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Abstract

Attention in the literature has increasingly turned to the issue of the dependence on ensemble and boundary

conditions of fluctuation-induced forces. We have recently investigated this problem in the one-dimensional

Ising model with periodic and antiperiodic boundary conditions (Annals of Physics 459, 169533 (2023)).

Significant variations of the behavior of Casimir and Helmholtz forces was observed, depending on both

ensemble and boundary conditions. Here we extend our study by considering the problem in the impor-

tant case of Dirichlet (also termed free, or missing neighbors) boundary conditions. The advantage of the

mathematical formulation of the problem in terms of Chebyshev polynomials is demonstrated and, in this

approach, expressions for the partition functions in the canonical and the grand canonical ensembles are

presented. We prove analytically that the Casimir force is attractive for all values of temperature and

external ordering field, while the Helmholtz force can be both attractive and repulsive.

Keywords: phase transitions, critical phenomena, finite-size scaling, exact results, thermodynamic

ensembles, critical Casimir effect, Helmholtz force

1. Introduction

We start by recalling the definitions of the fluctuation induced forces - the Casimir force in the grand

canonical ensemble (GCE), and the analogous Helmholtz force in the canonical ensemble (CE).

We envisage a d-dimensional system with a film geometry ∞d−1 × L, L ≡ L⊥, and with boundary

conditions ζ imposed along the spatial direction of finite extent L. Take F (ζ)
tot (L, T, h) to be the total free

energy of such a system within the GCE, where T is the temperature and h is the magnetic field. Then, if

f (ζ)(T, h, L) ≡ limA→∞ F (ζ)
tot /A is the free energy per area A of the system, one can define the Casimir force
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for critical systems in the grand-canonical (T − h)-ensemble, see, e.g. Ref. [1–5], as:

βF
(ζ)
Cas(L, T, h) ≡ − ∂

∂L
f (ζ)

ex (L, T, h) (1.1)

where

f (ζ)
ex (L, T, h) ≡ f (ζ)(L, T, h) − Lfb(T, h) (1.2)

is the so-called excess (over the bulk) free energy per area and per β−1 = kBT .

Along these lines, we define the corresponding fluctuation induced Helmholtz force [6, 7] in the canonical

(T − M)-ensemble, where M is the fixed value of the total magnetization:

βF
(ζ)
H (L, T, M) ≡ − ∂

∂L
f (ζ)

ex (L, T, M) (1.3)

and

f (ζ)
ex (L, T, M) ≡ f (ζ)(L, T, M) − LfH(T, m). (1.4)

Here, the average magnetization m = limL,A→∞ M/(LA), and fH(T, m) is the Helmholtz free energy density

of the “bulk” system. In the remainder of this article we will take L = Na, where N is an integer number,

and for simplicity we set a = 1, i.e. all lengths will be measured in units of the lattice spacing a.

We will show, via exact results for the Ising chain, that the fluctuation-induced Helmholtz force under

Dirichlet boundary conditions (DBC’s), as in the recently considered case of periodic (PBC’s) and antiperi-

odic (ABC’s) boundary conditions [7], has behavior very different from that of the Casimir force. Critical

Casimir and Helmholtz forces are the thermodynamic analogues of the quantum electrodynamical Casimir

force. In critical systems one studies the effects due to the massless excitations of the order parameter, while

in the quantum case on studies the fluctuations of the electromagnetic field. Given the difference between

GCE and CE for finite systems, it is reasonable to anticipate that Casimir and Helmholtz forces will have,

in general, different behavior for the same geometry and boundary conditions. On the basis of knowledge

accumulated in the course of considering different boundary conditions it is normally assumed that if the

boundary conditions are the same, or similar, on both confining the system surfaces between which they act,

the Casimir force is attractive—in the opposite case, repulsive. However, it seems that there is no such a

rule for Helmholtz forces. Based on the results reported in [6] for PBC’s and in [7] for ABC’s one concludes

that while the rule os obeyed for the Casimir force—attractive for PBC’s and repulsive for ABC’s—the

Helmholtz force changes sign as a function of T and M for both PBC’s and ABC’s. The case of DBS’s for

the Casimir force with h = 0 has been studied in [8], in which it was shown that the Casimir force trivially

vanishes. Results for the Casimir force with h , 0 and for the Helmholtz force with DBC have, as far as

we are aware, not been reported in the available literature. It should be noted that the precise behavior of
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Helmholtz forces has not as yet been the subject of thorough and systematic study, and just a small number

of results are as yet available.

In many circumstances the experimental setup of the CE is naturally realized in confined systems [6, 9,

10], which justifies the need for a canonical statistical representation of these systems. The vast majority

of theoretical studies of the canonical partition function and the related Helmholtz free energy in finite

-size systems have been performed in the framework of different approximation schemes: within the mean

field approximation based on the Landau-Ginzburg free energy [11–13], via the ε expansion technique [14],

or using numerical methods such as Monte Carlo simulations of the three-dimensional Ising model; see

Refs. [14–16] and reverences therein. We note that in many cases the application of the equilibrium one

dimensional Ising model on the rigorous level with M fixed is required. Examples are: binary allows or binary

liquids, some one dimensional van-der-Waals materials see e.g. Ref. [17] and refs. therein, Feynman checkers

(known also as Hadamard walk) Ref. [18] and refs. therein, which demonstrate an existing interest in the

matter. Further examples are to be found in [19–26]. Though the finite-size consideration in conjunction

with different boundary conditions entails significant mathematical efforts, the most attractive feature of

the model still remains: for many quantities of interest closed-form answers are available.

