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Figure 1: We perform physics-based inverse rendering on real captured data featuring non-distant lighting. In this scenario,
the commonly used environment map inaccurately models the lighting, leading to artifacts visible in relighting and shape
reconstruction results. In contrast, our proposed NeRF emitter accurately models non-distant lighting, achieving high-quality
inverse rendering.

ABSTRACT
Physics-based inverse rendering enables joint optimization of shape,
material, and lighting based on captured 2D images. To ensure
accurate reconstruction, using a light model that closely resem-
bles the captured environment is essential. Although the widely
adopted distant environmental lighting model is adequate in many
cases, we demonstrate that its inability to capture spatially varying
illumination can lead to inaccurate reconstructions in many real-
world inverse rendering scenarios. To address this limitation, we
incorporate NeRF as a non-distant environment emitter into the
inverse rendering pipeline. Additionally, we introduce an emitter
importance sampling technique for NeRF to reduce the rendering
variance. Through comparisons on both real and synthetic datasets,
our results demonstrate that our NeRF-based emitter offers a more
precise representation of scene lighting, thereby improving the
accuracy of inverse rendering.
∗Corresponding author.
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1 INTRODUCTION
Reconstructing the shape and material of an object as well as the
lighting condition from 2D images has been a long-standing chal-
lenge in computer graphics and vision, offering numerous applica-
tions in 3D reconstruction and scene digitization. Thanks to recent
advancements, physics-based inverse rendering has gained popu-
larity for its ability to accurately simulate light transport within
complex environments and to produce high-quality reconstructions.
Also known as analysis by synthesis, inverse rendering is typically
formulated as optimization problems that seek for shape, mate-
rial, and lighting parameters to minimize the difference (measured
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with some predetermined loss) between captured input images
and renderings generated with these parameters. To solve these
optimizations efficiently using gradient-based methods (such as sto-
chastic gradient descent), it is desired to incorporate differentiable
rendering in inverse-rendering pipelines.

To accurately simulate light transport for inverse rendering, hav-
ing an accurate scene model is crucial. However, in commonly used
object-centric capture scenarios, the limitation in the number of
captured images and the relatively localized camera positions pose
challenges in reconstructing the entire scene. As a result, inverse
rendering approaches tend to model the object of interest in terms
of shape and material, while approximating the rest of the scene
as a distant “environment”. The environment map [Debevec and
Malik 1997] has thus become a popular method for approximating
lighting around objects. However, we demonstrate that in situations
where the light source is not infinitely distant, an environment map
proves to be an inadequate approximation, leading to inaccurate
inverse-rendering results.

The crucial issue lies in the distant lighting assumption of the
environment map, where the lighting distribution is considered
spatially invariant. However, when the light source is not distant,
it exhibits strong parallax effects, as the light arrives from various
directions at different positions on the object’s surface (see Figure 2
right). Consequently, a spatially invariant lighting model becomes
an inadequate approximation for the actual lighting conditions. To
effectively model non-distant lighting, a representation capable of
synthesizing spatially varying incoming radiance distribution is
necessary.

We have observed that a neural radiance field (NeRF) [Mildenhall
et al. 2020] is well-suited for representing real, spatially varying
lighting. While an environment map essentially models a 2D radi-
ance field at an infinite distance, NeRF models a radiance field that
resides within 3D non-distant volumetric densities. While NeRF
is originally used for novel-view synthesis, we demonstrate its
extension to light modeling, as moving the shading point is analo-
gous to moving the viewpoint. With an HDR NeRF representing
the unbounded scene surrounding the object, we can synthesize
3D-consistent incoming radiance at any shading point on the object.

Therefore, to achieve more accurate inverse rendering when
the lighting is not distant, we propose a technique that utilizes a
NeRF to model the environmental lighting. We model the scene in a
hybrid manner, with the object of interest represented by a surface
and the surrounding by a NeRF. To render these hybrid scenes,
we generalize the standard surface-only rendering equation to use
NeRF-based illumination. Additionally, we introduce an importance
sampling scheme for NeRFs. Then, we build an inverse rendering
pipeline that effectively reconstructs shape, material, and NeRF
lighting from captured images.

We capture both real and synthetic datasets featuring non-distant
lighting to compare our method with a baseline pipeline that em-
ploys environment map emitters. Our results demonstrate that
an environment map inaccurately models non-distant lighting, re-
sulting in artifacts in inverse-rendering results. In contrast, our
proposed NeRF emitter accurately models non-distant lighting and
achieves high-quality reconstructions.

