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Abstract—We consider communication over the Gaussian
multiple-access channel in the regime where the number of users
grows linearly with the codelength. We investigate coded CDMA
schemes where each user’s information is encoded via a linear
code before being modulated with a signature sequence. We
propose an efficient approximate message passing (AMP) decoder
that can be tailored to the structure of the linear code, and
provide an exact asymptotic characterization of its performance.
Based on this result, we consider a decoder that integrates AMP
and belief propagation and characterize the tradeoff between
spectral efficiency and signal-to-noise ratio, for a given target
error rate. Simulation results are provided to demonstrate the
benefits of the concatenated scheme at finite lengths.

I. INTRODUCTION

We consider communication over an L-user Gaussian mul-
tiple access channel (GMAC), which has output of the form

y =

L∑
ℓ=1

cℓ + ε , (1)

over n channel uses. Here cℓ ∈ Rn is the codeword of the
ℓ-th user and ε ∼ Nn(0, σ

2I) is the channel noise. Motivated
by modern applications in machine-type communications, a
number of recent works have studied the GMAC in the many-
user or many-access setting, where the number of users L
grows with the block length n [1]–[4].

In this paper, we study the many-user regime where L, n →
∞ with the user density µ := L/n converging to a constant.
Each user transmits a fixed number of bits k (payload) under a
constant energy-per-information-bit constraint ∥cℓ∥22/k ≤ Eb.
Moreover, the spectral efficiency is the total user payload per
channel use, denoted by S = (Lk)/n = µk. In this regime, a
key question is to understand the tradeoff between user density
(or spectral efficiency), the signal-to-noise ratio Eb/N0, and
the probability of decoding error. Here N0 = 2σ2 is the noise
spectral density. A popular measure of decoding performance
is the per-user probability of error (PUPE), defined as

PUPE :=
1

L

L∑
ℓ=1

P(cℓ ̸= ĉℓ), (2)

where ĉℓ is the decoded codeword for user ℓ.
Polyanskiy [2] and Zadik et al. [3] obtained converse and

achievability bounds on the minimum Eb/N0 required to

This work was supported in part by a Schlumberger Cambridge Interna-
tional Scholarship.

achieve PUPE ≤ ϵ for a given ϵ > 0, when the user density µ
and user payload k are fixed. These bounds were extended to
the multiple-access channels with Rayleigh fading in [5], [6].
The achievability bounds in these works are obtained using
Gaussian random codebooks and joint maximum-likelihood
decoding, which is computationally infeasible.

Coding schemes: Efficient coding schemes for the many-
user GMAC, based on random linear models and spatial
coupling with Approximate Message Passing (AMP) decod-
ing, were proposed in [7]. Using similar ideas, Kowshik
obtained improved achievability bounds in [8]. In the schemes
proposed in [7], each user’s codeword is produced by directly
multiplying a matrix with the user’s information sequence.
The simplest such scheme is binary CDMA, where each user
ℓ ∈ [L] transmits one bit of information by modulating a
signature sequence aℓ ∈ Rn, i.e., the codeword cℓ = aℓxl

where xℓ ∈ {±
√
E}. Thus the decoding problem is to recover

the vector of information symbols x = [x1, . . . , xL]
T from the

channel output vector

y =

L∑
ℓ=1

aℓxℓ + ε = Ax+ ε , (3)

where A = [a1, . . . ,aL] ∈ Rn×L is the matrix of signature
sequences. If each user wishes to transmit k > 1 bits in n
channel uses, the binary CDMA scheme requires k blocks of
transmission, with each block (and each signature sequence)
having length n/k.

The optimal spectral efficiency of CDMA in the large sys-
tem limit (with random signature sequences) has been studied
in a number of works, e.g. [9]–[13]. Assuming the signature
sequences are i.i.d. sub-Gaussian, the best known technique
for efficiently decoding x from y in (3) is AMP [14], [15], a
family of iterative algorithms that has its origins in relaxations
of belief propagation [16], [17]. An attractive feature of AMP
decoding is that it allows an exact asymptotic characterization
of its error performance through a deterministic recursion
called ‘state evolution’.