The one-dimensional Ising model in the GCE is widely discussed in textbooks on Statistical Mechanics

[27–31]. However, as a theoretical set up to elucidate boundary and size effects the CE has been consistently,

and undeservedly, ignored in the literature. It it fair to say that one of the reasons for this is that the

case of GCA requires relatively simple mathematics while the CE is based on more involved mathematical

techniques. Specifically, it turns out that the use of usual standard transfer matrix approach can also be

exploited, but only in combination with the Chebishev polynomials [7] and generalized Gauss hypergeometric

functions [6, 7].

In the present study, we will present exact results for the Casimir force in GCE and for the Helmholtz

force in CE in the case in which the Ising chain is subjected to Dirichlet boundary conditions. This will

serve to emphasize the role of the boundary conditions for finite-size scaling behavior of the system. We will

discuss the relation between the CE and GCE at finite size and the corresponding finite size corrections to

the bulk quantities.

The article is organized as follows. Sec. 2 contains the derivation of the Gibbs free energy and the

behavior of Casimir force within the grand canonical ensemble with DBC’s. The corresponding derivation

for the Helmholtz free energy and the behavior of Helmholtz force within the canonical ensemble with

DBC’s are reported in Sec. 3. Section 4 is devoted on the derivation of Z
(D)
C (N, K, M) via the transfer

matrix method, elucidates few relations between the Chebyshev polynomials and the Gauss hypergeometric

function. The article ends with a section 5 that summarizes the results obtained and discusses their potential

applicability. Most technical details needed for the derivations and the justifications of our statements are

organized in series of appendices at the end of the article.
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2. Gibbs free energy and Casimir force within the grand canonical ensemble with DBC’s

We will consider a one-dimensional Ising chain of N spins (Si±1, i = 1, .., N) with ferromagnetic coupling

J > 0 and its properties under various boundary conditions (BC’s). The Hamiltonian of the model is given

by

H = −J

N−1∑
i=1

SiSi+1 − JBC(S1SN ) + h

N∑
i=1

Si, (2.1)

where JBC′s = J, −J, 0 for periodic (PBC’s), antiperiodic (ABC’s) and Dirichlet-Dirichlet (DBC’s) (also

termed free, or missing neighbors), boundary conditions, respectively.

The partition function of the model with DBC’s in the grand canonical ensemble is well known. It is

usually derived by the method of transfer matrix (see Eq.(2.14) in [32]) which yields

Z
(D)
GC (N, K, h) = λN−1

1 [cosh(h) + A(h, K)] + λN−1
2 [cosh(h) − A(h, K)], (2.2)

or, equivalently

Z
(D)
GC (N, K, h) = cosh(h)

[
λN−1

1 (K, h) + λN−1
2 (K, h)

]
+ A(K, h)

[
λN−1

1 (K, h) − λN−1
2 (K, h)

]
. (2.3)

Here λ1,2 are the two real eigenvalues of the corresponding transfer matrix T

λ1,2(K, h) = eK cosh(h) ±
√

e−2K + [eK sinh(h)]2 ≡
√

2 sinh(2K)
[
z ±

√
z2 − 1

]
, (2.4)

and

A(K, h) = sinh2(h) + e−2K√
sinh2(h) + e−4K

= eK sinh2(h) + e−K√
2 sinh(2K)

√
z(K, h)2 − 1

. (2.5)

We have also introduced the auxiliary variable z(k, h):

z = z(K, h) = eK cosh(h)√
2 sinh(2K)

≡ Tr(T)
2

√
det (T)

> 1, ∀h ∈ [0, ∞), K > 0, (2.6)

the importance of which will become clear later. In the above expressions K ≡ βJ is the dimensionless

coupling, and β = 1/(kBT ) is the inverse temperature. Since λ1(K, h) = λ1(K, −h) and λ2(K, h) =

λ2(K, −h), one has Z(D)(N, K, h) = Z
(D)
GC (N, K, −h). Because of this, we will henceforth assume without

loss of generality that h ≥ 0.

In order to establish the connection between these expressions and the partition function in the canonical

ensemble and to explore the relationship between them, it is useful to present these results in terms of

Chebyshev polynomials [33, 34]).
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We start with the identity

λN−1
1 (K, h) ± λN−1

2 (K, h) =
( √

2 sinh(2K)
)N−1

×
{ [

z(K, h) +
√

[z(K, h)]2 − 1
]N−1

±
[
z(K, h) −

√
[z(K, h)]2 − 1

]N−1 }
. (2.7)

By virtue of the definition of the Chebyshev polynomials of first kind TN (z):

[
(z +

√
z2 − 1)N−1 + (z −

√
z2 − 1)N−1

]
= 2TN−1(z), z ∈ C. (2.8)

the expression in the curly brackets, Eq.(2.7), with sign “+” is exactly TN−1(z) and thus

λN−1
1 (K, h) + λN−1

2 (K, h) = 2
( √

2 sinh(2K)
)N−1

TN−1 (z(K, h)). (2.9)