2 RELATEDWORK
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] employ neu-
ral networks to model the radiance field in 3D scenes, enabling
novel-view synthesis. Mip-NeRF 360 [Barron et al. 2022] proposes a
scene contraction method that extends NeRF to unbounded scenes,
enabling NeRF to model the surround environment of an object
of interest. Instant-NGP [Müller et al. 2022] accelerates NeRF by
proposing a hybrid grid-network field representation. NeRFStudio
[Tancik et al. 2023] and Zip-NeRF [Barron et al. 2023] combine the
works by Barron et al. [2022]; Müller et al. [2022] to accelerate the
modeling of an unbounded environment using NeRF. RawNeRF
[Mildenhall et al. 2022] and VR-NeRF [Xu et al. 2023a] explore
extending NeRF to high dynamic range, thereby improving the
novel-view synthesis quality in dark-light or virtual reality sce-
narios. Considering that light sources in physics-based rendering
are often HDR, integrating HDR technique into NeRF holds the
potential to represent an HDR environment emitter.

Based on the powerful modeling capabilities of neural networks,
several research efforts have delved into leveraging neural networks
to represent complex luminaires. The works by Zhu et al. [2021];
Condor and Jarabo [2022] employ neural networks to model the
light field or radiance field of virtual luminaries, thereby acceler-
ating physics-based rendering by reducing variance. DMRF [Qiao
et al. 2023] explores the insertion of a virtual mesh into the trained
NeRF and simulates the interactions between them. While these
works focus on using pretrained networks to model light in for-
ward rendering, our work considers employing NeRF in inverse
rendering as an emitter to reconstruct scene parameters.

Differentiable Rendering involves differentiating the rendering
equation to obtain gradients of scene parameters, which is the foun-
dation of gradient-based optimization in the subsequent inverse
rendering. A key challenge in differentiable rendering lies in the dif-
ferentiation of visibility discontinuities, which is essential to enable
shape optimization. The works by Li et al. [2018]; Zhang et al. [2019,
2020] explicitly sample edges at the silhouettes of shapes to estimate
the boundary term that arises when differentiating the integral over
visibility discontinuities. Another approach, based on warped-area
sampling [Bangaru et al. 2020], sidesteps visibility discontinuities
by converting boundary integrals into area integrals. This approach
can be extended from meshes to signed distance functions (SDF)
to enable differentiable SDF rendering [Vicini et al. 2022; Bangaru
et al. 2022], and has also recently been extended to path space to
differentiate path integrals [Xu et al. 2023b]. Deriving differentiable
volume rendering has been previously explored by Zhang et al.
[2019], but our model distinguishes itself by incorporating emissive
volume and excluding scattering.

Inverse Rendering aims to utilize gradient descent to minimize
rendering loss between rendered and captured images to recon-
struct the scene shape, material, and lighting parameters. Accurate
lighting models are crucial to achieve high-quality reconstruction
via inverse rendering. However, current inverse rendering meth-
ods often rely on simplistic light models, which either restrict the
capture setup or lead to inaccurate approximations of real-world
scene lighting. Some works require specific capture configurations
in controlled environments, such as a co-located camera-light setup
[Bi et al. 2020b,a; Zhang et al. 2022a] or a point light source [Yang
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Figure 2: The region within the bounding box is modeled by
surfaces and material, while the region outside is handled
by NeRF to account for environmental lighting. The NeRF-
synthesized illumination viewed from two shading points
(red (a) and blue (b) dots) is visualized on the right.

et al. 2022a,b; Ling et al. 2023]. For inverse rendering in ordinary
environments, an environment map [Debevec and Malik 1997] com-
monly serves as a lighting approximation. Numerous works utilize
inverse rendering for reconstructing individual objects [Zhang et al.
2021; Boss et al. 2021a,b, 2022], outdoor buildings [Rudnev et al.
2021], and humans [Chen and Liu 2022]. There is also a trend
in inverse rendering to be more physically accurate by consider-
ing shadows [Hasselgren et al. 2022; Srinivasan et al. 2021], in-
terreflections [Zhang et al. 2022b; Wu et al. 2023; Jin et al. 2023],
and differentiable path tracing [Sun et al. 2023]. All of the above
methods employ an environment map as the scene lighting model.
However, an environment map assumes that the scene lighting is
infinitely distant, which is a rare case in real-world capture setups.
We demonstrate that using an environment map can result in de-
graded reconstruction quality when this assumption is violated.
Therefore, we propose a NeRF emitter module designed to be a
universal component applicable across inverse rendering systems,
avoiding the distant lighting assumption.

