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Elucidating the impact of strong electronic interactions on the collective excitations of metallic
systems has been of longstanding interest, mainly due to the inadequacy of the random phase
approximation (RPA) in the strongly correlated regime. Here, we adopt our newly developed radial
Kotliar and Ruckenstein slave boson representation to analyze the charge excitation spectrum of a
Hubbard model, extended with long range interactions. Working on the face centered cubic lattice,
at half filling, and in different coupling regimes ranging from uncorrelated to the metal-to-insulator
transition, we compare our results to conventional RPA as a benchmark. We focus on the influence
of the local and long range couplings on the particle-hole excitation continuum and the plasmon
and upper Hubbard band collective modes. Beyond the weak coupling regime, we find numerous
quantitative and even qualitative discrepancies between our method and standard RPA. Our work
thus deepens our understanding of charge collective modes in correlated systems, and lays the
foundations for future studies of realistic materials.

Introduction.— In their seminal series of papers,
Pines and Bohm pioneered the study of collective modes
arising in dynamical autocorrelation functions of the elec-
tron gas by introducing the random phase approximation
(RPA) [1–3]. Focusing on density fluctuations, they ar-
gued that their spectra may be split into two components:
i) an incoherent one associated with the random thermal
motion of the individual electrons, and ii) a plasma os-
cillation mode. Having a classical analogue, the latter
may be explained in simple terms, and is broadly docu-
mented [4–6]. Nevertheless, quantum corrections to this
classical picture were recently addressed [7]. Further-
more, a series of applications backing on its existence
have been put forward, ranging from nanophotonics [8–
21], to energy conversion [22–26], and even cancer treat-
ment [27–31].

Since its introduction, it has been established that the
RPA remains sensible in the weak coupling regime only,
and that it becomes unreliable as soon as the coupling
strength becomes intermediate. Nevertheless, it may still
be applied as a flexible tool in the thermodynamic limit,
and it indeed remains broadly used, especially within
quantum chemistry codes [32–34]. Besides, a series of
calculations on model systems demonstrated qualitative
failures of the approximation, especially in the context
of the celebrated one band Hubbard model. In fact, key
quantum collective phenomena entailed by the model, for
example the signature of the upper Hubbard band, are
missing in the charge excitation spectra when computed
within the RPA. Multiple frameworks that try to over-
come some of these shortcomings, and recover some of
the missing features, have thus been proposed [35–40].

A broadly used approach to tackle correlated electrons
is provided by Kotliar and Ruckenstein’s slave boson
(KRSB) representation. This versatile tool may be ap-
plied to a series of microscopic models, such as the Hub-
bard model [41] and its extensions [42–44]. It consists

in introducing a doublet of pseudofermions, along with
four bosons, that generate the Fock space on each lat-
tice site. In the functional integral formulation, this re-
sults in a Lagrangian that is bi-linear in the fermionic
fields, although no Hubbard-Stratonovich decoupling is
performed, thereby allowing for a description of elec-
tronic interactions at arbitrary coupling strengths. The
reliability of the KRSB representation to the Hubbard
model and its extensions has already been extensively
discussed (see, e.g., Paragraph II.C.1 in Ref. [45] and ref-
erences therein). A recent study also put forward quan-
titative agreement between the charge and spin struc-
ture factors computed in KRSB and resonant inelastic
x-ray scattering data [44]. Within this representation,
calculations are amenable to the thermodynamic limit as
well. In the saddle-point approximation, it is equivalent
to the Gutzwiller approximation and is consistently ca-
pable of describing a Mott metal-to-insulator transition
in the form of the Brinkman-Rice transition. It therefore
does not suffer from a weak coupling limitation. The re-
sulting low energy spectra qualitatively differ from the
RPA results, however [46]. They generically comprise a
continuum, a zero-sound collective mode lying slightly
above this continuum, and a signature of the upper Hub-
bard band in the form of a mode that disperses about
ω ∼ U in the strong coupling regime. Below, we refer to
the latter as the upper Hubbard band mode. This mode
may, in the intermediate coupling regime, hybridize with
the zero-sound one [46].