The term with sign “-” in the curly brackets, Eq.(2.7), may be represented in terms of the Chebyshov

polinomials of the second kind as a consequence the identity

[
(z +

√
z2 − 1)N−1 − (z −

√
z2 − 1)N−1

]
= 2

√
z2 − 1UN−2(z), z ∈ C (2.10)

which allows us to obtain

λN−1
1 (K, h) − λN−1

2 (K, h) = 2
( √

2 sinh(2K)
)N−1 √

z(K, h)2 − 1UN−2(z(K, h)). (2.11)

Thus, for the grand canonical partition function with DBC’s we find:

Z
(D)
GC (N, K, h) = 2

[ √
2 sinh(2K)

]N−1
(2.12)

×
{

cosh(h)TN−1

(
z(K, h

)
+ eK sinh2(h) + e−K√

2 sinh(2K)
UN−2

(
z(K, h)

)}
.

Connections between Z
(D)
GC (N, K, h) and the partition functions of the systems with periodic and an-

tiperiodic boundary conditions are presented in Appendix A.

2.1. On the critical behavior of the infinite Ising chain and the leading finite-size corrections

The infinite one-dimensional Ising chain with short-ranged interactions has at T = 0 a critical point with

essential singularities. The free energy density of the this chain is

βfb(K, h) = − ln λ1(K, h), (2.13)
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Knowing the behavior of the correlation length, see, e.g., Ref. [27, p. 36, Eq. 2.2.15]

ξ−1(K, h) = ln [λ1(K, h)/λ2(K, h)] , (2.14)

one can easily identify the scaling variables. First, it is clear that ξ(K, h) diverges when λ2(K, h) → λ1(K, h).

Obviously, this happens when h → 0 and K → ∞. Defining

ξt ≡ ξ(K, 0) ≃ 1
2e2K , when K ≫ 1, and ξh ≡ lim

K→∞
ξ(K, h) ≃ 1

2h
, when h ≪ 1, (2.15)

for the scaling variables one identifies

xt = N/ξt = 2Ne−2K , and xh = N/ξh = 2Nh. (2.16)

Thus, in terms of these scaling variables the correlation length, the bulk magnetization, and the bulk Gibbs

free energy density in the limit K ≫ 1 are

ξ(K, h) = N√
x2

h + x2
t

, mb(K, h) = xh√
x2

h + x2
t

, βfb(K, h) = −K − 1
4N

√
x2

h + x2
t . (2.17)

In terms of t = exp(−2K) and h, one can define the usual scaling relations with

α = γ = ν = η = 1, β = 0, δ = ∞, but so that βδ = 1. (2.18)

The free energy density of the finite chain is

βf
(D)
GC (N, K, h) = − 1

N
ln Z

(D)
GC (N, K, h). (2.19)

Then, from Eq. (2.2) we immediately obtain

βf
(D)
GC (N, K, h) = βfb(K, h) + 1

N
βfsurface(K, h) + β∆fN (K, h), (2.20)

where the ”surface” free energy is

βfsurface(K, h) = ln λ1(K, h) − ln[A(K, h) + cosh(h)], (2.21)

while the remnant part β∆fN (K, h) is

β∆fN (K, h) = − 1
N

ln
{

1 + exp
[
− N − 1

ξ(K, h)

]
cosh(h) − A(K, h)
cosh(h) + A(K, h)

}
. (2.22)
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Eq. (2.19) is in a full agreement with Ref. [32, Eq. (2.27)]. Note that β∆fN (K, h) is exponentially small

for N ≫ 1 when ξ(K, h) = O(1). The only exception is the case when N ∝ ξ(K, h), i.e., N/ξ(K, h) = O(1).

The last relation defines the so-called finite-size scaling region, described by scaling variables as given in

Eq. (2.16).

2.2. On the behavior of the Casimir force

For the behavior of the Casimir force, let us start with the case h = 0. It is easy to check that then

A(K, h = 0) = 1 and only λ1(K, h) gives a contribution to the statistical sum. This leads to excess free

energy that is independent of N and, therefore, as reported in Ref. [8]

βF
(D)
Cas (N, K, h = 0) = 0. (2.23)

The situation changes if h , 0. Then F
(D)
Cas (N, K, h , 0) , 0 and, from Eqs. (1.1), (1.2) and Eq. (2.19), one

derives

βF
(D)
Cas (N, K, h) = − 1

N

N

ξ(K, h)
1

r(K, h) exp [(N − 1)/ξ(K, h)] + 1 , where r[K, h] := cosh(h) + A(K, h)
cosh(h) − A(K, h) .

(2.24)

For K > 0 and h , 0, since 0 < A(K, h) < cosh(h) (for an elementary proof, see (Appendix B)), one has

r[K, h] > 0. Thus βF
(D)
Cas (N, K, h) < 0 for any K > 0 and h , 0.

Let us now consider the behavior of the force in the scaling regime. By definition, the scaling function

of the Casimir force XCas(xt, xh) is

βF
(D)
Cas (N, K, h) = 1

N
XCas(xt, xh). (2.25)

Explicitly, from Eq. (2.16) and Eq. (2.24) one has

XCas(xt, xh) = −
√

x2
h + x2

t

r(xt, xh) exp
( √

x2
h + x2

t

)
+ 1

, where r(xt, xh) =
√

x2
h + x2

t + xt√
x2

h + x2
t − xt

. (2.26)

Obviously, XCas(xt, xh) < 0. Furthermore, XCas(xt, xh) decays exponentially when x2
h + x2

t ≫ 1.

