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Exact Functional Integration of Radial and Complex
Slave-boson Fields : Thermodynamics and Dynamics of
the Two-site Extended Hubbard Model
Vu Hung Dao1 and Raymond Frésard1,∗

The functional integral formulation of the Hubbard
model when treated in its Kotliar-Ruckenstein repre-
sentation in the radial gauge involves fermionic, as well
as complex and radial slave boson fields. In order to
improve on the understanding of the interplay of the
three types of fields, and on the nature of the latter, we
perform a comprehensive investigation of an exactly
solvable two-site cluster, as it entails all pitfalls embod-
ied in this approach. It is first shown that the exact par-
tition function is recovered, even when incorporating in
the calculation the square root factors that are at the
heart of the representation, when suitably regularized.
We show that using radial slave boson fields allows to
overcome all hurdles following from the normal order-
ing procedure. We then demonstrate that this applies
to the Green’s function as well, and to the correlation
functions of physical interest, thereby answering the
criticisms raised by Schönhammer [K. Schönhammer,
Phys. Rev. B 1990 42, 2591]. In addition, the investiga-
tion generalizes the calculations to the Hubbard model
extended by a non-local Coulomb interaction.

1 Introduction

Strongly correlated electrons on a lattice, as encountered
in transition-metal oxides, occupy a prominent place
among the most interesting and challenging topics of
contemporary theoretical physics. This interest is largely
fueled by the functionality-oriented properties these sys-
tems harbor, such as high-Tc superconductivity (see,
e.g., [1–3]), colossal magnetoresistance (see, e.g., [4–7]),
transparent conducting oxides (see, e.g., [8]), high capac-
itance heterostructures [9] or large thermopower (see,
e.g., [10–16]), to quote a few. Furthermore, strongly corre-
lated transition-metal oxides comprise rare-earth free per-

manent magnets [17], materials for batteries [18–21], and
multiferroics [22–24]. Moreover, a broad diversity of fur-
ther interesting properties are exhibited by these systems.
They involve correlation-driven metal-to-insulator transi-
tion at the first place, for instance in vanadium sesquiox-
ide [25–27] or in hole-doped titanates [28], as well as a
rich palette of ordered phases of, e.g., magnetic, charge,
stripes, nematic and, above all, superconducting nature.

The Hubbard model is the simplest model Hamilto-
nian entailing a genuine competition between the kinetic
energy of electrons hopping on a lattice and the Coulomb
interaction energy simplified to its sole local component.
Initially introduced, inter alia, to describe metallic mag-
netism [29–31], it regained an immense popularity af-
ter Anderson’s proposal that the Hubbard model on the
square lattice entails the key ingredients to high-Tc super-
conductivity [32], which d-wave symmetry may hardly be
grasped in a simple one-electron picture. As of today, con-
sidering longer-ranged interaction is receiving increasing
attention [33–50] (see also [51] and references therein for
a more complete list).

Strongly correlated electron systems pose challenges
that have been tackled using slave-boson approaches in a
number of fashions. They mostly back on Barnes’ [52, 53]
and Kotliar and Ruckenstein’s (KR) [54] representations,
as well as on their multiband and rotation invariant gen-
eralizations [55–60]. They all exhibit their own gauge sym-
metry group.

As regards Barnes’ representation to the infinite-U
single-impurity Anderson model, it involves one doublet
of fermions, one slave boson, and one time-independent
constraint binding all three fields. It entails a U (1) gauge
symmetry, that may be used to gauge away the phase of
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the slave boson. This, however, requires to introduce a
time-dependent constraint field [61–63]. The argument
was originally put forward in the continuum limit, but
later, a path integral representation on discrete-time steps
for the remaining radial slave boson together with the
time-dependent constraint has been proposed by one of
us [64]. It could be used to solve the Ising chain [64].

A deeper understanding of radial slave bosons was
gained through an analysis of a toy model. It yielded the
exact expectation value of the radial slave boson to be
generically finite [65], as well as a way to exactly handle
functional integrals involving constrained fermions and
radial slave bosons. A further feature of radial slave bosons
is related to the saddle-point approximation. When the
latter is performed to a complex slave boson field, it is
intimately tied to a Bose condensation, that is generally
viewed as spurious. On the contrary, radial slave bosons
are phase-stiff and do not Bose condense, as they are
deprived of a phase degree of freedom. Accordingly, their
saddle-point amplitude approximates their – generically
finite – exact expectation value.

The KR representation [54], and related slave-boson
representations [56–58], have first been set up to the in-
vestigation of the Hubbard model, and have then been
extended to account for long-ranged density-density and
spin-spin interactions [39]. Meanwhile, a whole range
of valuable results have been obtained, primarily on the
square lattice. More specifically, they have been applied
to the Mott metal-to-insulator transition [66–68], then to
the description of anti-ferromagnetic [69], spiral [70–73],
striped [74–77] phases, and even to the competition be-
tween the latter two has been addressed [78]. In addi-
tion, spin-and-charge ordered phases of a half-filled ex-
tended Hubbard model, which may be suitable for resis-
tive switching, were recently put forward [47]. Besides,
it has been obtained that the spiral order continuously
evolves to the ferromagnetic order in the large U regime
(U ≳ 60t) [73] so that it is unlikely to be realized experi-
mentally. Consistently, in the two-band model, ferromag-
netism was found as a possible groundstate in the doped
Mott insulating regime [79], only. Yet, the ferromagnetic
instability line may be brought down to the intermediate
coupling regime in various ways. They involve adding a
nearest-neighbor ferromagnetic exchange coupling [39]
or a sufficiently large next-nearest-neighbor hopping am-
plitude [80], to quote a few. Going to the fcc lattice [81]
results in the same effect.

The KR representation implies six auxiliary parti-
cles [54]. Two of them form a doublet of fermions, the re-
maining ones are bosons, and they are “enslaved” by three
time-independent constraints. Ending a long-standing
debate [69, 82–84], a consensus that the gauge symmetry

group reads U (1)×U (1)×U (1) has been reached [57,85,86].
Accordingly, the phase of three of the four slave bosons
can be gauged away, with the counterpart that all three
constraints become time-dependent constraint fields.
Therefore one bosonic field remains as a complex one.
It may be chosen to be the d field, which accounts for
doubly occupied sites, or the e field, which accounts for
empty sites. These two fields are at the first place asso-
ciated with charge fluctuations, and one might wonder
whether the charge fluctuation spectrum depends on this
asymmetry, but it could be shown that this is not the case,
at least when it is computed to one-loop order around the
paramagnetic saddle-point [67, 87]. In this context this
one-loop calculation was believed to coincide with the
time-dependent Gutzwiller approximation (TDGA) until
discrepancies between the two were put forward [67]. This
motivated an extension of the TDGA to achieve agreement
with the one-loop calculation [88].

A whole series of functional integral representations
has been formulated for various correlated systems. They
quite systematically make use of coherent states [89]. This
also applies to the current auxiliary fermionic and com-
plex bosonic fields, but not to the radial slave bosons for
which the functional integral representation under study
is established from the outset. By now, the received at-
tention has been limited to the atomic limit [90], and
the purpose of this work is to establish the handling of
the delocalization of the electrons due to hopping. To
that aim, we compute in this context the partition func-
tion and dynamical quantities of the extended Hubbard
model on the two-site cluster, and we show that the ex-
act results are recovered for all densities. Eventually, we
furthermore demonstrate that the so-called Kotliar roots
entering the kinetic energy may equally well be included
in the calculation, provided a new regularization scheme
is enforced, with the same result. We thereby generalize
earlier works where all relevant slave-boson fields entered
as radial fields [64, 65, 91].

The paper is organized as follows. In Section 2 we
present the model and its representation in terms of KR
slave bosons in the radial gauge. The functional integra-
tion of the latter is further detailed in Section 3. In order
to validate the procedure and to illustrate the key features
of the computation, the paper presents the evaluation
of the partition function, of the physical electron Green’s
function, and of several thermal averages of quantities
represented by radial slave bosons. The fermionic fields
are integrated out in Section 4, where N -time products
are introduced. The integration over the complex bosonic
field is performed in Section 5, and the remaining ones
in Section 6. The agreement between the so-computed
thermal averages and the expressions derived from the

2 Copyright line will be provided by the publisher



March 27, 2024

physical electron Hamiltonian is established in Section 7.
Section 8 summarizes our work. The calculation of the
pseudofermion Green’s function is extensively presented
in Appendix A, while the irregular contributions to the
traces involved in the computation of thermal averages
are explicitly handled in Appendix B.

2 The model and its Kotliar and
Ruckenstein representation

We investigate the extended Hubbard model in an exactly
soluble case, which is the two-site cluster. It reads

H =∑
σ

2∑
i=1

(
εc†

σ,i c
σ,i − tc†

σ,i c
σ,i−1

)
+U

2∑
i=1

c†
↑,i c↑,i c†

↓,i c↓,i

+V
2∏

i=1

(
c†
↑,i c↑,i + c†

↓,i c↓,i

)
, (1)

and is made of the single-electron Hamiltonians for each
of the spin projections (σ =↑,↓), supplemented by the
Coulomb interaction terms, with amplitude U on each
site i , and V on the bond. The factor ε is the difference
in energy between the orbital level and the chemical po-
tential. In the hopping terms with amplitude t , we use
the periodic boundary condition in order to shorten the
notation.