In the past twenty years, the extended Hubbard model,
entailing non-local density-density interactions, has seen
an upsurge of interest [45, 47–56] (see also [57] and ref-
erences therein for a better overview). It has also been
studied early on within the KRSB representation, and
phase diagrams have been computed [42]. Below, we ap-
ply the radial gauge of the KRSB representation [58],
in which the non-local interaction is also rewritten as
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a bi-linear term in the boson fields, which allows for a
systematic evaluation of long range correlations between
density fluctuations. This formalism has recently been
validated through exact calculations [59, 60].

The purpose of the present Letter is to compute the
experimentally accessible energy loss spectrum of the ex-
tended Hubbard model, via the calculation of the dynam-
ical dielectric function, which itself depends on the charge
autocorrelation function. Special focus is made on the
interplay of the plasmon mode (driven by the non-local
Coulomb interaction), the upper Hubbard band (driven
by the local interaction), and the low energy particle-hole
excitation continuum.

Model and methods.— The Hamiltonian for the Hub-
bard model, extended by a long range Coulomb interac-
tion, may be written as

H =
∑
i ̸=j,σ

tij

(
c†σ,icσ,j + h.c.

)
+ U

∑
i

n↑,in↓,i

+
1

2

∑
i ̸=j

Vij

(
2−

∑
σ

nσ,i

)(
2−

∑
σ

nσ,j

)
, (1)

where ci,σ (σ =↑, ↓) is the canonical electron annihilation
operator, ni,σ is the associated electron number operator,
tij = −t if i and j are nearest neighbors, and tij = 0 oth-
erwise. Here, t is the hopping amplitude, U is the Hub-
bard coupling, and Vij = V a/|ri − rj | is the non-local
Coulomb interaction, where a is the lattice spacing, and
V is an effective coupling parameter. Note that in the
last term, the interaction couples the hole densities 2−n
instead of the electron densities n. This choice of repre-
sentation for the long range interaction has been made
for later convenience, and is equivalent to the represen-
tation in terms of electron densities, as it only induces
an overall energy shift in the spectrum of H.

We work in the grand canonical ensemble, and em-
ploy the radial gauge of the KRSB representation. In
this paragraph, we give an outline of the formalism be-
hind this radial KRSB representation, and refer to, for
example Ref. [60] for a more detailed discussion. In the
original KRSB framework, one introduces a set of four
auxiliary bosons e, pσ, and d (associated to unoccupied,
singly occupied with spin projection σ, and doubly occu-
pied atomic states, respectively), as well as a doublet of
pseudofermions fσ at each lattice site. Within the func-
tional integral formalism, the canonical electron fields are
mapped to a product of slave boson and pseudofermion
fields as

cσ,i(τ) → zσ,i(τ)fσ,i(τ), (2)

where the fields zσ,i(τ) are functions of the boson fields
(omitting the imaginary-time variable τ),

zσ,i = e∗iLσ,iRσ,i pσ,i + p∗−σ,iLσ,iRσ,i di, (3)

where

Lσ,i =(1− p∗σ,ipσ,i − d∗i di)
−1/2,

Rσ,i =(1− p∗−σ,ip−σ,i − e∗i ei)
−1/2. (4)

