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A possible world of an incomplete database table is obtained by imputing values from
the attributes (infinite) domain to the place of NULL s. A table satisfies a possible key or
possible functional dependency constraint if there exists a possible world of the table that
satisfies the given key or functional dependency constraint. A certain key or functional
dependency is satisfied by a table if all of its possible worlds satisfy the constraint.
Recently, an intermediate concept was introduced. A strongly possible key or functional
dependency is satisfied by a table if there exists a strongly possible world that satisfies
the key or functional dependency. A strongly possible world is obtained by imputing
values from the active domain of the attributes, that is from the values appearing in
the table. In the present paper, we study approximation measures of strongly possible
keys and FDs. Measure g3 is the ratio of the minimum number of tuples to be removed
in order that the remaining table satisfies the constraint. We introduce a new measure
g5, the ratio of the minimum number of tuples to be added to the table so the result
satisfies the constraint. g5 is meaningful because the addition of tuples may extend the
active domains. We prove that if g5 can be defined for a table and a constraint, then
the g3 value is always an upper bound of the g5 value. However, the two measures are
independent of each other in the sense that for any rational number 0 ≤ p

q
< 1 there

are tables of an arbitrarily large number of rows and a constant number of columns that
satisfy g3− g5 =

p
q
. A possible world is obtained usually by adding many new values not

occurring in the table before. The measure g5 measures the smallest possible distortion
of the active domains. We study complexity of determining these approximate measures.

Povzetek:

1 Introduction

The information in many industrial and research
databases may usually be incomplete due to many
reasons. For example, databases related to in-
strument maintenance, medical applications, and
surveys [8]. This makes it necessary to handle

the cases when some information missing from a
database and are required by the user. Impu-
tation (filling in) is one of the common ways to
handle the missing values [13].

A new approach for imputing values in place
of the missing information was introduced in [3],
to achieve complete data tables, using only in-
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formation already contained in the SQL table at-
tributes (which are called the active domain of an
attribute). Any total table obtained in this way
is called a strongly possible world. We use only
the data shown on the table to replace the miss-
ing information because in many cases there is no
proper reason to consider any other attribute val-
ues than the ones that already exist in the table.
Using this concept, new key and functional de-
pendency constraints called strongly possible keys
(spKeys) and strongly possible functional depen-
dencies (spFDs) were defined in [5, 4] that are
satisfied after replacing any missing value (NULL)
with a value that is already shown in the corre-
sponding attribute. In Section 2, we provide the
formal definitions of spKeys and spFDs.

The present paper continues the work started
in [5], where an approximation notion was intro-
duced to calculate how close any given set of at-
tributes can be considered as a key. Tuple re-
moval may be necessary because the active do-
mains do not contain enough values to be able to
replace the NULL values so that the tuples are pair-
wise distinct on a candidate key set of attributes
K. In the present paper, we study approxima-
tion measures of spKeys and spFDs by adding
tuples. Adding a tuple with new unique values
will add more values to the attributes’ active do-
mains, thus some unsatisfied constraints may get
satisfied.

For example, Car Model and DoorNo is de-
signed to form a key in the Cars Types table
shown in Table 1 but the table does not satisfy
the spKey sp〈Car Model,DoorNo〉. Two tuples
would need to be removed, but adding a new tu-
ple with distinct door number value to satisfy
sp〈Car Model,DoorNo〉 is better than removing
two tuples. In addition to that, we know that the
car model and door number determines the engine
type, then the added tuple can also have a new
value in the DoorNo attribute so that the table
satisfy (Car Model,DoorNo) →sp Engine Type
rather than removing other two tuples.

Table 1: Cars Types Incomplete Table
Car Model Door No Engine Type

BMW I3 4 doors ⊥
BMW I3 ⊥ electric

Ford explorer ⊥ V8
Ford explorer ⊥ V6

2 Definitions

Let R = {A1, A2, . . . An} be a relation schema.
The set of all the possible values for each attribute
Ai ∈ R is called the domain of Ai and denoted as
Di = dom(Ai) for i = 1,2,. . . n. Then, for X ⊆ R,
then DX =

∏

∀Ai∈K

Di.