Main Contributions: The binary CDMA scheme de-
scribed by (3) transmits uncoded user information. In this
paper, we show how the performance can be significantly
improved by using a concatenated coding scheme in which
each user’s information sequence is first encoded using a linear
code before being multiplied with the signature sequence.
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We propose a flexible AMP decoder that can be tailored
to the structure of the linear code, and provide an exact
asymptotic characterization of its error performance (Theorem
1). Specifically, we show how a decoder for the underlying
code, such as a maximum-likelihood or a belief propagation
(BP) decoder, can be incorporated within the AMP algorithm
with rigorous asymptotic guarantees (Corollary 1). Simulation
results validate the theory and demonstrate the benefits of the
concatenated scheme at finite lengths. We focus on binary
CDMA to highlight the gains in the simplest setting. The
concatenated scheme as well as the AMP decoder and its
analysis can be extended to the general random linear model
based schemes studied in [7]. These will be described in the
extended version of this paper.

We emphasize that our setting is distinct from unsourced
random access over the GMAC [2], [18]–[20], where all the
users share the same codebook and only a subset of them are
active. In our case, each user has a distinct signature sequence
and all of them are active. While the latter is particularly
relevant in designing grant-free communication systems, cod-
ing schemes for this setting often rely on dividing a common
codebook into sections for different users. Extending the ideas
in this paper to unsourced random access is an interesting
future direction.

Related Work: AMP algorithms were first proposed for
compressed sensing [14], [15] and its variants [21], and have
since been applied to a range of problems including estimation
in generalized linear models and low-rank matrix estimation.
We refer the interested reader to [22] for a survey. In the
context of communication over AWGN channels, AMP has
been used as a decoder for sparse regression codes (SPARCs)
[23]–[25] and for compressed coding [26]. SPARC-based con-
catenated schemes with AMP decoding have been proposed
for both single-user AWGN channels [27]–[29] and unsourced
random access [19], [20].

In most of these concatenated schemes [19], [26]–[28] the
AMP decoder for SPARCs does not explicitly use the structure
of the outer code (which is decoded separately). Two key
exceptions are the SPARC-LDPC concatenated schemes in
[20], [29], which use an AMP decoding algorithm with an
integrated BP denoiser. Drawing inspiration from these works,
in Section IV-C we propose an AMP decoder with a BP
denoiser for our concatenated scheme. Our scheme and its
decoder differ from those in [20], [29] in a few important
ways: i) we do not use the SPARC message structure, and
ii) we treat each user’s codeword as a row of a signal matrix
and devise an AMP algorithm with matrix iterates, a notable
deviation from prior schemes where AMP operates on vectors.

Notation: We write [L] for the set {1, . . . , L}. We use
bold uppercase letters for matrices, bold lowercase for vectors,
and plain font for scalars. We write aℓ for the ℓ-th row or
column of A depending on the context, and aℓ,i for its ith
component. A function f : Rd → Rd returns a column vector
when applied to a column vector, and likewise for row vectors.

L columns (users)

aℓ:
signature of user ℓ

d bits

xℓ: bipolar

codeword
of user ℓ

L

ñ = n/d

d

n channel uses

Y A X E= +

Figure 1. Concatenated coding scheme for GMAC

II. CONCATENATED CODING SCHEME

The k-bit message of user ℓ, denoted by uℓ ∈ {0, 1}k, is
mapped to a GMAC codeword cℓ ∈ Rn in two steps. First, a
rate k/d linear code with generator matrix G ∈ {0, 1}d×k is
used to produce a d-bit binary codeword Guℓ ∈ {0, 1}d. Each
0 code bit is then mapped to

√
E and each 1 bit code bit to

−
√
E to produce xℓ ∈ {±

√
E}d. The magnitude

√
E of each

BPSK symbol will be specified later in terms of the energy per
bit constraint Eb. In the second step of encoding, for each user
ℓ, we take the outer-product of xℓ with a signature sequence
aℓ ∈ Rñ, where ñ := n/d. This yields a matrix Cℓ = aℓx

⊤
ℓ ∈

Rñ×d. The final length-n codeword transmitted by user ℓ is
simply cℓ = vectorize(Cℓ) ∈ Rn.

