproduce features in the Lyα forest at scales as
small as ∼ 100 kpc, since it is the only direct observable. The wide variety of scales involved
makes a detailed modeling computationally expensive. Hence, studies that have attempted
numerical techniques to model helium reionization, mostly consisted of hydrodynamical or
N-body simulations post-processed with radiative transfer [38–40], but either excluded cal-
culations of the coupled gas temperature evolution or inhomogeneous recombination which
have important consequence for the Lyα forest measurements. These limitations are over-
come by using techniques such as the adaptive mesh refinement [41]. Alternatively, there are
studies which use a more realistic approach of coupled hydrodynamic and radiative transfer
simulations in smaller (25 h−1 Mpc) [42] boxes. While the small box simulation realistically
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captures the hydrodynamical response of gas due to heating during helium reionzation at
resolutions relevant for Lyα forest, it ignores the large scale topology of reionization. Con-
versely, a similar approach in larger boxes (200h−1 Mpc [43, 44]), captures realistic details of
the patchiness of helium reionization but ignores the small scale gas physics. Thus, spanning
the entire dynamic range in realistic simulations is not feasible.

A fair insight into the large scale morphology of the process have been obtained in semi-
analytical models [45, 46] or Monte Carlo based semi-analytical techniques [47], but these
techniques lack in their ability to incorporate spatial information, particularly that arising
due to clustering of quasars. Another approach to model helium reionization is by using spa-
tially uniform ionizing background models [e.g. 22, 23] over hydrodynamic simulations. Since
these models ignore spatial patchiness in heating and ionization, a thermal physics model
was introduced to mimic radiative transfer on hydrodynamical simulations [48]. While the
model introduces patchiness, the treatment of ionization and IGM heating evolution is not
coupled and relies on reionization pre-computed in a separate radiative transfer code. Thus,
due to their computational inefficiency or lack of self-consistent modeling, most numerical
and analytical treatments of helium reionization do not allow for exploring the wide range
of parameters spanning the IGM and uncertain source properties. One way to circumvent
this issue is to use a semi-numerical approach. While efficient, a previously introduced semi-
numerical model [49] suffered from some drawbacks, mainly as it lacked tracking redshift
evolution of the ionization fraction, photoionization heating and a treatment for recombina-
tions which are particularly important between quasar episodes.

In this paper, we introduce an efficient semi-numerical approach for modelling helium
reionization which self-consistently models inhomogenous recombinations and coupled ther-
mal fluctuations. For this purpose, we use Seminumerical Code for ReIonization with
PhoTon conservation (SCRIPT) [50], which was originally developed for modeling hydro-
gen reionization and modify it for helium reionization. Due to the numerical convergence
of SCRIPT with respect to resolution, the relevent results can be obtained by running the
simulations on a coarse grid (instead of higher resolutions), which leads to an increase in com-
putational efficiency. However, this also means that most of the small scale physics (which is
not captured at low resolutions), needs to be modelled using sub-grid and (semi-)analytical
prescriptions. Therefore, the thermal history in our box is modelled analytically in a sub-grid
fashion. Our fiducial model which is consistent with empirical measurements of the quasar
properties, reproduces the average measurements of the IGM equation of state. The main ad-
vantage of our semi-numerical simulation is its computational efficiency while incorporating
a reasonable description of the reionization physics, thus serving as a compromise between
detailed numerical simulations and analytical/semi-analytical techniques. Furthermore, its
speed shows promising prospects for parameter estimation using the available observations
of helium reionization.

The plan of the paper is as follows: In Section 2 we describe our procedure for mod-
elling quasars as sources of helium reionization, which are then incorporated in SCRIPT
modified for helium reionization, described in Section 3. We describe the redshift evolution
of ionization and subgrid implementation of our thermal histories in Section 4. Finally, in
Section 5 we discuss the prospects of extending our model for τeff measurements to perform
parameter estimation in future and conclude. The cosmological parameters used throughout
our calculations are those for a flat ΛCDM cosmology given by: Ωm = 0.308, Ωb = 0.0482,
h = 0.678, ns = 0.96 and σ8 = 0.81 [51] and the fraction of helium by mass, YP = 0.24.
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Figure 1: Evolution of the quasar duty cycle fON(z) for different values of quasar lifetimes
tq.

2 Modelling quasars as sources

The main challenge in modelling quasars as HeII reionization sources is to assign quasar
properties to dark matter haloes that fit well with the observed constraints, some of which
are uncertain. While global properties like the quasar luminosity function and clustering
measurements are relatively well measured, properties like the quasar spectral index and
quasar lifetimes are highly uncertain [52]. In this work, we use a data-driven approach
to model the quasars. We first generate a dark matter halo catalogue using an N -body
simulation and then populate these haloes with quasars having properties which are consistent
with observations within the limitations of our box size. For our halo catalogue, we use the
publicly available code GADGET-4 [53] with 5123 particles in a box of length 230 h−1cMpc. We
enable the on-the-fly FoF in GADGET-4 with a minimum group length of 20 particles leading
to a minimum halo mass of 2 × 1011 M⊙. The ionizing photons at a given redshift from all
the quasars in the box would be determined by the number of active quasars, their individual
ionizing luminosity and timescale. We describe how these properties are modelled, below:

2.1 Assigning quasars to haloes

At a given time all haloes capable of hosting a quasar cannot host an active quasar since they
are active only for a short duration. Therefore, in order to assign quasars to dark matter
haloes, we first need to specify the fraction of host haloes which are active at a certain
redshift, or the quasar duty-cycle fON(z) which is defined as :

fON(z) ≡
nqso∫∞

Mmin

dnhalo(M)

dM
dM

=
tq

tH(z)
(2.1)

In the first equality of the above equation, nqso is the number density of quasars and the
denominator is the integral over the halo mass function, with Mmin denoting the minimum
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mass for a halo capable of hosting a quasar. The second equality shows that fON is simply
the ratio of the time over which a quasar is active, known as the quasar lifetime tq, and
the Hubble timescale tH(z) ≡ H−1(z). In this work, we assume that tq and hence fON is
independent of the halo mass. The evolution of fON(z) for different values of tq is shown in
Figure 1.

Given the halo catalogue and fON, we assign luminosities using abundance matching.
As the name suggests, abundance matching relies on the ansatz that the quasar luminosity
is a monotonic function of the halo mass, due to which the cumulative number of quasars
above a certain luminosity would be proportional to the cumulative number of haloes above a
corresponding mass. Quasar clustering measurements at 2.5 ≲ z ≲ 4.0 show that the quasar
bias is almost independent of quasar luminosity [54, 55]. This probably indicates that there
is some scatter between quasar luminosity and host halo mass, although it has been found
to be moderate [e.g., 56]. Unfortunately, measurements of luminosity-dependent clustering
are rare at higher redshifts that are more relevant for our work. Therefore, we take the
simplifying assumption of a monotonic relation between quasar luminosity and mass of the
host halo.

The method can be expressed for an observed luminosity function Φ(L) and halo mass

function
dnhalo(M)

dM
as:

∫ ∞

L
dL′ Φ(L′) = fON(z)

∫ ∞

Mhalo

dM ′ dnhalo(M
′)

dM ′ . (2.2)

The above relation defines an implicit relation between L and Mhalo, thus allowing us to assign
luminosities to the haloes in the catalogue. The observed luminosity function is assumed to
have a double power law parameterised by: (i) amplitude: ϕ∗, (ii) break magnitude: M∗

1450,
(iii) bright end slope: α and (iv) faint end slope: β. The evolution of the parameters
is implemented using Model 2 of the luminosity function measurements given in [6] (see
Appendix A for more details). The model has a total of 14 parameters and accounts for
the break at z ∼ 3 that occurs due to lack of credible data at these redshifts. The model
also excludes data which has approximate selection functions. Since the empirical luminosity
function is obtained for a quasar sample homogenized to 1450 Å rest frame continuum,
our abundance matching procedure would yield the absolute magnitude, M1450 (or L1450 =
10−0.4 [M1450−51.60]) for the corresponding halo mass Mhalo from equation 2.2.