An instance T = (t1,t2, . . . ts) over R is a list
of tuples such that each tuple is a function t :
R →

⋃
Ai∈R

dom(Ai) and t[Ai] ∈ dom(Ai) for all
Ai in R. By taking a list of tuples we use the
bag semantics that allows several occurrences of
the same tuple. Usage of the bag semantics is
justified by that SQL allows multiple occurrences
of tuples. Of course, the order of the tuples in an
instance is irrelevant, so mathematically speaking
we consider a multiset of tuples as an instance.
For a tuple tr ∈ T and X ⊂ R, let tr[X] be the
restriction of tr to X.

It is assumed that ⊥ is an element of each at-
tribute’s domain that denotes missing informa-
tion. tr is called V -total for a set V of attributes
if ∀A ∈ V , tr[A] 6= ⊥. Also, tr is a total tuple
if it is R-total. t1 and t2 are weakly similar on
X ⊆ R denoted as t1[X] ∼w t2[X] defined by
Köhler et.al. [12] if

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar on
X ⊆ R denoted by t1[X] ∼s t2[X] if

∀A ∈ X (t1[A] = t2[A] 6= ⊥).

For the sake of convenience we write t1 ∼w t2 if
t1 and t2 are weakly similar on R and use the
same convenience for strong similarity. Let T =
(t1, t2, . . . ts) be a table instance over R. Then,
T ′ = (t′1, t

′
2, . . . t

′
s) is a possible world of T , if ti ∼w

t′i for all i = 1, 2, . . . s and T ′ is completely NULL -
free. That is, we replace the occurrences of ⊥ with
a value from the domain Di different from ⊥ for
all tuples and all attributes. Active domain of an
attribute is the set of all the distinct values shown
under the attribute except the NULL. Note that
this was called the visible domain of the attribute
in papers [3, 4, 5, 2].

Definition 1 The active domain of an attribute
Ai (V DT

i ) is the set of all distinct values except
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⊥ that are already used by tuples in T :

V DT
i = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R.

To simplify notation, we omit the upper index T
if it is clear from the context what instance is
considered.

While a possible world is obtained by using the
domain values instead of the occurrence of NULL,
a strongly possible world is obtained by using the
active domain values.

Definition 2 A possible world T ′ of T is called a
strongly possible world (spWorld) if t′[Ai] ∈ V DT

i

for all t′ ∈ T ′ and Ai ∈ R.

The concept of strongly possible world was intro-
duced in [3]. Strongly possible worlds allow us to
define strongly possible keys (spKeys) and strongly
possible functional dependencies (spFDs).

Definition 3 A strongly possible functional de-
pendency, in notation X →sp Y , holds in table
T over schema R if there exists a strongly pos-
sible world T ′ of T such that T ′ |= X → Y .
That is, for any t′1, t

′
2 ∈ T ′ t′1[X] = t′2[X] im-

plies t′1[Y ] = t′2[Y ]. The set of attributes X is
a strongly possible key, if there exists a strongly
possible world T ′ of T such that X is a key in T ′,
in notation sp〈X〉. That is, for any t′1, t

′
2 ∈ T ′

t′1[X] = t′2[X] implies t′1 = t′2.

If T = {t1, t2, . . . , tp} and T ′ = {t′1, t
′
2, . . . , t

′
p} is

an spWorld of it with ti ∼w t′i, then t′i is called an
sp-extension or in short an extension of ti. Let
X ⊆ R be a set of attributes and let ti ∼w t′i
such that for each A ∈ R : t′i[A] ∈ V D(A), then
t′i[X] is an strongly possible extension of ti on X
(sp-extension)

3 Related Work

Kivinen et. al. [11] introduced the measure g3
for total tables. Giannella et al. [9] measure the
approximate degree of functional dependencies.
They developed the IFD approximation measure
and compared it with the other two measures: g3
(minimum number of tuples need to be removed
so that the dependency holds) and τ (the prob-
ability of a correct guess of an FD satisfaction)
introduced in [11] and [10] respectively. They de-
veloped analytical bounds on the measure differ-
ences and compared these measures analysis on

five datasets. The authors show that when mea-
sures are meant to define the knowledge degree
of X determines Y (prediction or classification),
then IFD and τ measures are more appropriate
than g3. On the other hand, when measures are
meant to define the number of ”violating” tuples
in an FD, then, g3 measure is more appropriate
than IFD and τ .

