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Abstract  

 The number of published Machine Learning Interatomic Potentials (MLIPs) has 

increased significantly in recent years. These new data-driven potential energy approximations 

often lack the physics-based foundations that inform many traditionally developed interatomic 

potentials and hence require robust validation methods for their applicability, accuracy, 

computational efficiency, and transferability to the intended applications. This work presents a 

sequential, three-stage workflow for MLIP validation: (i) preliminary validation, (ii) static 

property prediction, and (iii) dynamic property prediction. This material-agnostic procedure is 

demonstrated in a tutorial approach for the development of a robust MLIP for boron carbide 

(B4C), a widely employed, structurally complex ceramic that undergoes a deleterious 

deformation mechanism called ‘amorphization’ under high-pressure loading. It is shown that the 

resulting B4C MLIP offers a more accurate prediction of properties compared to the available 

empirical potential.  
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1. Introduction 

 Atomistic simulations have unlocked access to nano-level observation and prediction of 

material behavior. These studies lack many of the physical and fiscal restrictions of their 

experimental counterparts and hence enable the study of materials before they are synthesized in 

a laboratory and the analysis of materials subjected to complex boundary conditions. Evaluation 

of material viability for extreme applications (ballistic, nuclear, aerospace, etc.) is heavily reliant 

on computer simulations as the necessary temperatures and pressures are difficult to achieve, if 

not impossible to replicate experimentally. Atomistic simulations such as molecular dynamics 

(MD) rely on interatomic potentials (IPs), which describe the potential energy surface (PES) of a 

material and hence can be used to compute interatomic forces under any deformation conditions. 

An ideal IP must satisfy three main requirements: (i) accuracy, (ii) transferability, and (iii) 

computational efficiency during runtime. The accuracy of an IP is directly responsible for the 

ability of a simulation to capture underlying physics, its transferability enables the investigation 

of more dynamic environments (beyond the trained environment and data) where diverse atomic 

configurations may be encountered, and its computational efficiency allows for larger and longer 

simulations at increased speed for observation of behaviors beyond the nanoscale. Unfortunately, 

traditional IP development methods are often limited in their ability to effectively satisfy the 

above three requirements.  

 Ab initio or quantum mechanics (QM) based methods, such as Density Functional Theory 

(DFT), model the PES by solving for the electronic structure of a material based on atomic 

species and their relative positions using an approximation of Schrödinger’s equation. This 

method can be both accurate and transferable, as it relies on laws of physics to make predictions 

of material properties and behaviors. Unfortunately, this method comes with a very high 
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computational cost, with the largest systems being limited to 1000s of atoms for ps time 

durations [1]. Empirical or semi-empirical models (Lennard-Jones [2], Embedded-Atom Method 

[3], Stillinger-Weber [4], etc.) are constructed with a relatively simple functional form and 

parameters fitted so that the simulations reproduce material properties (bonding behavior, 

vibrational properties, thermodynamic behavior, etc.). These models greatly simplify energy and 

force calculations by approximating the PES of a material system, allowing for simulations of 

millions of atoms for longer time durations. However, this approach comes at the cost of 

transferability, with a single empirical model being developed for use in a narrow range of 

simulation conditions. Moreover, the development of empirical models is non-trivial because it 

often needs extensive knowledge of materials science and chemistry for parameter selection and 

fitting. This necessary human intervention in classical IP development coupled with their 

sometimes-limited transferability results in a higher barrier-to-entry for the computational 

evaluation of promising, novel materials for extreme applications. Until recently, ab initio and 

empirical models were the two dominant methods of describing the PES of a material system, 

but as the need for modeling more complex materials emerges, the demand for more flexible IPs 

increases. 

 Due to rapid improvements in computing power and database availability, machine 

learning (ML) methods have exploded in popularity across nearly every scientific field of study. 

Computational materials modeling is no exception, with machine learning interatomic potentials 

(MLIPs) promising to bring almost ab initio accuracy at the speed of empirical potentials [5]. 

MLIPs can extract the intrinsic relationship between atomic configuration and potential energy 

using statistical learning algorithms. Such statistical algorithms can be transferable across a wide 

range of material systems and deformation conditions at an increased computational efficiency. 
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This approach to IP development is particularly useful when applied to the modeling of ceramics 

with complex crystal structure. The diverse energy landscape of such structurally complex 

ceramics can challenge the already limited transferability of traditional empirical potentials. 

However, MLIPs can leverage their inherent flexibility to learn implicit energy-configuration 

relationships efficiently and deliver a robust model for prediction of material response.  

 The data-driven nature of ML methods naturally breeds doubt in their capability to 

capture physics and not just memorize trends in the training database. MLIPs have shown 

remarkable success in accurately and efficiently approximating the PES of Si [6], Ti [7], GeTe 

(phase change materials) [8], and the Si-C-N system [9].  However, in many published articles, 

minimal details are provided on how the potential is developed, what kind of training data is 

needed, the influence of various parameters on the MLIP development process, and its 

transferability to more complex situations. Many decisions are critically important at various 

stages of MLIP development (e.g., selection of training data composition, data representation, 

simulation domain sampling) and due to the “black-box” nature of some ML-methods the precise 

model creation pathway should be explicitly described to elucidate the effects of such variables 

on the final potential. Accordingly, the goal of this work is to shed more light on the details of 

the development process, the breadth of training database diversity needed, and its predictability 

beyond the trained environment, with a specific focus on complex, non-unary ceramic systems. 