Let X =
[
x1, . . . ,xL

]⊤ ∈ {±
√
E}L×d be the signal

matrix whose ℓth row xℓ is the bipolar codeword of user ℓ.
Let A =

[
a1, . . . ,aL

]
∈ Rñ×L be the design matrix whose

columns are the signature sequences. Then the channel output
in (1) can be rewritten into matrix form:

Y =

L∑
ℓ=1

aℓx
⊤
ℓ + E = AX + E ∈ Rñ×d. (4)

See Fig. 1 for an illustration.
Assumptions: We consider i.i.d. Gaussian signature se-

quences. Specifically, we choose Aiℓ
i.i.d.∼ N (0, 1/ñ), for

i ∈ [ñ], ℓ ∈ [L]. We make the natural assumption that the
information bits uℓ ∈ {0, 1}k are uniformly random, for each
user ℓ ∈ [L]. We also assume that the noise variance σ2

in (1) is known, a mild assumption since the i.i.d. Gaussian
signature sequences allow σ2 to be consistently estimated as
σ̂2 =

∥Y ∥2
F

n − Edµ.
We consider the asymptotic limit where L/n → µ as

n,L → ∞, for a user density µ > 0 of constant order. We
emphasize that d is fixed and does not scale as n,L → ∞.
Therefore ñ/L = (n/d)/L → 1/(dµ) is also of constant
order.

III. AMP DECODER

The decoding task is to recover the signal matrix X from
the channel observation Y in (4), given the design matrix A
and the channel noise variance σ2. A good decoder must take
advantage of the prior distribution on X: recall that each row
of X is an independent codeword taking values in {±

√
E}d,

defined via the underlying rate k/d linear code. The prior
distribution of each row of X induced by the linear code is



denoted by Px̄. Note that Px̄ assigns equal probability to 2k

vectors in {±
√
E}d.

The AMP decoder recursively produces estimates Xt ∈
RL×d of X for iteration t ≥ 0. This is done via a sequence
of denoising functions ηt that can be tailored to the prior Px̄.
Starting from an initializer X0 = 0L×d, for t ≥ 0 the AMP
decoder computes:

Zt = Y −AXt +
1

n
Zt−1

[
L∑

ℓ=1

η′t−1

(
st−1
ℓ

)]⊤

, (5)

St = A⊤Zt +Xt, (6)

Xt+1 = ηt
(
St

)
, (7)

where ηt : Rd → Rd applies row-wise to matrix inputs, and
η′t(s) = dηt(s)

ds ∈ Rd×d is the derivative (Jacobian) of ηt.
Quantities with negative indices are set to all-zero matrices.
When d = 1, (5)–(7) reduces to the classical AMP algorithm
[15] for estimating a vector signal in a linear model.

State Evolution: In limit as n,L → ∞ (with L/n → µ), the
memory term 1

nZ
t−1
î∑L

ℓ=1 η
′
t−1

(
st−1
ℓ

)ó⊤
in (5) ensures that

the row-wise empirical distribution of Zt ∈ Rñ×d converges
to a Gaussian Nd(0,Σ

t) for t ≥ 1. Furthermore, the row-wise
empirical distribution of (St −X) ∈ RL×d also converges to
the same Gaussian Nd(0,Σ

t). The covariance matrix Σt ∈
Rd×d is iteratively defined via the following state evolution
recursion, for t ≥ 0:

Σt+1 = σ2I +
1

δ
E
{
[ηt(x̄+ gt)− x̄][ηt(x̄+ gt)− x̄]⊤

}
.

(8)

Here I is the d × d identity matrix, and gt ∼ Nd(0,Σ
t) is

independent from x̄ ∼ Px̄. The expectation in (8) is with
respect to x̄ and gt, and the iteration is initialized with Σ0 =
(σ2 + E/δ)I .

The convergence of the row-wise empirical distribution of
St to the law of x̄+gt follows by applying standard results in
AMP theory [22], [30]. This distributional characterization of
St crucially informs the choice of the denoiser ηt. Specifically,
for each row ℓ ∈ [L], the role of the denoiser ηt is to estimate
the codeword xℓ from an observation in zero-mean Gaussian
noise with covariance matrix Σt. In the next section, we
discuss the Bayes-optimal denoiser and two other sub-optimal
but computationally efficient denoisers. First, we provide a
performance characterization of the AMP decoder with a
generic Lipschitz-continuous denoiser in Theorem 1.

Decoding performance after t iterations of AMP decod-
ing can be measured via either the user-error rate UER =
1
L

∑L
ℓ=1 1{x̂

t+1
ℓ ̸= xℓ}, or the bit-error rate BER =

1
Ld

∑L
ℓ=1

∑d
i=1 1

¶
x̂t+1
ℓ,i ̸= xℓ,i

©
. Here x̂t+1

ℓ = ht(s
t
ℓ) is a

hard-decision estimate of the codeword xℓ, produced using
a suitable function ht, and x̂t+1

ℓ,i is the ith entry of x̂t+1
ℓ . For

example, ht may quantize each entry of xt+1
ℓ = ηt(s

t
ℓ) to a

value in ±
√
E. We note that the PUPE defined in (2) is the

expected value of the UER.