In [15], Jef Wijsen summarizes and discusses
some theoretical developments and concepts in
Consistent query answering CQA (when a user
queries a database that is inconsistent with re-
spect to a set of constraints). Database repairing
was modeled by an acyclic binary relation ≤db on
the set of consistent database instances, where r1
≤db r2 means that r1 is at least as close to db as
r2. One possible distance is the number of tuples
to be added and/or removed. In addition to that,
Bertossi studied the main concepts of database
repairs and CQA in [6], and emphasis on tracing
back the origin, motivation, and early develop-
ments. J. Biskup and L. Wiese present and ana-
lyze an algorithm called preCQE that is able to
correctly compute a solution instance, for a given
original database instance, that obeys the formal
properties of inference-proofness and distortion
minimality of a set of appropriately formed con-
straints in [7].

4 Approximation of strongly

possible integrity constraints

Definition 4 Attribute set K is an approximate
strongly possible key of ratio a in table T , in no-
tation asp−a 〈K〉, if there exists a subset S of the
tuples T such that T \ S satisfies sp 〈K〉, and
|S|/|T | ≤ a. The minimum a such that asp−a 〈K〉
holds is denoted by g3(K).

The measure g3(K) has a value between 0 and
1, and it is exactly 0 when sp 〈K〉 holds in T ,
which means we don’t need to remove any tuples.
For this, we used the g3 measure introduced in
[11], to determine the degree to which ASP key
is approximate. For example, the g3 measure of
sp〈X〉 on Table 2 is 0.5, as we are required to
remove two out of four tuples to satisfy the key
constraint as shown in Table 3.

The g3 approximation measure for spKeys was
introduced in [5]. In this section, we introduce a
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new approximation measure for spKeys.

Definition 5 Attribute set K is an add-
approximate strongly possible key of ratio b in
table T , in notation asp+b 〈K〉, if there exists a
set of tuples S such that the table TS satisfies
sp 〈K〉, and |S|/|T | ≤ b. The minimum b such
that asp+b 〈K〉 holds is denoted by g5(K).

The measure g5(K) represents the approximation
which is the ratio of the number of tuples needed
to be added over the total number of tuples so
that sp 〈K〉 holds. The value of the measure
g3(K) ranges between 0 and 1, and it is exactly 0
when sp 〈K〉 holds in T , which means we do not
have to add any tuple. For example, the g5 mea-
sure of sp〈X〉 on Table 2 is 0.25, as it is enough
to add one tuple to satisfy the key constraint as
shown in Table 4.

Definition 6 For the attribute sets X and Y ,
σ : X →sp Y is a remove-approximate strongly
possible functional dependency of ratio a in a ta-
ble T , in notation
T |=≈−

a X →sp Y , if there exists a set of tuples
S such that the table T \ S |= X →sp Y , and
|S|/|T | ≤ a. Then, g3(σ) is the smallest a such
that T |=≈−

a σ holds.

Definition 7 For the attribute sets X and Y , σ :
X →sp Y is an add-approximate strongly possible
functional dependency of ratio b in a table T , in
notation T |=≈+

b X →sp Y , if there exists a set
of tuples S such that the table T ∪S |= X →sp Y ,
and |S|/|T | ≤ b. Then, g5(σ) is the smallest b
such that T |=≈+

b σ holds.

Let T be a table and U ⊆ T be the set of the
tuples that we need to remove so that the spKey
holds in T , i.e, we need to remove |U | tuples, while
by adding a tuple with new values, we may make
more than one of the tuples in U satisfy the sp-
Key using the new added values for their NULLs.
In other words, we may need to add a fewer num-
ber of tuples than the number of tuples we need to
remove to satisfy an spKey in the same given ta-
ble. For example, Table 2 requires removing two
tuples to satisfy sp 〈X〉, while adding one tuple is
enough.

Table 2: Incomplete Table to measure sp〈X〉

X

X1 X2

⊥ 1
2 ⊥
2 ⊥
2 2

Table 3: The table after removing (asp−a 〈X〉)

X

X1 X2

⊥ 1
2 2

4.1 Relation between g3 and g5

measures

Results together with their proofs of this subsec-
tion were reported in the conference volume [1],
so the proofs are not included here. The following
Proposition is used to prove Proposition 2.