The objectives of this work are twofold: (i) Define a robust, material-agnostic procedure for 

development and validation of a MLIP for structural ceramics with complex crystal structure and 

(ii) apply this process to a well-studied ceramic system to provide a robust generalized 

framework for expansion to other complex systems. 
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 In particular, our interest is in boron-icosahedral ceramics, which have a unique crystal 

structure with a 12-atom icosahedron and a three- or two-atom chain in a unit cell. In addition, 

icosahedral ceramics also exhibit polymorphism. For example, boron carbide has 52 

polymorphic structures [10] and a synthesized material may contain many of these polymorphs 

at different volume fractions. These ceramics have a desirable combination of properties which 

allows them to be used in various extreme conditions [11-15]. For example, the open-caged 

structure and highly covalent bonding provide low density and high hardness [16] which are 

ideal for impact applications [13], while its high neutron absorption and high-temperature 

stability is promising in nuclear radiation shielding applications [17]. Computational simulations 

of boron-icosahedral ceramics under extreme environments, such as shock loading, are necessary 

to test their viability without resource-intensive experiments. Unfortunately, the barrier for 

atomistic analysis of these advanced ceramics remains high due to their complex structure, 

energy description, and deformation response. Among the boron-icosahedral ceramics, only 

boron carbide (B4C) has an established IP [18]; this ReaxFF potential has been used to predict 

material behavior in shock environments [19-21]. However, concerns about the applicability of 

ReaxFF potentials across a broad range of atomic environments (bulk, surface, cluster, etc.) have 

been raised [22]. Recently, An et al. have demonstrated some of the promising capabilities of 

icosahedral-ceramic NN-based MLIPs under various conditions in large-scale simulations [23-

25]. Unfortunately, the computational cost associated with the generation of large training 

databases (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠~ 270,000 to 1,200,000 [26-29]) often used in training complex NN 

interatomic potentials continues to limit their rapid development. Thus, there is a need for a 

systematic IP development method to minimize superfluous database additions for B4C and other 

complex ceramics while maintaining sufficient accuracy and transferability. Through our 
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proposed validation approach, we train a highly accurate NN-based B4C MLIP with a 

significantly reduced training database size of ~39,000 samples.  

Ultimately, this manuscript takes a tutorial-like approach to provide a robust and 

material-agnostic MLIP development process for complex ceramics and is organized as follows. 

Section 2 outlines and reviews MLIP ingredients and provides a development workflow that is 

then applied to the boron carbide system. Section 3 presents the results of the MLIP workflow 

for B4C, followed by discussion on the data requirement, predictive power, and transferability in 

Section 4. Section 5 summarizes the findings of the manuscript and provides major conclusions.  

2. Method Development  

 In general, the MLIP development process consists of four major components: (i) training 

database, (ii) regression model, (iii) data representation, and (iv) model validation. This section 

discusses the importance of each component, provides best practices, and applies them to B4C 

MLIP development. 

2.1 Training Database 

 The quality of any ML model is directly linked to the quality of its training database. In 

the case of MLIP development, a high-quality training database must contain atomic 

configurations that are reasonably representative of all anticipated configurations in the intended 

simulation environments. Thus, the data set for MLIP training consists of atomic species and 

coordinates, their associated total energy, forces, and virial stresses for a broad range of atomic 

configurations (e.g., various strain levels in tension, compression, and shear loading as well as 

atomic configurations in different material phases). This data is generated with ab initio methods 

to maximize accuracy, though supplementation can be made with data generated with empirical 



 

7 

potentials for computational efficiency (assuming a sufficiently accurate empirical IP is 

available). The specific structures in the database should be curated to have sufficient energetic 

diversity within the intended simulation domain. This allows the model to see different atomic 

configurations, thus increasing the transferability of the MLIP under unknown or more complex 

loading scenarios. It should be noted that higher energetic diversity in the training database can 

require much larger databases for adequate learning, which is computationally costly to generate. 

Thus, there is a balance between the inclusion of sufficient energetic diversity and the  

 

Figure 1. The four most prevalent and energetically favorable B4C polytypes used in MLIP training data. Boron 

atoms are shown in green with C atoms shown in red. The notation in the ( ) refers to the chain between boron 

icosahedra. 

minimization of the training database size depending on the intended final application.  

 The behavior of B4C in extreme environments, especially during high-rate and shock-

loading applications, is the focus of our study, thus the MLIP training database is curated for 

those conditions. Due to the size similarity between boron and carbon, they both can occupy 

either chain or icosahedral positions. This results in 52 energetically stable B4C polytypes, and 

among these the four most prevalent structures being B12(CCC), B11Ce(CBC), B11Cp(CBC), and 

B12(CBC) [10], each of which are shown in Figure 1. Thus, we include these four polytypes to 

capture a range of possible environments. 2 x 2 x 2 supercells (120 atoms) of these structures are 

equilibrated in an NVT ensemble using ab initio MD (AIMD) calculations at various 
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temperatures (5 K to 3650 K in steps of 675 K) for 1 ps, with snapshots taken every 1 fs. 

Snapshots of various modes of deformation (shear, uniaxial, and volumetric) are included for 

each polytype to increase the energetic diversity in the training set. All data is generated using 

the projector-augmented-wave (PAW) method [30, 31] with the Vienna Ab Initio Simulation 

Package (VASP) [32-35] software. The exchange-correlation energy is modeled by the Perdew-

Burke-Ernzerhof (PBE) functional [36]. A cutoff energy of 700 eV is selected for the plane-wave 

basis set, using the tetrahedron method with Blöchl corrections with 8 k-points for the Brillouin 

zone integration. The structural relaxations are carried out with tolerances of 10-6 eV for 

electronic convergence and 10-5 eV for ionic convergence. The resulting database consists of 

39,083 total snapshots that are randomly shuffled before being divided into a 90%-10% training-

testing split.  