3 PRELIMINARIES
We revisit differentiable surface rendering [Nimier-David et al.
2020] and NeRF [Mildenhall et al. 2020], comparing their simi-
larities and distinctions. Image pixels 𝐼1, 𝐼2, ..., 𝐼𝑘 , ..., 𝐼𝑁 measure the
integral of the dot product between the sensor importance function
𝑊 and the incident radiance 𝐿𝑖 at a position p:

𝐼𝑘 =

∫
A

∫
S2

𝑊𝑘 (p, 𝜔)𝐿𝑖 (p, 𝜔)𝑑𝜔⊥𝑑p, (1)

where 𝜔 denotes the light direction and 𝜔⊥ is the projected solid
angle. Surface and volume rendering exhibit differences in assump-
tions about the scene, affecting 𝐿𝑖 (p, 𝜔). Surface rendering assumes
a vacuum between surfaces, where incoming radiance equals out-
going radiance at the first intersection point of the ray, thus 𝐿𝑖 is
given by the surface version 𝐿𝑠

𝑖
:

𝐿𝑠𝑖 (p, 𝜔) = 𝐿𝑜 (r(p, 𝜔, 𝑡0),−𝜔), (2)

where 𝑡0 is the distance to the closest intersection point r(p, 𝜔, 𝑡0)
along direction 𝜔 . Outgoing radiance 𝐿𝑜 involves an integral over

the hemisphere, expressed by the rendering equation:

𝐿𝑜 (p, 𝜔) = 𝐿𝑒 (p, 𝜔) +
∫
S2

𝐿𝑖 (p, 𝜔′) 𝑓𝑠 (p, 𝜔, 𝜔′)𝑑𝜔′⊥, (3)

where 𝐿𝑒 represents the surface emitted radiance and 𝑓𝑠 denotes the
BSDF. The 𝐿𝑖 on the right-hand side involves recursive computation
and can be implemented using path tracing.

On the other hand, NeRF makes different assumptions about the
scene. It assumes that the scene is filled with emissive volume, with-
out surfaces or volumetric scattering. In this case, 𝐿𝑖 is determined
by the volumetric version 𝐿𝑣

𝑖
, calculated using the (non-scattering)

volume rendering equation:

𝐿𝑣𝑖 (p, 𝜔) =
∫ ∞

0
𝑇 (p, 𝜔, 𝑡)𝜎 (r(p, 𝜔, 𝑡))c(r(p, 𝜔, 𝑡),−𝜔)𝑑𝑡, (4)

where 𝜎 represents the volumetric density, c is the emission, and 𝑇
denotes the transmittance, which models the absorption effect of
occluding densities:

𝑇 (p, 𝜔, 𝑡) = exp
(
−
∫ 𝑡

0
𝜎 (r(p, 𝜔, 𝑠))𝑑𝑠

)
. (5)

In differentiable surface rendering, we need to differentiate Equa-
tion 3. Assuming we eliminate the discontinuities using techniques
like reparameterization [Bangaru et al. 2020; Vicini et al. 2022], we
obtain

𝜕x𝐿𝑜 (p, 𝜔) = 𝜕x𝐿𝑒 (p, 𝜔) +
∫
S2

[𝜕x𝐿𝑖 (p, 𝜔′) 𝑓𝑠 (p, 𝜔, 𝜔′)

+𝐿𝑖 (p, 𝜔′)𝜕x 𝑓𝑠 (p, 𝜔, 𝜔′)]𝑑𝜔′⊥,
(6)

where 𝜕x𝐿𝑖 (p, 𝜔′) represents the derivative provided by the light
source when it is directly visible from the direction 𝜔 ′.

The differentiation of NeRF is straightforward. Equation 4 can be
computed via ray marching and is trivially differentiable. Gradients
can be computed using automatic differentiation such as PyTorch
[Paszke et al. 2019].

4 NERF-BASED NON-DISTANT EMITTERS
4.1 Hybrid Rendering of Surfaces and NeRF
We propose a NeRF emitter to model the environment lighting
surrounding the object. We adopt a hybrid scene representation
containing surfaces and NeRF. As depicted in Figure 2 left, we par-
tition the scene into two regions based on the bounding box of the
object: the internal region is represented by surface and material,
while the external region is represented by the NeRF-based environ-
mental lighting. Rendering the hybrid scene involves a rendering
equation that accounts for both surfaces and NeRF. According to
our scene assumption, the incoming radiance 𝐿𝑖 consists of 𝐿′𝑠𝑖 from
surfaces and 𝐿′𝑣

𝑖
from the NeRF:

𝐿𝑖 (p, 𝜔) = 𝐿′𝑠𝑖 (p, 𝜔) + 𝐿′𝑣𝑖 (p, 𝜔). (7)

Considering the surface contribution 𝐿′𝑠
𝑖
, it follows the surface light

transport, with additional consideration of the occluding NeRF:

𝐿′𝑠𝑖 (p, 𝜔) = 𝑇 (p, 𝜔, 𝑡0)𝐿𝑜 (r(p, 𝜔, 𝑡0),−𝜔), (8)

where 𝑇 represents the NeRF transmittance defined in Equation 5.
The NeRF contribution 𝐿′𝑣

𝑖
resembles Equation 4, but with zero

densities within the bounding box. Furthermore, we integrate from
0 to 𝑡0 instead of∞, where 𝑡0 denotes the distance to the first surface
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𝜆𝑖

(1) (2) (3)

(a)(a)
(b)(b) (a)

(b)

Figure 3: We generate importance sampling distributions by
(1) creating a point cloud of the bright parts of the NeRF,
(2) clustering it into Gaussian mixtures, and (3) projecting
these Gaussians to vMFs at shading points (red (a) and blue
(b) dots).

intersection. 𝑡0 goes to∞when there is no surface intersection. The
𝐿𝑖 defined in Equation 7 is used recursively in the computation of
Equation 3 in path tracing. When the light path eventually exits the
bounding box and goes to infinity, NeRF is queried to calculate the
incoming radiance from environment lighting, akin to the behavior
of a conventional light source.