Proposition 1 Let T be an instance over schema
R and let K ⊆ R. If the K-total part of the ta-
ble T satisfies the key sp 〈K〉, then there exists a
minimum set of tuples U to be removed that are
all non-K-total so that T \ U satisfies sp 〈K〉 .

Proposition 2 For any K ⊆ R with |K| ≥ 2, we
have g3(K) ≥ g5(K).

Apart form the previous inequality, the two mea-
sures are totally independent for spKeys.

Table 4: The table after adding (asp+b 〈X〉)

X

X1 X2

⊥ 1
2 ⊥
2 ⊥
2 2
3 3
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Theorem 1 Let 0 ≤ p
q
< 1 be a rational num-

ber. Then there exist tables over schema {A1, A2}
with arbitrarily large number of rows, such that
g3({A1, A2})− g5({A1, A2}) =

p
q
.

Unfortunately, the analogue of Proposition 1 is
not true for spFDs, so the proof of the following
theorem is quiet involved.

Theorem 2 Let T be a table over schema R, σ :
X →sp Y for some X,Y ⊆ R. Then g3(σ) ≥
g5(σ).

Theorem 3 can be proven by a construction simi-
lar to the proof of Theorem 1.

Theorem 3 For any rational number 0 ≤ p
q
< 1

there exists tables with an arbitrarily large num-
ber of rows and bounded number of columns that
satisfy g3(σ)− g5(σ) =

p
q
for σ : X →sp Y .

4.2 Complexity problems

Definition 8 The SPKey problem is the follow-
ing.
Input Table T over schema R and K ⊆ R.
Question Is it true that T |= sp〈K〉?
The SPKeySystem problem is the following.
Input Table T over schema R and K ⊆ 2R.
Question Is it true that T |= sp〈K〉?
The SPFD problem is the following.
Input Table T over schema R and X,Y ⊆ R.
Question Is it true that T |= X →sp Y ?

The following was shown in [4].

Theorem 4 SPKey∈P, SPkeySystem and SPFD
are NP-complete

However, the approximation measures raise new,
interesting algorithmic questions.

Definition 9 The SpKey-g3 problem is the
following.
Input Table T over schema R, K ⊆ R and
0 ≤ q < 1.
Question Is it true that g3(K) ≤ q in table T?
The SpKey-g5 problem is the following.
Input Table T over schema R, K ⊆ R and
0 ≤ q < 1.
Question Is it true that g5(K) ≤ q in table T?

Proposition 3 The decision problem SpKey-g5
is in P.

Proof: Let us assume that tuples si : i =
1, 2, . . . , p over schema R are such that T ∪
{s1, s2, . . . sp} is optimal, so g5(K) = p

m
. Then

clearly we may replace si by s′i = (zi, zi, . . . , zi) for
all i = 1, 2, . . . , p where zi’s are pairwise distinct
new values not appearing in the (extended) ta-
ble T ∪{s1, s2, . . . sp} so that T ∪{s′1, s

′
2, . . . s

′
p} |=

sp〈K〉. Thus, if g5(K) ≤ q is needed to be checked
for a table T ofm tuples, one may add ⌊q·m⌋ com-
pletely new tuples to obtain table T ′ and check
whether T ′ |= sp〈K〉 in polynomial time by The-
orem 4. �

Theorem 5 Decision problem SpKey-g3 is in P.

Proof: Consider the relational schema R and
K ⊆ R. Furthermore, let T be an instance over R
with NULLs. Let T ′ be the set of total tuples T ′ =
{t′ ∈ ΠA∈KV DT (A) : ∃t ∈ T such that t[K] ∼w

t′[K]}, furthermore let G = (T, T ′;E) be the bi-
partite graph, called the K-extension graph of T ,
defined by {t, t′} ∈ E ⇐⇒ t[K] ∼w t′[K]. Find-
ing a matching of G that covers all the tuples in
T (if exists) provides the set of tuples in T ′ to
replace the incomplete tuples in T with, to verify
that K is an spKey.