2.2 Choice of regressor 

 The core of ML-based methods is the learning algorithm, or regressor, used to map the 

input to the output. There are several types of regressors, each with their respective advantages 

and challenges. For MLIP development, most force fields fall in one of three groups: (i) linear 

regression models, (ii) kernel-based models, and (iii) neural network (NN)-based models. Linear 

regressor force fields (e.g., SNAP [37], MTP [38], UF3 [39]) are based on a linear combination 

of input features of the system of interest. By leveraging the bulk of computational resources up-

front on descriptor formulations, such models can offer extremely computationally efficient force 

fields with training times on the order of seconds [39]. A caveat to this efficiency is the reliance 

on feature extraction of the system, with more complex systems (i.e., those with many energy 

contributions) often requiring large feature sets and can thus be prone to overfitting. Kernel-

based MLIPs (e.g., GAP [40], AGNI [41]) use similarity functions, or kernels, to predict atomic 
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forces and energies based on structural environments in the reference database. These models are 

ideal for systems with smaller training databases, however choosing and optimizing kernels can 

require significant human intervention which increases development time and may reduce 

transferability. Kernel-based models can also become memory-intensive as they store reference 

configurations for use in energy predictions during run-time.  

 On the other hand, NN-based models mimic the biological learning processes of the brain 

and consist of a series of interconnected layers of nodes (neurons) with each node having an 

activation value determined by a weighted sum of nodes from the previous layer. The weights 

associated with node-node connections are optimized via a backpropagation learning algorithm 

[42] during model training. This node-layer architecture allows the NN to “activate” or “inhibit” 

specific neural pathways to learn complex relationships not necessarily discernible by human 

observation. The flexibility of NN architectures also allows for learning of complex functional 

forms of the PES and other parameters. NNs with several hidden layers are “deep” learners, and 

thus do not require feature engineering to the extent that “shallow” methods like kernel-based 

models do. These benefits come with a cost, as most NNs require substantially larger training 

data sets and are “black-box” in nature, lacking the physical interpretability of their shallow-

learning counterparts. Fortunately, with growing computing power and open-access databases, 

access to large amounts of training data for MLIPs has become less prohibitive. 

 Many MLIPs for complex materials rely on the flexibility and hands-off nature of NNs to 

capture hidden features within atomic structures to predict energies in a variety of environments. 

For example, Huang et al. [43] developed a deep learning potential for boron subphosphide 

(B12P2) capable of capturing nanotwinning and other defects that have been widely observed in 

similar boron-icosahedral materials [16, 44]. We thus employ a deep, densely connected, NN 
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model (via DeePMD-kit [45]) for learning the B4C PES to maximize flexibility for a dynamic 

environment under extreme conditions and minimize human intervention that would be 

necessary for future implementation in other boron icosahedral ceramics subjected to complex 

loading.  

 Despite its flexibility, the same NN model may not be ideal for all systems, and 

hyperparameters must be chosen to optimize the regressor for the given system. The model 

architecture (activation function, number of layers and neurons), choice of weight regularization, 

learning rate, and loss-function coefficients are particularly influential. There are several 

methods available for automatic hyperparameter optimization in the literature [46-48]. To 

demonstrate the tuning process, results for a manual optimization of these parameters for the B4C 

system are given and discussed in Section 3.1.  

2.3 Data Representation 

 Data representation describes the local atomic configuration in a machine-readable 

format (a descriptor) and captures the relevant features for the given system (3-body terms, 

polarity, long-range interactions, etc.). What features are considered relevant will depend on the 

regressor model, as more flexible models (like deep NNs) can intrinsically extract important 

features. An ideal descriptor of atomic configuration is invariant with respect to translation, 

rotation, and atomic permutation, while also being smooth (differentiable) and unique [49, 50]. 

Several off-the-shelf packages are available for processing of raw, ab initio-generated data to 

machine readable descriptors [51]. Various descriptors are available (e.g., Coulomb Matrix [52], 

SOAP [53], ACSF [54]) with the biggest differentiator being their resolution; global descriptors 

like the Coulomb Matrix encode the entirety of the system, while local descriptors like SOAP 
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and ACSF represent local atomic configuration based on provided cutoff radii (the radius within 

which an atom influences its neighbors) and/or neighbor lists.  

 The DeePMD-kit descriptor uses symmetry functions (similar to ACSF) and an 

embedded neural network to map atomic positions to a descriptor. The high resolution of this 

descriptor is ideal for the observation of highly localized, dynamic effects present under extreme 

conditions, while the inclusion of an embedding network allows the descriptor mapping to learn 

and evolve during training. This descriptor also consists of several tunable hyperparameters: 

embedding network architecture, activation function, choice of interaction terms (2-body, 3-

body, polarity), cutoff radii, axis neuron, and a maximum number of neighbors. Specifically, for 

B4C, we choose to include all information (radial and angular) for a 2-body embedding 

descriptor to capture the directionality of atomic bonding in the crystal structure. Other 

hyperparameters for the descriptor are chosen based on tuning experiments (Section 3).  

2.4 Model Validation 

 Validation of the MLIP is crucial for the assessment of its applicability to the desired 

problem and observation of the extent of transferability beyond the trained environment. In the 

case of PES-fitted models, their ability to capture various physical and mechanical properties, 

and behaviors beyond the given reference (training) dataset is required to evaluate the 

generalizability or transferability of the IP to other environments or modes of deformation. 

Validation metrics for MLIPs vary in complexity, ranging from general statistical error 

evaluation (in forces, energies, and virial stresses) to prediction of material properties (lattice 

constants, elastic constants, thermodynamic properties, etc.). 