Physics-based rendering necessitates its components, such as
NeRF in our case, to adhere to physical correctness. While not often
used in a physics-based context, we recognize that NeRF, funda-
mentally representing a radiance field, is well suited for modeling
the physical quantity of “radiance” within a scene. NeRF simplifies
light transport outside the bounding box by considering interreflec-
tions as emissions, yet the light paths within the bounding box are
preserved. Although this simplification cannot capture the illumi-
nation changes resulting from scene edits after reconstruction, it
effectively models interreflections during the capture phase, hence
suitable for inverse rendering.

Our formulation allows for arbitrary bounding box delineation
of the regions. We allow users to place a bounding box to denote
the object of their interest. Light sources within the bounding box
are accounted for with the self-emission 𝐿𝑒 in Equation 3. Any part
of the scene not enclosed within the bounding box is treated as
part of the environmental light and modeled using NeRF. In the
experiments, to mitigate inverse rendering ambiguity, we introduce
a prior by constraining emission within the bounding box to zero.
Imposing this prior however requires all emissive objects, such as
area lights, to be located outside the bounding box. This prior is
optional and not a fundamental limitation.

The scene properties also simplify NeRF computations to at most
two rays in a light path. Assuming consistently zero densities within
the bounding box, and given its convex nature, any rays originating
and terminating within it remain inside, with zero densities along
them. This leaves only the necessity to compute NeRF for the two
rays entering or exiting the bounding box.

4.2 Emitter Importance Sampling for NeRF
To integrate the NeRF emitter into physically-based rendering,
Monte Carlo sampling is required. This entails the ability to sample
directions and compute the corresponding probability densities.
Importance sampling for NeRF presents unique challenges due to
its nature as a volumetric light source governed by a density field
with without fixed topology. Hence, a specific importance sampling
strategy is imperative for NeRF.

Our basic idea is to approximate regions of significant radiance
contribution in NeRF using simple geometric primitives. Specif-
ically, we employ a Gaussian mixture model to fit a point cloud
extracted from the bright regions of NeRF, acting as a proxy model
during importance sampling. First, we randomly sample rays origi-
nating from positions inside the bounding box. We use Equation 4
to compute the radiance along this ray and record the depth value
that maximally contributes to the rendered radiance

𝑡max = arg max
𝑡

𝑇 (p, 𝜔, 𝑡)𝜎 (r(p, 𝜔, 𝑡))c(r(p, 𝜔, 𝑡),−𝜔). (9)

Then we add a sample point to the point cloud at the position
r(p, 𝜔, 𝑡max) with the weight 𝑌 (𝐿𝑣

𝑖
(p, 𝜔)), where 𝑌 is the operator

that converts RGB radiance to monochrome luminance. We aim to
approximate the radiance distribution of the point cloud via fitting
an isotropic Gaussian mixture model of 𝑀 = 64 components. To
efficiently minimize rendering variance using a limited number of
components, inspired by MIS compensation [Karlík et al. 2019], we
subtract the mean weight 𝑌 (𝐿𝑣

𝑖
(p, 𝜔)) from the weights of all the

points. Only points with positive weights are retained. As a result,
the remaining points (Figure 3 (a)) can focus on accurately captur-
ing the shape of very bright regions, while remaining unbiased via
the multiple-importance sampling combined with BSDF sampling.
Based on the compensated weights, we cluster the point cloud into
𝑀 isotropic Gaussians (Figure 3 (b)), each characterized by a mean
𝜇𝑖 , covariance 𝜅−1

𝑖
I and weight 𝜆𝑖 , with 𝑖 ∈ [1, 𝑀]. When perform-

ing emitter importance sampling for a shading point p, we first
project the isotropic Gaussians into von Mises–Fisher distributions
(�̂�𝑖 , �̂�𝑖 , 𝜆𝑖 ):

�̂�𝑖 =
𝜇𝑖 − p

∥𝜇𝑖 − p∥2
, �̂�𝑖 =

𝜅𝑖

∥𝜇𝑖 − p∥2
, 𝜆𝑖 = 𝜆𝑖 , (10)

and use the projected vMF lobes (Figure 3 (c)) to perform sam-
pling according to the work by Jakob [2012]. In inverse rendering,
as NeRF parameters update during joint optimization, the bright-
ness distribution may change. To ensure the sampling distribution
matches the updated NeRF, we periodically repeat the above process
to establish an updated Gaussian mixture model.

