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Coherent X-ray Diffraction Imaging (CXDI) technique offers unique insights into the nanoscale
world, enabling the reconstruction of 3D structures with a nanoscale resolution achieved through
computational phase reconstruction from measured scattered intensity maps. Computational de-
mands of 3D CXDI, however, limit its real-time application in experimental settings. This work
presents a carousel phase retrieval algorithm (CPRA) that enables the real-time, high-resolution
reconstruction of computationally complex 3D objects. CPRA is based on representing the 3D re-
construction problem as a set of 2D reconstructions of projected images corresponding to different
experimentally collected angles via the Fourier slice theorem. Consistency between the 2D recon-
structed images is based on an iterative procedure, in which each 2D reconstruction accounts for
the adjacent 2D reconstructed images in a periodic (carousel) manner. Demonstrations on complex
systems, including a lithium-rich layered oxide particle and a Staphylococcus aureus biological cell,
demonstrate that CPRA significantly enhances the reconstruction quality and enables the recon-
struction process to be completed in real time during experiment.

Coherent X-ray Diffraction Imaging (CXDI) is used to
reconstruct 2D and 3D objects at a nanoscale resolution
[1]. 3D CXDI offers a non-invasive way to identify the ob-
ject’s interior [2] and finds many applications in physics,
chemistry, and biology [3–16]. With refined experiment
techniques [17, 18] and algorithms [19, 20] CXDI is ex-
pected to play an increasingly important role across dif-
ferent disciplines. During an experiment, a coherent X-
ray beam is diffracted by the object and a charge-coupled
device (CCD) sensor collects the diffraction patterns as
2D images. For 3D object imaging, the object is rotated
by a set of angles and the corresponding set of 2D images
is collected. This procedure can be treated as a Fourier
transform (FT) of the object as Fraunhofer’s diffraction
[2] (Fig. 1). The CCD sensor only collects the intensity
whereas the phase information is lost. CXDI uses an it-

FIG. 1. Schematics of a 3D CXDI experimental and recon-
struction procedure.
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erative procedure based on forward and inverse FTs to
extract the phase information for a high-resolution re-
construction [21].

Typically, 3D CXDI reconstruction is based on per-
forming a 3D iterative phase retrieval algorithm [20–23],
often with many iterations [24] involving computation-
ally intensive 3D forward and inverse FTs [25–27]. The
increasing experimental capabilities provide increasing
collected data sizes, and highly efficient 3D CXDI algo-
rithms become essential to assist experiments.

We introduce a “carousel” phase retrieval algorithm
(CPRA), which results in a major boost of the compu-
tational performance, accuracy, and robustness, thus al-
lowing for a high-resolution reconstruction in real time
during experiments. Instead of the direct 3D reconstruc-
tion, CPRA first retrieves the phases of the collected 2D
diffraction patterns and then uses this information to re-
construct the 3D object. CPRA [24, 28] resolves short-
comings of inconsistencies of the 2D diffraction pattern
reconstructions of related approaches [24, 28], and thus
allows for a rapid convergence.

In 3D CXDI, an object is rotated at a sequence of an-
gles corresponding to incident wave vectors qi,n, where
n = 1, ..., Np and Np is the total number of the an-
gles (Fig. 1). For each qi,n, a scattered intensity map
I(qt,n, qi,n) of N × N pixels is collected. The map cor-
responds to a set of transverse wave vector components
qt,n = q−qi,n. Each I(qt,n, qi,n) is related to a complex-
valued spectral content E(qt,n, qi,n) via I(qt,n, qi,n) =
|E(qt,n, qi,n)|2. A high reconstruction resolution requires
Np and N to be large. The goal is to reconstruct the ob-
ject O(r) in the real space, where r is the real space vec-
tor and O(r) is the electron or spin density [14, 29, 30].
The phase information required for reconstruction needs
to be recovered via a phase retrieval algorithm.