 The precise validation metrics used for each MLIP are dependent on the application of 

the model, with models for diverse simulation conditions requiring more thorough validation. To 
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provide structure and guidance, we propose a sequential model validation workflow, as depicted 

in Fig. 2, consisting of three stages with increasing complexity: (i) preliminary evaluation, (ii) 

static property prediction, and (iii) dynamic property (or behavior) prediction. The sequential 

nature of this workflow can reduce MLIP development time and increase its accuracy as well as 

transferability as models that do not pass early validation stages would not progress to later, 

more computationally challenging, and expensive stages. Specific metrics chosen for each stage 

(particularly in stage 2 and 3) are left to the user to customize depending on their application. For 

example, if lattice defects are of interest, they would be included in the training database as well 

as structures used for the validation workflow. In this case, the formation  
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Figure 2. Proposed MLIP validation workflow, along with example metrics, to capture material behavior under 

shock loading. The model validation metrics at each stage may be different depending on the intended final 

application of the MLIP. Adjustments can be made to the model after each validation stage if performance is 

unsatisfactory. 

energies of defects can be included in stage 2 validation, while diffusion kinetics would be an 

applicable stage 3 metric. This procedure can be automated and integrated into existing on-the-

fly validation algorithms [55] to provide a more physics-informed aspect to model vetting. 

Preliminary evaluation (stage 1) of MLIPs consists of basic analysis of the developed 

model. Only models that perform well in cross-validated energy, force, and virial stress 

prediction error and have stable learning curves will move on to subsequent stages where more 

advanced (and computationally costly) testing can take place. In stage 2, MLIPs are tested for 

their ability to accurately predict static material properties (i.e., elastic constants, lattice 

constants, material density, etc.) using atomistic simulation software, such as the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS [56]). The properties calculated 

using the MLIP can then be directly compared to ab initio results and/or experimental results 

(e.g., elastic constants or wave velocities in various orientations of the crystal). This portion of 

the testing process will assess the ability of the MLIP to predict properties that it has not 

explicitly been trained on, confirming that the model has learned the basic physics of bonding for 

the material system of interest. Finally, dynamic behaviors are computed (stage 3), specifically 

involving the behavior under various thermal conditions and the making and breaking of bonds. 

The ability of the MLIP to accurately predict phase changes, thermal transport properties, shock 

response or other deformation environments, etc., provides adequate final validation that the 

developed MLIP is ready for use in MD simulations for the intended application (e.g., ballistic 

impact). These proposed stage 3 measures may involve complex chemical reaction processes and 
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thus are amongst the most robust metrics of a MLIP’s predictive power beyond the trained 

environment. 

3. B4C MLIP Development  

 In this section we discuss the specifics of each validation stage discussed in Fig. 2 for a 

B4C MLIP intended for extreme conditions, and how one set of results inform subsequent 

adjustments to the model.  

3.1 Stage 1: Preliminary Evaluation 

 Preliminary evaluation consists of model hyperparameter optimization using target 

prediction-based error metrics, and selection of the best performing parameter set (based on root 

mean square error (RMSE)) for further model development in terms of static and dynamic 

material property and performance metrics. All initial hyperparameters (Model 1.0 in Table 1) 

are chosen based on the recommendations given by DeePMD-kit documentation [45]. For a more 

detailed list of all hyperparameters used, the input scripts of all mentioned models have been 

made available on GitHub1. 

 Automatic hyperparameter optimizations through grid-search methods are ideal for 

covering a large portion of parameter-space with minimal human intervention. However, this 

process can become extremely costly for complex regressors (i.e., NNs) with larger parameter 

sets and longer training times. Thus, we demonstrate the process of manual optimization for 

three DeePMD-kit NN parameters: (i) embedding network, (ii) cutoff radii, and (iii) fitting 

network. Table 1 illustrates several MLIP models with varying hyperparameter sets, organized 

into three sections based on the tuning of these parameters. The embedding network is an 

 
1 https://github.com/SubhashUFlorida/B4C-MLIP.git 

https://github.com/SubhashUFlorida/B4C-MLIP.git
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additional NN used in generating the descriptor for a series of relative radial distances. The 

architecture (number of neurons and layers) of this network is analogous to the complexity of the 

descriptor, with large networks resulting in larger, more complex descriptors and higher 

computational cost in model training and application. The cutoff radii consist of smooth and hard 

radial limits for interatomic interactions. Finally, the fitting network is the architecture for the 

NN mapping the descriptor to its respective energy value, force vector, and virial stress tensor. 

Further details on all hyperparameters for DeePMD-kit package can be found in [45]. All models 

share the same training database described in Section 2.1, with shear, uniaxial, and volumetric 

strain states ranging from -1% to 1%. Each hyperparameter is varied in isolation, with the best 

performing value persisting in subsequent tunings, as indicated by the bold font in Table 1. The  

Table 1. MLIP parameter sets for manual assessment of embedding net architecture, cutoff radii tuning, fitting net, 

and the resulting Stage-1 values. The bold font numbers indicate the best performing values and are carried 

forward to the next tuning.  

Model # Embedding 

network 

architecture 

Cutoff Radii 

[Rsmooth, Rcut] 

Fitting 

network 

architecture 

Energy 

RMSE 

(eV/atom) 

Force RMSE 

(eV/Å) 

Virial RMSE 

(eV/atom) 

Embedding net 

1.0 10-20-40 [4.5, 6.0] 150-150-150 0.0257 0.0697 0.0329 
1.1 25-25-25 [4.5, 6.0] 150-150-150 0.0209 0.0708 0.0363 
1.2 25-50-100 [4.5, 6.0] 150-150-150 0.0182 0.0451 0.0219 
1.3 100-100-100 [4.5, 6.0] 150-150-150 0.0218 0.0531 0.0309 

Cutoff radii 

1.4 25-50-100 [2.0, 6.0] 200-200-200 0.0347 0.0498 0.0423 

1.5 25-50-100 [4.5, 6.0] 200-200-200 0.0465 0.0592 0.0726 

1.6 25-50-100 [5.0, 5.2] 200-200-200 0.0408 0.0453 0.0394 

1.7 25-50-100 [0.5, 6.0] 200-200-200 0.0291 0.0453 0.0383 
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Fitting net 