4.3 Differentiable Hybrid Rendering
Differentiable rendering of a hybrid scene, as defined in Section 4.1,
requires specific considerations. First, we must address 𝜕x𝐿𝑖 (p, 𝜔′)
in Equation 6, which calculates the gradient of the light with re-
spect to an arbitrary scene parameter x. As Equation 6 relies on
detached sampling [Zeltner et al. 2021], 𝜔 ′ does not receive gradi-
ents and 𝜕𝜔 ′𝐿𝑖 (p, 𝜔′) is therefore zero. However, it remains crucial
to compute 𝜕p𝐿𝑖 (p, 𝜔′), essential for differentiating shape param-
eters. Note that p also serves as the ray starting position input
to NeRF. Therefore, we need to compute gradients of the NeRF
radiance with respect to the ray starting position via automatic
differentiation and propagate it to Equation 6.

Second, when we differentiate the volume rendering equation,
we obtain a boundary term due to the dependence of the upper
integration limit, 𝑡0, on the scene’s shape parameters:

𝜕x𝐿
′𝑣
𝑖 (p, 𝜔) =𝑇 (p, 𝜔, 𝑡0)𝜎 (r(p, 𝜔, 𝑡0))c(r(p, 𝜔, 𝑡0),−𝜔)𝜕x𝑡0

+
∫ 𝑡0

0
𝜕x (𝑇 (p, 𝜔, 𝑡)𝜎 (r(p, 𝜔, 𝑡))c(r(p, 𝜔, 𝑡),−𝜔))𝑑𝑡 .

(11)
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However, densities 𝜎 approach zero continuously at the bounding
box’s boundaries and are zero within it. Since r(p, 𝜔, 𝑡0) always
stays within the bounding box, this boundary term always evaluates
to zero.

5 INVERSE RENDERING USING NERF
EMITTER

Building upon the derivations above, we’ve implemented a pipeline
that integrates NeRF as an emitter into physics-based inverse ren-
dering. While previous inverse rendering methods typically require
object foreground masks to exclude background influences, our
pipeline can simultaneously obtain scene information from both
foreground and background pixels and jointly optimize shape, ma-
terial, and NeRF emitter based on the gradients of the rendering
loss. Physics-based inverse rendering often requires proper initial-
ization. Therefore, we designed a multi-stage optimization process
that utilizes NeRF to aid the initialization of inverse rendering and
facilitate the optimization process. Additionally, due to the wide-
spread use of environment maps, existing datasets tend to avoid
using nearby light sources, leading to a lack of thorough testing for
scenes with close light sources. We established a capture system to
thoroughly test such scenarios.

5.1 Multi-Stage Optimization
Compared to surface-based inverse rendering, NeRF demonstrates
robustness in parameter initialization. Therefore, we first conduct
ordinary NeRF training to initialize the scene, with the interior of
the bounding box represented using either NeRF densities or NeuS
[Wang et al. 2021; Yariv et al. 2023; Ge et al. 2023]. We then extract
the geometry within the bounding box using truncated signed dis-
tance function (TSDF) fusion [Curless and Levoy 1996] to initialize
the object shape, and clear the densities inside the bounding box.
The object shape will be continually refined by inverse rendering.
At this point, NeRF has a reasonable initial lighting approximation,
and the object’s geometry has been initialized through NeRF. Fi-
nally, we perform joint optimization via inverse rendering until
convergence.

5.2 Non-Distant Emitter Capture System
To thoroughly test inverse rendering on scenes with non-distant
emitters, we establish a capture setup to capture a dataset featuring
such scenarios.We additionally providemultiple lighting conditions
by rotating the object to mitigate ambiguity under single-light
conditions. Each scene includes a nearby light source placed around
the object. We employ a turntable to rotate the object, capturing
multi-view images with a camera for each rotation pose. While the
camera’s viewpoint remains focused on the object, lighting cues can
be observed from background pixels, providing accurate lighting
information. To accurately capture the lighting, we utilize a DSLR
camera to capture HDR images.

