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Abstract. Stochastic neurons are efficient hardware accelerators for solving a large

variety of combinatorial optimization problems. “Binary” stochastic neurons (BSN)

are those whose states fluctuate randomly between two levels +1 and -1, with the

probability of being in either level determined by an external bias. “Analog” stochastic

neurons (ASNs), in contrast, can assume any state between the two levels randomly

(hence “analog”) and can perform analog signal processing. They may be leveraged

for such tasks as temporal sequence learning, processing and prediction. Both BSNs

and ASNs can be used to build efficient and scalable neural networks. Both can be

implemented with low (potential energy) barrier nanomagnets (LBMs) whose random

magnetization orientations encode the binary or analog state variables. The difference

between them is that the potential energy barrier in a BSN LBM, albeit low, is much

higher than that in an ASN LBM. As a result, a BSN LBM has a clear double

well potential profile, which makes its magnetization orientation assume one of two

orientations at any time, resulting in the binary behavior. ASN nanomagnets, on

the other hand, hardly have any energy barrier at all and hence lack the double well

feature. That makes their magnetizations fluctuate in an analog fashion. Hence, one

can reconfigure an ASN to a BSN, and vice-versa, by simply raising and lowering

the energy barrier. If the LBM is magnetostrictive, then this can be done with local

(electrically generated) strain. Such a reconfiguration capability heralds a powerful

field programmable architecture for a p-computer, and the energy cost for this type

of reconfiguration is miniscule. There are also other applications of strain engineered

barrier control, e.g., adaptive annealing in energy minimization computing (Boltzmann

or Ising machines), emulating memory hierarchy in a dynamically reconfigurable

fashion, and control over belief uncertainty in analog stochastic neurons. Here, we

present a study of this modality.

Keywords: binary stochastic neurons, analog stochastic neurons, reconfigurability, low

barrier nanomagnets, magnetostriction, strain
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1. Introduction: Binary and analog stochastic neurons implemented with

LBMs

Binary stochastic neurons (BSNs) are a well known route to implementing “spins” in

Ising machines [1, 2] and have been used to solve computationally hard problems such

as graph theoretic problems like Max Cut [3], factorization [4], etc. very efficiently.

A popular approach to realizing them is with a low (energy) barrier nanomagnet

(LBM), whose magnetization fluctuates randomly between two preferred orientations

representing the binary bits +1 and -1. The probability of being in either bit can be

altered by a “bias”, such as a spin-polarized current injected into the LBM [1].

The LBM is usually a nanomagnet with in-plane anisotropy that is shaped like

an elliptical disk with small (but non-zero) eccentricity. The in-plane potential energy

profile (energy versus magnetization orientation) of such a LBM is shown schematically

in Fig. 1(a). Normally, there is a clear double-well feature which can be discerned

despite the low potential barrier. The two ground states (or wells) correspond to

the magnetization pointing along either direction along the major axis (or easy axis)

of the elliptical nanomagnet. At room temperature, thermal energy can allow the

magnetization to transcend the energy barrier separating the wells, which will allow

the magnetization to fluctuate randomly between the two potential wells. If we take a

snapshot in time, we will usually find the magnetization in one of the two wells, i.e., it

will tend to point along one of the two directions along the major axis, which encode

the bits +1 and -1. This leads to the digital or “binary” behavior.

One can depress the energy barrier separating the two wells with (electrically

generated) mechanical strain if the nanomagnet is made of a magnetostrictive material

like Co or FeGa or Terfenol-D. For this to happen, the sign of the product of the

magnetostriction and the strain has to be negative. When the energy barrier is depressed

sufficiently, it begins to lose the double-well feature, as shown in Fig. 1(b). At that point,

the magnetization has very little tendency to settle into either of the two degenerate

ground states preferentially, and all orientations are almost equally likely. Consequently,

the magnetization will fluctuate among all orientations with the same likelihood, leading

to the “analog” behavior. We can, therefore, reconfigure a stochastic neuron from binary

to analog, and vice-versa, with strain.