1.8 25-50-100 [0.5, 6.0] 240-200-150 0.00664 0.0364 0.0254 
1.9 25-50-100 [0.5, 6.0] 240-240-240 0.00203 0.0863 0.0176 

1.10 25-50-100 [0.5, 6.0] 120-120-120 0.000264 0.0214 0.00400 
final hyperparameter set of Model 1.10 (Embed: 25-50-100, Fit: 120-120-120, Radii: [0.5, 6.0]) 

has a significantly lower validation set RMSE than its counterparts compared to DFT values, and 

thus all subsequent models will use these hyperparameter values. However, it should be 

emphasized that low numerical errors in MLIP predictions on the validation set do not  

guarantee good model performance in capturing the physical (and chemical, if relevant) 

behaviors of a material system in later computations. Thus, additional testing and adjustment of 

MLIP models are often necessary to ensure generalizability, and these will be discussed in 

subsequent sections. 

3.2 Static Material Property Prediction 

 Since shock loading environments are the chosen application for this study, we evaluate 

the performance of our B4C MLIP by predicting elastic constants for small deformations and the 

equation-of-state (EOS) for large deformations. Elastic constants are not explicitly included in 

model training; thus, they can be a good preliminary indicator for model generalizability. These 

results are then compared to existing ReaxFF and DFT calculated values. 

 Using the best-performing model from Stage 1 (Model 1.10), we predict the elastic 

constants and EOS for the four most-prevalent B4C polytypes, with the results for the most 

prevalent – B11Cp(CBC) – and compared with available literature in Table 2 and Figure 3. 

Variations in elastic constant predictions can occur with differing energy cutoffs in DFT theory. 

Thus, we choose to use the DFT elastic constants reported in Ref. 18 as a reference point for 



 

17 

comparison of ReaxFF and MLIP elastic performance (Table 2). This will avoid the introduction 

of artificial errors in ReaxFF elastic constant predictions as they will be compared to results 

generated with identical DFT theory. The elastic constants predicted with Model 1.10 rival the 

accuracy of the available ReaxFF potential in C11 and C33, while significantly improving the 

prediction of C12, C13, and C44. This improvement in elastic constant prediction is further 

supported by the accuracy of Model 1.10 in capturing the EOS in small deformation (Figure 3). 

Note that the current ReaxFF potential for B4C predicts artificially low atomic energies with 

curvature that deviates from DFT calculations in the small strain range. However, MLIP 

prediction of the B4C EOS diverge in highly compressive regions (< –10% strain); it is likely 

that the small ranges of strain (-1% to 1%) in the  

 Table 2: Comparison of elastic constants predicted by MLIP 1.10 and ReaxFF compared to DFT values from 

Ref [18]. Percent errors with respect to DFT values are indicated in parentheses, and bolded font indicates the 

lowest errors. MLIP predictions are better on average than those of ReaxFF. 

  DFT [18] ReaxFF [18] MLIP 1.10 

 C11 572 501 (-12.4) 491 (-14.2) 

 C33 535 521 (-2.62) 507 (-5.23) 

 C12 122 238 (95.1) 114 (-6.56) 

 C13 73 213 (191.8) 112 (53.4) 

 C44 171 139 (-18.7) 179 (4.68) 
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 Table 2: Comparison of elastic constants predicted by MLIP 1.10 and ReaxFF compared to DFT values from 

Ref [18]. Percent errors with respect to DFT values are indicated in parentheses, and bolded font indicates the 

lowest errors. MLIP predictions are better on average than those of ReaxFF. 

 

 
Figure 3. Comparison of energy-volume equation-of-state predicted from DFT for the most prevalent B4C 

polytype B11Cp(CBC) with available ReaxFF potential and a preliminary Model 1.10. Although the MLIP is 

superior to ReaxFF in small strain regime, the above plot shows that the training data for the MLIP is insufficient 

to capture large compressive strains (beyond 12%) and motivates further refinement in training data.  

initial training database are beneficial to the elastic constant prediction. However, this narrow 

strain range proves insufficient for the prediction of the EOS in regions of large deformation. 

Table 3. Comparison of predicted elastic constants and errors (compared to DFT) for B11Cp(CBC) from ReaxFF 

and MLIPs trained on various degrees of volumetric compressive strains.  Percent errors are indicated in 

parentheses, and bolded font indicates the lowest errors. Empty cells (denoted by ‘__’) indicate unphysical elastic 

constant predictions, C > 105 GPa or C < 0. Energy, force, and virial stress prediction RMSE’s are also reported 

for Models 1.10 – 3.0. 
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 DFT 

[18] 

ReaxFF [18] Model 1.10 

1% 

Model 2.0  

10% 

Model 2.1 

20% 

Model 2.2 

30% 

Model 2.3 

40% 

Model 3.0 

C11 572 501 (-12.4) 491 (-14.2) 504 (-11.8) 491 (-14.2) 251 (-56.0) — 515 (-9.96) 

C33 535 521 (-2.62) 507 (-5.23) 526 (-1.67) 508 (-4.99) 326 (-39.2) — 520 (-2.73) 

C12 122 238 (95.1) 114 (-6.56) 113 (-7.61) 120 (-2.01) 19 (-84.6) — 120 (-1.7) 

C13 73 213 (191.8) 112 (53.4) 109 (48.7) 117 (60.8) 143 (95.6) — 107 (46.7) 

C44 171 139 (-18.7) 179 (4.68) 189 (10.2) 187 (9.60) 26 (-85.0) — 191 (11.9) 