This representation is invariant under local
U(1)×U(1)×U(1) gauge transformations, allowing
for the phase of three of the boson fields to be gauged
away [61–63]. The boson fields deprived of their phase
degree of freedom are coined radial slave bosons. Be-
ing real-valued, the radial slave boson fields are free
from Bose condensation. Their expectation values
are generically finite and can be well approximated in
the thermodynamic limit via the saddle-point approx-
imation. Corrections to the latter may be obtained
when evaluating the Gaussian fluctuations [46], and the
correspondence between this more precise evaluation
and the time-dependent Gutzwiller approach [64] could
recently be achieved—though by means of an extension
in the formulation of the latter [65]. Exact results
may be obtained for, e.g., a simplified single-impurity
Anderson model, the Ising chain, or small correlated
clusters [58–60, 66]. After projection onto the physical
Hilbert space, the averaged value of the square of any
radial slave boson amplitude equals the averaged value
of the radial field itself [66]. This allows for a rewriting
of the functional integral as a Gaussian integral over
the slave boson and pseudofermion fields, even in the
presence of non-local interactions [58]. The validity
of the radial KRSB representation has been assessed
through exact evaluation of the partition function in
the atomic limit [59], and most recently for the two-site
cluster [60]. Following Ref. [60], we use the radial fields
Re and Rσ corresponding to the squared amplitudes of
the fields e and pσ, respectively, while d is kept complex.
The charge excitation spectrum of the model can be

analyzed through the evaluation of the loss function
−Im[ε−1(q, ω)], which is experimentally accessible by
electron energy loss spectroscopy or resonant inelastic x-
ray scattering measurements. To that end, we compute
the inverse dynamical dielectric function as

ε−1(q, ω) = 1−
[
U

2
+ V (q)

]
χc(q, ω), (5)

where the charge susceptibility χc(q, ω) is calculated
by taking into account Gaussian fluctuations about the
paramagnetic saddle-point solution, and performing the
analytical continuation iωn → ω + i0+ on the density-
density correlation function:

χc(q) = ⟨δn(−q)δn(q)⟩
= 4d2⟨δd′(−q)δd′(q)⟩ − 2d⟨δd′(−q)δRe(q)⟩
+ ⟨δRe(−q)δRe(q)⟩. (6)

where, q ≡ (q, iωn), ωn ≡ 2πnkBT , kB is the Boltz-
mann constant, and T is the temperature. Within this



3

L Γ K
0

5

10

15

ω
/t

min

max

−
Im

[ε
−

1 (
q,

ω
)]u = 0.1

L Γ K

u = 0.5

L Γ K

u = 0.8
0

5

10

15
ω
/t

min

max

−
Im

[ε
−

1
R

PA
(q
,ω

)]u = 0.1 u = 0.5 u = 0.8

FIG. 1. Zero temperature RPA (top row) and radial KRSB (bottom row) energy loss spectra −Im[ε−1(q, ω)], in dependence on
q along L− Γ−K. Parameters: v = 0.1 and u = 0.1, 0.5, and 0.8, from left to right. The white dashed line in the bottom-left
panel helps visualizing the weak plasmon mode.

level of approximation, correlation functions between the
boson fields may be suitably computed as Gaussian inte-
grals [46].

The paramagnetic saddle-point of the KRSB represen-
tation has already been extensively studied in the liter-
ature [41–43, 46, 67]. In radial gauge, the study of the
saddle-point remains identical.

In this Letter, we focus on the face centered cu-
bic lattice as a representative example of three di-
mensional systems, since the simple cubic structure is
scarcely realized. In this case, the bare dispersion is

tk = −4t
(
cos kx

2 cos
ky

2 + cos
ky

2 cos kz

2 + cos kz

2 cos kx

2

)
,

where we set a = 1. As a proof of principle, we con-
sider the half band-filling (n = 1) case, which hosts the
metal-to-insulator transition, thereby allowing us to un-
ravel the impact of strong electron correlations on the
loss function. In this context, the critical coupling of the
Mott transition is

Uc = −8ξ0, (7)

where ξ0 the average bare kinetic energy energy. We find
ξ0 ≃ −2.6t, yielding Uc ≃ 21t, as compared to 16t for
the simple cubic lattice. In the following, we work in a
system of units in which ℏ = 1.
Results.— In the standard Hartree-Fock RPA

(HF+RPA) framework, the density-density correla-
tion function is computed as a series of particle-hole
bubble diagrams for non-interacting electrons, linked
with bare interaction vertices U/2 + V (q). Under
such approximations, the dynamical dielectric function
reads [6]