The behavior of the function NF
(D)
Cas with N = 100 and the scaling function X

(D)
Cas (xt, xh) of the Casimir

force are visualized in Fig. 1. We observe that the force is always attractive. It is symmetric with respect

to the sign of xh, as must be the case.
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Figure 1: On the left panel: The behavior of the scaling function X
(D)
Cas (xt, xh) of the Casimir force as a function of the scaling

variables xt and xh. We observe that the function is negative for all values of xt and xh. On the right panel: The behavior of
the function NF

(D)
Cas with N = 100.

3. Helmholtz free energy and Helmholtz force within the canonical ensemble with Dirichlet

BC’s

In a recent letter [6] for an Ising chain of N spins (particles) and total magnetization M , with the aid

of a combinatorial analysis an exact expression was derived for the partition function in the canonical (i.e.,

fixed M) ensemble. The result is expressed in closed form in terms of the generalized Gauss hypergeometric

functions:

Z(D)(N, K, M) = eK(N−1)

[
2e−2K

2F1

(
1
2(−M − N + 2), 1

2(M − N + 2); 1; e−4K

)
−1

2e−4K(M − N + 2) 2F1

(
1
2(−M − N + 2), 1

2(M − N + 4); 2; e−4K

)
+1

2e−4K(M + N − 2) 2F1

(
1
2(−M − N + 4), 1

2(M − N + 2); 2; e−4K

) ]
, (3.1)

where

2F1 (α, β; γ; z) =
∞∑

k=0

(α)k(β)k

(γ)k

zk

k! (3.2)

is the generalized Gauss hypergeometric function with parameters α, β, γ, and γ , 0, −1, −2, .... We recall

that if in Eq. (3.2) α and/or β are negative integers, which is the case of the present study, the Gauss series

reduces to a hypergeometric polynomial, so that convergence of the series is not an issue.

Below, using this expressions, we will derive the fluctuation induced force pertinent to this ensemble, for

which in [6] the term Helmholtz force has been coined. In Appendix C it is shown that the representation
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of Z(D)(N, K, M) given by Eq.(3.1) can be simplified to

Z
(D)
C (N, K, M) = eK(N−4)

[
4 sinh(K) 2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 1; e−4K

)
+

Ne−K
2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 2; e−4K

)]
. (3.3)

It is worth noting the striking similarity between equations Eq.(3.3) for DBC’s and

Z
(anti)
C (N, K, M) = eK(N−4)

[
4 sinh(2K) 2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 1; e−4K

)
+

Ne−2K
2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 2; e−4K

)]
, (3.4)

for ABC’s in the case of the canonical ensemble and the distinction of the corresponding partition functions

in the grand canonical ensemble.

In order to determine the behavior of the Helmholtz force we need to know the Helmholtz free energies

in the finite and infinite Ising chains with a given average magnetization m.

The bulk Helmholtz free energy has been reported in Ref. [7]. It is obtained with the use of a Legendre

transformation from the bulk Gibbs free energy (the bulk ensembles are equivalent) and reads

βab(K, m) = K + 1
2 ln(1 − m2) − ln

[
1 +

√
m2 + e4K(1 − m2)

]
+ m sinh−1

(
e−2Km√
1 − m2

)
. (3.5)

For the scaling behavior of βab(K, m), i.e., for K ≫ 1, from Eq. (3.5) one obtains

βab(K, m) ≃ −K − exp[−2K]
√

1 − m2 = −K − 1
2N

xt

√
1 − m2, K ≫ 1. (3.6)

The Helmholtz free energy density of the Ising chain with fixed M is by definition

βa(N, K, M) = − 1
N

ln Z
(D)
C (N, K, M). (3.7)

Let us first derive the behavior of the partition function Z
(D)
C (N, K, M) in the scaling regime xt = O(1)

with M = Nm. To proceed, we use the the asymptotic expansion obtained in Ref. [7, Eq. D6] (there

−a = 1
2 (Nm − N + 2), −b = 1

2 (−Nm − N + 2)):

2F1(1
2(Nm − N + 2), 1

2(−Nm − N + 2); γ; e−4K) (3.8)

≃ (γ − 1)!
(

1
4

√
1 − m2 xt

)1−γ [
Iγ−1

(
1
2

√
1 − m2 xt

)
+ O(N−1)

]
.
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Here γ = O(1), exp[−4K] ≪ 1, and Iν(z) is the modified Bessel function of first kind:

Iν(z) =
∞∑

k=0

1
k!Γ(ν + k + 1) (z/2)ν+2k ≃


(z/2)ν

/Γ(ν + 1), z → 0,

ez/
√

2πz, z → ∞.