Energy RMSE (eV/atom) 0.000264 0.0100 0.0100 0.5394 0.2482 0.0116 

Force RMSE (eV/Å) 0.0214 0.2619 0.2676 8.3501 2.1531 0.2773 

Virial RMSE (eV/atom) 0.00400 0.0228 0.0229 0.4761 0.2660 0.0243 

 Learning from this result and noting that compressive strains experienced during shock loading 

of B4C can reach beyond 30% [21], the training database is adjusted to include strains up to 40% 

compression and 5% tension (a total of 2,714 training points) to fully encapsulate expected 

deformation ranges. The addition of highly compressed configurations to the training database 

may decrease the accuracy of the predicted elastic constants. To strike a balance between large 

and small deformation accuracy, four models trained on varying degrees of volumetric 

compression (10%, 20%, 30%, 40%) are tested and presented alongside model 1.10 in Table 3 

and Figure 4. Additionally, amorphous B4C structures are included in all training datasets to 

capture the loss of crystallinity (amorphization) commonly observed in B4C at high pressures 

[19, 57]. Amorphous structures are generated by heating a 3 x 3 x 3 B12(CCC) supercell to 3675 

K, and then quenching at various temperatures (3000 K, 2325 K, 1650 K, 975 K, and 300 K). 

The supercell is held at each temperature under an NVT ensemble for 1 ps, with snapshots taken 

every 1 fs resulting in an additional 6,000 total structures (5,078 training samples). MLIPs 

trained on databases containing up to 20%, 30%, and 40% compression (Models 2.1, 2.2, and 

2.3, respectively) all predict the EOS of various B4C polytypes with sufficient accuracy 
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compared to DFT calculations within their training regime. Notably, each model follows the 

DFT EOS curve for compressive strains up to approximately 10% beyond what is provided in its 

training database (e.g., MLIPs trained on 20% strained structures can capture configurations with  

 

Figure 4. EOS plots for the four most prevalent B4C polytypes predicted using MLIPs trained on varying ranges of 

compressive volumetric strain data (10% to 40%). Results are compared to EOS predictions of DFT as well as 

those of model 1.10, which is trained on strains ranging from 1% compression to 1% tension. Note, the 

discontinuities present in the EOS of both B11Cp(CBC) and B11Ce(CBC) are speculated to be caused by structural 

instability in those polytypes at high pressures [14]. The horizontal solid lines in the figure for B12(CCC) indicate 

the training data range, with corresponding dashed lines showing extrapolative ability. The MLIPs can extrapolate 

compressive strains ~10% beyond their training range. 

up to 30% compression). Amongst the MLIPs that successfully capture the B4C EOS, only the 

model trained on structures with up to 20% compression can capture the elastic behavior of B4C 

with sufficient accuracy (Table 3). Unsurprisingly, the inclusion of highly compressed structures 



 

21 

improves the accuracy of EOS predictions in those regions; however, the addition of too much 

data under extreme conditions deteriorates the prediction of elastic constants (see Model 2.3). 

Thus, a balance must be struck between the inclusion of sufficient strain diversity while  

maintaining model accuracy close to the ground-state configuration. The model trained on up to  

20% compression (Model 2.1) maximizes the accuracy in compressive ranges applicable in 

shock (≤ 30 GPa) while still maintaining an acceptable error in the elastic constants. Thus, this 

model will proceed to the final stage of validation. 

3.3 Stage 3: Dynamic property prediction 

 The final stage of validation aims to test MLIP performance on configurations in finite 

temperature environments. The dynamic movement of atoms in high-temperature environments 

can provide a diverse set of atomic configurations far from their ground state positions. 

3.3.1 Melting temperature 

 Due to the localized melting observed in B4C shock deformation [20, 21, 57], it is crucial 

to capture solid-liquid interface stability as various melt pockets in the shock domain will be 

surrounded by solid, crystalline material. We test the model on these conditions by predicting the 

melting temperature of B4C (2573 K to 2753 K [11, 58]) at ambient pressure using the interface 

coexistence method [59]. A fully periodic domain is split into solid and liquid regions, the liquid 

region is melted at 3000 K, and then the entire system is held at an equilibrium temperature (𝑇𝑒) 

using the NPT ensemble to observe crystal growth (solidification) or liquid growth (melting). 

The temperature at which these regions are at equilibrium is taken to be the melting point. The 

total density of the system (2.52 g/cm³ for solid B4C [60]) is tracked over simulation time to 

quantify these regions, with solidification and melting resulting in increasing and decreasing 
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densities, respectively. Figure 5(a) shows the density progression predicted using Model 2.1 

along with various domain snapshots (I–III), during a temperature hold at 𝑇𝑒 = 1900 K. Despite  

 
Figure 5. Domain density progressions for solid-liquid B4C held at 1900 K and 2000 K predicted with two 

different models: (a) best performing model (2.1, red) from stage 2 validation predicts clumps and void formation 

(snapshots I–III) resulting in very low densities over time; (b) a model (3.0) trained on random atomic 

perturbations and α-B which reveals a stable solid-liquid interface at 1900 K (orange) and decreased density as a 

result of melting at 2000 K (blue). The addition of random atomic perturbation to the training dataset thus helped 

to capture a stable, liquid B4C phase. 

being the best performing model from stage 2 of validation, Model 2.1 fails to capture the 

behavior of liquid B4C, with B and C atoms segregating into clumps, thereby forming voids (see 

snapshot III) and significantly decreasing the density of the system. We hypothesize this 
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behavior is due to the lack of highly repulsive interatomic interactions (i.e., at very small 

separation) in the training dataset.  