We choose tq to be in the range 30− 50 Myr. These values lead to large-scale clustering
of quasars consistent with recent measurements [54, 56]. We also choose to work with a simple
lightbulb model where the quasar luminosity remains constant over its lifetime. To construct
the quasar catalogue, we choose a random number derived from a uniform distribution for
each halo in our halo catalogue. If the random number is less than or equal to fON(z), then
that particular halo hosts a quasar.

The result of our abundance matching procedure for different quasar lifetimes is given
in the left panel of Figure 2. It is clear that for haloes within a fixed simulation box, a longer
lifetime would map to fainter quasars than those with a shorter lifetime for the same halo
mass. In the right panel of Figure 2, we show the relation between the halo mass and quasar
luminosity for our quasar model at different redshifts for a quasar lifetime of 40 Myr . Given
the monotonic relation between Mhalo and M1450, the faintest magnitude for a given lifetime
is limited by the resolution of the simulation box (or the least massive halo). Considering the
shift towards brighter magnitudes with redshift, we fix a faint magnitude limit such that it

– 5 –



Figure 2: Left panel: The relation between the halo mass and absolute magnitude (or
luminosity) of quasars, for different quasar lifetimes at z = 3. For a fixed value of the halo
mass, a shorter lifetime maps to a brighter quasar. Right panel: The relation between the
halo mass and absolute magnitude for a quasar lifetime, tq = 40 Myr at different redshifts.

is attainable at the lowest redshift of our interest, to avoid undercounting of fainter quasars
at these redshifts due to finite box size. Therefore, we consider only quasars brighter than
M1450 = −21 to contribute to helium reionization. In subsequent sections, we shall find that
in conjunction with the other free parameters of our reionization model, this choice leads
to reasonable values of the average observed properties during helium reionization especially
the ending at z ∼ 3.

2.2 Ionizing photons

Once the luminosity L1450 associated with a halo mass Mhalo is obtained, we calculate the
HeII ionizing photon emission rate for an assumed spectral energy distribution function. The
rate of emmission of HeII ionizing photons from a quasar with luminosity L1450 is given by :

Ṅ =

∫ ∞

νHe

Lν

hP ν
dν =

LνHe

hP

∫ ∞

νHe

(
ν

νHe

)−αUV
1

ν
dν, (2.3)

where νHe corresponds to the HeII ionizing threshold having a wavelength of 228 Å and
αUV is the quasar spectral index which describes the spectral energy distribution(SED) of
quasars, modelled to be a power-law (f ∝ ν−αUV ). The spectra of individual quasars can vary
dramatically from one quasar to another hence their average spectrum is usually constrained
from an average composite spectrum constructed from those of individual quasars. While
at wavelengths greater than 912 Å the SED is well constrained it shows a wide spread at
smaller wavelengths. The reported values of the SED index at these wavelengths are as low
as 0.56 [57] and 0.72 [58] to as high as 1.57 (or 1.96) [59] and 1.7 ± 0.61 [60]. Moreover,
the smallest wavelength reached by these existing measurements is λ ∼ 400 Å. Therefore,
the value of the SED index at wavelengths corresponding to the HeII ionizing wavelength,
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λ ∼ 25 Å is extrapolated from these measured values which is reasonable if they reproduce
the observables relevant for HeII reionization [e.g. 61]. We use the following template from
[60] to define the SED:

Lν ∝ ν−α

{
α = 0.61, λ > 912Å

α = αUV , λ ≤ 912Å,
(2.4)

which leads to:

LνHe = L1450

(
228

912

)αUV
(

912

1450

)0.61

, (2.5)

Finally, from the above procedure we construct our quasar catalogues at redshift inter-
vals separated by the quasar lifetime tq and retain only quasars having M1450 ≤ −21. Our
model for populating the dark matter haloes with quasars is described by two parameters,
namely, (i) the quasar life time tq and (ii) the quasar spectral index αUV . In later sections
we shall study the impact of these parameters on the progress of helium reionization.

3 Modelling Helium Reionization

3.1 Modified SCRIPT

We model helium reionization in the Seminumerical Code for ReIonization with PhoTon
conservation (SCRIPT) which was originally developed for modelling hydrogen reionization
[50]. The code circumvents the problem of photon non-conservation [62] and associated
resolution dependence of the large scale 21-cm power spectrum in excursion set based semi-
numerical models of reionization. This allows us to simulate reionization in a coarse grid
thereby increasing the efficiency of our code. SCRIPT was recently extended to include
inhomogeneous recombinations and thermal fluctuations [63] to obtain constraints on the
parameter space during hydrogen reionization [64, 65].

In this work, we modify the base version of SCRIPT 1 to include inhomogenous helium
reionization and obtain the corresponding thermal and ionization history during this epoch.
We begin our simulation at a redshift of zini = 5.5, assuming that all gas in the IGM is in
the form of HII and HeII in ionization equilibrium. In order to generate ionization maps, an
ionizing photon field and a matter density field is provided as an input to SCRIPT. Since
the simulations are run at relatively coarse resolution, we can assume the baryonic densities
to trace the dark matter. The total number of He atoms (which are initially all in the form
of HeII) in a given grid cell i is then given by:

NHeII,i = ∆in̄HeVcell, (3.1)

where ∆i = ρi/ρ̄ = 1 + δi is the matter overdensity in a cell with volume Vcell and n̄He is
the cosmic mean number density of helium. We use the cloud-in-cell algorithm to generate
the matter overdensity in the uniform coarse grid of SCRIPT from the dark matter particle
positions in GADGET4 snapshots described in Section 2. The number of ionizing photons
produced within a cell i at a redshift zk within a time-step ∆t is given by:

Nion,i(zk) =

No of quasars in i∑
j=1

Ṅ(j,zk−1) ×∆t, (3.2)

1https://bitbucket.org/rctirthankar/script/src/master/
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where Ṅ(j,zk−1) is the rate of emission of ionizing photons for the j’th quasar (calculated
using equation 2.3) at the previous redshift snapshot zk−1. The summation is carried out
over all quasars within the cell i. Subsequently, the cumulative number of ionizing photons
produced within a cell i at a redshift zk, denoted by N tot

ion,i(zk) is computed by carrying out
the summation over all photons produced in that cell starting from the initial redshift zini.

Given the ionizing photons and matter density field during helium reionization, we will
now briefly outline the algorithm used in SCRIPT to generate ionization maps. In the absence
of recombinations, a given cell in SCRIPT will absorb NHeII,i number of the total N tot

ion,i(zk)
photons produced by it. A central cell is flagged as completely ionized if the total number of
ionizing photons produced in that cell are more than the number of HeII ions in that cell:

N tot
ion,i(zk)

n̄HeVcell
≥ ∆i, (3.3)

where we used eq. 3.1. The excess remaining photons in the central cell are distributed to
neighbouring cells in increasing order of distance until all its photons are exhausted. This
means that the extra available photons are equally distributed to those cells which are located
at the same distance from the central cell. For any given cell j if the number of available
ionizing photons is more than the number of HeII ions in that cell, then it is flagged as fully
ionized, otherwise it is assigned an ionized fraction of xHeIII,j = Navail

ion,j /NHe,j . Since this
process is carried out for each central cell independent of others, this can lead to ’overionized’
cells having xHeIII,j > 1. Therefore, in a subsequent step the excess photons in these
’overionized’ cells are again redistributed to surrounding partially ionized cells independent
of each other. This step is carried out in multiple iterations until all such overionized cells
are accounted for.