(3.9)

Inserting the asymptotic expansion of Eq. (3.8), with γ = 1 and γ = 2 into Eq. (3.3) and summing the

results we arrive at

Z
(D)
C (N, K, m) = 1

N
eK(N−1)xt

[
I0

(
1
2

√
1 − m2 xt

)
+

I1
( 1

2
√

1 − m2xt

)
√

1 − m2

] (
1 + O(N−1)

)
. (3.10)

The conditions xt → 0 and xt → ∞ imply the asymptotes

Z
(D)
C (N, K, m) ≈ 1

N
eK(N−1)xt



[
2 +

(
1 − m2)

x2
t /32

]
, xt → 0,

[
exp ( √

1−m2xt/2)
√

π
√

1−m2xt

] [
1 +

( √
1 − m2xt

)−1/2
]
, xt → ∞.

(3.11)

For the scaling function X
(D)
H (xt, m) of the Helmholtz force

βF
(D)
H (N, xt, m) = 1

N
X

(D)
H (xt, m) (3.12)

from Eqs. (1.3), (1.4), (3.7) and Eq. (3.10), we derive

X
(D)
H (xt, m) = (3.13)[(
1 − m2) (

1 −
√

1 − m2
)

xt − 2
(
m2 + 1

)]
I1

( 1
2

√
1 − m2xt

)
+ xt

(
1 −

(
1 − m2)3/2

) √
1 − m2I0

( 1
2

√
1 − m2xt

)
2 (1 − m2)

[
I1

( 1
2

√
1 − m2xt

)
+

√
1 − m2I0

( 1
2

√
1 − m2xt

)] .

For its asymptotes we obtain

X
(D)
H (xt, m) ≃

 1
4

(
1 − 2

√
1 − m2

)
xt + x2

t /16 + O(x3
t ), xt → 0

1
2

m2
√

1−m2 xt − 3/2−
√

1−m2

1−m2 + O(x−1
t ), xt ≫ 1.

(3.14)

The behavior of the scaling function of the Helmholtz force is visualized in Fig. 2. The full K behavior of

the Helmholtz force is illustrated for N = 100 and few values of m: m = 0.1, m = 0.3, m = 0.6 and m = 0.9

is shown in Fig. 3. We see that for small K the force is always repulsive. For moderate values of K and m

the force changes sign from repulsive to attractive and then, for very large values of K (corresponding to

xt → 0) it levels off at βF
(D)
H = 0.
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Figure 2: On the left panel: The behavior of the scaling function X
(D)
H (xt, m) of the Helmholtz force as a function of the

scaling variable xt and m for m = 0.1, m = 0.3, m = 0.6 and m = 0.9. We observe that the function is negative for small
values of xt for m2 < 3/4 (see the xt → 0 asymptote in Eq. (3.14)). For m2 > 3/4 and large values of xt the force is always
repulsive. On the right panel: The behavior of the function X

(D)
H (xt, m). We observe that, depending on the values of xt and

m the force can be both attractive and repulsive. This behavior is remarkably different from that of the Casimir force which
is always attractive for the same boundary conditions.
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Figure 3: Left panel: The full K behavior of the Helmholtz force illustrated fo N = 100 and few values of m: m = 0.1, m =
0.3, m = 0.6 and m = 0.9. Right panel: The K dependence of the Helmholtz force for different values of N for N =
100, 200, 300, 400 and N = 500. As we see - larger the N , stronger is the repulsion for small values of K.

4. On the derivation of Z
(D)
C (N, K, M) via transfer matrix method

Here we demonstrate how to derive the combinatorial result Eq. (3.1) or, equivalently, Eq. (3.3) for the

partition function in the canonical ensemble via the transfer matrix method which, historically, was the

one customarily used for derivation of the properties of the Ising chain. It turns out that this is a non-

trivial mathematical problem based on the algebra of the Gauss hypergeometric function and Chebyshev

polynomials, that is interesting in itself.

We start with the integral presentation of the Kronecker delta-function

δ[S, M ] = 1
2π

∫ +π

−π

ei(S−M)ϕdϕ, S =
N∑

i=1
Si, S, M ∈ Z. (4.1)
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Then the canonical partition function is given by

Z
(D)
C (N, K, M) =

∑
{Si}(D)

e−βHδ[S, M ], where H = −J

N−1∑
i=1

SiSi+1. (4.2)

Here the symbol {Si}(D) means that the set of spins obeys DBC’s. Further we have

Z
(D)
C (N, K, M) = 1

2π

∫ π

−π

e−iMϕ

 ∑
{Si}(D)

e−βH+iϕ
∑

i
Si

dϕ = 1
2π

∫ π

−π

e−iMϕ Z
(D)
GC (N, K, iϕ) dϕ.

(4.3)

Using (2.12), one has

Z
(D)
GC (N, K, iϕ) = 2

[ √
2 sinh(2K)

]N−1
{

cos(ϕ)TN−1

(
z̃(K, ϕ)

)
+ e−2K − sin2(ϕ)

cos(ϕ) z̃(K, ϕ)UN−2

(
z̃(K, ϕ)

)}
(4.4)

where

z̃(K, ϕ) ≡ z(K, iϕ) = eK cos(ϕ)√
2 sinh(2K)

, K > 0, ϕ ∈ [−π, π]. (4.5)

Since the integrand in Eq. (4.3) is an even function of ϕ—see Eq. (4.4)—we obtain

Z
(D)
C (N, K, M) =

[ √
2 sinh(2K)

]N−1
{

4
π

∫ π/2

0
cos(ϕ) cos(Mϕ)TN−1

(
z̃(K, ϕ

)
dϕ +

+ 4
π

∫ π/2

0

[
e−2K − sin2(ϕ)

cos(ϕ)