The Kotliar and Ruckenstein (KR) representation [54]
of this model involves one doublet of fermionic fields
{ f↑, f↓} and four bosonic fields {e, p↑, p↓,d}. The latter are
tied to an empty site, single occupancy of the site with
spin projection up or down, and double occupancy, re-
spectively. This implies redundant degrees of freedom
which have to be discarded. This is achieved by imposing
the three constraints

e†e +∑
σ

p†
σpσ+d †d = 1 (2a)

p†
σpσ+d †d = f †

σ fσ (σ=↑,↓) (2b)

to be satisfied on each site, thereby enslaving the bosonic
fields.

The Hamiltonian in the so enlarged Fock space is

HKR =∑
σ

2∑
i=1

(
ε f †

σ,i f
σ,i − t f †

σ,i z†
σ,i z

σ,i−1 f
σ,i−1

)
+U

2∑
i=1

d †
i di +V

2∏
i=1

(
2−2e†

i ei −
∑
σ

p†
σ,i p

σ,i

)
(3)

where

zσ,i = e†
i L

σ,i R
σ,i p

σ,i +p†
−σ,i L

σ,i R
σ,i di (4)

is the occupancy change operator. The latter is renormal-
ized by inverse square root factors

L
σ,i =

(
1−p†

σ,i p
σ,i −d †

i di

)− 1
2

(5a)

R
σ,i =

(
1−e†

i ei −p†
−σ,i p−σ,i

)− 1
2

(5b)

These so-called ’Kotliar roots’ modify the saddle-point ap-
proximation so that it yields the Gutzwiller approximation
result [54]. Furthermore, they act exactly as the identity
operator within the physical subspace, as we show below.
Yet, as emphasized by Schönhammer [92], their exact com-
putation within the functional integral formalism poses a
formidable challenge, as there was not any rigorous pro-
cedure to substitute these functions of boson operators in
the Lagrangian by field expressions, after the Hamiltonian
is written in the normal order form [93]. This step is usu-
ally neglected since, by doing so, the Gutzwiller approxi-
mation is recovered as a saddle-point, which is variation-
ally controled in the large-dimensionality limit [94–96].
The purpose of the present paper is then to remedy this
loophole, and to show that the radial gauge KR representa-
tion, with a proper regularization scheme, allows to over-
come these mathematical hurdles when exactly evaluat-
ing the Kotliar roots within the functional integrals.

In this formalism the physical constraints (2) are en-
forced by the three Lagrange multipliers λi , resp. λσ,i , as-
sociated to each site. At this stage it should be noted that
the functional integral over the fermionic and bosonic
fields cannot be performed right away. Indeed, in order
to ensure convergence, λi has to be continued into the
complex plane as

λ̃i =λi − iλ0 (6)

with λ0 > 0 (or λ0 +U > 0 if U < 0) so that the integration
contour is shifted into the lower half-plane [64, 97, 98].

The expression of the Lagrangian in the Cartesian rep-
resentation of the slave boson fields reads

L (c)(τ) =L (c)
f (τ)+L (c)

b (τ). (7)

It entails the dynamics of the auxiliary fermionic and
bosonic fields, together with the constraints (2) specific
to the KR setup. The fermionic contribution is quadratic
in the fermion fields with

L (c)
f (τ) =∑

σ

2∑
i=1

(
f ∗
σ,i (τ)

(
∂τ+ϵ+ iλσ,i

)
f
σ,i (τ)

− t f ∗
σ,i (τ)z∗

σ,i (τ)zσ,i−1(τ) f
σ,i−1(τ)

)
. (8)
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The remaining part

L (c)
b (τ) =

2∑
i=1

(
− iλ̃i +e∗i (τ)

(
∂τ+ iλ̃i

)
ei (τ)

+d∗
i (τ)

(
∂τ+U + iλ̃i − iλ↑,i − iλ↓,i

)
di (τ)

+∑
σ

p∗
σ,i (τ)

(
∂τ+ iλ̃i − iλσ,i

)
pσ,i (τ)

)
+V

2∏
i=1

(
2−2e∗i (τ)ei (τ)−∑

σ
p∗
σ,i (τ)pσ,i (τ)

)
(9)

is only composed with boson fields, up to the constant
terms. And we get the partition function in the Cartesian
gauge as

Z =
∫
π/β

−π/β

2∏
i=1

(
βdλi

2π

∏
σ

βdλσ,i

2π

) ∫ ∏
σ

D
[

fσ , f ∗
σ

]
×

∫
D

[
e,e∗

]
D

[
d ,d∗]∏

σ
D

[
pσ, p∗

σ

]
e−

∫ β
0 dτL (c)(τ). (10)

In this representation, the physical electron creation
and annihilation operators are mapped onto auxiliary
operators as

c
σ,i 7→ z

σ,i f
σ,i and c†

σ,i 7→ f †
σ,i z†

σ,i . (11)

They properly anticommute provided the constraints (2)
are satisfied. This representation of the physical electron
operators is invariant under the gauge transformations

fσ,i 7→ e−iχσ,i fσ,i

ei 7→ eiθi ei

pσ,i 7→ ei(χσ,i+θi )pσ,i

di 7→ ei(χ↑,i+χ↓,i+θi )di .

(12)

The local gauge symmetry group is therefore U (1)×U (1)×
U (1) on each site. The Lagrangian, Eq. (7), also possesses

this symmetry. Expressing the bosonic fields in amplitude
and phase variables as

ei (τ) =√
Re,i (τ)eiθi (τ) (13a)

p
σ,i (τ) =√

Rσ,i (τ)ei(χσ,i (τ)+θi (τ)) (13b)

allows to gauge away the phases of three of the four
slave boson fields provided one introduces the three time-
dependent Lagrange multipliers

αi (τ) = λi +∂τθi (τ) (14a)

βσ,i (τ) = λσ,i −∂τχσ,i (τ). (14b)

Here the radial slave boson fields are implemented in
the continuum limit following, e. g., Ref. [61–63]. Similar
gauge symmetry groups have been identified in the spin
rotation invariant representation [57] and in the case of
the two-band model [99].

3 Functional integrals in the radial gauge

For the exact evaluation of the functional integrals, the
representation in the radial gauge has to be set up on
a discretized time mesh from the beginning. Moreover,
the constraints now have to be satisfied at every time
step. Extending the procedure introduced in Ref. [64] for
Barnes’ slave boson to the KR representation one may
compute the thermal average

〈
Q

〉
of a quantity Q as

Z
〈
Q

〉= lim
ν→0

lim
N→∞

lim
η→0+

{
N∏

n=1

2∏
i=1

(∫ ∞

−η
dRe,i ,n dR↑,i ,n dR↓,i ,n

∫ ∞

−∞
δdαi ,n

2π

δdβ↑,i ,n

2π

δdβ↓,i ,n

2π

∫ ddi ,n dd∗
i ,n

2πi

∫ ∏
σ

dfσ,i ,n df ∗
σ,i ,n

)

×Q e−S
}

(15)

where Q is its discrete-time representation, and the action reads

S =
N∑

n=1

{
2∑

i=1

[∑
σ

f ∗
σ,i ,n

(
fσ,i ,n −e−δ(ϵ+iβσ,i ,n ) fσ,i ,n−1 +δt z⋆σ,i ,n zσ,i−1,n−1 f

σ,i−1,n−1

)
− iδα̃i ,n + iδ

∑
σ

(
α̃i ,n −βσ,i ,n

)
Rσ,i ,n

+ iδα̃i ,nRe,i ,n +d∗
i ,n

(
di ,n −e−δ(U+iα̃i ,n−iβ↑,i ,n−iβ↓,i ,n )di ,n−1

)]
+ δV

2∏
i=1

(
2−2Re,i ,n −∑

σ
Rσ,i ,n

)}
. (16)
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Here the integer N is the number of imaginary-time slices
with duration

δ= β

N
(17)

while ν and η are regulators, the purposes of which will be
explained below. The integral expression of the partition
function Z is obtained with Q=Q = 1. Note that we have
introduced the shorthand notation

α̃≡α− iλ0. (18)

As previously discussed, the functional integral has to be
evaluated withα replaced by (α−iλ0) withλ0 > 0, in order
to ensure convergence.

The functional integral Eq. (15) may be equivalently
recast in the more suggestive formulation

Z
〈
Q

〉= lim
ν→0

lim
N→∞

P
(〈

Q
〉

f↑, f↓,d

)
. (19)

Here the operator P , which will be detailed below,
’projects onto the physical subspace’ the correlation〈

Q
〉

f↑, f↓,d that is obtained as the thermal average of Q

over the different configurations of the pseudofermion
and d-boson fields within the enlarged Fock space : It dis-
cards all the contributions that do not comply with the
constraints (2), while properly weighting the remaining
ones.