The algorithm within SCRIPT ensures that sources emit radiation isotropically. How-
ever, in reality the ionizing UV emission from quasars would be anisotropic due to the dusty
material surrounding the central supermassive black hole. Previously, the beaming of helium
ionizing photons has been included in simulations by introducing angular emission [38] or an
obscuration factor [40]. Beaming may enhance features in the isolated ionized regions along
the axis of the beam, especially at the beginning of reionization. However, as the number
of quasars increases, the average impact on the IGM at later redshifts is not expected to be
much different from the isotropic case since an ionized region could be under the impact of
several randomly oriented quasar beams. Thus, the average ionization and thermal properties
of the IGM would not be affected majorly.

3.2 Inhomogenous Recombinations

Due to fluctuations in the matter density field and rarity of quasars, helium reionization is
expected to be a patchy process. In the following subsection we will also see that the tem-
perature fluctuations resulting from helium reionization would depend upon inhomogeneous
recombinations. Therefore, it is important to model inhomogeneous HeIII recombinations
within SCRIPT which we implement analytically.

Given the number density of HeIII ions nHeIII,i and electrons ne,i in a grid cell i, the
recombination rate of HeIII to HeII is given by:

dnrec,i

dt
= CHeIII,i × αB,inHeIII,ine,i × (1 + z)3 (3.4)
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where nrec,i is the number of recombinations per unit comoving volume, CHeIII,i is the
clumping factor which accounts for enhanced recombinations in regions with more number
density of HeIII ions and αB is the Case-B recombination coefficient. For helium reionization,
the large ionized bubbles have sizes which are of the order of the mean free path of the hard
photons, hence Case-B recombination coefficient is an appropriate choice [40].

The recombination coefficient has a mild dependence on the temperature of the grid
cell and decreases with temperature. This dependence couples the ionization history of
the grid cell with its thermal evolution described in the next subsection. This coupling
allows for inferring the IGM thermal history during He reionization using the Lyα forest of
hydrogen, as the temperature increase would also impact the HII recombination coefficient.
The recombination rate per mean number of helium atoms is:

1

n̄He

dnrec,i

dt
= CHeIII,i × αB,ixHeIII,in̄e × (1 + z)3 ×∆2

i , (3.5)

where n̄e is the mean number density of electrons in the IGM 2. Since electrons from previous
ionizations would also contribute to recombinations, the total number of recombinations per
mean number of helium atoms at a given redshift:

nrec,i(z)

n̄He
=

∫ z

zini

dz
dt

dz
×

1

n̄He

dnrec,i

dt
(3.6)

Due to inclusion of recombinations, a grid cell would require more photons to get ionized
and therefore the condition in equation 3.3 for a fully ionized central grid cell in SCRIPT
becomes:

N tot
ion,i(zk)

n̄HeVcell
≥ ∆i +

∫ z

zini

dz
dt

dz
×

1

n̄He

dnrec,i

dt
(3.7)

We define the clumping factor CHeIII,i in a given grid cell using the globally averaged clump-
ing factor CHeIII [63]. The globally defined clumping factor is related to CHeIII,i for a mass
weighted ionized fraction QM

HeIII,i as:

CHeIII =
⟨CHeIII,i ∆

2
i xHeIII,i ⟩

QM
HeIII

=
⟨CHeIII,i ∆

2
i xHeIII,i ⟩

⟨xHeIII,i ∆i⟩
(3.8)

If we assume CHeIII,i to be the same for all grid cells, then one can infer CHeIII,i for
each cell for a given CHeIII , using the above equation. In reality CHeIII,i would depend
upon the subgrid density distribution [66]. The global clumping factor CHeIII is chosen to
be a free parameter or a redshift dependent factor which we shall elaborate in later sections.
This simplistic assumption of ignoring dependence of CHeIII,i on subgrid density distribution
introduces a moderate resolution dependence on quantities which depend upon patchiness of
reionization for the same value of CHeIII . However, as we shall see the dependence is weak
compared to the uncertainties in our observable.

The Case-B HeIII recombination timescale at mean density at a temperature of 104 K
at z ∼ 3 is about 1 Gyr, substantially larger than the quasar lifetimes. This recombination
timescale is even shorter at higher redshifts and densities. Since the cumulative effect of the

2In an IGM with fully ionized hydrogen and doubly ionized helium, n̄e = Ωbρc (1− YP /2) /mp, where mp

is the proton mass and ρc is the critical density of the universe.
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ionizing radiation in a region, from previous redshifts is not as strong as that from a quasar,
it will not be able to maintain the ionized fraction of HeIII against this recombination if the
quasar turns off. Therefore, large ionized regions formed as a result of short-lived quasars
can survive long after their source switches off [67]. We find that in our simulation grid
the number of grid cells which are a part of such recombining regions increases gradually as
reionization progresses and peaks when xHeIII ∼ 0.5 where ∼ 30% of the grid cells are a part
of such recombining regions after which their number drops abruptly.

3.3 Photoionization Heating

The evolution of the kinetic temperature Ti of a grid cell in an expanding universe is given
by [e.g. 30, 68]:

dTi

dz
=

2Ti

1 + z
+

2Ti

3∆i

d∆i

dz
−

Ti

ntot,i

dntot,i

dz
+

2ϵi

3kBntot,i

dt

dz
, (3.9)

where ntot,i is the total number of baryons in the grid cell, kB is the Boltzmann constant
and ϵi is the heating (or cooling) rate per unit comoving volume. The first term in the above
equation arises due to the adiabatic expansion of the universe while the second term because
of the adiabatic compression and expansion due to structure formation. The third term
accounts for the change in temperature due to change in the number of particles. The last
term appears due to other heating and cooling processes each described by a separate ϵ. Other
processes include processes which can heat the IGM, such as photoheating from the ionizing
photons or processes which cool the IGM like recombination cooling, collisional cooling, free-
free cooling and cooling due to Compton scattering of electrons off CMB photons. We find
that the impact of all the cooling processes are negligible at the temperatures, densities and
the redshift regime that we are working in (for the values of the cooling coefficients taken
from [30]). We assume that all photons above the ionizing threshold of HeII contribute to
ionization and hence amount to photoheating. In actual, the more energetic photons would
not contribute substantially to ionization in the immediate vicinity of the sources. Therefore,
these photons heat up the IGM almost uniformly further away from the sources [48]. The
first two terms in equation 3.9 can be directly computed from the overdensity values of each
grid cell for the given redshift snapshot. The third term due to change in total number of
particles can be written as:

Ti

ntot,i

dntot,i

dz
= Ti

[
2

(
4− 3YP

YP

)
+ xHeIII,i

]−1 dxHeIII,i

dz
, (3.10)

where we have used ntot,i = nH,i + nHe,i + ne,i as all of the hydrogen is singly ionized and
helium is either in the form of HeII or HeIII.

The temperature evolution due to photoheating during helium reionization is described
by the following expression:

dTi

dt
= 2

(
2

YP
− 1

)
THe
re CHeIII,iα

HeIII
B xHeIII,i nHe,i(1 + z)3 + THe

re

dxHeIII

dt

+ TH
reCHII,iα

HII
A nH,i(1 + z)3, (3.11)

where TH
re and THe

re is the reionization temperature for HI and HeII respectively. It describes
the temperature boost corresponding to the excess energy per photoionization (of HI or HeII),
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distributed over all baryons. The value of THe
re is taken to be a free parameter while TH

re is
fixed to a value of 1.85× 104 K obtained from constraints during hydrogen reionization [64].
Note that we use the Case-A recombination for hydrogen since hydrogen is assumed to be
fully ionized and hence optically thin to ionizing photons. The global clumping factor for
hydrogen, CHII is derived from the fits from hydrodynamical + N-body simulations [69]:

CHII = 2.9

(
1 + z

6

)−1.1

(3.12)

There are other fitting formulas for the mean clumping factor [e.g. 70, 71], which give values
of the same order at our redshifts of interest. The full derivation of equation 3.11 is given
in Appendix B. The equation has been derived assuming that our large grid cells can be
thought of as consisting of neutral and ionized regions. Thereafter, the ionization of neutral
regions is assumed to take place in a timescale that is short compared to the Hubble timescale
and HeIII recombination timescale. The ionized parts of the grid cell are assumed to be in
photoionization equilibrium between simulation time steps. These assumptions hold because
the recombination timescale and the Hubble timescale are both large compared to the time
step of ∼ 40 Myr of our simulations. The first term in equation 3.11 arises from the fully
ionized HeII in the grid cell in ionization equilibrium. The second term is the temperature
increase due to HeII regions getting ionized. The last term arises because of fully ionized
hydrogen in ionization equilibrium. In case of the relic ionized regions which are recombining
actively, the temperature evolution is only dictated by the first three terms in equation 3.9.