2. Strain effects on energy barrier

The steady-state in-plane potential energy in a strained elliptical nanomagnet with in-

plane anisotropy depends on the magnetization orientation as [5]

E = (µ0/2)M
2
sΩ

[
N1cos

2θ +N2sin
2θ
]
− (3/2)λsY ϵΩcos2θ, (1)

where µ0 is the permeability of vacuum, Ms is the saturation magnetization of

the nanomagnet’s material, Ω is the nanomagnet volume, λs is the saturation

magnetostriction of the nanomagnet material, Y is the Young’s modulus of the

nanomagnet, ϵ is the strain, θ is the angle shown in the inset of Fig. 1 to denote
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Figure 1. (a) Potential energy as a function of the in-plane magnetization

orientation in a magnetostrictive nanomagnet shaped like an elliptical disk

with small eccentricity. (b) Potential energy as a function of the in-plane

magnetization orientation when the nanomagnet is subjected to uniaxial stress

along the major axis such that the sign of the product of the stress and

the magnetostriction is negative. The inset shows the nanomagnet and

the magnetization orientation, with θ being the angle subtended by the

magnetization with the nanomagnet’s major axis.

the magnetization orientation (it is the angle subtended by the in-plane component of

the magnetization with the major axis of the elliptical nanomagnet), and
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where a is the major axis, b is the minor axis and t is the thickness of the nanomagnet

[6].

Equation (1) clearly shows that if the product λsϵ has a negative sign, then

application of strain will depress the energy barrier, which is what we depicted

schematically in Fig. 1. A material like Co has negative magnetostriction and hence a

tensile uniaxial strain along the major axis of the nanomagnet will depress the energy

barrier. A material like FeGa or Terfenol-D has positive magnetostriction and hence a

compressive uniaxial strain along the major axis will depress the energy barrier. Fig. 2

shows the potential energy E−Emin (Emin is the minimum value of E) as a function of
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the magnetization orientation in a Co nanomagnet of major axis 100 nm, minor axis 99

nm and thickness 5 nm. The energy barrier is the maximum of this quantity, and can

be seen to decrease with increasing stress.

Figure 2. The potential energy profile in a Co nanomagnet shaped like an

elliptical disk as function of the angle θ subtended by the magnetization with

the major axis. The results are shown for different stress values. The quantity

E is calculated from Equation (1) and Emin is the minimum value of E. The

nanomagnet has major axis = 100 nm, minor axis = 99 nm and thickness = 5

nm.

One way to strain a nanomagnet electrically is to use the configuration shown is

Fig. 3. The nanomagnet is deposited on a poled piezoelectric film and gate pads are

delineated around it such that the line joining the pads passes through the major axis.

The two pads are shorted together and a voltage is applied between the shorted pads

and the grounded conducting substrate. The substrate is made ‘conducting’ so that the

applied gate voltage drops mostly across the piezoelectric layer and not the substrate.

If the resulting electric field is parallel to the direction of the poling, then tensile strain

will appear along the major axis and compressive along the minor axis of the elliptical

nanomagnet. Reversing the polarity of the gate voltage will reverse the signs of the
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Gate voltage

Direction of poling

Figure 3. Methodology to reconfigure a BSN into an ASN and vice versa.

Applying a gate voltage of the right polarity will generate the right type of

biaxial strain in the poled piezoelectric region underneath the nanomagnet.

This strain will be transferred to the nanomagnet and it will lower the energy

barrier in the latter, making its magnetization fluctuate in an analog manner

rather than a binary manner. We can build a magnetic tunnel junction (MTJ)

on top of the nanomagnet which will act as its soft layer. This MTJ will be a

fluctuating resistor that can be transformed from a BSN to an ASN by turning

on the gate voltage to generate strain.

strains. The dimensions of the nanomagnet and the electrodes, the separation between

the nanomagnet edge and the nearest electrode, and the piezoelectric film thickness have

to satisfy certain conditions for the biaxial strain generation as described [7], but these

conditions are relatively easy to fulfill.

We can build a magnetic tunnel junction (MTJ) on top of the nanomagnet, with

the latter acting as the soft layer whose magnetization fluctuates. This will transform

the MTJ into a fluctuating resistance that acts as either a BSN (no gate voltage applied

to cause strain and lower the energy barrier) or an ASN (gate voltage of the right

polarity applied to cause strain that lowers the energy barrier). This is the basis of a

reconfigurable stochastic neuron (RSN).