Theorem 1. Consider the AMP decoding algorithm in (5)–
(7) with Lipschitz continuous denoisers ηt : Rd → Rd, for
t ≥ 1. Let x̂t+1

ℓ = ht(s
t
ℓ) be the hard-decision estimate in

iteration t. The asymptotic UER and BER in iteration t satisfy
the following almost surely, for t ≥ 1:

lim
L→∞

1

L

L∑
ℓ=1

1{x̂t+1
ℓ ̸= xℓ} = P

(
ht

(
x̄+ gt

)
̸= x̄

)
, (9)

lim
L→∞

1

Ld

L∑
ℓ=1

d∑
i=1

1

¶
x̂t+1
ℓ,i ̸= xℓ,i

©
=

1

d

d∑
i=1

P
([
ht

(
x̄+ gt

)]
i
̸= x̄i

)
. (10)

Here x̄ ∼ Px̄ and gt ∼ Nd(0,Σ
t) are independent, with Σt

defined by the state evolution recursion in (8).

The proof is given in the longer version of this paper.

IV. CHOICE OF AMP DENOISER ηt

A. Bayes-optimal denoiser

Since the row-wise distribution of St converges to the law
of x̄ + gt, the Bayes-optimal or minimum mean squared
error (MMSE) denoiser ηBayes

t estimates each row X as the
following conditional expectation. For ℓ ∈ [L],

xt+1
ℓ = ηBayes

t (stℓ) = E
[
x̄ | x̄+ gt = stℓ

]
=

∑
x′∈X

x′ ·
exp

(
− 1

2 (x
′ − 2stℓ)

⊤(Σt)−1x′)∑
x̃′∈X exp

(
− 1

2 (x̃
′ − 2stℓ)

⊤(Σt)−1x̃′
) (11)

where X ⊂ {±
√
E}d is the set of 2k codewords. Since

|X | = 2k, the cost of applying ηBayes
t is O(2kd3) which grows

exponentially in k. In each iteration t, the decoder can produce
a hard-decision maximum a posteriori (MAP) estimate x̂t

ℓ

from stℓ via:

x̂t+1
ℓ = ht(s

t
ℓ) = argmax

x′∈X
P
(
x̄ = x′ | x̄+ gt = stℓ

)
. (12)

In Section V (Fig. 2) we present numerical results illus-
trating the performance of AMP with denoiser ηBayes

t for a
Hamming code with d = 7 and k = 4. In practical scenarios
where d is of the order of several hundreds or thousands,
applying ηBayes

t is not feasible, motivating the use of sub-
optimal denoisers with lower computational cost.

B. Marginal-MMSE denoiser

A computationally efficient alternative to the Bayes-optimal
denoiser is the marginal-MMSE denoiser [19], [27] which
acts entry-wise on stℓ and returns the entry-wise conditional
expectation:

xt+1
ℓ = ηmarginal

t (stℓ) =

E[x̄1|x̄1 + gt1 = stℓ,1]
...

E[x̄d|x̄d + gtd = stℓ,d]

 , where

E[x̄i|x̄i + gti = stℓ,i]
(i)
=

√
E tanh

Ä√
Estℓ,i/Σ

t
i,i

ä
. (13)



The equality (i) follows from gti ∼ N (0,Σt
i,i) and p(x̄i =√

E) = p(x̄i = −
√
E) = 1

2 due to the linearity of the
outer code. A hard decision estimate x̂t+1

ℓ can be obtained
by quantizing each entry of xt+1

ℓ to {±
√
E}.

This marginal denoiser has an O(d) computational cost
which is linear in d, but it ignores the parity structure of x̄,
which is useful prior knowledge that can help reconstruction.
One way to address this is by using the output of the AMP
decoder as input to a channel decoder for the outer code, as
in [19], [28]. In the next subsection, we show how to improve
on this approach. Considering an outer LDPC code, we use
an AMP denoiser that fully integrates BP decoding.