εRPA(q, ω) = 1 +

[
U

2
+ V (q)

]
Π

(0)
0 (q, ω), (8)

where Π
(0)
0 (q, ω) is the Lindhard function for the non-

interacting system. Due to its perturbative essence, we

cannot expect standard HF+RPA procedure to yield rea-
sonable results in the strong coupling regime (see [46] and
Supplemental Material for an assessment of some of the
key features missing in the RPA treatment that are in-
corporated in the Cartesian and radial KRSB formalisms,
respectively). However, we use it as a benchmark to high-
light strong correlation effects when comparing it with
the radial KRSB representation for values of U and/or
V approaching Uc. In the following, we use the dimen-
sionless coupling parameters u = U/Uc and v = V/Uc.
Let us now address representative examples of the

energy loss spectra computed with Eq. (8) and with
Eq. (5). We fix the value of v = 0.1 and investigate
values of u = 0.1, 0.5, and 0.8 at half filling. We also
focus on values of q along the representative symmetry
lines L− Γ−K, with L = (π, π, π), Γ = (0, 0, 0), and
K = ( 3π2 , 3π

2 , 0), for the wavevector dependence. On the
face centered cubic lattice, the nearest neighbor distance
is smallest (largest) along the Γ−K (Γ− L) direction.
The computed spectra are presented in Fig. 1. They
generically comprise a low energy particle-hole excita-
tion continuum. In RPA, this continuum is insensitive
to the value of u, and it disperses from ω(Γ) = 0, up
to ω(K) ≃ 16t. In our radial KRSB calculations, how-
ever, the continuum strongly depends on the value of
u. Indeed, it is gradually narrowed by increasing the
Hubbard coupling, with a maximum of its dispersion at
ω(K) ≃ 16t for u = 0.1, in contrast to ω(K) ≃ 6t,
only, for u = 0.8. This owes to the fact that, at zero
temperature, the Lindhard function for the quasiparti-
cles Π0(q, ω) and the non-interacting Lindhard function

Π
(0)
0 (q, ω) are related via renormalization:

Π0(q, ω) =
1

z20
Π

(0)
0

(
q,

ω

z20

)
. (9)

Here, z0 is the saddle-point value of the field Eq. (3).
We thus explicitly see the decrease of the continuum’s
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FIG. 2. Square of the plasma frequency ω2
p in dependence on

the strength of the effective Coulomb coupling v. Parameters:
u = 0.1, 0.5, and 0.8. The plasma frequency obtained in RPA
is also shown.

bandwidth, as the quasiparticle residue z20 approaches
zero when u approaches one [46].

Above this continuum, in RPA, a single collective mode
establishes, at large wavelengths. When increasing q, it
enters the particle-hole continuum, and thus quickly be-
comes suppressed by Landau damping. For larger values
of u, this collective mode gets overdamped at larger en-
ergy and wavevector, especially in the L direction, along
which it disperses more. Its gap at q = Γ, however, re-
mains unchanged and in fact depends on v, only. This
collective mode actually corresponds to plasmon collec-
tive excitations. This can be seen by comparing the value
of its gap at q = Γ to the plasma frequency predicted by
a large wavelength expansion of the dielectric function
(see Supplemental Material for a derivation),

ωp ≃
√
−V ξ0

6
. (10)

For v = 0.1 (i.e. V = 2.1t), this yields ωp ≃ t, which
coincides with the gap shown in the top row of Fig. 1.
Furthermore, we note that the plasma frequency com-
puted with this expression does not depend on the value
of u, which also concurs with our results. In fact, u first
enters the dispersion of the plasmon mode as a contri-
bution of order |q|2. This additionally corroborates the
observation that the plasmon mode disperses more for
larger values of the Hubbard coupling. In the bottom
row of Fig. 1, we see that the radial KRSB spectra pos-
sess two well-defined collective modes. Firstly, we observe
the plasmon mode, similarly to the RPA. At weak cou-
pling u = 0.1, the plasmon collective mode is also present
at large wavelengths, only, as it enters the particle-hole
continuum at approximately the same values of q and ω
as in RPA. At larger couplings u = 0.5 and 0.8, though,
the renormalization of the particle-hole continuum, along
with the greater dispersion of the plasmon mode induced
by u, allows for the latter to remain well-defined in a
broader range of wavelengths. From the bottom row of
Fig. 1 only the radial KRSB plasma frequency appears
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2
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FIG. 3. Square of the radial KRSB plasma frequency ω2
p, in