We now present CPRA with the aid of the Fourier slice
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theorem [31]. We represent the measured 2D intensity for
a given qi,n as

I(qt,n, qi,n) =

∣∣∣∣q̂i,n ·
∫ [∫

O(r)eiq·rdr

]
dq

∣∣∣∣2 , (1)

where we have two integrals: an integral inside the square
brackets is a 3D FT of the object O(r) into its spectral
content E(q) and an outside integral over dq = x̂dqx +
ŷdqy + ẑdqz represents the object projected along the
unit vector q̂i,n of qi,n. We, then, use the Fourier slice
theorem [31], which, in this case, allows writing Eq. (1)
as

I(qt,n, qi,n) =

∣∣∣∣∫ [
q̂i,n ·

∫
O(r)dr

]
eiqt,n·rt,ndst,n

∣∣∣∣2 (2)

where rt,n = r− (q̂i,n · r)q̂i,n is the coordinate and dst,n
is the surface differential in the plane transverse to the
q̂i,n direction. Eq. (2) now has a 3D to 2D real-space
projection inside the brackets, which is followed by a 2D
FT. Let us regard the result in the square bracket as
a new 2D projected object (PO) O′(rt,n, qi,n) = q̂i,n ·∫
O(r)dr and formulate Eq. (2) in a 2D form as

I(qt,n, qi,n) =

∣∣∣∣∫ O′(rt,n, qi,n)e
iqt,n·rt,ndst,n

∣∣∣∣2 . (3)

It follows that we can reconstruct a set of 2D POs
O′(rt,n, qi,n) representing the projection of the object at
the nth angle along q̂i,n, which correspond to the discrete
set of measured incident directions of qi,n for the mea-
sured angles θi,n. The reconstruction of each PO can be
accomplished via the conventional CXDI procedure for
the 2D case [20] (also see Supplementary Materials).

Once O′(rt,n, qi,n) are obtained, the corresponding
spectral contents E(qt,n, qi,n) can be used for recon-
structing the 3D object via tomography [32]. The tomog-
raphy procedure is based on E(q), including its already
recovered phase, which results in a fast convergence with
a small number of initial random guesses.

A major difficulty of using CPRA is that the 2D re-
constructed POs for different angles can be inconsistent
[24, 28]. The POs are obtained from the same object,
and they are required to point to the same object, while
this is not guaranteed, e.g., they may have slightly differ-
ent positions. These displacements may introduce errors
when the 2D POs are combined for 3D reconstruction.
Even there were a feasible alignment method [33], the re-
construction error or noise may, often unavoidably, have
a detrimental effect on the reconstruction quality. An-
other, even more severe, factor is within the iterative
phase retrieval algorithm itself. The algorithm requires
many different random initial guesses. Different POs may
converge to different local optima, and they cannot be
combined for the final 3D reconstruction. Maintaining
the 2D PO consistency is a key for enabling CPRA.

To resolve the 2D POs consistency challenge, we use
the fact that the nearby 2D POs are similar as they cor-
respond to close angles. We can maintain the reconstruc-
tion PO consistency and quality of an nth PO by using

the n−1th, n+1th, n−2th, n+2th, etc., POs. This idea
leads to CPRA.
Let us define the reconstructed POs as O′

n =
O′(rt,n, qi,n) corresponding to In = I(rt,n, qi,n) and
En = E(rt,n, qi,n). Let us call a set of POs for all
n = 1, 2, ..., Np as an episode. The nth intensities and
spectral contents of an episode are periodic, such that
n = ..., Np − 1, Np, 1, 2, ... correspond to consecutive in-
cident angles. CPRA proceeds with an iterative process,
in which an episode Wm+1 is obtained based on the pre-
vious episode Wm via the following four steps, illustrated
in Fig. 2:

Step A: Pre-reconstruction Initialize an episode W0.
Pre-reconstruct a single PO, e.g., for n = 1, starting with
a random initial guess. The pre-reconstruction is accom-
plished via the conventional 2D CXDI algorithm. This
pre-reconstruction requires a relatively large number of
iterations (Npre

i ), as the conventional 2D CXDI. The rest
of the POs are initialized randomly. This initialization

results in a set of POs O
′(0)
n for the first episode W0.