An important question now is whether the strain generated by the gate voltage can
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be non-volatile. This will allow the reconfiguration to be non-volatile as well. There

are many reports of non-volatile remanent strain in piezoelectrics at room temperature

[8, 9, 10, 11, 12, 13, 14] although the strain’s longevity has not been studied. If the strain

remains non-volatile, we can reconfigure a BSN to an ASN and the reconfiguration will

survive subsequent removal of the gate voltage. To revert the ASN back to a BSN, we

can simply apply strain of the opposite sign, which will raise the energy barrier back in

the nanomagnet and convert the ASN to a BSN.

3. Landau-Lifshitz-Gilbert simulations to study random magnetization

dynamics in an LBM under different strains

We carried out Landau-Lifshitz-Gilbert (LLG) simulations of the magnetization

dynamics in an LBM at room temperature under different strains to see how the

magnetization fluctuation behaves. The LBM we studied is an elliptical Co nanomagnet

of major axis 100 nm, minor axis 99 nm and thickness 5 nm. A nanomagnet of these

dimensions are likely to be monodomain and hence the macrospin approximation holds.

The saturation magnetization Ms = 106 A/m, the magnetostriction coefficient λs = -35

ppm and the Gilbert damping coefficient α = 0.01 correspond to a Co nanomagnet. The

coupled LLG equations governing the temporal evolutions of the scalar components of

the magnetization were solved with finite difference method [15, 16] with a time step

of 0.1 ps. We assumed positive (tensile) uniaxial strain applied along the major axis of

the nanomagnet since Co has negative magnetostriction. This will depress the energy

barrier within the nanomagnet. The initial condition was that the magnetization was

aligned close to the major axis of the nanomagnet.

The coupled LLG equations describing the temporal evolution of the three

components of the magnetization are:

dmx(t)

dt
= − γ [Hz(t)my(t)−Hy(t)mz(t)]

− αγ
[
Hy(t)mx(t)my(t)−Hx(t)m

2
y(t)−Hx(t)m

2
z(t) +Hz(t)mx(t)mz(t)

]
dmy(t)

dt
= − γ [Hx(t)mz(t)−Hz(t)mx(t)]

− αγ
[
Hz(t)my(t)mz(t)−Hy(t)m

2
z(t)−Hy(t)m

2
x(t) +Hx(t)mx(t)my(t)

]
dmz(t)

dt
= − γ [Hy(t)mx(t)−Hx(t)my(t)]

− αγ
[
Hx(t)mz(t)mx(t)−Hz(t)m

2
x(t)−Hz(t)m

2
y(t) +Hy(t)my(t)mz(t)

]
(2)

where α is the Gilbert damping factor of the nanomagnet material, γ is the gyromagnetic

factor (a constant), mi(t) is the i-th component of the magnetization at time t, andHi(t)

is the i-th component of the effective magnetic field experienced by the nanomagnet at

time t. The major axis of the nanomagnet is along the y-direction and the minor axis

is along the x-direction.
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The effective magnetic field components are given by

Hx(t) = −MsN2mx(t) + hnoise
x (t)

Hy(t) = −MsN1my(t) + hnoise
y (t) +

3

µ0Ms

λsϵY my(t)

Hz(t) = −MsN3mz(t) + hnoise
z (t) (3)

where N3 = 1 - N1 - N2 and hnoise
i (t) =

√
2αkT

γ(1+α2)µ0MsΩ∆t
Gi

(0,1)(t) with Gi
(0,1)(t) (i =

x, y, z) being three uncorrelated Gaussians of zero mean and unit standard deviation,

Ω is the nanomagnet volume, Y is the Young’s modulus of the nanomagnet, ϵ is the

magnitude of the strain, and ∆t is the attempt period which is the time step of the

simulation.

Fig. 4 shows the time variations of the normalized magnetization component along

the major axis of the nanomagnet, i.e. my (which is also cosθ) under different tensile

stress. The magnetization is normalized to the saturation magnetization. Clearly under

no stress, the behavior is that of a BSN where the magnetization fluctuates rail to rail

and is mostly in the state +1 or -1, and not in any intermediate state. As we increase

the stress (and depress the energy barrier), the behavior gradually transitions to that

of an ASN wherein the magnetization visits all states between -1 and +1 with almost

equal likelihood.