 The range of interatomic distances contained in training has been implicitly determined 

by induced strains or thermal oscillations, neither of which would allow for separation distances 

small enough (≤ 1.5 Å) to provide sufficient examples of repulsive forces between atoms. To 

address this issue, random perturbations (between 0.025 Å and 0.25 Å) are performed on the 

atomic positions for each polytype as well as on an additional unary α-B12 structure. Each 

structure is perturbed 500 times, resulting in 2500 new configurations added to the training set. 

This addition also increases the number of short interatomic distances (< 1.5 Å) by 27.9%. 

Model 3.0 is then initialized with the weights of model 2.1 and trained on this new data.  

 After ensuring satisfactory performance on stages 1 and 2, this updated model is used to 

simulate the same density progression (Figure 5(b)), at 𝑇𝑒 ∈ [1900,2000] K. At 𝑇𝑒 = 1900 K, 

Model 3.0 predicts a constant density of 2.285 g/cm³ over time of (see snapshots IV–VI), thus 

holding a stable solid-liquid interface.  As such, the predicted melting point of single crystal 

B12(CCC) using Model 3.0 is 1900 ± 50 K, which, despite being lower than reported 

experimental values for B4C (2573 K–2753 K [11, 58]), is within the expected error tolerance 

(up to 60%) seen in DFT-based melting point predictions from other ionic solids [61]. In addition 

to capturing a stable interface, Model 3.0 maintains a stable molten B4C phase after melting at 

𝑇𝑒 = 2000 K (see snapshot IX), with a liquid B4C density of 2.192 g/cm³. Despite a lack of 

available literature on the density of molten B4C, this value is in line with expectations.  

3.3.2 Shock Loading 

 Throughout the validation process, models have been tested independently on various 

extreme conditions (large deformations, high temperatures) that are encountered during shock 
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loading. Hence the final step in this validation procedure is to perform shock simulations and 

verify that important shock physics phenomena are captured. These include capturing the 

pressure-volume Hugoniot and determining the Hugoniot elastic limit (HEL), which represents 

the transition from elastic to inelastic deformation under uniaxial strain loading. Additionally, we 

focus on a specific anomalous property of B4C, which is its abnormal pressure-shear response 

beyond its HEL. For most brittle materials, their shear strength increases with pressure up to a 

certain limit (slightly above their HEL), after which it remains constant [62, 63]. This maximum 

shear strength has been shown to be proportional to the HEL for the material [64]. Based on the 

linear trend between the HEL and dynamic shear strength of brittle materials, the expected shear 

strength of B4C (HEL ≈ 18–20 GPa [65]) would be ~8.8 GPa [62, 64]. However in the case of 

B4C, the experimental shear stress of a 98% dense sample reaches a peak (~8 GPa) near its HEL, 

and subsequently drops to ~3.55 GPa [66]. This loss of shear strength is due to pressure-induced 

amorphization during shock loading [63, 65, 67, 68]. The mechanism behind this amorphization 

is complex and has been linked to various factors including localized melting [20] and CBC-

chain instability [16, 19, 57, 69, 70].  

 To determine if Model 3.0 can capture these deformation modes under the complex 

loading conditions present in shock environments, we employ a method similar to that in 

references [20, 21, 71] for shock simulations of B4C. A 50.6 x 52.6 x 177.4 Å rectangular 

domain (64,800 atoms) with periodic lateral boundaries, is launched towards a momentum mirror 

with varying impact velocities, vz (see Figure 6). High resolution analysis of field quantities 

(pressure, volume strain, and axial strain) within the shock front is conducted using Lagrangian 

binning of the simulation domain along the impact direction. To avoid end-effects, a bin 
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sufficiently far (~65.1 Å) from the impact end of the simulation cell is used for the analysis 

(Figure 6). 

 

Figure 6. Lagrangian binning (𝑊𝑏𝑖𝑛 ≈ 7.0Å) of shock simulation cell, with a chosen analysis bin to avoid end 

effects while capturing shock wave in its entirety. Chain orientation is chosen at 55o to minimize the size of the 

cuboidal repeat unit for the B4C crystal structure. 

Multiple simulations are conducted with impact velocities ranging from 0.1 km/s to 5.5 

km/s using Model 3.0. The P-V Hugoniot is constructed using a similar procedure as in DeVries 

et al. [20], and the discontinuity in the curve is indicative of the location of the HEL. Figure 7 

shows MLIP-predicted results alongside those of ReaxFF-based simulations [20],  DFT 

calculations [70], and various experiments [72-74]. The MLIP results agree well with DFT 

calculations for defect-free B4C up to a pressure of 67 GPa (Fig. 7(a)), after which MLIP 

predictions are in closer agreement with the ReaxFF prediction by DeVries et al. [20]. However, 

the HEL predicted by the MLIP is ~ 67 GPa while the ReaxFF predicts the HEL between 24-60 
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GPa, depending on the orientation of the crystal with respect to the shock direction [21]. The 

ReaxFF predictions on single crystals align better with experimental values for polycrystalline 

B4C [65, 73] as well as DFT results for an imperfect B4C single crystal with a chain vacancy 

[70]. However, one would expect a higher HEL for a defect-free monocrystalline material, and 

the DFT calculations for defect-free B4C show a monotonically increasing trend up to 80 GPa 

with no visible transition from elastic to inelastic deformation. Our MLIP-based shock  

 

Figure 7. Pressure-volume Hugoniot relationship predicted with Model 3.0 and its comparison to DFT [70], 

ReaxFF [18], and experimental (Exp) results from Gust and Royce [72], Zhang et al. [74], and Vogler et al. [73]. 