C. Belief Propagation (BP) denoiser

Assume that the binary linear code used to define the
concatenated scheme is an LDPC code. We propose a BP
denoiser ηBP

t which exploits the parity structure of the LDPC
code in each AMP iteration by performing a few rounds of BP
on the associated factor graph. Like the other denoisers above,
ηBP
t acts row-wise on the effective observation St ∈ RL×d. For
ℓ ∈ [L], it produces the updated AMP estimate xt+1

ℓ from stℓ
as follows, using R rounds of BP.

1) For each variable node i ∈ [d] and check node j ∈ [d−k],
initialise variable-to-check messages (in log-likelihood ratio
format) as:

L
(0)
i→j = ln

[
p(stℓ,i |xℓ,i = +

√
E)

p(stℓ,i |xℓ,i = −
√
E)

]
=

2
√
Estℓ,i
Σt

i,i

=: L(stℓ,i).

This initialization follows the distributional assumption stℓ,i
d
=

x̄i + gti , where gti ∼ N (0,Σt
i,i) and p(x̄i =

√
E) = p(x̄i =

−
√
E) = 1

2 .
2) Let N(i) denote the set of neighbouring nodes of node

i. For rounds 1 ≤ r ≤ R, compute the check-to-variable and
variable-to-check messages, denoted by L

(r)
j→i and L

(r)
i→j , as:

L
(r)
j→i = 2 tanh−1

 ∏
i′∈N(j)\i

tanh

Å
1

2
L
(r−1)
i′→j

ã , (14)

L
(r)
i→j = L(stℓ,i) +

∑
j′∈N(i)\j

L
(r)
j′→i. (15)

3) Terminate BP after R rounds by computing the final log-
likelihood ratio for each variable node i ∈ [d]:

L
(R)
i = L(stℓ,i) +

∑
j′∈N(i)

L
(R)
j′→i. (16)

Equations (14)-(16) are the standard BP updates for an LDPC
code [31].

4) Compute the updated AMP estimate xt+1
ℓ = ηBP

t (stℓ),
where [

ηBP
t (stℓ)

]
i
=

√
E tanh

(
L
(R)
i /2

)
, i ∈ [d]. (17)

The RHS above is obtained by converting the final log-
likelihood ratio (16) to a conditional expectation, recalling
that xℓ,i takes values in {±

√
E}. Following the standard

interpretation of BP as approximating the bit-wise marginal
posterior probabilities [31], the expression in (17) can be
viewed as an approximation to

E[x̄i | x̄i + gti = stℓ,i , parities specified by N(i) satisfied].

We highlight the contrast between the conditional expectation
above and the one in (13), which does not use the parity check
constraints. As with the marginal-MMSE denoiser, a hard-
decision estimate x̂t+1

ℓ can be obtained by quantizing each
entry of xt+1

ℓ to {±
√
E}. The computational cost of ηBP is

O(dR) which is linear in d.
While the derivative η′t for the memory term can be easily

calculated for ηBayes
t and ηmarginal

t via direct differentiation, the
derivative for ηBP

t is less obvious because it involves R rounds
of BP updates (14)-(16). Nevertheless, using the approach
in [20], [29], the derivative can be derived in closed form
provided the number of BP rounds R is less than the girth of
the LDPC factor graph.

Lemma 1. For t ≥ 1, consider the AMP decoder with
denoiser ηBP

t : Rd → Rd, where BP is performed for fewer
rounds than the girth of the LDPC factor graph. Let

J :=
dηBP

t (stℓ)

dstℓ
∈ Rd×d, for stℓ ∈ Rd. (18)

Then for i, h ∈ [d] and i ̸= h,

Ji,i =
1

Σt
i,i

Ä
E −

[
ηBP
t (stℓ)

]2
i

ä
, Ji,h = 0. (19)

The proof is given in the longer version of this paper.
Lemma 1 implies that the characterization of the limiting UER

and BER in Theorem 1 holds for AMP decoding with ηBP.

Corollary 1. The asymptotic guarantees in Theorem 1 hold
for the AMP decoder with any of the three denoisers:
ηBayes
t , ηmarginal

t , and for ηBP
t assuming that the number of BP

rounds is less than the girth of the LDPC factor graph.

Proof. It can be verified by direct differentiation that the ηBayes
t

and ηmarginal
t are bounded. For ηBP, we only need to show that

Ji,i in (19) is bounded for i ∈ [d]. This follows by observing
that Σt

i,i > σ2 (from (8)) and [ηBP(stℓ)]
2
i < E (from (17)).