6 IMPLEMENTATION DETAILS
6.1 HDR NeRF Parameterization and Training
Our NeRF model builds upon the nerfacto proposed by Tancik et al.
[2023]. To faithfully represent the emitter, it’s essential to train NeRF

to output HDR radiance values. Our inverse rendering pipeline
takes HDR images as input. Following the approach in RawNeRF
[Mildenhall et al. 2022], we use an exponential activation function
exp(𝑥 − 5) as the output activation function for NeRF radiance. We
utilize the relative L1 Loss as the rendering loss function:

Lrender =
1
𝑁

𝑁∑︁
𝑘=1

 𝐼𝑘 − �̂�𝑘

sg(𝐼𝑘 ) + 𝜖


1
, (12)

where 𝐼𝑘 represents the rendered pixel, sg(·) indicates a stop-gradient
operator, �̂�𝑘 is the pixel on the captured image, and 𝜖 = 10−3 is a
small number introduced to downweight excessively dark pixels.
We use gradient scaling [Philip and Deschaintre 2023] to prevent
NeRF from generating floaters. We adopt the 𝐿∞ contraction pro-
posed by Tancik et al. [2023] to handle unbounded environmental
lighting.

6.2 Integrating NeRF into Differentiable
Rendering

Our inverse rendering pipeline is implemented by combining NeRF-
Studio [Tancik et al. 2023] and Mitsuba 3 [Jakob et al. 2022b]. While
NeRFStudio utilizes neural networks to represent a NeRF, Mitsuba
3 is a megakernel-based differentiable renderer that cannot incorpo-
rate neural networks within a megakernel. Therefore, integrating
these two systems necessitates special techniques.

We encapsulate NeRF and its importance sampling approach
into Mitsuba 3 as an emitter module. Importance sampling is ex-
ecuted within Mitsuba 3 using Dr.Jit [Jakob et al. 2022a]. During
light source evaluation, the ray starting positions and directions
are transferred to PyTorch for NeRF computation. The computed
radiance or derivatives are then passed back to Mitsuba 3. Since
only the emitter involves neural networks, we employ one-sample
MIS [Veach 1997] to allow emitter queries for a batch of paths to
take place simultaneously. We split the rendering operation into
two megakernels, with the neural network operations occurring
between them. Specifically, the first kernel generates NeRF query
rays, and the second kernel collects NeRF evaluations for pixel
reconstruction.

Due to NeRF’s large memory footprint, it supports only a limited
ray batch size. However, typical differentiable rendering systems
operate on an image, exceeding NeRF’s maximum batch size capac-
ity. Therefore, we divide the rays into batches to be sequentially
processed by NeRF. To save memory, we do not store computation
graphs, but instead recompute them during gradient computation.
During forward rendering, we conduct detached gradient NeRF
evaluation, and record random seeds to enable the replay [Vicini
et al. 2021] of random operations. During back-propagation, we
recover the computation graph for each batch of rays for automatic
differentiation.

As the NeRF evaluation constitutes the runtime bottleneck, we
have developed a multi-GPU training system to enhance its par-
allelism. The primary GPU hosts a Mitsuba 3 scene and performs
surface rendering. For light evaluation and gradient computation,
this GPU is tasked with distributing NeRF queries to the other
GPUs, as well as collating computation results.
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6.3 Shape and Material Optimization
Our differentiable surface rendering builds upon the differentiable
SDF proposed by Vicini et al. [2022]. This implementation effec-
tively handles visibility discontinuities, facilitating shape optimiza-
tion. We represent the shape and material using voxel grids with a
resolution of 2563, and conduct inverse rendering for 320 iterations.
In each iteration, we randomly sample 6 images from the dataset
for training. Following a coarse-to-fine optimization approach, we
start optimization using 1282 resolution images and 643 voxel grids,
progressively scaling up images to 5122 and voxel grids to 2563

at iterations 128 and 256. We use a Laplacian loss [Vicini et al.
2022] and a curvature loss [Rosu and Behnke 2023] to maintain
the smoothness of voxel grids and redistance the SDF after each
iteration. Both shape and material voxel grids, along with the NeRF
network, are optimized using the Adam optimizer [Kingma and Ba
2015], with a learning rate of 3e-3 for shape, 2e-2 for material and
1e-2 for NeRF. We employ 512 primal and 128 adjoint samples per
pixel.

6.4 Data Capture Details
Our dataset features two distinctive characteristics: high dynamic
range and multiple rotation poses. To obtain HDR captures, we use
a Canon 5D Mark III camera with bracketed exposures. Each HDR
image is synthesized from seven differently exposed photographs
using HDRutils [Hanji et al. 2020; Hanji and Mantiuk 2023]. This
synthesis process ensures that HDR images accurately record the
physical radiance. Employing a turntable, we capture four rotational
poses for each object, rotating it by 90 degrees each time. Multi-view
images were captured for each rotation, and their camera intrinsic
and extrinsic parameters were determined using Metashape. To
align the four rotational poses, we placed two ChArUco boards dur-
ing the capture: one on the turntable and the other beside it. These
boards aided in estimating the transformation of the bounding box
with respect to the scene. Inspired by recent works that jointly
optimize NeRF and camera transformations [Lin et al. 2021], we
incorporate joint optimization of rotation transformations during
the NeRF pretraining stage to refine the estimated transformations.
In NeRF, we assigned a unique appearance embedding to each rota-
tion pose to facilitate modeling of environment lighting variations
as the object rotates.