]
cos(Mϕ)z̃(K, ϕ)UN−2

(
z̃(K, ϕ)

)
dϕ

}
. (4.6)

Starting from the above expression and using the recursion relations for the Chebyshev’s polynomials [35,

8.941.1-8.941.3] one can show, see Appendix E, that

Z
(D)
C (N, K, M) =

√
2 sinh(2K)N

2 cosh(K)
[
exp(−2K) D(N, M ; e−4K) + I(N, M, e−4K)

]
. (4.7)

Here

I(N, M, z) := 4
π

∫ π/2

0
cos(Mx) TN

(
cos(x)√

1 − z

)
dx, (4.8)

and

D (N, M ; z) = 4
π

∫ π/2

0
cos(Mx) cos(x)√

1 − z
UN−1

(
cos(x)√

1 − z

)
dx. (4.9)

Eq. (4.7) can be obtained in an alternative, but more involved way, by plugging in Eq. (3.3) the expres-
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sions for 2F1
( 1

2 (M − N + 2), 1
2 (−M − N + 2); 2, z

)
and 2F1

( 1
2 (M − N + 2), 1

2 (−M − N + 2); 1, z
)

derived

in Ref. [7]. Indeed, these expressions can be obtained from the corresponding Eqs.(C.13), together with

(C.15), and (C.37) (after correcting for the multiplication by a misprinted factor of N) of Ref. [7]. Then

these equations read

I(N, M, z) = Nz(1 − z)−N/2
2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 2, z

)
, (4.10)

and

D(N, M, z) = (1 − z)−N/2z

{
N 2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 2, z

)
+

2(z−1 − 1) 2F1

(
1
2(M − N + 2), 1

2(−M − N + 2); 1, z

) }
. (4.11)

We comment that these expressions are interesting in their own right, being integral representations of

Gaussian hypergeometric functions.

5. Concluding remarks and discussion

In this article we report on a study of two examples of fluctuation-induced forces: the Casimir force

pertinent to (T − h) grand canonical ensemble and the Helmholtz force in T − M ensemble. We focused on

the case of the one-dimensional Ising chain with Dirichlet boundary conditions. The Ising chain is one of

the very few statistical-mechanical models which allow for an exact and explicit treatment of the behavior of

those forces in the space of all physically realizable values of the thermodynamic variable. The main results

are:

• The existence of a nonzero external field h , 0 is a necessary condition for the occurrence of a non-

vanishing Casimir force in one dimensional Ising model with (free) Dirichlet boundary conditions (as

opposed to the cases of PBC’s and ABC’s). This directly follows from Eq. (2.24) and is stated in

Eq. (2.23), in a full agreement with Ref. [8], where only the case h = 0 has been considered.

• The Gibbs free energy and the behavior of the Casimir force within the grand canonical ensemble with

Dirichlet BC’s are derived in Sec. 2. The basic expression for the Casimir force is given in Eq. (2.24),

while its scaling behavior and the corresponding scaling function are given in Eq. (2.26). From these

results it follows that the force is always attractive. As graphical images the behavior of the force as

a function of the scaling variables xt and xh (see their definition in Eq. (2.16)), as well as a function

of K and h, are presented in Fig. 1.
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• Expressions for the Helmholtz free energy and the behavior of the Helmholtz force within the canonical

ensemble with Dirichlet BC’s are reported in Sec. 3. Analytical results for the partition function are

given in Eq. (3.1) and Eq. (3.3). The scaling behavior of the Helmholtz force is expressed in Eq. (3.12)

and Eq. (3.13). The behavior of the force as a function of xt and m = M/N is shown in Fig. 2,

while its behavior as a function fo K and m is depicted in Fig. 3. We observe that, contrary to the

behavior of the Casimir force, the Helmholtz force changes sign as a function of T and m and can be

both attractive and repulsive.

Technical details needed for the derivations and prove of our statements are organized in series of ap-

pendices, given at the end of the article. In some of them we made use of the properties of the Chebyshev

polynomials and their relations to the Gauss hypergeometric functions that might be of interest of their own.

As a byproduct we derived some relations between the partition functions of the Ising chain—see Eq. (A.3)

for the relation between the partition functions under Dirichlet, periodic and antiperiodic boundary condi-

tions in the GCE and the corresponding ones Eq. (3.10) for the CE.

Finally, we stress that the fluctuation-induced forces play an important role in nano-technologies - the

general hope is that these forces can be used to manipulate nanoscale objects. The behavior of these forces

in the different possible ensembles has not been subject of detailed studies up to now. The results reported

here reinforce the conclusion that the standard rule for the Casimir force - that it is attractive, if the

boundary conditions are similar, and repulsive otherwise, does not hold for the Helmholtz force which can

be both attractive and repulsive for all boundary conditions studies so far. Our calculations reveal significant

temperature dependence of the Helmholtz forces for a variety of boundary conditions, specifically periodic,

antiperiodic, or Dirichlet, leading to the possibility of a change in the nature of the force—attractive, or

repulsive, contrary to the corresponding Casimir force under the same boundary conditions, which does

not change sign with temperature for these cases. This points, at least in principle, to the possibility of a

convenient dynamic control of the repulsive or attractive behavior of the critical Helmholtz force by varying

an external thermodynamic parameter such as temperature.