The partition function may thus be computed as

Z = lim
ν→0

lim
N→∞

P
(
Zd f

)
(20)

where the joint partition function Zd f of the d boson and
the auxiliary fermions is evaluated as the functional inte-
gral

Zd f =
〈

1
〉

f↑, f↓,d (21)

with〈
. . .

〉
fσ
≡

∫ N∏
n=1

2∏
i=1

df
σ,i ,n df ∗

σ,i ,n . . . e−Sσ , (22a)

〈
. . .

〉
d ≡

∫ N∏
n=1

2∏
i=1

ddi ,n dd∗
i ,n

2πi
. . . e−Sd , (22b)

where Sσ and Sd are the terms in the action (16) that are
quadratic in the variables fσ,i ,n and di ,n , respectively.

The fermionic action S f = S↑ + S↓ is the sum of the
quadratic forms represented by the 2N ×2N matrix

[
Sσ

]=


12 −[
Mσ,1

][
Mσ,2

]
12

. . .
. . .[

Mσ,N
]

12

 (23)

within the basis { fσ,1,1, fσ,2,1, . . . , fσ,1,N , fσ,2,N } for each
spin projection. Here 12 is the 2×2 identity matrix, and
the block

[
Mσ,n

]= [
−Lσ,1,n Tσ,1,n

Tσ,2,n −Lσ,2,n

]
(24)

involves

Lσ,i ,n = e−δ(ε+iβσ,i ,n ) (25a)

Tσ,i ,n = δt z⋆σ,i ,n zσ,i−1,n−1. (25b)

The representations in the radial gauge of the operators
zσ,i and z†

σ,i are, respectively,

zσ,i ,n =
√

Re,i ,n+1Rσ,i ,n +√
R−σ,i ,n+1di ,n√

Re,i ,n+1 +R−σ,i ,n+1 − iν
√

1−Re,i ,n −R−σ,i ,n + iν

z⋆σ,i ,n =
√

Rσ,i ,n+1Re,i ,n +d∗
i ,n

√
R−σ,i ,n√

1−Re,i ,n+1 −R−σ,i ,n+1 − iν
√

Re,i ,n +R−σ,i ,n + iν
(26)

where the radial variable Re,i ,n (Rσ,i ,n) corresponds to the
squared amplitude of the complex ei ,n (pσ,i ,n) bosonic
field. First, note that z⋆

σ,i ,n is not the complex conjugate
of zσ,i ,n as the time steps of radial variables are not the
same. Second, the above expressions of the z factors differ
from the usual ones. Indeed, we made use of the physi-
cal constraints (2) to replace the number of d bosons in
the denominators by its counterpart in terms of radial
slave-boson variables, which eases the evaluation of the
functional integrals. The regulator ν is taken to zero af-
ter performing the continuous-time limit N → ∞. It is
introduced in the discrete-time representation in order to
take care of the vanishingly small contribution of spurious
processes which appear when computing the partition
function, as it ensures that the z factors are not singular
in the physical subspace.

The part of the action Sd = Sd1 +Sd2 that is quadratic
in the d boson field, is the sum of the contributions from
each site

Sdi =
N∑

m=1

N∑
n=1

d∗
i ,m

[
Sdi

]
m,ndi ,n

=
N∑

n=1
d∗

i ,n

(
di ,n −di ,n−1eδ(−U−iα̃i ,n+iβ↑,i ,n+iβ↓,i ,n )

)
(27)

where di ,0 ≡ di ,N in the second line to satisfy periodic
boundary conditions in the imaginary time. When ex-
panding the exponential in Eq. (27) to lowest order in
δ, the familiar form following from the Trotter-Suzuki de-
composition is recovered. Yet, the latter may only be ap-
plied for bounded values of the Lagrange multipliers while
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Eq. (27) is well behaved when integrating the multipliers
along the real axis.

The remaining terms of the action are gathered in the
integral operator

P ≡
N∏

n=1
Pn (28)

where

Pn ≡
∫

Rn

e−δVn

∫
αβn

e
iδ

2∑
i=1

(
α̃i ,n (1−Re,i ,n−

∑
σ

Rσ,i ,n )+∑
σ
βσ,i ,n Rσ,i ,n

)

(29)

is defined with the non-local Coulomb potential

Vn =V
2∏

i=1

(
2−2Re,i ,n −R↑,i ,n −R↓,i ,n

)
(30)

and the shorthand notations∫
Rn

≡ lim
η→0+

∫ ∞

−η

2∏
i=1

{
dRe,i ,n dR↑,i ,n dR↓,i ,n

}
, (31a)

∫
αβn

≡
∫ ∞

−∞

2∏
i=1

{
δdαi ,n

2π

δdβ↑,i ,n

2π

δdβ↓,i ,n

2π

}
. (31b)

Note that it takes an infinitesimal regulator −η for the
integration bounds to have well defined delta functions
enforcing the constraints.

The integration over the fields will be carried out in
the following order. First, integrating the fields fσ and d
yields the joint partition function Zd f as a sum over all
the discrete-time evolutions that are governed by the KR
Hamiltonian (3). Note that at this stage, the dynamics is
not restricted to the subspace of physical states. Then, we
perform the integration over the Lagrange multipliers and
the radial fields through the operator P , Eq. (28). This
removes the contributions of the unphysical trajectories
in the evaluation of the partition function Z , and it mul-
tiplies the physical ones by their respective weight factor
associated with the non-local Coulomb interaction en-
ergy. The latter integrations are straightforward for static
settings where no hopping can occur. The computation
is more involved in the presence of hopping processes
because the boson number distribution is modified on all
relevant pairs of sites. The calculations prove that P does
filter out all irrelevant evolutions as intended, so that the
remaining contributions yield the expected expression of
the partition function in the continuous-time limit.

Other thermal averages may be integrated in the same
fashion. The most similar computation certainly is eval-
uating a pure correlation of radial boson fields since for
any function F of only radial variables,〈
F (Ra ,Rb , . . . )

〉
f↑, f↓,d =F (Ra ,Rb , . . . )Zd f . (32)

A whole range of static thermal averages and correlation
functions may be expressed in terms of them. Let us focus
here on the Re field as an example, with the evaluation of
the hole density

〈
Re,1

〉
on site 1 given by

Z
〈

Re,1
〉= lim

ν→0
lim

N→∞
P

(
Re,1,1Zd f

)
, (33)

and of the auto-correlation function
〈

Re,2(τ)Re,1(0)
〉

given
by

Z
〈

Re,2(τ)Re,1(0)
〉= lim

ν→0
lim

N→∞
P

(
Re,2,mRe,1,1Zd f

)
(34)

where lim
N→∞

(
mβ
N

)
= τ.

As an illustration for the evaluation of the temperature
Green’s function, the paper will describe the integration
of only one electron propagator, which will then simply
be noted G for compactness. However, the presentation
of the procedure is quite general, and all the key steps in
the derivation of the Green’s function are expounded. Be-
low, we consider the auto-correlation associated with the
creation of an electron with spin up on site 1 at imaginary
time 0, followed by its annihilation on the same site at the
imaginary-time variable τ. It may be calculated as

ZG =− lim
ν→0

lim
N→∞

P

(〈
z↑,1,m f↑,1,m f ∗

↑,1,1z⋆↑,1,1

〉
f↑, f↓,d

)
. (35)

Thus, the computation of the partition function, expec-
tation values and dynamical correlation functions bear
strong similarities when they are expressed as functional
integrals.

4 Integration over fσ fields : N -time
products

For the partition function, or a pure correlation of radial
boson fields, integrating the fermion fields yields

Z f =
〈

1
〉

f↑, f↓ = det
[
S↑

]×det
[
S↓

]
. (36)

Each determinant may be written as the trace of a time-
ordered matrix product :

det
[
Sσ

]= Tr
[
Uσ,N :1

]
. (37)

The product represents the imaginary-time evolution op-
erator for fσ pseudofermions between the time steps 1
and N , and it is defined, for n f ≥ ni , as

[
Uσ,n f :ni

]=T

{ n f∏
n=ni

[
Kσ,n

]}
= [

Kσ,n f

][
Kσ,n f −1

] · · ·[Kσ,ni

]
(38)
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with

[
Kσ,n

]=


1 0 0 0

0 Lσ,1,n Tσ,1,n 0

0 Tσ,2,n Lσ,2,n 0

0 0 0 Lσ,1,nLσ,2,n

 . (39)

Please note that Eqs. (37)–(38) are equivalent to Eq. (30) in
Ref. [65]. The three blocks in [Kσ,n] describe the dynam-
ics of the states involving respectively zero, one, and two
auxiliary fermions of spin projection σ. The entry Lσ,i ,n is
associated with a fermion fσ staying still on site i at time
step n, while Tσ,i ,n corresponds to its hopping from site
i −1 onto site i .