Since we start our simulations in a regime where hydrogen is fully ionized, the initial
temperature of each pixel would have a temperature corresponding to the heating due to
preceding hydrogen reionization. The temperature and density asymptotes to a tight power-
law relation in the low-density photoionized IGM after hydrogen reionization ends [30]. The
tight power-law arises due to the form of the temperature dependence of the recombination

coefficient (αA(T ) ∝ T−β) which leads to the photoheating rate per n
2/3
H of a gas parcel to be

nearly independent of nH [32]. Realistically, since different regions ionize, heat and cool at
different timings we do not expect to obtain a single power-law relation. However, measure-
ments of the temperature density equation of state from quasar spectra rely on fitting the
temperature density scatter to a single power law [28]. Therefore, each cell in our simulation
is assigned an initial temperature of Ti = T0∆

γ−1
i at zini, where T0 is the temperature at

mean density and γ is the slope of the power law. We use empirical measurements of T0 and
γ [28] at zini = 5.5 to set initial temperature of each grid cell. Since the scatter between
temperature and density decreases during the end stages of reionization [63], it is a good
approximation to assume a single power law relation.

4 Results

In order to demonstrate the performance of our simulation to probe helium reionization,
we shall fix a fiducial model and infer the ionization and thermal history such that it fits
two main observables: firstly, the ending of helium reionization at z ∼ 3 and secondly, the
most recent measurements of the temperature density equation of state by [37] during these
redshifts.

We assume that quasars have a universal lifetime of tq ∼ 40 Myrs and the simulation
time-step is ∆t = tq or shorter. Only quasars brighter than M1450 ≤ −21 are assumed to
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Figure 3: Top to bottom:. Maps for overdensity ∆, mass averaged ionized fraction QM
HeIII

and temperature T generated in our 230 Mpc h−1 box, at three different redshifts: z ∼ 5.2
(Left), z ∼ 3.25 (Middle) and z ∼ 2.80 (Right). These maps are generated on a 323 grid
resolution in SCRIPT.

contribute to helium reionization. With these assumptions our fiducial model is described
by three main free parameters: (1) The quasar SED index - αUV = 1.7 (2) The global
clumping factor for HeIII - CHeIII = 15.6 (3) The temperature increase per unit baryon per
HeII ionization - THe

re = 6000 K. In Figure 3, we show the maps for overdensity (∆), mass
averaged ionized fraction (QM

HeIII = xHeIII∆) and temperature (T ) for our fiducial model
in a 323 grid at three different stages of helium reionization. The choice of grid resolution is
motivated by the fact that it is the lowest resolution beyond which our simulations converge
relative to the errors in the observations (Appendix D). From the figure, we see that unlike the
case for hydrogen reionization, not every high density region hosts a source, this is especially
visible at z = 5.18, where helium reionization is just beginning. Secondly, while the ionized

– 12 –



Figure 4: Mass averaged ionization history for our Fiducial model for different quasar
lifetimes (Left) and variation of corresponding rate of ionizing photon emission with redshift.
Only quasars brighter than M1450 ≤ −21 are assumed to contribute to helium reionization in
this model.

and heated regions correlate with high density regions, they are slightly larger and more
connected than the underlying density field. This is due to the large sizes of ionized bubbles
around quasars, which are able to travel far beyond their sources residing in high density
regions and therefore also ionize and heat up the voids in the immediate vicinity.

4.1 Ionization History

Before we proceed to study the impact of varying our free parameters about the fiducial
model, it would be interesting to see the impact of varying the quasar lifetime tq on the
ionization history during helium reionization. The left panel of Figure 4 shows the mass
averaged ionized fraction QM

HeIII for three different quasar lifetime values feasible within our
box for quasars brighter than M1450 = −21 (see right panel of Figure 2). While quasar
lifetimes are expected to alter the topology of ionized regions, from the figure we find that
there is no significant effect on the ionization history. This is because we are assuming a
universal quasar lifetime and abundance matching for the same number density of haloes
would lead to fewer long-lived quasars or a larger number of short-lived quasars, resulting
in similar total number of ionizing photons. This can be seen in the right panel of Figure 4
which shows the evolution of the rate of mean photon emission per comoving volume (ṅion) at
a given redshift for different quasar lifetimes. The fluctuations in ṅion are a result of having
discrete sources in our simulation box.

We will now elaborate upon the effect of varying the free parameters of our model. First,
we show the effect of varying the clumping factor CHeIII . Since clumping factor describes the
enhanced recombination rate in denser regions, a higher clumping factor would slow down
reionization. In principle the clumping factor must vary with redshift, since the IGM becomes
clumpier at lower redshifts. We define a power law variation for clumping factor, analogous
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Figure 5: Ionization history for different combinations of our free parameters. The fiducial
model is plotted in black solid line and is the model with CHeIII = 15.6 (C0 = 15.6, κ =
0), αUV = 1.7 and T re

He = 6000 K. The other models show the effect of varying the values of
each parameter if all the other parameters are fixed to those for the fiducial model. The red
and the blue dot dashed lines show the effect of changing C0 and κ to 31.2 and 1.1 respectively
while other parameters are fixed to the fiducial values. The purple dotted line plots the model
with αUV = 2 and the yellow dashed line with T re

He = 12000 K with clumping factor fixed to
the fiducial value.

to [69] as described in equation 3.12:

CHeIII = C0

(
1 + z

3

)−κ

, (4.1)

This would introduce two more free parameters in our model such that for our fiducial model
C0 = 15.6 and κ = 0. However, as shown in Figure 5 (red and blue dashed dotted line) the
effect of an increase in κ is same as that of decrease in C0. The values of the other three
parameters are set to those for the fiducial model which is plotted as the black solid line. An
increase in C0 by two times the clumping factor of the fiducial model (C0 = 15.6) delays the
ending of reionization to z ∼ 2.6. On the other hand, setting the redshift evolution similar
to that used for hydrogen, i.e. κ = 1.1 for C0 = 15.6 speeds up reionization.

The second free parameter in our model is the quasar spectral index αUV . An increase
(decrease) in αUV implies a softer (harder) quasar spectrum, leading to emission of less
(more) number of ionizing photons. Therefore, the impact of increasing (decreasing) αUV is
to shift the end of reionization to a later (earlier) redshift as shown by the purple dotted line
in Figure 5. The value of αUV = 2 leads to relatively softer spectra compared to that for the
fiducial model having a value of αUV = 1.7 plotted in black.

The last free parameter of our model is THe
re . This would impact the temperature of the

IGM and hence the recombination rate coefficient which shows a decrease with increasing
temperature (αB(T ) ∝ T−0.62). An increase in temperature leads to a lower recombination
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rate resulting in an earlier end to reionization. A larger value of THe
re relative to the fiducial

model would lead to a higher temperature for the same number of HeII ions ionized. The
impact of varying T re

He to a value which is twice as high as the fiducial value of T re
He = 6000 K

on the ionization history of helium is plotted as the yellow dashed line in Figure 5. Since the
temperature dependence of the recombination coefficient is mild, the impact of varying T re

He

on the ionization history is not very large.