7 EXPERIMENTS
The datasets used are first introduced, followed by the comparison
with the environment map emitter in the task of inverse rendering
and the evaluation of our emitter importance sampling.

7.1 Datasets
Following the aforementioned capture setup, we acquire four real-
world data samples in an indoor environment. We place a lamp
beside the object to simulate non-distant lighting conditions. Each
sample consists of four rotation poses, with each rotation pose
comprising 50-80 HDRmulti-view images. We use a Konica Minolta
Vivid 9i scanner to obtain the ground truth geometry. Following
the real-world data capture setup, we synthesize four synthetic data
samples using Mitsuba 3. For each set of synthetic data, we place an

Table 1: Quantitative comparison with the environment map
baseline.

Method Novel-view Synthesis Relighting Shape
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ CD↓

Ours 30.70 0.97 0.019 27.99 0.96 0.040 8.35e-6
Envmap 22.41 0.95 0.054 21.32 0.92 0.088 1.20e-4

object in an indoor scene and render it from four different rotation
poses. For each rotation pose, we synthesize 50 multi-view images.

7.2 Comparisons with Environment Map
We compare the proposed NeRF emitter with the commonly em-
ployed environment map emitter, prevalent in recent inverse ren-
dering frameworks [Vicini et al. 2022; Boss et al. 2022; Jin et al.
2023; Sun et al. 2023]. Since the NeRF emitter is designed to be a
universal component applicable across inverse rendering systems,
in principle it could be integrated into these frameworks to achieve
similar comparison results. For fair assessment, we choose the dif-
ferentiable SDF [Vicini et al. 2022] framework for its physics-based
principles, and build both our method and the baseline upon it,
thereby highlighting the differences stemming from the emitter.

We adapt the environment map baseline method to suit our data.
Firstly, we need an environment map input for the baseline. For
synthetic data, we render environment maps using the ground truth
scene in Mitsuba 3. For real data, we train a NeRF with captured
HDR images and render environment maps from the resulting
NeRF. In both cases, we place a virtual spherical camera at the
center of the object and render environment maps. When rendering
the environment map, we retain the object of interest in the scene,
and set the spherical camera’s near plane at the object’s bounding
box. This approach captures global illumination effects caused by
the object while preventing occlusion of the spherical camera. We
render an environment map for each rotation pose to capture the
variations in global illumination caused by object rotations.

Secondly, the rendered background does not match the input im-
ages when using environment maps due to parallax effects. There-
fore, for the synthetic dataset, we generate ground truth object
masks and set the background pixels in the input images to black.
During inverse rendering, the baseline renders only the object and
hides the environment map, thus generating masked rendered im-
ages that match the background-processed input images. For the
real dataset, we lend the background modeling ability of our NeRF
emitter to the baseline. Specifically, we use NeRF to render a back-
ground image behind the bounding box and a semi-transparent
image to model occlusions (if any) in front of the bounding box.
These images are composited with the rendered object image to
obtain the final image in the baseline.

Thirdly, the baseline employs a similar coarse-to-fine optimiza-
tion procedure to ours. We use the same NeRF-extracted geometry
as the shape initialization for the baseline. After these adaptations,
the key difference between our method and the baseline remains
in different emitter models.

Figure 5 presents the qualitative comparison results of the ren-
dering and shape reconstruction between our method and the en-
vironment map baseline on the synthetic datasets. We visualize
rendered images under the original lighting, reconstructed shape,
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Figure 4: Comparing the gradient images rendered by our emitter importance sampling and pure BSDF sampling.

and relighting results in two novel lighting conditions. For the
Head and Hotdog scene, we optimize the diffuse reflectance param-
eter using a diffuse BSDF following the approach by Vicini et al.
[2022]. In other scenes, we optimize the base color and roughness
parameters using a principled BSDF [Burley 2012]. In the Head
scene, shadows cast by the head onto the shoulder and chest are
evident. While the baseline appears to match these cast shadows
when rendering in the original lighting, the relighting results reveal
local shape bumps. These stem from inaccuracies during inverse
rendering, where shadows rendered by the environment map fail
to align with input images at shadow borders. In theHotdog scene,
inaccurate shadows rendered by the environment map compromise
the rendering results under original lighting. These artifacts persist
during relighting and shape visualization. Given our method’s use
of a more accurate light modeling approach using NeRF, rendered
shadows better align with input images under original lighting,
and our relighting and shape results do not exhibit such issues. In
the Teapot scene, glossy highlights are apparent. However, due
to environment map inaccuracies, baseline-rendered highlights do
not match reference images under original lighting, resulting in
inaccurate material parameters and geometry bumps, visible in
relighting results. In contrast, our method more closely replicates
glossy highlights in both original lighting and relighting results.
The Boar scene is captured in a Cornell box with a red wall on
one side and a green wall on the other. The baseline appears to
show illumination effects from the red wall on the boar’s hind leg
in the original lighting. However, relighting results reveal baked
illumination effects (green on the boar’s face, red on the boar’s
hind leg). Our method accurately renders illumination effects under
original lighting without baking reflections in relighting results.