The tensor product[
Kn

]= [
K↑,n

]⊗ [
K↓,n

]
(40)

thus describes the dynamics of the total system of pseudo-
fermions. And its partition function may be expanded as a
sum over all multi-fermion state evolutions along a closed
trajectory :

Z f = Tr
[
U↑,N :1

]×Tr
[
U↓,N :1

]= Tr
([

U↑,N :1
]⊗ [

U↓,N :1
])

= Tr

(
T

{
N∏

n=1

[
Kn

]})
. (41)

The different terms in the trace will be called N -time prod-
ucts. They are products of matrix elements representing
the position of each pseudofermion at every time step.
Note that, according to the structure of the matrices [Kσ,n],
an element Lσ,i ,n or Tσ,i ,n can only be followed by either
Lσ,i ,n+1 or Tσ,i+1,n+1. Explicitly, the contributions to Z f

from the sectors with zero to four fermions are

0 : 1

1 : Tr
[

L T
T L

]
↑+ Tr

[
L T
T L

]
↓

2 : [LL]↑+ [LL]↓+Tr
([

L T
T L

]
↑⊗

[
L T
T L

]
↓
)

3 : [LL]↑Tr
[

L T
T L

]
↓+ [LL]↓Tr

[
L T
T L

]
↑

4 : [LL]↑ [LL]↓

(42)

where the time-ordered matrix product

[
L T
T L

]
σ ≡T

{
N∏

n=1

[
Lσ,1,n Tσ,1,n

Tσ,2,n Lσ,2,n

]}
(43)

yields all the discrete-time evolutions of a single fermion
with spin projection σ, while

[LL]σ ≡
N∏

n=1
Lσ,1,nLσ,2,n (44)

is the sole possibility for a pair of them.

As shown in Appendix A, the unnormalized correlation〈
z↑,1,m f↑,1,m f ∗

↑,1,1z⋆↑,1,1

〉
f↑ may be computed as the trace of

the matrix[
G↑

]= z↑,1,m z⋆↑,1,1

[
U↑,N :m+1

] [
F1

] [
U↑,m:2

] [
F1

]† [
K↑,1

]
(45)

where

[
F1

]† =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 ,
[
F1

]=


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 (46)

enact the creation and annihilation, respectively, of a
particle on site 1, within the basis

{|0〉, f †
↑,1|0〉, f †

↑,2|0〉,
f †
↑,1 f †

↑,2|0〉
}

. Hence, the full integration over pseudofermion
fields yields

G f =
〈

z↑,1,m f↑,1,m f ∗
↑,1,1z⋆↑,1,1

〉
f↑, f↓

= Tr
([

G↑
]⊗ [

U↓,N :1
])

.

(47)

Similarly to Z f , each N -time product here is a product
of entries Lσ,i ,n or Tσ,i ,n describing the pseudofermion
positions during an evolution. However, the number of
matrix elements is not the same for every time step since
an extra f↑ particle is present between n = 2 and n = m.
Furthermore, the product also includes the supplemental
factor z⋆↑,1,1 associated with the addition of the latter, and

the factor z↑,1,m for its removal. Besides, it always contains
L↑,1,m or T↑,1,m , which reflects the fact that the particle is
on site 1 when it is removed from the cluster. And con-
versely, there is not any entry L↑,1,1 nor T↑,1,1 because site
1 has to be free of f↑ pseudofermion at the beginning.

Below, we coin an N -time product as regular if any
factor zσ,i ,n within it is companied by the matrix element
Lσ,i ,n , and any z⋆

σ,i ,n is followed by Lσ,i ,n+1. Since the hop-

ping term Tσ,i ,n contains z⋆
σ,i ,n z

σ,i−1,n−1, it has then to
be immediately preceded by Lσ,i−1,n−1 and succeeded
by Lσ,i ,n+1. In other words, a regular product does not
possess any clustered factors Tσ,i+1,n+1Tσ,i ,n , and it cor-
responds to an evolution during which there is not any
successive hoppings of the same pseudofermion (note
that the products with Tσ,i ,N and Tσ,i+1,1 on both extrem-
ities are irregular for the trace is invariant under a circular
shift). The motive for the above definition is to ensure the
inverse square roots in z factors are eventually valued to
unity within physical N -time products. In this prospect,
Re,i ,n and R−σ,i ,n have thus to vanish in zσ,i ,n when enforc-
ing the constraints Eqs. 2. One can easily check that this
requirement is fulfilled when an fσ particle is on the site i

Copyright line will be provided by the publisher 7
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at the time step n, which is equivalent to state the N -time
product contains the factor Lσ,i ,n . Besides, Re,1,n+1 = 1
or R−σ,i ,n+1 = 1 must be satisfied as well. However, this
is always the case because zσ,i ,n is associated with the
removal of an fσ pseudofermion from site i , so there is
not any at the next time step. As for the factor z⋆

σ,i ,n , one
needs that Re,i ,n+1 = R−σ,i ,n+1 = 0 in physical evolutions,
while Re,i ,n = 1 or R−σ,i ,n = 1. The former property is en-
forced if and only if Lσ,i ,n+1 is present, while the latter
is always satisfied since there cannot be more than one
fσ pseudofermion on each site, so z⋆

σ,i ,n and Lσ,i ,n never
appear together in the same N -time product.

5 Integration over the complex bosonic d
field

Akin to the fermionic ones the d-boson field couples the
time steps through its dynamics. It furthermore enters
Z f and G f through the factors zσ,i ,n and z⋆

σ,i ,n which are
parts of the hopping terms. Hence, integrating their N -
time products requires to evaluate weighted integrals of
products with an equal number of factors di and d∗

i (the
correlations of the other kinds of product vanish). Since
d1 and d2 are not coupled, one only needs the partition
function of the ’non-interacting’ di boson

Zdi =
〈

1
〉

di
(48)

and its unnormalized k-particle correlations

Gdi (m1, . . . ,mk |n1, . . . ,nk ) =
〈

di ,m1
· · ·di ,mk

d∗
i ,nk

· · ·d∗
i ,n1

〉
di

(49)

where

〈
. . .

〉
di

≡
∫ N∏

n=1

ddi ,n dd∗
i ,n

2πi
. . . e−Sdi . (50)

The first of the three physical constraints (2) imposes that
the d boson is a hard core particle : On each site there
is at most one d boson at a time. Therefore, most of the
correlations will be canceled by the integral operator P at
the end of the evaluation, and the only relevant products
are the ones where the creation and annihilation fields
strictly alternate when time ordered.

The thermal averages are cast here in a form which is
suitable for the computation with the operator P . One
obtains

Zdi = det
[
Sdi

]−1 = (1−ξi )−1 =
∞∑

Di=0
ξ

Di
i (51)

with

ξi = e−βU
N∏

n=1
eiδ(−α̃i ,n+β↑,i ,n+β↓,i ,n). (52)

According to Wick’s theorem [93], multi-particle correla-
tions can be expressed in terms of single-particle ones,
which are given by the elements of the inverse matrix[

S−1
di

]
. Explicitly,

Gdi (m1, . . . ,nk ) =
∑

s∈Sk

G (s)
di

(m1, . . . ,nk ) (53)

where the sum runs over all complete contractions (mul-
tiplied by Zdi )

G (s)
di

(m1, . . . ,nk ) = Zdi

[
S−1

di

]
ms(k),nk

· · ·[S−1
di

]
ms(1),n1

(54)

and

[
S−1

di

]
m,n =


Zdi

∏
q∈[[n+1,m]]

eδ
(−U−iα̃i ,q+iβ↑,i ,q+iβ↓,i ,q

)
if m > n,

Zdi if m = n,

Zdi

∏
q ̸∈[[m+1,n]]

eδ
(−U−iα̃i ,q+iβ↑,i ,q+iβ↓,i ,q

)
if m < n

(55)

with q ̸∈ [[m+1,n]] standing for q ∈ [[1, N ]]\[[m+1,n]]. Using
the equality

Z k+1
di

= (1−ξi )−(k+1) = 1

k !

d k

dξk
i

(
1

1−ξi

)

= 1

k !

d k

dξk
i

( ∞∑
Di=0

ξ
Di
i

)
=

∞∑
Di=0

(
Di +k

k

)
ξDi , (56)

a complete contraction can then be cast into the generic
form

G (s)
di

(m1, . . . ,nk )

=
∞∑

Di=0

(
Di +k

k

)
N∏

n=1
eδ(Di+D(s)

n )(−U−iα̃i ,n+iβ↑,i ,n+iβ↓,i ,n) (57)

where D (s)
n is written instead of the more rigorous notation

D (s)
n (m1, . . . ,nk ) in order to shorten expressions. By taking

k = 0 and D (s)
n = 0, the expansion (51) of Zdi is recovered.

Hence, any thermal average over the di field can be cast
as a sum of terms of the form (57), and the latter will
be used when discussing general properties of d-boson
correlations.