4.2 Thermal History

We first describe the general picture of the thermal evolution during helium reionization, as
expected from equation 3.11 substituted as the fourth term in equation 3.9. Initially, before
helium reionization commences only the third heating term in equation 3.11 and the two
adiabatic terms in equation 3.9 would determine the thermal evolution. Expansion of the
universe would lead to cooling, while structure formation in high (low) density regions would
lead to heating (cooling) of the IGM. The photoionization heating due to helium reionization,
would alter the asymptotic equation of state which was established after the preceding epoch
of hydrogen reionization. The IGM would again settle down to another power-law relation
after helium reionization ends [72].

In reality, different regions would get ionized at different times and therefore follow the
above evolution at different rates. This introduces a scatter around the mean temperature
density equation of state which reduces after a reionization event ends. The above implemen-
tation of the thermal history in large grid cells like ours, does not capture the temperature
evolution of the low density IGM which is relevant for inferring the thermal history from
Lyα forest measurements of quasar spectra. Additionally, we did not include baryons in
our dark matter only simulation due to which any interpretation of gas temperature from
our simulation is incomplete. In order to incorporate the two effects and retain the speed
of our simulations, we implement a sub-grid approach to model the low density IGM in a
more realistic fashion. The approach is similar to that used in [63], but since we are in a
lower redshift regime, we account for mildly non-linear sub-grid densities. Additionally, since
during helium reionization, some main grid cells are actively recombining, we also account
for sub-grid recombinations and allow for partially ionized sub-grid fractions. Our approach
is decribed below:

4.2.1 Subgrid Implementation of thermal history

1. The main effect of baryons on a given dark matter density field is to smooth it at
the Jean’s scale. In order to incorporate this effect, at the starting redshift zini we
generate a lognormal distribution of Nsub sub-grid density elements within each main
grid cell. The elements are distributed such that their mean is equal to the value of
the density contrast of the main grid element, δi

3. The standard deviation σ(R) used
for generating the distribution is calculated at a scale R equal to the comoving Jeans
scale at that redshift [73]:

RJeans =

(
c2s

4πGΩmρc(1 + z)

)1/2

, (4.2)

3Since our grid cells have a resolution that is much larger than the Jean’s scale at the redshifts of interest,
the baryonic overdensity traces the dark matter overdensity at these scales. Therefore, it is reasonable to
assume that the mean of the sub-grid baryonic density elements is equal to the density contrast of the main
grid cell, even though it is generated from dark matter only simulations.
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where G is the Gravitational constant, cs =

√
γpkBT

mp
is the sound speed and we take

the polytropic index γp = 5/3 for a monoatomic gas. We calculate σ(R) using PyCCL
package 4 with the HALOFIT non-linear power spectrum [74].

2. Equipped with the initial subgrid density contrast elements, we next evolve the densities
at each redshift. In order to do that we first map each density element at zini to
a corresponding linear density contrast using the following parametric formulae from
[75]:

1 + δNL =
9

2

(θ − sin θ)2

(1− cos θ)3
, δL =

3× 62/3

20
(θ − sin θ)2/3 (4.3)

for δNL > 0,

1 + δNL =
9

2

(sinh θ − θ)2

(cosh θ − 1)3
, δL = −

3× 62/3

20
(sinh θ − θ)2/3 (4.4)

for δNL < 0.

These equations are numerically inverted to obtain a mapping between δL and δNL.

Since we are only concerned with the thermal history of the low density IGM, it is
safe to use the fitting formula. These mapped densities are then evolved linearly, such

that δsubL (z) = D(z)δsubL (zini), where D(z) =
1 + zini

1 + z
is the linear growth factor. These

linearly evolved densities are then mapped back to the non-linear densities using the
same fitting formula.

3. Next, we track the ionization history of these subgrid elements. For a given main grid
cell at a redshift z if there is an increase in its ionized fraction by dxHeIII,i at the next
redshift step, we assign randomly selected subgrid elements an ionization fraction of 1
until the total increase of dxHeIII,i is achieved. Owing to a high recombination rate of
HeIII, we also find main grid elements for which there is a decrease in the ionization
fraction over the timestep of our simulation. These grid cells are a part of relic ionized
regions [67] which were described at the end of Section 3.2. Therefore, for such regions
we incorporate recombinations, such that the rate of change of ionization fraction due
to recombinations:

dxsub

dt
= −αB(Tsub) xsub n̄e ∆sub (1 + z)3 (4.5)

This follows from equation 3.4, since an increase in number of recombinations by dnrec

will lead to a corresponding decrease in number of HeIII ions by dnHeIII = −dnrec.
Here, we assume a clumping factor of CHeIII,i = 1 as there is no further substructure
within such regions. Thus, the ionization fraction of each subgrid element after a
timestep ∆t from the above equation:

xsub(t+∆t) ≃ xsub(t) exp[−αBn̄e∆sub(1 + z)3∆t], (4.6)

4https://github.com/LSSTDESC/CCL
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where it is assumed that the densities do not evolve considerably over a time-step ∆t
and also that the change in αB(T ) due to change in temperature is negligible 5. Since
we only have a knowledge of the ionization fraction of our subgrid elements and we do
not know how many photons each subgrid element would absorb, we cannot directly
incorporate recombinations by integrating equation 3.4 over all previous redshifts. This
approximation for decreasing the ionization fraction to incorporate recombinations is
similar to that used in [47]. Finally, the ionization fraction of all subgrid elements
is adjusted mathematically such that the mean of their ionized fractions matches the
ionization fraction of the main grid. If the ionization fraction of the main grid is xHeIII

and the mean of Nsub subgrid elements within it is x̄sub, then the required change in
ionization fraction of N1 of those subgrid elements for both the ionization fractions to
be equal is:

dxsub =
Nsub

N1
(xHeIII,i − x̄sub) (4.7)

Since the approximation in equation 4.6 does not account for recombinations from pre-
vious redshifts, this re-adjusment of the mean implicitly incorporates the unaccounted
recombinations. Also, this mathematical re-adjustment fixes any numerical offset in
regions where dxHeIII,i ≥ 0. Due to this, some subgrid elements may attain an ionized
fraction xsub < 1 instead of 1 in such regions. Thus, by construction the mean of the
ionization fraction of all subgrid elements x̄sub exactly matches the ionization fraction
of a given main grid cell xHeIII,i.

4. Thermal history of each subgrid element is tracked by solving the temperature evolution
equation 3.11 by assuming a clumping factor of 1 for both hydrogen and helium since
these subgrid elements are homogeneous without any further substructure. In grid cells
corresponding to the relic regions there is no heating since the only dominant process
in these regions is recombinations as was described in Section 3.3.