dependence on (a) the local coupling u, and (b) the quasi-
particle residue z20 . Parameters: v = 0.1 and 0.5. In (a), the
RPA plasma frequency is also shown in dashed lines.

to remain almost equal to that observed within the RPA,
but this will be analyzed in greater detail below. Sec-
ondly, an additional collective mode establishes in the
radial KRSB spectra. This mode, with a much larger
gap at Γ of about ωUHB ≃ 10t for every values of u,
corresponds to the aforementioned upper Hubbard band
mode. Similarly to the plasmon mode, at weak coupling,
it enters the particle-hole continuum at finite q, inside
which it quickly decays via Landau damping. It, how-
ever, disperses much less than the plasmon mode, with a
bandwidth of at most one for u = 0.8.

In this two-modes picture, one might expect a level-
crossing at finite q between the two bands, at a given
point of the parameter space. Yet, no point of exact
degeneracy could be found, but either no-crossing or an-
ticrossings between both modes, as depicted in the center
and right panels of the bottom row in Fig. 1. Nonetheless,
we observe multiple anticrossings with near-degeneracy,
as can be seen for example close to K/2 and energies
around ω ≃ 10t for u = 0.8. Close to these anticross-
ings, the upper Hubbard band mode and the plasmon
mode strongly hybridize, and the excitations share both
characters.

Fig. 2 presents the v dependence of the radial KRSB
plasma frequency squared ω2

p, for values of u = 0.1, 0.5,
and 0.8. The RPA result is also shown for comparison,
and one can see that in the weak coupling regime, the
radial KRSB formalism correctly reproduces the RPA
plasma frequency, as expected. Another expected prop-
erty of the square of the plasma frequency is that it
should scale with v, as we have ω2

p ≃ 9.2v at weak cou-
pling, which is also realized. However, the deviation of
the plasma frequency from this analytical expression is
seen to increase with u. This indicates that strong cor-
relation effects, arising when the local coupling becomes
sufficiently large, cause a softening of the plasmon mode,
by opposition to the RPA picture in which the plasmon
mode is affected by the strength of the local interaction
at finite wavevectors, only.
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The u dependence of the radial KRSB plasma fre-
quency squared is shown in Fig. 3(a), for representative
values of v = 0.1 and 0.5. The RPA result, for the same
values of v, is also presented for comparison. We see that
the plasma frequency decreases as the Hubbard coupling
increases, ranging from the RPA value for u = 0, to zero
at the onset of the Mott transition. This can be qualita-
tively understood by considering the classical expression
for the plasma frequency, ωp =

√
4πne2/m∗, with n the

electron density, e the electron charge, and m∗ its effec-
tive mass. Recalling that, for an unscreened Coulomb
interaction V = e2, and that the band mass is given by
the renormalization factor via z20t ∼ 1/m∗, we see that
the plasma frequency should decrease along with z20 when
the Hubbard coupling is increased. This is better de-
picted in Fig. 3(b), in which ω2

p is shown as a function of
the renormalization factor (or quasiparticle residue) z20 .
We clearly see that at the onset of the metal-to-insulator
transition, at which the effective mass diverges, ωp drops
to zero. This vanishing of the plasma frequency at the
onset of the Mott transition re-emphasises the connec-
tion between the quasiparticle and collective nature of
the plasmon mode.