As evidenced by the Coulomb amplitude U , the sum
Di +D (s)

n corresponds to the number of d bosons on site
i at time step n during the system evolution associated
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Figure 1 (Color online) Discrete-time variation of the double
occupancy D (s)

n in a complete contraction complying with the
physical constraints (i) for the time step order n1 < . . . < mk ,
and (ii) for m1 < . . . < nk .

with that particular complete contraction. Note that Di

can take any integer value since the double occupancy is
not restricted in the enlarged Fock space. However, the
Lagrange multipliers promote the sum as the number of d
bosons in the physical constraints (2). The latter equalities
impose that Di +D (s)

n ≤ 1 so that the series in the generic
form (57) actually stops at Di = 0 when the operator P

is applied on a k-particle correlation, and it is eventually
discarded if D (s)

n > 1 at any time step.

Considering Eq. (55), one thus deduces that in a
constraint-compliant complete contraction, there can-
not be more than one single-particle correlation of the

kind
〈

d∗
i ,ndi ,m

〉
with m < n. In this case, m is the smallest

among the 2k time steps and n the largest one. The other

contractions are necessarily of the type
〈

di ,md∗
i ,n

〉
with

m ≥ n, and their time ranges do not overlap. Hence the
hard-core nature of the boson imposes that creations and
annihilations of d bosons must chronologically alternate
in a non-vanishing correlation. If there is a time step n
in the sequence at which both di and d∗

i are evaluated,
the two corresponding complex variables must be gath-
ered in the same contraction. Indeed, such instance can
occur when calculating the thermal average of a product
containing a pair Tσ′,i−1,n+1Tσ,i ,n . Following the dynam-
ics of pseudofermions embodied by the matrices [Kσ,n]
(Eq. (39)), no factor Lσ,i ,n is then present at time step
n : The fσ particle does not stand on site i at the very
instant of its hopping, so the site cannot be doubly oc-
cupied. Therefore, D (s)

n must vanish in order to comply
with physical constraints, which is possible only if the vari-

able di ,n is contracted in a equal-time expectation value.
As a result, in the Wick expansion of a non-vanishing k-
particle correlation, only one complete contraction is rele-
vant since the operator P cancels all the other ones. This

one is
k∏

j=1

[
S−1

di

]
m j ,n j

for mk ≥ nk ≥ . . . ≥ m1 ≥ n1, and[
S−1

di

]
m1,nk

k−1∏
j=1

[
S−1

di

]
m j+1,n j

for nk ≥ mk ≥ . . . ≥ n1 ≥ m1

(see Fig. 1).
The remaining details of the d-field integration will

be discussed in the next sections in conjunction with the
filtering by P of the joint correlations

Zd f =
〈

Z f
〉

d and Gd f =
〈
G f

〉
d . (58)

In short, the contributions to Zd f from the subspaces with
zero to four fermions are

0 : Zd1 Zd2

1 :
〈

Tr
[

L T
T L

]
↑
〉

d
+

〈
Tr

[
L T
T L

]
↓
〉

d

2 :
(
[LL]↑+ [LL]↓

)
Zd1 Zd2 +

〈
Tr

([
L T
T L

]
↑⊗

[
L T
T L

]
↓
)〉

d

3 : [LL]↑
〈

Tr
[

L T
T L

]
↓
〉

d
+ [LL]↓

〈
Tr

[
L T
T L

]
↑
〉

d

4 : [LL]↑ [LL]↓Zd1 Zd2

.

(59)

The terms that contain the product Zd1 Zd2 result from
static configurations. The other contributions, as well as
the computation of Gd f , involve higher-order correlations
of the d field which are associated with fermion hoppings.

6 Integrations over radial slave-boson
fields and constraints

The joint partition function Zd f and the joint Green’s func-
tion Gd f have been rewritten as sums over the different d-
averaged N -time products describing all the discrete-time
evolutions of fσ pseudofermions and d bosons within the
enlarged Fock space. Static contributions are just prod-
ucts of factors Lσ multiplied by Zd1 Zd2 , while dynami-
cal N -time products contain higher-order correlations
of d bosons, which are generated when accounting for
fermion motion. Since any hopping process may be as-
sociated with four different sequences of boson number
changes (see Eq. (26)), a d-averaged N -time product in
Zd f with K hopping factors Tσ is a linear combination of
4K correlations Gd1Gd2 (4K+1 in the case of Gd f ). However,
among the latter, only one corresponds to the physical
variations of site occupancy that follow from the evolution
of the pseudofermion distribution, and as shown below,
the operator P discards all the other ones.
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In order to clarify how physical constraints are eventu-
ally enforced within the computation, di -boson correla-
tions are expanded according to Wick’s theorem as sums
of expressions of the form (57). Lagrange multipliers then
enter the complete contractions G (s)

di
(and Zdi ), as well as

the integral operator P and the matrix elements Lσ. As
a result, they are gathered in the arguments of imaginary
exponentials, which are the Fourier transforms of Dirac
delta functions (noted δ̂ below) implementing Eqs. (2)
on every site and at every time step [90]. For each term
G (s1)

d1
G (s2)

d2
of an N -time product, integrating out Lagrange

multipliers yields the product of simple integrals∫ ∞

−∞
δdαi ,n

2π
e

iδαi ,n

(
1−Re,i ,n−R↑,i ,n−R↓,i ,n−Di−D

(si )
n

)

= δ̂
(
1−Re,i ,n −R↑,i ,n −R↓,i ,n −Di −D (si )

n

)
(60)

and∫ ∞

−∞
δdβσ,i ,n

2π
e

iδβσ,i ,n

(
Di+D

(si )
n +R−σ,i ,n−Fσ,i (n)

)

= δ̂
(
Di +D (si )

n +Rσ,i ,n −Fσ,i (n)
)

(61)

where the number of fσ fermions Fσ,i (n) = 1 if the N -
time product contains Lσ,i ,n , and Fσ,i (n) = 0 otherwise.
Because radial boson fields are restricted to positive val-
ues, the delta functions unequivocally bind boson num-
bers to pseudofermion numbers. One thus deduces that
when both L↑,i ,n and L↓,i ,n are present, the only finite bo-
son value that is allowed on site i at time step n is the
double occupancy Di +D (si )

n = 1. If there is one single fac-
tor Lσ,i ,n , then Rσ,i ,n = 1. And without any factor Lσ,i ,n ,
the constraints imply that only the empty-site amplitude
Re,i ,n = 1 is of relevance.

As a consequence, the full integration of each N -time
product sets the value of double occupancy at every time
step, which will thereafter be noted Di (n). More specifi-
cally, for a static N -time product, the expansion (51) of the
partition function Zdi is actually stripped down to one sin-
gle term. The latter corresponds to the number Di = 0 for
systems with zero or with two pseudofermions of equal
spin orientations, and Di = 1 in the four-pseudofermion
case. In the dynamical sector, the static evolution of a clus-
ter with one single pseudofermion yields Di = 0, while
Di = 1 on the doubly occupied site and 0 on the other one
when the system contains three pseudofermions or two
with opposite spin projections. Moreover, for an N -time
product that contains hopping factors, one can conclude
that the operator P discards all unphysical correlations
Gd1Gd2 . Indeed, the delta functions ensure that there is
only one boson species at a time on each site. So at least
one of the two radial-field values, Re,i−1,n or R−σ,i−1,n ,

entering the numerator of each factor zσ,i−1,n−1 eventu-
ally vanishes. Since the same holds true for z⋆

σ,i ,n as well,
with Re,i ,n or R−σ,i ,n , every factor Tσ,i ,n is then actually
reduced to one of the four combinations of boson num-
ber changes. As a result, the final integration over radial
fields does not keep more than one of the correlations.
Furthermore, as discussed in the previous section, the
operator P refines the Wick expansion of the remaining
one down to its sole complete contraction G (s1)

d1
G (s2)

d2
that

respects the hard-core property of d bosons, with Di = 0
and D (si )

di
= Di (n) in the expansion (57).

At last, since the contribution to the action from the V -
potential depends only on radial boson fields, see Eq. (29),
the delta functions ensure that each N -time product is
correctly weighted with the physical value of the non-local
Coulomb interaction energy at every time step.

As shown in Appendix B, the contributions to the ther-
mal averages from irregular N -time products vanish in the
limit N →∞. Hence only the results from the full integra-
tion of regular ones are of interest, and are summarized
here.