It was shown in [5] that the g3 approximation
measure for strongly possible keys satisfies

g3(K) =
|T | − ν(G)

|T |
.

where ν(G) denotes the maximum matching size
in the K-extension graph G. However, the size of
G is usually exponential function of the size of the
input of the decision problem SpKey-g3, as T ′ is
usually exponentially large.

In order to make our algorithm run in poly-
nomial time we only generate part of T ′.
Let T = {t1, t2 . . . tm} and ℓ(ti) = |{t⋆ ∈
ΠA∈KV DT (A) : t⋆ ∼w ti[K]}|. Note that ℓ(ti) =∏

A : ti[A]=⊥ |V DT (A)|, hence these values can be
calculated by scanning T once and using appro-
priate search tree data structures to hold values
of active domains of each attribute. Sort tu-
ples of T in non-decreasing ℓ(ti) order, i.e. as-
sume that ℓ(t1) ≤ ℓ(t2) ≤ . . . ≤ ℓ(tm). Let
j = max{i : ℓ(ti) < i} and Tj = {t1, t2, . . . tj},
furthermore T ⋆

j = {t⋆ : ∃t ∈ Tj : t⋆ ∼w t[K]} ⊆

ΠA∈KV DT (A). Note that |T ⋆
j | ≤

1
2j(j − 1). If

∀i = 1, 2, . . . ,m : ℓ(ti) ≥ i, then define j = 0 and
T ⋆
j = ∅. Let G⋆ = (Tj , T

⋆
j ;E

⋆) be the induced
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subgraph of G on the vertex set Tj ∪ T ⋆
j . Note

that |T ⋆
j | ≤

1
2j(j − 1).

Claim ν(G) = ν(G⋆) + |T \ Tj|.
Proof of Claim: The inequality ν(G) ≤ ν(G⋆) +
|T \ Tj | is straightforward. On the other hand,
a matching of size ν(G⋆) in G⋆ can greedily be
extended to the vertices in |T \ Tj |, as ti ∈ T \ Tj

has at least i neighbours (which can be generated
in polynomial time).

Thus it is enough to determine ν(G⋆) in order
to calculate g3(K), and that can be done in poly-
nomial time using Augmenting Path method [14].
� Note that the proof above shows that the exact
value of g3(K) can be determined in polynomial
time. This gives the following corollary.

Definition 10 The decision problem SpKey-g3-
equal-g5 is defined as Input Table T over schema
R, K ⊆ R.
Question Is g3(K) = g5(K)?

Corollary 1 The decision problem SpKey-g3-
equal-g5 is in P.

Example Let R = {A1, A2, A3}, K1 =
{A1, A2},K2 = {A2, A3}.

T =

A1 A2 A3

t1 1 ⊥ 1
t2 1 2 2
t3 2 1 1
t4 2 1 1

T \ {t4} |= sp〈K1〉 and T \ {t4} |= sp〈K2〉, but
the spWorlds are different. In particular, this im-
plies that for K = {K1,K2} we have g3(K) >
max{g3(K) : K ∈ K} On the other hand, trivially
g3(K) ≥ max{g3(K) : K ∈ K} holds. This moti-
vates the following definition.

Definition 11 The problem Max-g3 defined as
Input Table T over schema R, K ⊆ 2R.
Question Is g3(K) = max{g3(K) : K ∈ K}?

Theorem 6 Let Table T over schema R and
K ⊆ 2R. The decision problem Max-g3 is NP-
complete.

Proof: The problem is in NP, a witness con-
sists of a set of tuples U to be removed, an index
j : |U |

|T | = g3(Kj), also an spWorld T ′ of T \U such

that each Ki is a key in T ′. Verifying the witness
can be done in three steps.

1. g3(Kj) 6≤
|U |−1
|T | is checked in polynomial time

using Theorem 5.

2. For all i 6= j check that g3(Ki) ≤ |U |
|T | using

again Theorem 5.