In order to incorporate subgrid thermal history within our box, we use Nsub = 15
elements in our thermal history model. Our model converges with respect to the number
of subgrid elements (see Appendix D). In Figure 6 we show the evolution of temperature
(top panel) and ionization fraction (bottom panel) of the subgrid elements within a main
grid cell. The black dots are the values for the main grid cell and the dashed lines show the
corresponding 15 subgrid density elements color coded according to their density contrast
value at zini. In the lower panel, we show how subgrid elements are able to physically capture
recombinations for different values of the subgrid densities i.e. high density regions experience
more recombinations than lower density regions during the redshift range when the region
recombines (at 3.3 ≤ z ≤ 3.7). Additionally, the figure also shows how randomly selected
elements get ionized when there is a positive change in the ionization fraction of the main grid
(for example the first peak at z ∼ 4 and the red and the blue peaks at the subsequent time
steps, after which they start recombining). The corresponding subgrid temperature evolution
is plotted in the upper panel. At low redshifts, once helium reionization is complete in all
subgrid elements(z ≲ 3), only the first and third term in equation 3.11 along with the
adiabatic evolution terms in equation 3.9 determine the thermal history. For larger density

5Since,
dαB(T )

dt
∝

1

T 1.62

dT

dt
and the temperatures are of the order of 104 K.
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Figure 6: The 15 subgrid elements inside a single main grid element. The colorbar denotes
the initial non-linear density contrast of the subgrid elements and the black dots shows the
corresponding value of T0 and γ of the main grid cell.

values the increase in temperature due to adiabatic collapse and heating due to ionization
equilibrium leads to an overall increase in temperature. On the other hand for low density
regions, it is the adiabatic cooling term that dominates, leading to an overall cooling. A
similar evolution in cooling while all subgrid elements are still neutral is also seen at z > 4
except that heating is only due to the ionization equilibrium of HII and HeII (third term in
equation 3.11), since helium has not yet ionized. Since the recombination rate is higher in high
density regions, there would be more ionizations required to maintain the photoionization
equilibrium and hence more photoionization heating. This leads to higher temperatures in
higher density regions when they are in photoionization equilibrium. Since only HII and
HeII are in photoionization equilibrium, at these high redshifts the temperature evolution
therefore follows a density trend which is similar to but less pronounced than that at low
redshifts (z ≲ 3). Also note the black dots which describe temperature evolution of the main
grid element. When compared with the evolution of a density element having similar density
(the colored dashed line closest to the black point at z = 5.5), the above expected evolution
is not observed. This shows that the main grid cells are too coarse to study the thermal
history evolution.

In the top panel of Figure 7 we show a 2D histogram of temperature versus overdensity
for three different stages of HeII reionization color coded by the density of points. As helium
reionization progresses, the plots show that at a given density there exists a bi-modality
in temperature. This bi-modality is typical of helium reionization seen in hydrodynamic
simulations [4, 41] and semi-analytical techniques [46, 47] and is a result of the patchiness
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Figure 7: The top row shows the temperature density histogram for our subgrid elements
at three different stages of reionization. The colorbar denotes the number density of points
in a given two dimensional bin of the histogram. The lower row shows the corresponding
scatter plot, where the colorbar denotes, zlastre the lowest redshift at which a subgrid element
gets finally ionized.

of the reionization process. The lower temperature branch is the set of points which are yet
to get ionized. At z = zini, all points are expected to lie on the straight line that follows
the power law after hydrogen reionization, with which the initial temperature of the subgrid
elements is set. In our case we set it similar to the main grid elements i.e. each subgrid
element has an initial temperature of T = T0∆

γ−1
sub , where T0 = 11000 K and γ = 1.2 at

zini = 5.5, set by the measurements of Lyman alpha forest transmission spikes [28]. Initially,
all points would lie on the lower branch, the slope of which increases gradually with redshift,
owing to the increase (decrease) in temperature due to adiabatic compression (expansion) of
high (low) density regions and additional heating due to photoionization equilibrium of HII
and HeII. There would also be a density independent decrease in temperature of this branch,
due to adiabatic expansion of the universe. Gradually, as helium reionization begins some
of the elements in the lower branch would heat up due to photoionization heating, leading
to the temperature bi-modality. As the top left panel shows, initially we find that most
of the points lie on the lower branch, since most of the helium is in the form of HeII. As
helium reionization progresses, some of the subgrid elements experience photoheating which

– 19 –



eventually increases the density of points in the upper branch of the scatter plot (top middle
panel). Finally, as helium reionization ends, the bi-modality no longer exists as all subgrid
elements have experienced photoheating due to helium reionization (top right panel) . We
describe this evolution by fitting a straight line (red solid line) described by a power law
T = T0∆

γ−1, where T0 is then the temperature at mean density. The fit is obtained by
binning log ∆ between -1 to 1 at an interval of 0.125 and then fitting the mean temperature
in each bin by a straight line. In the top panel of Figure 7 we notice how the fitted line
shifts to the upper temperature branch and its scatter increases as helium reionization is
underway. As helium reionization completes, most points lie around the fitted single power
law. The panels in the second row of Figure 7 show the scatter plots corresponding to the
same redshifts as the upper row, but instead color coded by the redshift zlastre at which a
subgrid element finally ionizes. Since a sub-grid element can belong to a relic ionized region
it may ionize completely after more than one episodes of recombination and ionization (see
Figure 6). Therefore, zlastre is the lowest redshift at which it ionizes and does not recombine
again. The bottom right panel shows that while regions which get ionized earlier are cooler
at lower densities, the trend is not so well-defined at higher densities. This is because, once
completely ionized, the photoheating due to ionization equilibrium in HeIII regions would
occur at a rate trec which becomes smaller than the rate of cooling due to adiabatic expansion
tad at these temperatures and densities. Since adiabatic cooling is the only dominant cooling
mechanism, this well-defined trend is not observed at these densities and temperatures. For
example, trec ≲ tad at ∆ ≳ 1 for elements having T = 104 K and at ∆ ≳ 2.4 for elements
having T = 104.5. Additionally, since most of these densities would also experience adiabatic
heating due to structure formation (since their values are ∆ ≳ 1), the overall trend at these
densities is that of increase in temperature, once they get fully ionized 6. This trend is also
visible in Figure 6 at z ≲ 3.0 (e.g. the red dashed line), where we see an overall heating in
high density regions. Therefore, a given high density element that gets ionized earlier can
be hotter than an element with the same density that ionizes later, especially since other
cooling mechanisms are all sub-dominant at these temperatures and densities.

Next, we study the impact of varying our free parameters on the mean temperature-
density equation of state obtained as above. Before helium reionization commences, the pho-
toionized gas after hydrogen reionization begins to predominantly cool adiabatically until it
is photoheated again during helium reionization. After helium reionization, this photoheated
gas again predominantly cools. This leads to an initial decrease (increase) in T0 (γ) followed
by an increase (decrease) when helium reionization picks up. The ending of helium reioniza-
tion is marked by a sharp peak in the T0 evolution and a corresponding dip in γ evolution. In
Figure 8 we show the evolution of T0 and γ for different values of C0 and κ. Since clumping
factor only impacts the redshift of ending of reionization and has no impact on the amount
of photoheating, the impact of increase (decrease) in C0 (κ) is to shift the position of the
peak in T0 (or dip in γ) to a later redshift. In Figure 9 we show the variation with αUV in
the left panel and T re

He in the right panel. Harder quasar spectra leads to faster reionization
and a much hotter IGM because the enhanced ionization leads to more photoheating. This
increases the amplitude of T0 and shifts its peak to earlier redshifts for a lower value of αUV .
The different values of αUV used for the plot are those which are measured in literature (see
section 2.2). On the other hand an increase in T re

He leads to a greater rise in temperature
therefore increasing the peak value of T0. Mild temperature dependence of the recombina-

6For comparison in case of HII, trec ≲ tad at ∆ ≳ 5.7 for T = 104 K
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Figure 8: The figure shows the variation of the amplitude T0 and slope γ of the temperature
density equation of state for different values of the clumping factor as parameterized by
equation 4.1 and αUV = 1.7 and T re

He = 6000 K. The black solid line corresponds to the
fiducial value of C0 = 15.6 and κ = 0. The effect of clumping factor is to shift the temperature
peak due to corresponding shift in the ending of reionization, with higher clumping shifting
it to lower redshifts. The grey errorbars are the measured values from [28, 37].

tion coefficient αB(T ) also introduces a mild shift in the location of the peak as T re
He varies.

The grey errorbars in both the plots are the measured values of T0 and γ at z = 5.5 from
transmission spikes of quasars [28] and from Lyα forest statistics [37] (between z = 2.6 and
z = 3.8). The black solid line is the fiducial model in both the plots.