Given the difference between two ensembles for finite systems, it is reasonable to anticipate that the

Casimir and Helmholtz force will have, in general, different behavior for the same geometry and boundary

conditions.

In light of the new results for the behavior of the Helmholtz forces of the one dimensional Ising model, an

obvious question is: how generic it is? It seems reasonable to anticipate similar behavior in the framework of

more complicated models, but such results are, as yet, lacking. Looking forward, it is reasonable to envision

an interesting field for research that that is ripe for exploration, both analytically and numerically.
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Appendix A. On the relation of Z
(D)
GC (N, K, h) to Z

(per)
GC (N, K, h) and Z

(anti)
GC (N, K, h)

thus

From ref. [7] for the partition functions with PBC’s and ABS’s we derived

Z
(per)
GC (N, K, h) = 2

( √
2 sinh(2K)

)N

TN (z(K, h)) (A.1)

and

Z
(anti)
GC (N, K, h) = 2

( √
2 sinh(2K)

)N

e−2Kz(K, h)UN−1 (z(K, h)) , (A.2)

respectively. Collecting the partition functions with different boundary conditions, i.e. Eqs.(2.12), (A.1)

and (A.2), we obtain an expression for Z
(D)
GC (N, K, h) through Z

(per)
GC (N, K, h) and Z

(anti)
GC (N, K, h):

cosh(h) Z
(D)
GC (N, K, h) = cosh2(h)Z(per)

GC (N − 1, K, h) + [e2K sinh2(h) + 1] Z
(anti)
GC (N − 1, K, h). (A.3)

If we set h = 0 in Eq.(A.3) we obtain a remarkably simple relation

Z
(D)
GC (N, K, 0) = Z

(per)
GC (N − 1, K, 0) + Z

(anti)
GC (N − 1, K, 0). (A.4)

Appendix B. Proof of the inequality 0 < A(K, h) < cosh(h)

A(K, h) is defined in Eq. (2.5). We have to prove that

0 <
sinh2(h) + e−2K√

sinh2(h) + e−4K

< cosh(h), when K > 0, and h , 0. (B.1)

Proof:

The lhs is evident. The rhs may be rewritten in the form:

e−K x + 1√
x + e−2K

<
√

1 + e−2Kx, where x := sinh2(h)/e−2K ≥ 0. (B.2)

Then
(x + 1)2

1 + x e2K
< 1 + e−2Kx. (B.3)

Finally, the above is valid since

1 < cosh(2K). ■ (B.4)

15



Appendix C. Rationalized presentation of the canonical partition function in terms of Gauss

hypergeometric functions

Here we demonstrate how one can derive Eq. (3.3) in terms of the Gauss functions. For simplicity, let

us introduce the notations

α := 1
2(M − N + 2), α+ := 1

2(M − N + 4),

β := 1
2(−M − N + 2), β+ := 1

2(−M − N + 4). (C.1)

in the rhs of Eq. (3.1). The result is

Z
(D)
C (N, K, M) = eK(N−1)

×
{

2e−2K
2F1(β, α; 1; e−4K) − e−4K

[
α 2F1(α+, β; 2; e−4K) + β 2F1(α, β+; 2; e−4K)

]}
, (C.2)

where the property

2F1(α, β; γ, z) = 2F1(β, α; γ, z) (C.3)

has been used.

The relations between hypergeometric function 2F1(α, β, ; γ; z) and any two hypergeometric functions

with the same argument ”z” and with parameters α, β and γ changed by ±1 are termed contiguous relations.

In order to transform the functions in the second line in Eq.(C.2) we will use the contiguous relations [36,

see there Eq. (1.5) with c = 2 ]:

α 2F1(α+, β; 2; z) = (α − 1) 2F1(α, β; 2; z) + 2F1(α, β; 1; z) (C.4)

and

β 2F1(α, β+; 2; z) = (β − 1) 2F1(α, β; 2; z) + 2F1(α, β; 1; z). (C.5)

Once we add together the both equations and set the result in Eq.(C.2) we get

Z
(D)
C (N, K, M) = (C.6)

2eK(N−3)
2F1(β, α; 1; e−4K) − eK(N−5)

[
(α + β − 2) 2F1(α, β; 2; e−4K) + 2 2F1(α, β; 1; e−4K)

]
,

or finally

Z
(D)
C (N, K, M) = 4eK(N−4) sinh(K) 2F1(α, β; 1; e−4K) + NeK(N−5)

2F1(α, β; 2; e−4K). (C.7)
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Returning to the original notation in the Gauss hypergeometric functions, see Eq. (C.1), we obtain

Eq. (3.3) reported in the main text.