We introduce the compact notation

(AB · · ·⊗X Y · · · )n ≡ A↑,nB↑,n · · ·X↓,nY↓,n · · · (62)

for the product of all the matrix elements that occur at
time step n in an N -time product. The effect of the inte-
gration over the d field, followed by the application of the
integral operator P , is to replace them according to the
following mapping – for the configurations with zero to
four pseudofermions :

0 : (1⊗1)n 7→ 1

1 :(Li ⊗1)n 7→ e−δε (Ti ⊗1)n 7→ δtν

2 :(L1L2 ⊗1)n 7→ e−δ(2ε+V )

(Li ⊗Li )n 7→ e−δ(2ε+U ) (Li ⊗Li−1)n 7→ e−δ(2ε+V )

(Ti ⊗Li )n 7→ δtνe−δε (Ti ⊗Li−1)n 7→ δtνe−δε

(Ti ⊗Ti )n 7→ 0 (Ti ⊗Ti−1)n 7→ (δtν)2

3 :(Li ⊗L1L2)n 7→ e−δ(3ε+U+2V )

(Ti ⊗L1L2)n 7→ δtνe−δ(2ε+V )

4 :(L1L2 ⊗L1L2)n 7→ e−δ(4ε+2U+4V ) (63)

with

tν = t

1+ν2 . (64)

Because of spin symmetry, the combinations obtained
from inverting spin orientations result into the same val-
ues, so they have been omitted. These rules apply likewise

10 Copyright line will be provided by the publisher



March 27, 2024

when computing the partition function Z and the Green’s
function G . However for the latter, there are also the extra
z factors which are mapped as

z↑,1,m z⋆↑,1,1 7→
(
1+ν2)−1

. (65)

For the calculation of a correlation 〈F (Ra ,Rb , . . . )〉,
where the function is a product of only radial variables,
the procedure is only slightly different from the above
mapping. Indeed, each N -time product is now multiplied
by the physical value of F that follows from the evolu-
tion of pseudofermions. Since the final value is either 0
or 1, this has the effect to discard some of the N -time
products. This may be implemented by nullifying the re-
sults of certain combinations from the above list, for the
very time steps at which the radial fields are evaluated.
For instance, when computing the hole density with the
factor Re,1,1, only the mapping for n = 1 is modified. The
affected combinations correspond to configurations with
Re,1,1 = 0, i.e. with an occupied site 1, which now yield a
vanishing factor : They are (L1⊗1)1, (L1L2⊗1)1, (L1⊗L1)1,
(Li ⊗Li−1)1, (Ti ⊗L1)1, all the products for three and four
pseudofermions, and the corresponding ones obtained
by flipping spin orientations. And for the computation
of the correlation

〈
Re,2,mRe,1,1

〉
, the list of nullified com-

binations is extended with the ones associated with an
occupied site 2 at n = m : They are (L2 ⊗1)m , and so on.

7 Recovering the results derived from the
Hamiltonian formulation

At the beginning of the integral evaluation, time steps
were intertwined, as illustrated by the expression of the
hopping element Tσ,i ,n , see Eqs. (25b) and (26). However,
this is no longer the case once the computation with the
operator P is completed. Actually, the factors within the
end value of every regular N -time product do not even
depend on the time step, apart marginally at n = 1 and
n = m for the correlations in which these time steps play
a particular role. The projection onto the physical sub-
space of a thermal average may thus be recast into a more
compact form. And as shown below, in the continuous-
time limit, the latter results in the same expression as the
one directly derived from the Hamiltonian in the original
physical Fock space. This demonstrates the validity of the
integration procedure within the radial gauge formula-
tion.

7.1 Partition function

Starting from the pseudo-fermion partition function Z f

given by Eq. (41), we have derived the corresponding joint
correlation Zd f and its P -projection. It contains both
regular and irregular contributions. However, the latter do
not contribute to the partition function in the continuous-
time limit (see Appendix B), and by neglecting them, a
simpler expression for the projection of the joint partition
function is obtained as

P (Zd f ) =P
(〈

Tr
([

U↑,N :1
]⊗ [

U↓,N :1
])〉

d

)
= Tr

([
κ
]N

)
+o(1). (66)

Here
[
κ
]

is the time-independent 16×16 matrix that re-
sults from applying the mapping Eq. (63) on the infinitesi-
mal-evolution matrix

[
K↑,n

]⊗[
K↓,n

]
of the pseudofermion

system. It reads to the first order in N−1,

[
κ
]=116 − β

N

[
Hν

]+o

(
116

N

)
. (67)

The mapping Eq. (63) allows us to work out the matrix ele-
ments of

[
Hν

]
. They turn out to be identical to the ones

of the matrix
[
H

]
that represents the original Hamilto-

nian, Eq. (1), at the exception of the hopping amplitude
which, here, reads tν as given in Eq. (64), instead of t . At
this point, the regulator ν has played its role : It has al-
lowed to handle the irregular contributions by rendering
them finite, but it has no further impact on the final result
when the limit ν→ 0 is taken. One can note that within
a representation that does not include the Kotliar square
roots, the exact same calculation would have resulted in
the same expressions with t instead of tν. Explicitly,

[
Hν

]=


[
H (↑:0)
ν

] [
H (↑:1a)
ν

] [
H (↑:1b)
ν

][
H (↑:1c)
ν

] [
H (↑:1d)
ν

] [
H (↑:2)
ν

]

 (68)

where

[
H (↑:0)
ν

]=


0 0 0 0

0 ε −tν 0

0 −tν ε 0

0 0 0 2ε+V

 (69)

describes the dynamics of the states without any spin-
up electron – the reader is reminded that ε stands for
the difference in energy between the orbital level and the
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chemical potential,

[
H (↑:1a)
ν

]=

ε 0 0 0

0 2ε+U −tν 0

0 −tν 2ε+V 0

0 0 0 3ε+U +2V

 ,

[
H (↑:1b)
ν

]= [
H (↑:1c)
ν

]=−tν14,

[
H (↑:1d)
ν

]=

ε 0 0 0

0 2ε+V −tν 0

0 −tν 2ε+U 0

0 0 0 3ε+U +2V

 , (70)

represent the Hamiltonian of the states with one spin-up
electron, and

[
H (↑:2)
ν

]=


2ε+V 0 0 0

0 3ε+U +2V −tν 0

0 −tν 3ε+U +2V 0

0 0 0 4ε+2U +4V


(71)

corresponds to the states with two spin-up electrons.
And using the expansion Eq. (67) of the matrix

[
κ
]
, the

partition function is finally obtained as

Z = lim
ν→0

lim
N→∞

P
(
Zd f

)= lim
ν→0

Tr

(
lim

N→∞
[
κ
]N

)
= lim
ν→0

Tr
(
e−β[Hν]

)
= Tr

(
e−β[H ]

)
(72)

with
[
Hν=0

]= [
H

]
.

7.2 Green’s function

As with the evaluation of the partition function, the irreg-
ular contributions to the Green’s function vanish in the
continuous-time limit. Hence they can be neglected, and
using the mapping Eq. (63), the projection of the joint
Green’s function Gd f can be cast as

P (Gd f ) =P
(〈

Tr
([

G↑
]⊗ [

U↓,N :1
])〉

d

)
= 1

1+ν2 Tr
([
κ
]N−m[

F↑,1
][
κ
]m−1[F↑,1

]†[
κ
])+o(1)

(73)

where the matrices[
F↑,1

]† = [
F1

]† ⊗14,
[
F↑,1

]= [
F1

]⊗14 (74)

represent the creation and the annihilation operators of a
spin-up electron on site 1, respectively. Accordingly, we

finally obtain

ZG =− lim
ν→0

lim
N→∞

P
(
Gd f

)
=−Tr

(
e−(β−τ)[H ][F↑,1

]
e−τ[H ][F↑,1

]†
)

, (75)

which is the expected result.

7.3 Thermal averages of radial slave boson fields :
the example of the radial field Re

The probability of site 1 to be empty at time step 1 follows
from

P (Re,1,1Zd f ) =P
(
Re,1,1

〈
Tr

([
U↑,N :1

]⊗ [
U↓,N :1

])〉
d

)
= Tr

([
κ
]N−1[

κe1

])+o(1). (76)

Here
[
κe1

]
is the matrix obtained from

[
κ
]

by nullifying
the entries that correspond to the infinitesimal evolutions
during which the site 1 is occupied. In the continuous-
time limit, it takes the simpler form[
ne1

]
i , j = δi ,1δ j ,1 +δi ,3δ j ,3 +δi ,9δ j ,9 +δi ,11δ j ,11 (77)

which represents the hole-number operator on site 1. And
the hole density on site 1 is then given by

Z 〈Re,1〉 = lim
ν→0

lim
N→∞

P
(
Re,1,1Zd f

)
= Tr

(
e−β[H ][ne1

])
(78)

which vanishes when the system is fully filled, only. Hence,
unlike complex bosonic fields, the exact averaged value
of a radial slave boson field is generically finite, without
being in conflict with Elitzur’s thereom.

Introducing the matrix
[
κe2

]
that is obtained from

[
κ
]

by nullifying the matrix elements associated with an oc-
cupied site 2, the regular part of the projection on the
physical subspace

P
(
Re,2,mRe,1,1Zd f

)
=P

(
Re,2,mRe,1,1

〈
Tr

([
U↑,N :1

]⊗ [
U↓,N :1

])〉
d

)
= Tr

([
κ
]N−m[

κe2

][
κ
]m−1[

κe1

])+o(1). (79)

Since the continuous-time limit of
[
κe2

]
is the matrix[

ne2

]
i , j = δi ,1δ j ,1 +δi ,2δ j ,2 +δi ,5δ j ,5 +δi ,6δ j ,6 (80)

of the hole-number operator on site 2,

Z 〈Re,2(τ)Re,1(0)〉 = lim
ν→0

lim
N→∞

P
(
Re,2,mRe,1,1Zd f

)
= Tr

(
e−(β−τ)[H ][ne2

]
e−τ[H ][ne1

])
, (81)
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which is the expected result.