So far we fitted only the mean of the temperature in different density bins, however one
can fit a different binned statistic like the median or fit the scatter plot directly. Ideally the
choice of binned statistic would depend upon the corresponding statistics used for inferring
the temperature density equation of state from observations with which we would compare
our results. However, in our case since there is a well defined temperature bi-modality,
fitting the mean instead of the median (Appendix C), serves as a better measure of the
equation of state. We have tested the convergence of our code with respect to resolution,
time and number of subgrid elements relative to existing measurements of the temperature
density equation of state. We also show the impact of choosing a different redshift of starting
our simulations using these measurements and find that the redshift of ending of helium
reionization is independent of the choice of zini. These convergence tests are presented in
Appendix D.

5 Summary and Discussion

The epoch of helium reionization is the last major baryonic phase transitions of the universe
that impacts the ionization and thermal state of the IGM between 2.5 ≲ z ≲ 5. This has im-
portant implications for using the Lyα forest for precision cosmology as the impact of helium
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Figure 9: The figure shows the variation of the amplitude T0 and γ of the temperature
density equation of state for different values of the quasar SED index (Left) and the average
temperature increase per HeII ionization, T re

He (Right) for a fixed clumping factor of C0 = 15.6
and κ = 0. The black lines in both the plots are those corresponding to the fiducial model.
In the left panel the different values of αUV are the estimates from literature (see text) and in
the right panel the values of T re

He have units of (10
3 K). The grey errorbars are the measured

values from [28, 37].

reionization on the IGM can bias these measurements. Particularly, the HeII Lyα forest is
an important probe of the low density IGM owing to its higher optical depth [76]. To this
end, we have presented fast semi-numerical simulations of helium reionization by modifying
the Seminumerical Code for ReIonization with PhoTon conservation (SCRIPT) [50]. We
extended SCRIPT by incorporating inhomogenous recombinations and an analytical model
of thermal evolution of the IGM during helium reionization in a 230 h−1 Mpc box. We used
abundance matching to model quasars as sources of helium reionization by assigning lumi-
nosities to dark matter haloes generated from N-body simulations. The photon conserving
nature of SCRIPT allows us to model reionization in a coarse grid leading to a substantial
gain in efficiency. However, that renders our thermal history model incomplete since our
grid resolution is large (for example ∼ 7.2 Mpc in our fiducial model). Therefore, we model
thermal history using a sub-grid prescription without compromising with the efficiency of
our code. Our semi-numerical model then leads to four main free parameters – the clumping
factor (described by C0 and κ), the quasar SED index (αUV ) and the average temperature
increase per HeII ionization (T re

He). Our fiducial model with C0 = 15.6, κ = 0, αUV = 1.7 and
T re
He = 6000 K is able to reproduce the latest measurements of the temperature density equa-

tion of state described by T0 and γ. The combined effect of the variation of total clumping
factor CHeIII and T re

He, is degenerate with the effect of varying αUV . Our sub-grid thermal
model converges well with respect to time and resolution. When run on a 323 grid, covering
the evolution of HeII over 38 redshift snapshots between z = 5.5 to z = 2.6 our code runs in
∼ 30 seconds for our fiducial model.
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However, it is to be noted that the T0 − γ measurements are obtained by calibrating
against hydrodynamic simulations with some ionizing UVB model as input and is not a direct
observable for helium reionization [e.g. 28, 37]. The direct observable for inferring the end
stages of helium reionization is the effective optical depth and the statistical measurements of
HeII Lyα forest along different quasar sightlines [18–20]. In that direction, there are still some
limitations in our model which would especially become relevant if we use the measurements
of the Lyα forest to constrain parameters with our semi-numerical framework. The Lyα
forest lines are sensitive to small scale unionized HeII regions which would not be captured
by our low resolution grid. Additionally, while our sub-grid model is able to reproduce the
average thermal evolution of T0 and γ, the baryonic prescription is still approximate. A more
accurate baryonic prescription, for example one which is calibrated against hydrodynamical
simulations would be useful if the efficiency of our model is to be retained while making it
more physically accurate. Lastly, we have assumed that only the UV photons which ionize
the gas, contribute to heating i.e. we have ignored the thermal impact of large mean free
path photons from quasars which can impact the heating in voids away from sources [e.g.
48]. Also our simulation does not capture the pressure smoothing which is degenerate with
the thermal broadening of Lyα forest lines [77, 78].

Independent of these limitations, the efficiency of our semi numerical technique shows
promising prospects for parameter estimation during helium reionization, especially by using
the effective optical depth measurements along different quasar sightlines as the observable.
Thus, in a subsequent work we intend to extend our semi-numerical framework to model the
HeII Lyα forest effective optical depth (τeff ) from our large grid cells [e.g. 79]. This will
allow us to perform parameter estimation on the IGM and source properties using empirical
measurements of τeff during helium reionization [18]. The flux power spectrum of the HI Lyα
forest has been measured to a high precision by the extended Baryon Oscillation Sky Survey
(eBOSS) [80] and the early data release from the Dark Energy Spectroscopic Instrument
(DESI) [81, 82]. The flux power spectrum is used for putting constraints on the cosmological
parameter space at z ≳ 2 [e.g. 83]. Since the photoheating during helium reionization also
impacts the HI Lyα forest (and therefore its flux power spectrum), we shall explore the
possibility of extending our framework to obtain the HI Lyα forest flux power spectrum
in our low resolution simulation. This will allow us to study the impact of incorporating
patchy helium reionization on the inferred cosmological parameter constraints. Additionally,
our current framework could be extended to other lesser explored observables during helium
reionization, for example the hyperfine transition of 3HeII at 8.66 GHz [84–86]. Even though
the primordial abundance of 3He is very less (i.e. ∼ 10−5 of hydrogen) the large spontaneous
rate of decay from its excited state boosts the strength of this signal, which if detected in
future observations could serve as a promising direct probe of helium reionization [87].
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The shape of the luminosity function is usually described by a double power law. For a rest
frame 1450 Å quasar continuum it is given by the following equation at a given redshift:

Φ(M1450, z) =

Φ∗(z)

100.4(α+1)(M1450−M∗
1450) + 100.4(β+1)(M1450−M∗

1450)
,

(A.1)

where Φ∗(z) is the amplitude, M∗
1450 is the break magnitude, α is the bright end slope

and β is the faint end slope. We use the following form of the redshift evolution of these
parameters described by Model 2 of [6]:
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log10ϕ∗(z) = F0({c0,j}, z)
M∗(z) = F1({c1,j}, z)
α(z) = F2({c2,j}, z)
β(z) = F3({c3,j}, z),

(A.2)

where F0, F1 and F2 are Chebyshev polynomials in (1 + z) :

Fi(1 + z) =

ni∑
j=0

ci,jTj(1 + z), (A.3)

where Tj(1 + z) are the Chebyshev polynomials of the first kind. The faint end slope β is
described by a double power law:

F3(1 + z) = c3,0 +
c3,1

10c3,3ζ
, (A.4)

where,

ζ = log10

(
1 + z

1 + c3,1

)
(A.5)

B Derivation of the photoheating term

We provide the full derivation of equation 3.11 here.
The photoheating rate per comoving volume for HeII is given by:

ϵ = (1 + z)3nHeII

∫ ∞

νHeII

4πJνσHeII(hP ν − hP νHeII)
dν

hP ν
, (B.1)

where, Jν is the intrinsic flux of photon emission from all quasars, σHeII is the reionization
cross-section for HeII ionization, νHeIII is the frequency corresponding to the ionization
energy of HeII, hP is the Planck’s constant and the comoving number density nHeIII of
doubly ionized helium requires multiplication by (1+z)3, since Jν is evaluated in proper units
while our number densities are in units of per comoving volume and need to be converted to
proper units.