Appendix D. On the relation of Z
(D)
C (N, K, M) to Z

(per)
C (N, K, M) and Z

(anti)
C (N, K, M)

Using Eqs. (2.19), (2.20) and (2.21) from [7] for the partition function with PBC’s one has:

Z
(per)
C (N, K, M) =

( √
2 sinh(2K)

)N

I(N, M ; e−4K) (D.1)

while from Eqs. (3.20) (3.21) and (3.22) for ABC’s

Z
(anti)
C (N, K, M) =

( √
2 sinh(2K)

)N

e−2KD(N, M ; e−4K). (D.2)

Expressing from Eq. (D.1) and I(N, M ; e−4K) and D(N, M ; e−4K), from Eq. (4.7) one concludes that

Z
(D)
C (N, K, M) = 1

2 cosh(K)

[
Z

(per)
C (N, K, M) + Z

(anti)
C (N, K, M)

]
(D.3)

Appendix E. Proof of the equality of Eqs. (4.6) and (4.7)

Here we prove that rhs of Eq.(4.6) equals the rhs of Eq.(4.7). For this purpose we need the following

recurrence relations among the Chebyshev polynomials:

TN−1(x) = UN−1(x) − xUN−2(x) (E.1)

and

UN−2(x) = xUN−1(x) − TN (x), (E.2)

which can be easily obtained from [35, 8.941.1-8.941.3]. With the help of Eq. (E.1)) the integrand in the

first term in the rhs of Eq. (4.6) may be rewritten in the form

cos(ϕ) cos(Mϕ)TN−1

(
z̃(K, ϕ

)
= cos(Mϕ)

√
1 − e−4K

(
z̃(K, ϕ)

)
TN−1

(
z̃(K, ϕ)

)
=

cos(Mϕ)
√

1 − e−4K

{
z̃(K, ϕ)UN−1(z̃(K, ϕ)) − z̃2(K, ϕ)UN−2(z̃(K, ϕ))

}
. (E.3)

Using Eq. (E.2), the integrand in the second term in the rhs of Eq. (4.6) may be cast in the form

[
e−2K − 1√
1 − e−4K

]
cos(Mϕ)UN−2

(
z̃(K, ϕ)

)
+ cos(Mϕ)

√
1 − e−4K z̃2(K, ϕ)UN−2

(
z̃(K, ϕ)

)
. (E.4)
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The last terms in Eqs. (E.3) and (E.4) cancel each other. With the help of Eq.(E.2) for the remaining term

in Eq.(E.4) we obtain

[
e−2K − 1√
1 − e−4K

]
cos(Mϕ)UN−2

(
z̃(K, ϕ)

)
=

[
e−2K − 1√
1 − e−4K

]
cos(Mϕ)

{
z̃(K, ϕ)UN−1(z̃(K, ϕ)) − TN (z̃(K, ϕ))

}
.

(E.5)

Combining the first term in (E.3) with the first term in (E.5) we get

cos(Mϕ)
√

1 − e−4K

{
z̃(K, ϕ)UN−1(z̃(K, ϕ))

}
+

[
e−2K − 1√
1 − e−4K

]
cos(Mϕ)

{
z̃(K, ϕ)UN−1(z̃(K, ϕ))

}
=

cos(Mϕ) 1 − e−2K

√
1 − e−4K

e−2K

{
z̃(K, ϕ)UN−1(z̃(K, ϕ))

}
(E.6)

Plugging the above expression in Eq.(4.6) and taking into account the definition Eq.(4.9) we obtain the first

term in Eq.(4.7). The second term in Eq.(E.5) is

[
e−2K − 1√
1 − e−4K

]
cos(Mϕ)TN (z̃(K, ϕ)), (E.7)

which in conjunction with the definition Eq.(4.8) provides the second term in Eq.(4.7). This finishes the

proof of the result stated. ■
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[9] M. Henkel, H. Hinrichsen, S. Lübeck, M. Pleimling, Non-equilibrium phase transitions, vol. I, Theoretical and mathematical

physics, Springer, Dordrecht Netherlands ; New York, 2008, see especially Eq. (S.4), p. 305.

[10] Z. Wang, F. F. Assaad, F. Parisen Toldin, Finite-size effects in canonical and grand-canonical quantum Monte Carlo

simulations for fermions, Phys. Rev. E 96 (2017) 042131. doi:10.1103/PhysRevE.96.042131.

URL https://link.aps.org/doi/10.1103/PhysRevE.96.042131

[11] M. Gross, O. Vasilyev, A. Gambassi, S. Dietrich, Critical adsorption and critical Casimir forces in the canonical ensemble,

Phys. Rev. E 94 (2016) 022103. doi:10.1103/PhysRevE.94.022103.

URL http://link.aps.org/doi/10.1103/PhysRevE.94.022103

[12] M. Gross, A. Gambassi, S. Dietrich, Statistical field theory with constraints: Application to critical Casimir forces in the

canonical ensemble, Phys. Rev. E 96 (2017) 022135. doi:10.1103/PhysRevE.96.022135.

URL https://link.aps.org/doi/10.1103/PhysRevE.96.022135

[13] C. M. Rohwer, A. Squarcini, O. Vasilyev, S. Dietrich, M. Gross, Ensemble dependence of critical Casimir forces in films

with Dirichlet boundary conditions, Phys. Rev. E 99 (2019) 062103. doi:10.1103/PhysRevE.99.062103.

URL https://link.aps.org/doi/10.1103/PhysRevE.99.062103

[14] E. Eisenriegler, R. Tomaschitz, Helmholtz free energy of finite spin systems near criticality, Phys. Rev. B 35 (1987) 4876–

4887. doi:10.1103/PhysRevB.35.4876.

URL https://link.aps.org/doi/10.1103/PhysRevB.35.4876
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