Our calculations performed in the radial gauge demon-
strate that the Kotliar roots may be translated from their
operator forms, Eq. (5), to the corresponding regularized
expressions in terms of radial slave boson fields, Eq. (26).
The radial representation allows to overcome the hurdle of
the normal ordering procedure for the square roots. Thus,
we have not only obtained the exact partition function,
but also the correct Green’s function as well as the proper
correlation functions.

8 Summary and conclusion

Summarizing, we have tested the Kotliar and Ruckenstein
slave-boson representation by thoroughly calculating ex-
actly the functional integral formulation of thermodynam-
ical and dynamical properties of the finite-U extended
Hubbard model on a two-site cluster. Our study is focused
on the radial gauge, which is here shown to be free of
redundant degrees of freedom. Our calculations demon-
strate that the formulation (Eq. (15)), that has been set up
from the outset, is faithful. In particular, it remedies the
apparent shortcoming of the KR representation related to
the normal ordering procedure. Indeed, accounting for
it when the Kotliar roots are included in the calculation
is a formidable task. Yet, our work shows that it is unnec-
essary as, starting from the original formulation [54], it
is possible to rewrite the arguments of the roots in terms
of radial slave bosons, only, without any loss of general-
ity. This applies to the evaluation of the partition func-
tion, averaged values and correlation functions of radial
slave-boson fields, and the electronic Green’s function,
to quote a few (see Sec. 7). We further obtained that the
Kotliar roots need to be properly regularized within the
discrete-time computation of the functional integrals (see
Eq. (26)) to cope with otherwise singular values associated
to multiple hopping processes occurring at consecutive
time steps. We then showed that they are not numerous
enough to yield a finite contribution to the expectation
values in the continuous-time limit. Hence, this represen-
tation is well defined. Accordingly, the criticisms raised
by Schönhammer [92] are answered, and, recalling that
radial slave bosons do not undergo Bose condensation,
the numerous works based on the saddle-point approxi-
mation are put on a firmer ground. Let us also emphasize
that using radial slave bosons largely simplifies the han-
dling of non-local interactions as they naturally arise as
terms quadratic in the radial fields, akin to the Hubbard
interaction. Furthermore, we do not expect further hur-
dles to appear when tackling larger clusters. One may

also perform the same calculations without introducing
the Kotliar roots. In that case, no unexpected difficulty
arises while the irregular contributions are not singular
any longer, though the complex and dynamical d boson
field keeps the calculation of the partition function far
more complicated than in the U =∞ case. In that limit,
all bosons are radial fields, which have no dynamics on
their own. Regarding the extended Hubbard model, the
present representation paves the way to better controlled
calculations of charge fluctuations in the thermodynamic
limit.

A Pseudofermion Green’s function

Standard results for Gaussian integrals over Grassmann
variables [93] yield the correlation〈

f↑,1,m f ∗
↑,1,1

〉
f↑
= [

S−1
↑

]
2m−1,1 det

[
S↑

]
(82)

which is also equal to the minor M1,2m−1 of
[
S↑

]
ob-

tained by removing the first row and the (2m −1)-th col-
umn. In order to show the latter can be computed as
Tr

[
G↑

]
/
(
z↑,1,m z⋆↑,1,1

)
as well, it is first expressed with the

help of the middle blocks
[
K (1)
↑,n

]
of the dynamics matrices[

K↑,n
]
, see Eq. (39), instead of the blocks

[
M↑,n

]
. In the

following, the spin subscript ↑ will be omitted for com-
pactness. Multiplying by −1 its N rows and its N columns
that contain the entries L2,n , the minor can be evaluated
as the determinant

0 1 K (1)
1

−K (1)
2 12

. . .
. . .
. . . 12

−K (1)
m

0
1

−K (1)
m+1 12

−K (1)
m+2

. . .

. . .
. . .

−K (1)
N 12

(83)

where we have introduced the notations M , M , M , and
M for the top row, the bottom row, the left column, and

the right column of a 2×2 matrix
[
M

]
, respectively.

The minor is then calculated by repeating the expan-
sions according to the last two columns. The first iteration
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yields

M1,2m−1 =D0,N>−T2,1D1,N>−L2,1D2,N> (84)

where the determinant D0,N> is

0 1

−K (1)
2 12

. . .
. . .
. . . 12

−K (1)
m

0
1

−K (1)
m+1 12

−K (1)
m+2

. . .

. . .
. . .

−K (1)
N−1 12

(85)

and, for n > m +1, we define D1,n> as

−K (1)
2 12

. . .
. . .
. . . 12

−K (1)
m

0
1

−K (1)
m+1 12

−K (1)
m+2

. . .

. . .
. . .

−K (1)
n−1 12

−K (1)
n

(86)

while D2,n> has the same structure as D1,n>, except for its

last row where −K (1)
n is replaced by −K (1)

n .
The first term D0,N> can be straight away simplified,

thanks to the blocks 12 on the right part of its diagonal. It
is equal to the determinant D1,m<, which is defined as

D1,n< =

0 1

−K (1)
2 12

. . .
. . .

−K (1)
n−1 12

−K (1)
n

(87)

for 2 ≤ n < m +1. The latter follows the recursion relation[
D1,n<
D2,n<

]
=

[
L1,n T1,n

T2,n L2,n

][
D1,n−1<
D2,n−1<

]
= [

K (1)
n

][
D1,n−1<
D2,n−1<

]

(88)

with D2,n< being identical to D1,n<, except for its last row

where −K (1)
n is replaced by −K (1)

n . Since

D1,2< =
∣∣∣∣∣ 0 1

−K (1)
2

∣∣∣∣∣= L1,2 and D2,2< =
∣∣∣∣∣ 0 1

−K (1)
2

∣∣∣∣∣= T2,2,

(89)

one then obtains

D0,N> =
[

1 0
][

K (1)
m

][
K (1)

m−1

]
. . .

[
K (1)

2

][
1

0

]
. (90)

The block-diagonal structure of the dynamics matrix
[
Kn

]
allows to readily verify that the previous expression can
also be written as

D0,N> = [
E0

][
G

][
E0

]†/
(
z1,m z⋆1,1

)
(91)

where
[
E0

] = [
1 0 0 0

]
is the row vector of the zero-

pseudofermion state.
Expanding the determinants D1,n> and D2,n> accord-

ing to their last two columns yield the same recursion
relation as the previously obtained one :[
D1,n>
D2,n>

]
= [

K (1)
n

][
D1,n−1>
D2,n−1>

]
. (92)

Hence[
D1,N>
D2,N>

]
= [

K (1)
N

][
K (1)

N−1

]
. . .

[
K (1)

m+2

][
−T1,m+1

−L2,m+1

]
D3,m< (93)

with

D3,m< =

[−K (1)
2

]
12

. . .
. . .
. . . 12[−K (1)

m
]
=

m∏
n=2

L1,nL2,n (94)

Here, we have omitted the terms T1,nT2,n = o
( 1

N

)
that

are in the factors det
(−[K (1)

n
])

: Their total contribution
vanishes in the continuous-time limit. It is then easy to
check that

−T2,1D1,N> = [
E1

][
G

][
E1

]†/
(
z1,m z⋆1,1

)
, (95)

−L2,1D2,N> = [
E2

][
G

][
E2

]†/
(
z1,m z⋆1,1

)
, (96)

where
[
E1

]= [
0 1 0 0

]
and

[
E2

]= [
0 0 1 0

]
are the row

vectors of the states with one pseudofermion on site 1 and
on site 2, respectively.
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And since[
E3

][
G

][
E3

]† = 0 (97)

with the row vector
[
E3

]= [
0 0 0 1

]
of the state with one

pseudofermion on both sites, one can conclude that

M1,2m−1 = Tr
[
G

]
/
(
z1,m z⋆1,1

)
. (98)

B Limit of irregular contributions

It is shown that the contribution from irregular products
to the matrix representation of the evolution operator
vanishes in the continuous-time limit. This can be un-
derstood by reasoning with a fixed number k of hopping
factors while increasing N to infinity. One then finds that
the number of irregular products with k hoppings does
not grow fast enough to compensate the decreasing factor
δk = (β/N )k , so that their sum tends to zero. However,
since there is an infinite number of k values, adding all
the vanishingly small contributions has to be performed
with care.

First, let us prove the assertion when the infinitesimal
evolution operator is represented by a p ×p matrix of the
form[
K

]= [
L

]+ 1

N

[
T

]
. (99)

Here
[
L

]
is a diagonal matrix with its norm

∥∥[
L

]∥∥ ≤ 1,
where the infinity norm of a matrix is defined as∥∥[

M
]∥∥= max

i , j

∣∣∣[M
]

i , j

∣∣∣ . (100)

The hopping entries are O(1/N ) and they are gathered,
among others, in

[
T

]
/N . The matrix

[
T

]
is bounded with∥∥[

T
]∥∥ ≤ r /p, where r is a positive constant. This is the

case for the evolution matrix
[
κ
]

given by Eq. (67). And it
is also true for the matrix[
K ν

]=116 + 1

N

[
T ν

]
with

[
T ν

]
i , j =

∣∣∣∣2βt

ν

∣∣∣∣ , (101)

which will be used below to bound the irregular contribu-
tions to the thermal averages discussed in the manuscript.