The rate of change of temperature in IGM if this energy is distributed over all baryons
in the IGM is given by

dT

dt
=

2

3 kB

ϵ

ntot
(B.2)

The mean excess energy per HeII ionization is:

EJ =

∫∞
νHeII

4πJνσHeII(hP ν − hP νHeII)dν/hP ν

ΓHeII
, (B.3)

where ΓHeII is the photoionization rate for HeII:

ΓHeII =

∫ ∞

νHeII

4πJνσHeII,ν

dν

hP ν
(B.4)
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Therefore, the photoheating rate per comoving volume becomes

ϵ = (1 + z)3nHeIIΓHeIIEJ (B.5)

In a regime where the radiation is turned on for a timescale which is short (i.e. tq in
our case) compared to the Hubble timescale and the timescale over which recombinations
become important:

ΓHeII =
1

xHeII

dxHeIII

dt
. (B.6)

Using the above two equations, the rate of change of temperature due to photoheating:

dT

dt
=

2

3 kB

ϵ

ntot
=

2

3 kB

nHe

ntot

dxHeIII

dt
EJ (B.7)

If a gas parcel having an ionization fraction, xHeIII gets ionized suddenly and the excess
energy per HeII photoionization is assumed to be shared equally among all baryons, then the
rise in temperature (for ∆xHeIII = 1− xHeIII), under such a scenario follows from the above
equation [46, 68]:

∆T ≃
2

3 kB
0.035 xHeIIEJ (B.8)

Thus, the rise in temperature is determined by the initial neutral fraction that such a gas
parcel had before becoming fully ionized. The factor of 0.035 arises since after the sudden
ionization episode, all of helium and hydrogen would be completely ionized due to which the
value of ntot:

ntot = ne + nHeIII + nHII =
nHe

YP
(8− 5YP ) , (B.9)

where we used nH = 4 nHe (1− YP )/YP .
We define the rise in temperature in equation B.8 if a neutral gas parcel (i.e. xHeII = 1.0)

gets suddenly reionized:

T re
He ≃

2

3 kB
0.035 EJ (B.10)

Thus, equation B.8 can be re-written as:

∆T = xHeIIT
re
He (B.11)

A lower initial neutral fraction would lead to a lower rise in temperature.
Using the definition of T re

He from equation B.10 into equation B.7 the rate of change of
temperature due to a corresponding rate of change of the ionized fraction:

dT

dt
= THe

re

dxHeIII

dt
(B.12)

In our large grid cells the change in ionization can be interpreted as a fraction of neutral
regions getting ionized in a short interval. Therefore, the above equation describes the
corresponding rate of change of temperature in such regions.
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The ionization fraction existing in the grid cells are regions which are ionized and are
assumed to be in photoionization equilibrium between time-steps, hence the photoionization
rate in such regions (where xHeIII = 1):

ΓHeII =
CHeIII,i

nHeII,i
αHeIII
B nHe,ine,i(1 + z)3 (B.13)

Therefore, for ionized regions substituting ΓHeII from above into equation B.5 and using
the definition of T re

He from equation B.10:

ϵi =
3 kB

2× 0.035
THe
re CHeIII,iα

HeIII
B ne,inHe,i(1 + z)6 (B.14)

Thus in our grid cells, the photoheating in ionized portions of the cell is xHeIII,iϵi which
leads to a rate of change of temperature from equation B.2:

dT

dt
= THe

re CHeIII,iα
HeIII
B xHeIII,i 2 nHe,i

(
2

YP
− 1

)
(1 + z)3, (B.15)

where we used the fact that in regions where hydrogen and helium are fully ionized, ne,i =

2 nHe,i

(
2

YP
− 1

)
.

We are assuming that when helium reionization begins, hydrogen is fully ionized and
helium is singly ionized. This implies that hydrogen (and singly ionized helium) is in photo
ionization equilibrium with the background photon field. Therefore there will be an existing
temperature in such regions due to this ionization equilibrium (equation A5 of [63]):

ϵi = 3kBT
H
reCHII,iα

HII
A χn2

H,i(1 + z)6 (B.16)

The value of χ =
4− 3YP

4(1− YP )
in neutral (i.e. regions where helium is singly ionized) and

χ =
2− YP

2(1− YP )
in ionized regions (i.e. regions where helium is doubly ionized). Therefore

from equation B.16, due to ionized hydrogen (and singly ionized helium) in photoionization
equilibrium equation B.2 gives:

dT

dt
= TH

reCHII,iα
HII
A nH,i(1 + z)3, (B.17)

where we used ntot,i = 2χnH,i. Thus, the total rate of change of temperature due to photo-
heating, from equation B.2, B.7 and B.16 :

dTi

dt
= THe

re CHeIII,iα
HeIII
B xHeIII,i 2 nHe,i

(
2

YP
− 1

)
(1 + z)3

+ THe
re

dxHeIII

dt
+ TH

reCHII,iα
HII
A nH,i(1 + z)3

(B.18)
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Figure 10: The plot shows the result of fitting the temperature density power law to the
mean (black dashed) and median (yellow) temperature (log T ) in each log ∆ bin. We also
show the result of directly fitting the temperature density scatter plot in Figure 7. The grey
errorbars are the measured values from [28, 37].

C Fitting the Median

In Figure 10 we show the result of fitting the median instead of the mean temperature in the
log ∆ bins. The evolution of the mean is smoother than that of the median, except at the
redshift where T0 peaks. A similar shape for median was also found in the model of [46]. The
jump in the median values occurs when xHeIII = 0.5 i.e. when exactly fifty percent of our
sub-grid elements are fully ionized. This is a consequence of sudden reionization of the subgrid
elements which leads to two separate branches in temperature for each density bin. On the
other hand, the mean can have intermediate temperature value between the hot (ionized) and
cold (neutral) sub-grid elements. Once they condense into a single temperature branch after
reionization ends, both mean and the median match almost completely. For comparison, we
also show the result of fitting the temperature density scatter plot with a power law, without
using any binned statistic (blue line). This fit would be largely determined by the region of
the scatter plot with the highest density of points (the yellow region in Figure 7).

D Convergence analysis

In the left panel of Figure 11 we show the convergence of our results with respect to the
number of main grid elements. The dependence on the main grid resolution is a result of
our definition of the clumping factor in equation 3.8. This is also the reason why we see
a mild shift in the position of the peak in the T0 evolution. The values begin to converge
beyond Ngrid = 32. The right panel of the figure shows the impact of the redshift zini at
which we start our simulation. The initial temperature density equation of state is set by the
respective measurements by [28] at z = 5.4, 5.6 & 5.8. The magnitude and the redshift at
which T0 peaks is independent of the redshift at which we start our simulation for the existing
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Figure 11: Left panel: The plot shows the impact of varying the main grid resolution Ngrid
on T0 and γ evolution. Right panel: Impact of varying zini, the redshift at which we begin
our reionization simulation. The value of T0 and γ at zini is fixed by the measurements of
[28] which are shown as the grey errorbars at z = 5.4, 5.6 and 5.8 respectively.

Figure 12: The plots show the convergence of our subgrid thermal history model, with
respect to the number of subgrid elements, Nsub (left) and an increase in time resolution
(Right). The grey errorbars are the measured values from [28, 37].
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measurements at these starting redshifts. This is because the quasar number densities at these
high redshifts is too low and do not vary much over this redshift range to significantly impact
helium reionization. This also shows that the thermal memory of hydrogen reionization has
almost no impact on the end stages of helium reionization in our simulation.

The convergence of our subgrid thermal history model with respect to the number of
subgrid elements is shown in Figure 12 for our fiducial model. We also show convergence
with respect to the temporal resolution. For time resolution we divide the simulation time
step of tq = 40 Myr into tq/2 = 20 and tq/4 = 10 Myr (right panel of Figure 12). We find
that our model converges well with respect to both.
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