V. NUMERICAL RESULTS

We numerically evaluate the tradeoffs achieved by concate-
nated coding scheme with different denoisers. For a target
BER = 10−4, we plot the maximum spectral efficiency
S = Lk/n = (L/ñ)(k/d) achievable as a function of signal-
to-noise ratio Eb/N0 = (Ed/k)/(2σ2). We use BER rather
than UER since the UER of an uncoded scheme degrades
approximately linearly with d. For each setting, we also plot
the converse bounds from [3], and the achievability bounds
from either [3] or [7] depending on which one yields the larger
achievable region. These bounds can be adapted to obtain
upper and lower bounds on the maximum spectral efficiency
achievable for given values of Eb/N0, per-user payload k, and
PUPE. To adapt these bounds to target BER (rather than target
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Figure 2. Comparison of the uncoded scheme and the concatenated scheme
with (7, 4) Hamming outer code and denoiser ηBayes

t . L = 20000.

PUPE), we using the random coding assumption that when a
codeword is decoded incorrectly, approximately half of its bits
are in error, i.e. E[BER] = 1

2PUPE.
In all the figures, ‘SE’ refers to curves obtained by using

the state evolution result of Theorem 1, and ‘AMP’ (indicated
by crosses) refers to points obtained via simulation. Fig. 2
compares the uncoded case (i.e. d = 1) with the concatenated
scheme with a (7, 4) Hamming code, decoded using AMP with
Bayes-optimal denoiser ηBayes

t . Even this simple code provides
a savings of over 1dB in the minimum Eb/N0 required to
achieve positive spectral efficiency, compared to the uncoded
scheme as well as the converse bound for k = 1.

Figs. 3 and 4 employ LDPC codes from the IEEE 802.11n
standards as outer codes (with code length d = 720 bits). Fig.
3 compares the decoding performance of AMP with different
denoisers: the marginal-MMSE ηmarginal

t or the BP denoiser
ηBP
t which executes 5 rounds of BP per AMP denoising step.

The latter outperforms the former by around 7.5dB since
ηmarginal
t does not use the parity constraints of the code. The

dotted orange curve in Fig. 3 shows that the performance of
AMP with ηmarginal

t is substantially improved by running a BP
decoder (200 rounds) after AMP has converged. However,
this additional BP decoding at the end also improves the
performance of ηBP

t (blue dotted curve). We observe that the
achievable spectral efficiency with ηBP

t + BP is consistently
about 40% higher than with ηmarginal

t + BP.
Fig. 4 compares the performance of the concatenated

scheme with LDPC codes with different rates: 1/2 and 5/6. The
AMP denoiser is ηBP

t , and the dotted curves show the effect
of adding BP decoding (200 rounds) after AMP convergence.
The code with the higher rate 5/6 achieves higher spectral
efficiency for large values of Eb/N0, but the rate 1/2 code
achieves positive spectral efficiency for smaller Eb/N0 values.

In all the figures, the asymptotic performance of AMP, pre-
dicted by state evolution, closely tracks its actual performance
at large, finite L. Moreover, considering a metropolitan area
with 106 to 107 devices and each device active a few times per
hour, the user density µ is typically 10−4 to 10−3 [3, Remark
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t (blue) for decoding LDPC outer code (with fixed rate 1/2). The

dotted plots correspond to AMP decoding coupled with 200 rounds of BP
after AMP has converged. L = 2000, d = 720.
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AMP decoding coupled with 200 rounds of BP after AMP has converged.
L = 2000, d = 720.

3]. For user densities in this range and per-user payload k on
the order of 102 to 103, the spectral efficiency S = µk is less
than 1. In all figures, the concatenated coding schemes exhibit
the most substantial improvements for S < 1.

Discussion: Though we assumed an i.i.d. Gaussian de-
sign matrix A, using recent results on AMP universality
[32], [33], the decoding algorithm and all the theoretical
results remain valid for a much broader class of ‘generalized
white noise’ matrices. This class includes i.i.d. sub-Gaussian
matrices, so the results apply to the popular setting of random
binary-valued signature sequences. Figs. 2–4 show that the gap
between the spectral efficiency achieved by the concatenated
scheme and the converse bounds grows with Eb/N0. The spec-
tral efficiency of our scheme can be substantially improved
by using a spatially coupled design matrix [7]. This will be
investigated in an extended version of this paper.

Acknowledgment: We thank Jossy Sayir for sharing his
implementation of the belief propagation LDPC decoder.
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