3.1. Energy cost of reconfiguration

We can make an order estimate of the energy cost of reconfiguration. This is the quantity

(1/2)CV 2
g , where C is the capacitance of the two gate pads in Fig. 3 and Vg is the gate

voltage needed to generate the required stress. We see from Fig. 4 that 6.5 MPa of

stress is enough to reconfigure a BSN into an ASN. The gate voltage needed to generate

a given stress σ is given by Vg ≈ σd/(Y d33), where d33 is the diagonal element of the

piezoelectric tensor and d is the piezoelectric layer thickness. We will assume that the

piezoelectric is PMN-PT whose reported d33 value is 2500 pC/N [17] and that d = 300

nm. The Young’s modulus of Co is 209 GPa. This will make the gate voltage needed

to generate 6.5 MPa of stress = 3.6 mV. The capacitance C of the two gate pads is C

= 2 × ϵA/d, where ϵ is the dielectric constant of PMN-PT = 4000×8.854×10−12 F/m

[18] and A is the area of the gate pads = 100 nm × 100 nm. This makes C = 2.4 fF.

Hence the energy cost of reconfiguration (1/2)CV 2
g is only ∼ 8.5×10−20 Joules, which is

miniscule. The gate voltage of 3.6 mV is above the noise voltage at room temperature,

which is
√
kT/C = 1.3 mV (kT = thermal energy). If more noise resilience is desired,

one can increase the gate voltage beyond 3.6 mV to obtain the desired noise margin,

while still dissipating negligible energy to reconfigure.

4. Application Space for Dynamically Reconfigurable Stochastic Neurons

Dynamic reconfigurability of the barrier height in a low barrier nanomagnet through

precise voltage (strain) control opens up some interesting possibilities in neuromorphic



Reconfigurable Stochastic Neurons Based on Strain Engineered Low Barrier Nanomagnets8

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

m
y

=
 c

o
s

Figure 4. Temporal fluctuations in the magnetization component directed along

the major axis of the nanomagnet (my) at different values of stress. Note that

the behavior gradually transitions from BSN to ASN with increasing stress as

the energy barrier within the nanomagnet is progressively depressed.

hardware fabrics. We list a few potential applications.

4.1. Precision and Adaptive Annealing Control in Energy-based Computation

One of the most important application of BSN is in solving binary optimization

problems, specifically finding a bit string that minimizes a complex Boolean expression

[19]. Often such problems are in computationally intractable NP-Complete class and a

Monte Carlo approach yields a computationally tractable probabilistic solution method
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[20]. Stochastic neurons can be used to build natural Monte Carlo hardware engines

for solving such problems. The problem expression can be cast as an adjacency matrix

of a network spanning over the bitstring basis set, and this adjacency matrix is then

analogous to the Hamiltonian of an equivalent Ising network, where the bitstring

represents the Ising spins [21]. In a purely software implementation, an annealing process

is simulated where the “temperature” of the system is slowly reduced and the system

settles in its ground state which encodes the solution bitstring.

In a hardware substrate, we directly build the Ising network and perform a physical

annealing. Typically, such a hardware approach will use low barrier magnets (LBMs)

and a current based scaling factor will control the “inverse” temperature [22]. This

current factor is global in nature and therefore scaling this current up cools the whole

network [23]. In contrast, the approach presented here can seamlessly control the

temperature via the control over the barrier height through a gate voltage rather than

through current control. This is significantly easier to implement in a VLSI circuit.

Moreover, since this voltage control is directly over each individual neuron,

completely arbitrary annealing schedules can be implemented with only polynomial

increase in gate control circuit complexity and it brings precision control over the

annealing approach, i.e. a screwdriver instead of a hammer.