Note, a structure with a chain vacancy (B11Cp(C-Va-C)) is included from Taylor et al., which shows significantly 

lower HEL value on par with the experimental results on polycrystalline B4C.  

simulations follow this same trend, as revealed in the magnified view shown in Figure 

7(b) and yield an HEL of 67 GPa. These results reveal two interesting conclusions: (i) while the 

ReaxFF calculations on single crystal defect-free B4C material by Devries et al., match the 

behavior of an imperfect material as reflected by the experimental results on polycrystalline 

materials, it indicates that ReaxFF-based simulations under-predict the strength in single-crystal, 

defect-free B4C, and (ii) MLIP-based shock simulations can capture the DFT trends and yield a 
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higher HEL value as expected for defect-free B4C. Hence, the MLIP is better at capturing the 

expected shock physics of single-crystal B4C as compared to the existing empirical potentials. 

 
Figure 8. Shear stress, τ, within the analysis bin, as a function of (a) simulation time, and (b) axial stress in the 

impact direction, σz, for various impact velocities. Plot (b) reveals the final shear stress value at the end of the 

shock wave duration, with points colored according to their corresponding impact velocities as seen in plot (a). 

 In addition to capturing the HEL and the Hugoniot response, the MLIP can also capture 

the loss of shear strength during shock loading. This is demonstrated in Figure 8(a) by observing 

the shear stress as a function of time in the analysis bin. Note that, up to an impact velocity of 3.0 

km/s, the shear stress remains constant throughout the shock duration, reflecting the ability of the 

shock loaded material to withstand the applied shock. However, beyond this impact velocity, the 

duration of the stress plateau begins to shorten, and the shear stress drops to a much lower value. 

The shear stress at the end of the shock duration is plotted as a function of axial stress in Figure 

8(b). As expected, the maximum axial stress continuously increases with impact velocity, 

however the shear stress peaks at 40 GPa, followed by a steep drop-off. This behavior is similar 

to that observed both in experiments [62, 73] and in DFT calculations [70]. In experiments, the 

shear stress peaks at ~8 GPa for a polycrystalline material (with defects), while DFT calculations 

for a single crystal predict a shear peak at 40–50 GPa [70] which is in very good agreement with 

the presented MLIP results. 
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 Our final MLIP (Model 3.0) has demonstrated accuracy across various dynamic 

environments by predicting the B4C melting point within a reasonable tolerance of experimental 

values, as well as capturing fundamental shock mechanics and loss of shear strength unique to 

B4C. Notably, once it is able to capture melting, the MLIP did not need further adjustment to 

capture shock mechanics, an environment it has not seen before during the training phase. This 

success indicates that models trained on independent, representative subsections of the 

simulation environment (high temperature, large deformations, etc.) can be expected to perform 

well in environments where these subsections are coupled (shock loading). Thus, the 

transferability of the B4C MLIP is demonstrated.  

4. Discussion 

 The proposed 3-stage MLIP refinement process defined in Section 3 is proven to result in 

an MLIP that is transferable to its desired simulation environment, while minimizing the training 

database size and thus reducing the computational cost of model development. The final B4C 

MLIP is trained on simple, representative sub-conditions that come together to form the complex 

loading condition of shock simulations. The success of this MLIP in shock conditions attests to 

its interpolative capability for conditions used in the training database. Thus, the first step of 

effective MLIP-development should be the breaking down of the intended simulation conditions 

into representative components. For example, if a user is aiming to model the diffusion kinetics 

of vacancies in high-pressure environments, the relevant components may be vacancy-induced 

structures and defect-free structures placed under large volumetric compressions and high 

temperatures. This can aid the user in dataset curation and refinement for their desired 

application. In addition to stable configurations close to equilibrium, high-energy configurations 



 

29 

(e.g., random atomic perturbations) are shown to be essential during training to capture the full 

scope of the PES. 

 The findings in this work support the need for a robust validation procedure for ML-

based interatomic potentials due to their data-driven nature. It is demonstrated that MLIPs that 

perform well in a numerical sense, have no guarantee of capturing the physics of a material 

system to the developer’s desired accuracy. The continued addition of diverse structural 

configurations into the training database throughout the validation process also supports the 

claim that sufficient energetic diversity in model training is necessary for transferable MLIPs. 

The material-agnostic and procedural nature of this proposed workflow lends itself naturally to 

automation, thus an MLIP-validation package built on these concepts can significantly speed up 

the development time for new MLIPs for novel materials. Future works can aim to use this 

procedure in developing force fields for other complex ceramics. 

5. Summary and Conclusion 

 The stated goals of this work were to: (i) Define a material-agnostic MLIP development 

process and (ii) apply this process to a well-studied ceramic system to provide a framework for 

expansion to other complex systems. A precise, material agnostic workflow for the development 

is demonstrated, with specific attention placed on the MLIP validation pathway. The proposed 3-

stage process allows continuous improvements to the hyper parameters from the initial 

recommendations by the DeePMD-kit. The MLIP is sequentially fed through (i) preliminary 

statistical learning evaluation, (ii) static property prediction, and (iii) dynamic property/response 

prediction, adjusting the model components as necessary. This procedure offers the flexibility to 

choose specific metrics in each stage as well as the accuracy tolerances based on the system of 

interest and its desired final simulation environment, thus achieving the first goal of this work. 
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To meet the final objective, the viability of this process is demonstrated in its application to B4C 

under shock compression, showing improved alignment with DFT results for single crystals in its 

P-V Hugoniot as compared to previous ReaxFF studies. Further, the loss of shear strength is 

observed in MLIP-based MD shock simulations beyond a shear stress of 40 GPa, which agrees 

with HEL shear stresses of 40-50 GPa observed by Taylor et al. [70] for single crystals. Due to 

the GPU-optimized nature of DeePMD-kit models, this MLIP resulted in an 8-10x speedup as 

compared to simulations conducted with the available ReaxFF potential. Thus, a model 

developed using the proposed procedure is shown to capture structural and mechanical behaviors 

of B4C, achieving the final goal of robust MLIP development for a complex structural ceramic.  
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