Step B: Iterative reconstructions of episodes Recon-
struct a set of episodes Wm for m = 1, 2, ..., Ne, where Ne

is the number of episodes. For each episode Wm, the POs
are reconstructed via the conventional 2D CXDI consec-
utively, from n = 1 to n = Np, with the initial guess
for each PO obtained based on the combination of the
objects from episode Wm−1:

O′(m)
n =

Np/2−n∑
k=−Np/2−n+1

αkO
′(m−1)
k+n+Np/2

, (4)

where αk represents weight coefficients that are pe-
riodic with respect to the range of Np, satisfy∑Np/2

k=−Np/2+1 αk = 1, and are chosen such that they de-

crease with an increase of |k|. An example choice can be
α0 = 0.6, α−1 = α1 = 0.2 and αk = 0 for |k| > 1, other-
wise. The fact that the coefficients are periodic implies
that each reconstructed PO at a certain episode iteration
is obtained based on adjacent objects from the previous
episode iteration in a carousel (circular) manner. The
reconstruction of the POs in all the episodes requires a
small number of iterations Nei since this reconstruction
is based on an approximation from the previous iteration,
which is much better than a random guess.

Step C: Repeating and merging Repeat step A and
B multiple times, each for different random guesses in
step A for the total number of random guesses Nr. We
select a certain number Nl < Nr of the best recon-
structed episodes, which have the lowest reconstruction
error. The POs with the same number may be incon-
sistent between episodes with different random guesses,
caused by two factors. The first factor is because the
projections of an object rotated along two parallel axes
and displaced in the projected plane are the same. The
displacement in the projected plane is proportional to
the distance between the two axes. To address this is-
sue, we move the mass center of each PO by ∆rn =
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FIG. 2. Flowchart of the CPRA procedures.

−
∫
O′

n(r)rdv. The second factor comes from the prop-
erty of FT that the intensity of an object’s FT is the same
as the centrally inverted object, i.e., |

∫
O′

n(r)e
iq·rdr| =

|
∫
O′

n(−r)eiq·rdr|. To address this issue, we use the
episode with the lowest reconstruction error. We cal-
culate the Euclidean distance between one of the POs
in this best episode and the same number PO in other
episodes. We also calculate the Euclidean distance for
the centrally inverted version of the POs in the episodes.
We select the version with the lowest Euclidean distance,
thus accomplishing the task of selecting the proper cen-
tral symmetry. After obtaining the properly corrected
episodes, we average between them to create the final
episode, which is used as a set of En for the final 3D
reconstruction.

Step D: Final 3D object reconstruction Interpolation
and the final 3D reconstruction. We interpolate the final
reconstructed En to create a 3D spectral content E(q)
required for 3D reconstruction. We, proceed with a to-
mographic approach, which is like conventional 3D CXDI
but using E(q) obtained via the steps A-C of CPRA.
The phase information in E(q) leads to a rapid con-
vergence and small number of required initial random
guesses. Typically, only a single random guess and N3D

i

(around 50) iterations are sufficient [32].

The computational time of CPRA is dominated by
step C, and it scales as O(Nr(N

pre
i +NpN

2D
i )N2 logN).

The computational time of the conventional approach is
due to 3D FTs at each iteration [20] and it scales as
O(NrN

con
i N3 logN), where N conv

i is the number of 3D
iterations that may be on the order of 103 or even greater
[23]. Therefore, CPRA can be much more efficient by
having Npre

i + NpN
2D
i ≪ N conv

i N especially when the
object size N is large. In steps A-C, the memory con-
sumption scales only as O(N2) as compared to the con-
ventional 3D CXDI with a much greater O(N3) scaling.
While step D requires O(N3) memory, it requires a small
computational time scaled as O(N3D

i N3 logN) as com-

pared to the rest of CPRA. The memory consumption
of step D may be reduced by performing 3D FTs as a
set of 2D FTs, and the corresponding possible increase
of the computational time associated with the need for
the memory transfers is still insignificant. It shows that
we can greatly accelerate CPRA by utilizing GPUs or
additional parallelization even if N is very large.

The following results show using CPRA for recon-
structing a lithium-rich layered oxide particle based on
computer-generated data as well as a Staphylococcus au-
reus (SA) cell based on experimentally collected data.
The results are shown for CPU and GPU implementa-
tions of CPRA.