4.2. Control over Device-to-Device Variability and Data Retention Time

The gate control of barrier height via strain can be also used to control variability in

the barrier height in a large network. Deviation from the designed shape of a LBM due

to lack of precision in the fabrication method can lead to significant variations in the

natural barrier heights in LBM networks. It has been shown that in a network with

large barrier height variability, significant error in computational results can be expected

unless the compute process is exponentially long on the magnitude of the barrier height

variability spread in the network, which in most practical applications is unacceptable

from the perspectives of both energy cost and throughput [24]. Therefore, gate control

of barrier height (fig. 5 a) can enable both better energy efficiency and throughput.

On a different note, magnetic random access memory (MRAM) has long been

touted as a solution to the memory hierarchy problem. However it’s use has thus far

been confined to replacement of solid-state non-volatile memory (NVM). The retention

time in a magnetic memory cell scales as exp(∆/kT ), where ∆ is the energy barrier

height in the storage nanomagnet. The ability to dynamically control the barrier

heights in certain sections of a large memory array may provide the ability to control

memory retention times of sections of the memory fabric (fig. 5 b). Since the vast

majority of computing architecture and programming models are optimized to a memory

hierarchy of speed/data retention rates, the ability to emulate the memory hierarchy

in a dynamically reconfigurable fashion can open up intriguing possibilities of software

defined hardware architectures, especially in the new age of heterogeneous integration

and chiplet based compute fabric design.
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Figure 5. (a) Gate control over the barrier height (blue dashed line to red solid line) of

each individual memory cell to equalize memory retention and hence reduce device-to-

device variability in a memory array. (b) Gate control over sections of memory fabric

to emulate memory hierarchy in terms of retention time-scales through barrier height

modulation (color coded as light to dark red boxes and corresponding barrier heights),

e.g. ∼ µs, ∼ s, ∼ years in a single integrated fabric

4.3. Control over Belief Uncertainty in Analog Stochastic Neurons

In analog-stochastic-neurons the noise is banded around the sigmoidal transfer function

and it’s magnitude is maximal at the mid point of the transfer curve while minimal at

the edges (fig. 6 a) [25], a feature which reflects the belief uncertainty of the neuron in

its state over the transfer curve:

Vout(t) = tanh(β ∗ Vin(t)) + α(Vin(t)) ∗ V 0
noise(t) (4)

Where β, α are system transfer gain and noise profile function respectively, ∗ is the

convolution operator, V 0
noise is the normalized noise voltage (i.e. between +VDD/2 and

−VDD/2), with VDD being the power supply voltage. Through detailed simulations we

have observed that the empirical expression for α is given by the Gaussian profile:

α(Vin(t)) = κ exp(−νVin

σ2
Vn

) (5)

where κ, ν are non-linear fitting functions dependent on the barrier height, whereas

σVn is the standard deviation of the noise voltage profile, again a non-linear function of

barrier height and the transfer gain of the neuron cell.
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Figure 6. (a) Illustrative circuit design of an ASN cell with a stochastic MTJ

(piezoelectric substrate omitted for clarity). (b) Gate control over the barrier height

modulates the stochasticity. (c) Three example input-output characteristic curves of

ASN transfer function (noisy signal is instantaneous output, green smooth signal is

expected time averaged output) over three different barrier heights shows the degree

of uncertainty on the belief of the ASN over its transfer function.

Voltage control over the noise through barrier height modulation (fig. 6 b) provides

a clean way to control dynamically the magnitude of the belief and its spread (fig. 6

c) . This can be used in applications such as reservoir computing in continuous online-

training mode where the network can reduce the noise during the training phase, while

incorporating it during the inference stage [26]. This provides both robustness to the

reservoir computing operation, i.e. the training can be made accurate, and the inference

can be performed with significantly lower spread of the dynamic range of the observation

model weight spread.

5. Conclusion

We showed that strain mediated control of the energy barrier height in a low barrier

nanomagnet allows reconfiguring a BSN to an ASN and vice versa, thus allowing a

multitude of tasks to be performed in the same substrate. We also discussed other

applications of this modality. These few applications are only a small subset of the

potential functionalities that can be achieved in a gate controlled stochastic neuron

compute fabric. The dynamic and precision control over the individual neurons through

voltage control is well suited for conventional VLSI design methodologies and fabrication

practices. Further exploration and development of this technology will provide a useful

widget in the toolkit of the rapidly expanding discipline of hardware neuromorphics.
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