The matrix of the evolution operator over a time range
τ ∈]0,β] is obtained as the limit of

[
K

]m with the expo-
nent m set as the integer part of τN /β. Expanding the
power

[
K

]m using expression (99) yields a sum of 2m dif-
ferent m-time products of matrices. Extending the defini-
tion introduced for a product of matrix elements, a matrix
product is coined irregular when there are at least two
adjacent factors

[
T

]
(or at both ends of the product), and

regular otherwise. Noting the contributions to the expan-
sion from regular and irregular terms as Reg

([
K

]m)
and

Irr
([

K
]m)

, respectively, one has the obvious equality

Irr
([

K
]m)= [

K
]m −Reg

([
K

]m)
. (102)

The definition ensures the irregular matrix products con-
tain all the irregular m-time products of matrix entries.
Actually, they also contain a part of the regular ones (e.g.
regular products with alternating hoppings of different
pseudofermions). However, the contribution from the lat-
ter to the evolution matrix can be neglected since, as it is
shown below,

∥∥Irr
([

K
]m)∥∥ vanishes when N → ∞.

The total number of products with k factors
[
T

]
is

am,k =
{(m

k

)
if 0 ≤ k ≤ m

0 if k > m,
(103)

and the number of regular ones is

bm,k =


1 if k = 0(m−k

k

)+ (m−k−1
k−1

)
if 1 ≤ k ≤ m

2

0 if k > m
2 .

(104)

Indeed, for 1 ≤ k ≤ m
2 , there are

(m−k
k

)
ones with

[
L

]
at

the right end, and
(m−k−1

k−1

)
ones with

[
T

]
at the right end :

The ones with a factor
[
L

]
on the right may be seen as

sequences of m −k positions to be filled with k products[
T

][
L

]
and m−2k factors

[
L

]
, while the ones with a factor[

T
]

on the right may be seen as sequences composed of
k−1 products

[
T

][
L

]
and m−2k factors

[
L

]
, sandwiched

between
[
L

]
and

[
T

]
.

In order to prove that Irr
([

K
]m)

vanishes in the
continuous-time limit, let us show that for any real num-
ber ϵ> 0, there is a rank Nϵ above which

∥∥Irr
([

K
]m)∥∥≤ ϵ.

First, since the norm of a product of two p×p matrices
verifies the inequality

∥∥[
A

][
B

]∥∥ ≤ p
∥∥[

A
]∥∥∥∥[

B
]∥∥ in the

general case, and
∥∥[

A
][

B
]∥∥ ≤ ∥∥[

A
]∥∥∥∥[

B
]∥∥ when one of

the matrices is diagonal, the norm of a product with k
factors

[
T

]
/N and m−k factors

[
L

]
is smaller than (r /N )k .

Hence,

∥∥Irr
([

K
]m)∥∥≤

m∑
k=2

(
am,k −bm,k

)( r

N

)k
. (105)

Then, for any integer n ≥ 2,

∥∥Irr
([

K
]m)∥∥≤

n∑
k=2

(
am,k −bm,k

)( r

N

)k
+

∞∑
k=n+1

am,k

( r

N

)k

≤
n∑

k=2

(
am,k −bm,k

)( r

N

)k
+

∞∑
k=n+1

r k

k !
. (106)
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The infinite sum in the last line is the tail of the power
series of er . Thus there exists an integer nϵ such that if
n ≥ nϵ, then the tail is smaller than ϵ

2 , and∥∥Irr
([

K
]m)∥∥≤

nϵ∑
k=2

(
am,k −bm,k

)( r

N

)k
+ ϵ

2
. (107)

Now, all the integers k on the right-hand side of the
inequality are lower than the fixed value nϵ, and the sum
can be made as small as wished by increasing N (and so
m, as well). Indeed, with m ≥ 2nϵ, all k values are smaller
than m/2, and

0 ≤ (
am,k −bm,k

)( r

N

)k
≤

((
m

k

)
−

(
m −k

k

))( r

N

)k

≤ mk − (m −k)k

N k
× r k

k !
(108)

where nk ≡ n!
(n−k)! . For a fixed integer k, mk

N k and (m−k)k

N k

converge to the same limit τk when N →∞, so their dif-
ference vanishes. As a consequence, there exists an integer
Nϵ > 2nϵβ/τ such that if N ≥ Nϵ, then for all k ∈ [[2,nϵ]],

0 ≤ (
am,k −bm,k

)( r

N

)k
≤ ϵ

2
e−r × r k

k !
, (109)

so that∥∥Irr
([

K
]m)∥∥≤ ϵ

2
e−r

(
nϵ∑

k=2

r k

k !

)
+ ϵ

2
≤ ϵ. (110)

Hence, one can conclude that

lim
N→∞

∥∥Irr
([

K
]m)∥∥= 0. (111)

Now, Eq. (66) can be justified. First, in an irregular N -
time product, there are consecutive time-steps at which a
pseudofermion hops back and forth. For this kind of pro-
cess, when the physical constraints are satisfied, the eval-
uation by P of a z factor, Eq. (26), yields a term with mod-

ule
(
|ν|

p
1+ν2

)−1/2
or 0. In contrast, it yields

(
1+ν2

)−1/2

when the hopping process is regular. So a hopping term
Tσ,i ,n results in a factor which may always be bounded by
βt/(|ν|N ) when |ν| < 1. As a result, the total irregular con-
tribution to P (Zd f ) is smaller in module than the trace of

Irr
([

K ν

]N
)
, with the matrix

[
K ν

]
given by Eq. (101). Since

the irregular parts of
[
K ν

]N and of
[
κ
]N vanish in the

continuous-time limit, their traces and the irregular con-
tribution to P (Zd f ) vanish as well, which proves Eq. (66).

Similarly, the total irregular contribution to P (Gd f )
may be dominated in module by the trace of the irregular
part of the matrix product[
Gν

]= 1

|ν|
[
K ν

]N−m[
F↑,1

][
K ν

]m−1[F↑,1
]†[K ν

]
(112)

which is

Irr
[
Gν

]= 1

|ν|
(
Irr

([
K ν

]N−m
)[

F↑,1
][

K ν

]m−1[F↑,1
]†[K ν

]
+ [

K ν

]N−m[
F↑,1

]
Irr

([
K ν

]m−1
)[

F↑,1
]†[K ν

]
+ Irr

([
K ν

]N−m
)[

F↑,1
]
Irr

([
K ν

]m−1
)[

F↑,1
]†[K ν

])
+O

(
116

N

)
. (113)

Indeed, expanding the product
[
Gν

]
by using Eq. (101)

(without commuting the matrices nor simplifying the
products of identity matrices), one finds that the majority
of irregular (N +2)-time matrix products are the ones that
contain at least a pair of adjacent factors

[
T ν

]
either on

the left or on the right of the factor
[
F↑,1

]
, or on both sides.

The remaining irregular ones belong to the set of products

with a factor
[
T ν

]
adjacent to

[
F↑,1

]
or

[
F↑,1

]†, or a pair of[
T ν

]
on both ends of the product. It is straightforward to

show that their sum is O(N−1). For the latter types, the
sums of the irregular (N +2)-time products are :

• 1
|ν|N

[
K ν

]N−m−1[T ν

][
F↑,1

][
K ν

]m−1[F↑,1
]†[K ν

]
,

• 1
|ν|N

[
K ν

]N−m[
F↑,1

][
T ν

][
K ν

]m−2[F↑,1
]†[K ν

]
,

• 1
|ν|N

[
K ν

]N−m[
F↑,1

][
K ν

]m−2[T ν

][
F↑,1

]†[K ν

]
,

• 1
|ν|N

[
K ν

]N−m[
F↑,1

][
K ν

]m−1[F↑,1
]†[T ν

]
,

• 1
|ν|N 2

[
T ν

][
K ν

]N−m−1[F↑,1
][

K ν

]m−1[F↑,1
]†[T ν

]
.

Since the matrix powers
[
K ν

]N−m and
[
K ν

]m−1 converge
while their irregular parts vanish, one can deduce that
the matrix Irr

[
Gν

]
vanishes in the continuous-time limit.

And, using similar arguments, the same conclusion may
be drawn for the irregular part of the matrix product

[
G

]= 1

1+ν2

[
κ
]N−m[

F↑,1
][
κ
]m−2[F↑,1

]†[
κ
]
, (114)

which completes the proof of Eq. (73). The demonstra-
tions of Eq. (76) and Eq. (79) follow the same line of rea-
soning without further difficulties.

Key words. Hubbard Model, slave boson, radial gauge, normal
order procedure, functional integration
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