We start by considering an object that is uniformly
sampled by N×N×N pixels in the object domain. This
object contains a lithium-rich layered oxide particle (the
object in Fig. 1) [34] that occupies less than N/2 pix-
els in each dimension to meet the oversampling require-
ments. The intensities corresponding to what is typically
obtained from a synchrotron experiment are simulated by
projections and FTs. The number of rotation angles Np

is chosen to scale with N , such that Np/N = 9/16. We
use these intensities to reconstruct the object via CPRA
and conventional Shrinkwrap algorithm (CSWA) [35].

We first compare CPRA and CSWA when reconstruct-
ing the 3D object for a relatively small N , such that
CSWA can be used. We, then, present the performance
of the CPRA for large N , which is impossible to accom-
plish with CSWA. For the result verification, we choose
N = 160, Np = 90. We use the 2D CSWA method in
steps A and B of CPRA, which makes the iterative algo-
rithm identical for CPRA and CSWA. We remove pixels
whose values are below a 0.1 relative defogging threshold
[32]. For assessing the reconstruction quality, we em-
ploy the Phase Retrieval Transfer Function (PRTF) [23],
which evaluates the stability for different initial random
guesses, and the Fourier Shell Correlation (FSC) [36] be-
tween the original and reconstructed objects, which can
be done because we have the ground truth original ob-
ject. From both PRTF and FSC, we can estimate the
reconstruction resolution, denoted as R−1, by taking the
cutoff spatial frequency at a threshold value, chosen as
0.5 [23, 36].

Fig. 3(a) and 3(b) show PRTF and FSC as a function of
the number of iterations in CPRA. These CPRA results
are compared to those from CSWA for 500 and 1000 iter-
ations. Similar to N conv

i , this number can be defined as
NCSWA

i . We find that for CSWA with NCSWA
i = 1000,

we can have more reasonable PRTF and FSC, which is
consistent with other publication [23]. CPRA, however,
requires a much smaller number of iterations (N2D

i ) and
has a much better performance. For instance, CPRA
achieves the same resolution even when Ne = 1, Nei = 2,
and it achieves a much better resolution with Ne = 1,
Nei = 10.

To further compare the reconstruction qualities, we
show 3D results (Fig. 3) for the original and recon-
structed objects obtained via the CSWA and CPRA for
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FIG. 3. Resolution determined by (a) PRTF and (b) FSC
of CSWA and CPRA. (c) Corresponding volume density of
the original object, (d) object reconstructed via CSWA (lower
quality), and (e) object reconstructed via CPRA with Ne = 1,
Nei = 10 (higher quality).

FIG. 4. Reconstruction of S. aureus cell: 2D reconstructed
projected objects (a) 69.444◦ and (b) 0◦; (c) PRTF mean,
minimal, and maximal values for all the 2D reconstructed ob-
jects (the horizontal line is the 1/e criterion); (d) 3D recon-
structed surface morphology (black circles indicate the two
representative depressions).

Ne = 1, Nei = 2 and Ne = 1, Nei = 10. It is evident
that CSWA is significantly less accurate, even visually,
and that CPRA with Ne = 1, Nei = 10 provides a better
quality.

We, then, use CPRA with experimental data imaging
Staphylococcus aureus (SA) cell [37]. Each 2D inten-
sity map is cropped to size N × N , where N = 700,
with a beamstop in the center, and there are Np = 27
maps. The space constraints are pre-calculated by the
Hybrid input-output (HIO) algorithm [22] with the over-
sampling ratio of 4. To be consistent with the original
reconstruction method [37], we adopt the Relaxed Aver-

FIG. 5. Performance of CSWA and CPRA method. (a) com-
putational time of different methods on CPU and GPU; (b)
CPRA to CSWA acceleration ratio.