3. Using standard database algorithms check
that ∀i : Ki is a key in T ′.

On the other hand, the SPKeySystem problem
can be Karp-reduced to the present question as
follows. First check for each Ki ∈ K separately
whether sp〈Ki〉 holds, this can be done in poly-
nomial time. If ∀i : T |= sp〈Ki〉 then give K
and T as input for Max-g3. It will answer Yes
iff T |= sp〈K〉. However, if ∃i : T 6|= sp〈Ki〉,
then give the example above as input for Max-
g3. Clearly both problems have No answer. �

According to Theorem 4, it is NP-complete to de-
cide whether a given SpFD holds in a table. Here
we show that approximations are also hard.

Definition 12 The SPFD-g3 (SPFD-g5) prob-
lems are defined as follows.
Input A table T over schema R, X,Y ⊆ R, and
positive rational number q.
Question Is g3(X →sp Y ) ≤ q? ( g5(X →sp Y ) ≤
q?)

Theorem 7 Both decision problems SPFD-g3
and SPFD-g5 are NP-complete.

Proof: To show that SPFD-g3∈NP one may
take a witness consisting of a subset U ⊂ T , an
spWorld T ⋆ of T \ U such that T ⋆ |= X → Y
and |U |/|T | ≤ q. The validity of the witness can
easily be checked in polynomial time. Similarly,
to show that SPFD-g5∈NP one may take a set of
tuples S over R and an spWorld T ⋆ ofT ∪ S such
that T ⋆ |= X → Y and |S|/|T | ≤ q.

On the other hand, if |T | = m and q < 1/m,
then both SPFD-g3 and SPFD-g5 are equivalent
with the original SPFD problem, since the small-
est non-zero approximation measure is obtained
if one tuple is needed to be deleted or added.
According to Theorem 4, SPFD problem is NP-
complete, thus so are SPFD-g3 and SPFD-g5. �

Acknowledgement

Research of the second author was partially sup-
ported by the National Research, Development
and Innovation Office (NKFIH) grants K–116769



Approximate Keys and Functional Dependencies. . . Informatica 45 page 501–yyy 7

and SNN-135643. This work was also supported
by the BME- Artificial Intelligence FIKP grant
of EMMI (BME FIKP-MI/SC) and by the Min-
istry of Innovation and Technology and the Na-
tional Research, Development and Innovation Of-
fice within the Artificial Intelligence National
Laboratory of Hungary.

References

[1] M. Al-Atar and A. Sali. Approximate keys
and functional dependencies in incomplete
databases with limited domains. In Foun-
dations of Information and Knowledge Sys-
tems 12th International Symposium, FoIKS
2022 Helsinki, Finland, June 20–23, 2022
Proceedings, volume 13388 of LNCS, pages
147–167. Springer Nature Switzerland AG,
2022.

[2] M. Al-Atar and A. Sali. Strongly possible
functional dependencies for sql. Acta Cyber-
netica, 2022.

[3] M. Alattar and A. Sali. Keys in rela-
tional databases with nulls and bounded
domains. In European Conference on Ad-
vances in Databases and Information Sys-
tems, pages 33–50. Springer, 2019.

[4] M. Alattar and A. Sali. Functional depen-
dencies in incomplete databases with lim-
ited domains. In International Symposium
on Foundations of Information and Knowl-
edge Systems, pages 1–21. Springer, 2020.

[5] M. Alattar and A. Sali. Strongly possible
keys for sql. Journal on Data Semantics,
9(2):85–99, 2020.

[6] L. Bertossi. Database repairs and consis-
tent query answering: Origins and further
developments. In Proceedings of the 38th
ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 48–
58, 2019.

[7] J. Biskup and L. Wiese. A sound
and complete model-generation procedure
for consistent and confidentiality-preserving
databases. Theoretical Computer Science,
412(31):4044–4072, 2011.

[8] A. Farhangfar, L. A. Kurgan, and
W. Pedrycz. A novel framework for
imputation of missing values in databases.
IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans,
37(5):692–709, 2007.

[9] C. Giannella and E. Robertson. On approx-
imation measures for functional dependen-
cies. Information Systems, 29(6):483–507,
2004.

[10] L. A. Goodman and W. H. Kruskal. Mea-
sures of association for cross classifications.
Measures of association for cross classifica-
tions, pages 2–34, 1979.

[11] J. Kivinen and H. Mannila. Approximate
inference of functional dependencies from
relations. Theoretical Computer Science,
149(1):129–149, 1995.
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