In Table 1, we present the average quantitative results of our
method and the environment map baseline on the synthetic dataset.
We use ground truth object masks to set background pixels to
black when evaluating novel-view synthesis and relighting. This
approach provides a more precise representation of the object fore-
ground’s quality, excluding the impact of the inaccurate background
in the baseline. The PSNR metrics are exclusively computed within
the object foreground mask. Notably, our method consistently out-
performs the baseline across novel-view synthesis, relighting, and
shape reconstruction tasks.

Figure 6 and 1 show the comparison results on real-world data.
In the Cabbage,Hamster and Dog scenes, we observe attached
shadows in the original lighting. It is evident in the relighting

results that many attached shadows are baked into the baseline,
causing dark artifacts. Our method, in contrast, produces more
reasonable relighting results, indicating a more accurate material
reconstruction. The RealChair scene exhibits strong self-shadows.
We observe inaccurately cast shadows rendered by the baseline
in the original lighting. These mismatched shadow borders are
also present in the reconstructed materials during relighting. Our
method accurately renders cast shadows in the original lighting
and yields cleaner relighting results. We visualize the shape errors
as heatmaps in the insets. From these visualized shape and error
maps, we observe that our reconstructed shape is more accurate
than the baseline. A part of the checkerboard is enclosed within
the bounding box, thus modeled by surface rendering, while the
rest is modeled by NeRF. During shape visualization, we manually
crop the checkerboard part to visualize the object only.

7.3 Ablation Study
We compare our emitter importance sampling for NeRF with pure
BSDF sampling in Figure 4.

In the top row, we show two examples containing, respectively,
a rough cube and a rough sphere with a NeRF emitter trained
using multi-view renderings of the Cornell box. The camera is
positioned in a top-down perspective view. The derivative images
are computed with respect to the vertical displacement of the cube
and the radius of the sphere.

The bottom row of Figure 4 show two examples under more
complex non-distant indoor illuminations, both exhibiting self-
shadowing effects. We compute derivative images with respect to
vertical displacements of the objects.

In all four examples, converged derivative estimates (using 8192
spp) generated with our approach closely match finite-difference
references (using 65536 spp). Using lower sample counts (256 spp),
our importance sampling outperforms pure BSDF sampling signifi-
cantly.

8 DISCUSSION AND CONCLUSION
Discussion. Themain drawback of employing our proposed NeRF

emitter is the increased computational cost in evaluating NeRF.
With our multi-GPU implementation, our inverse rendering opti-
mization requires approximately 4.5 hours on 8 RTX 4090 GPUs,
whereas the baseline using an environment map completes in about
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one hour on a single RTX 4090. However, accelerating NeRF re-
mains an active area of research, and our method stands to benefit
from advancements in this direction. Recent works such as Adap-
tive Shells [Wang et al. 2023a] can potentially accelerate our ap-
proach by improving NeRF evaluation speed. Additionally, research
progress aimed at reducing the samples per pixel in inverse render-
ing, exemplified by the works of Nicolet et al. [2023]; Wang et al.
[2023b]; Chang et al. [2023], may further accelerate our approach
by reducing the number of NeRF evaluation rays.

Our emitter sampling method for NeRF does not account for
the directional dependency of the radiance function c. While this
assumption performs well with diffuse emitters, it can result in
increased rendering variance with highly directional-dependent
emitters It also overlooks occlusion introduced by the surface to
NeRF, which should decrease the sampling probabilities of occluded
emitters. However, as an initial step in the emitter importance
sampling for NeRF emitters, our proposed method achieves more
accurate light modeling and effective light sampling in inverse ren-
dering. Future work could explore this direction further to reduce
the rendering variance when using NeRF as an emitter, possibly
employing more advanced guiding techniques [Müller et al. 2017].

Conclusion. Our work showcased the efficacy of integrating
NeRF as a non-distant environment emitter within the physics-
based inverse rendering pipeline. By addressing the shortcomings
of the widely adopted distant environmental lighting model, we de-
veloped a novel approach to capture spatially varying illumination
for accurate 3D reconstruction under real-world configurations.
Furthermore, our introduction of an emitter importance sampling
technique offered significant variance reduction for rendering with
NeRF-based lighting. We demonstrated the effectiveness of our
technique using both real and synthetic inverse-rendering experi-
ments.
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Figure 5: Comparison with the environment map baseline on synthetic datasets.
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Figure 6: Comparison with the environment map baseline on real datasets.
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