aged Alternating Reflections (RAAR) algorithm [38] with
hyperparameter β = 0.9. For the pre-reconstruction step
(step A), we perform NRAAR

i = 500 RAAR iterations on
the first intensity map, half of the originally suggested
number [37]. We then set Ne = 2, Nei = 10 for step B to
reconstruct the rest of the 2D intensity maps. At the end
of each episode, we perform an extra 2D CSWA iteration
to obtain a tighter space constraint for each 2D image.
We start from Nr = 100 sets of random initial guesses
and pick 10 best sets to merge. We project the 2D space
constrains back to the 3D space to form a relatively tight
3D space constraint and perform 3D reconstruction via
GENFIRE package [32] with 50 iterations in total. We
shrink the 3D space constraint every 5 iterations, lead-
ing to a tighter 3D space constraint close to the shape
of the object at the end. We present the 2D reconstruc-
tions in Fig. 4(A-c), and the corresponding PRTF curve
in Fig. 4(D) with 1/e criterion [37]. In the Fig. 4(D),
the mean value (blue line) of all 2D PRTFs suggests a
very high resolution close to the achievable limit. The 3D
reconstructed object surface morphology is presented in
Fig. 4(E), where we find two representative depressions
inside the black circles that agree with [37].

Finally, we compare the computational performance
of CPRA and CSWA on CPU and GPU computing ar-
chitectures. We first consider the computational per-
formance for reconstructing the object in Fig.3. The
computations were performed on a desktop with a 16-
core 4.9 GHz AMD R9-5950X CPU and NVIDIA RTX
3080Ti GPU. The shown CPU results were obtained
on a single core. The multi-core CPU paralleliza-
tion efficiency is above 90%. The results are shown
for N = 160, 256, 512, 1024 with corresponding Np =
90, 144, 288, 576. For CSWA the number of iterations
NCSWA

i was fixed at 1000, which is required for good
reconstruction, and for CPRA, we set Ne = 1, Nei = 2,
which, according to the results in Fig. 3, gives a similar
reconstruction quality. For both CSWA and CPRA, we
set Nr = 100. For large N , CSWA can take too much
time, hence we run CSWA for only one random initial
guess and then multiply this result byNr for performance
comparisons.

Fig. 5(a) presents the computational time for CPU
and GPU computations using CPRA and CSWA, and
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Fig.5(b) shows the acceleration ratio of time consump-
tion using CPRA versus CSWA on CPU and GPU. It is
evident that CPRA is much faster for any N . The CPRA
speed-up is in the range of 100-300 times on GPU and 30-
120 times on CPU. The acceleration ratio increases with
the problem size due better hardware utilization. As an
example, reconstructing a case with N = 1024 takes 670
sec, which allows CPRA to be used for real-time recon-
struction during experiment.

We also compared the computational performance of
CPRA for reconstructing the SA cell of Fig. 4. This case
only required 100 initial guesses and 39 iterations for each
2D intensity map on average. CPRA took less than 20
sec on Nvidia RTX 3080 Ti, which is consistent with a
real time reconstruction. CPRA was around 300 times
faster than the conventional method when comparing on
the same computing (CPU or GPU) architecture.

In summary, a highly efficient CPRA for 3D CXDI
was introduced. CPRA requires a small number, as lit-
tle as 1-2, of iterations and a small amount of memory
to achieve a high-quality reconstruction. The numerical
comparisons demonstrate that CPRA achieves 100-300
fold speed-ups on GPU, and 30-120 fold speed-ups on
CPU with equal or even significantly higher reconstruct-

ing qualities. These performance allows executing 3D
CXDI in real time, concurrent with experimental proce-
dures.
CPRA has several benefits that can allow future exten-

sions, such as concurrent partial reconstructions or 2D
POs and highly efficient implementations on multi-core,
multi-CPU, and multi-GPU computing systems to recon-
struct larger objects. Given the benefits of CPRA, it can
become a part of a more efficient experimental apparatus
in synchrotron facilities. The real-time 3D CXDI recon-
struction can be combined with using numerical, e.g.,
micromagnetic [14, 39, 40], simulators, to further assist
performing experiments.
We thank Prof. Jianwei Miao, University of Cali-

fornia, Los Angeles as well as Prof. Huaidong Jiang
and Mr. He Bo, ShanghaiTech University for provid-
ing the experimental data and assistance in reconstruc-
tion of SA cell [37]. The biological cell, figures, per-
formance data can be acquired by contacting the cor-
responding author. The CPRA can be implemented
on CPUs and GPUs, and the implementations are
released on GitHub (https://github.com/UCSD-CEM/
Carousel-Phase-Retrieval-Algorithm) as a header-
only library under Apache License 2.0.
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