Summary and conclusion.— In summary, a proof of
principle for the suitability of the radial gauge of the
KRSB representation to study charge excitation spec-
tra in the full range of correlation regimes, and in the
presence of long range interactions, has been given. We
evidenced quantitative and qualitative discrepancies be-
tween our results and standard RPA. In particular, we
emphasized the influence of strong local correlations on
the plasmon collective mode, showing the possibility for
the plasmon to propagate undamped in broader ranges
of wavelengths at strong coupling, and recovering the
expected dependence of the plasma frequency on the
renormalized mass of the electrons. At the onset of the
Mott transition, the plasma frequency is found to vanish
along with the quasiparticle residue. Regions of strong
hybridization between the plasmon and upper Hubbard
band collective modes have also been unraveled. As the
computational cost is similar to that of standard RPA,
our method, and possible future generalizations, may be
employed to refine the incorporation of strong interac-
tions in studies of realistic correlated systems.
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2

DEVIATION OF THE RADIAL KRSB CHARGE SUSCEPTIBILITY FROM RPA

In order to assess for the agreement, or disagreement, between the radial KRSB spectra and the predictions of
standard perturbation theory, let us compute the function fs(q, ω), defined as

fs(q, ω) =
1

χc(q, ω)
− 1

Π0(q, ω)
. (1)

Note that this quantity is a wavevector and frequency dependent generalization of the usual Landau parameter
F s
0 = N(EF )f

s(0, 0), with N(EF ) the density of states at the Fermi energy. In the weak coupling regime, the real
part of this function should be equal to U

2 + V (q), which would yield the standard RPA charge susceptibility, and
deviation from this value thus give a measure of the deviation of the radial KRSB results from perturbation theory.

As can be seen in Fig. 1(a), in which this deviation is displayed, for V = 0.1 U , with U = 0.01 Uc, the radial KRSB
results agree with standard perturbation theory in the weak coupling regime. Indeed, we find Refs(q, ω) ≃ U

2 +V (q),
with deviations of at most 1.5%, irrespective of the energy and wavevector, except in a narrow band around ω = Uc/2.
There, deviations of up to 115% are observed. For reasons discussed in the main text, we assign this band to a signature
of the upper Hubbard band (UHB), and note that strong deviations around this UHB mode are to be expected, as it
is not captured by standard perturbative expansions. As the Hubbard coupling is increased, we observe in Fig. 1(b)
and Fig. 1(c) that deviations from Refs(q, ω) ≃ U

2 + V (q) away from q = Γ grow, jointly with the deviations around
the UHB mode. In particular, we find deviations of up to 15% for U = 0.10 Uc, and 60% for U = 0.30 Uc, outside
of the UHB. Additionally the dispersion of the latter is also seen to increase, due to the larger values of U = 0.10 Uc

and 0.30 Uc in Fig. 1(b) and Fig. 1(c), respectively.
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FIG. 1. Deviation of Refs(q, ω) from U
2
+ V (q). Parameters: T = 0, and V = 0.1 U with (a) U = 0.01 Uc, (b) U = 0.10 Uc

and (c) U = 0.30 Uc.

PLASMA FREQUENCY ON A LATTICE IN THE WEAK COUPLING REGIME

The dispersion ωplasmon(q) of the plasmon collective mode is obtained as a solution of

ε(q, ωplasmon(q)) = 0. (2)

In the weak coupling regime U ≪ Uc and V ≪ Uc, an analytical expression for the leading contributions to the
plasmon dispersion may be obtained by noting that the radial KRSB dielectric function reduces to an RPA form

ε(q, ω) ≃ 1 +

[
U

2
+ V (q)

]
Π0(q, ω). (3)

For our purpose, we expand the Lindhard function to lowest order in q2 about q = Γ. Re-writing it as

Π0(q, ω) =
2

L

∑
k

fF (Ek+q)− fF (Ek)

ω − (Ek+q − Ek)

=
2

L

∑
k

fF (Ek)
2Ek − Ek+q − Ek−q

ω2 + ω(Ek−q − Ek+q) + (Ek+q − Ek)(Ek − Ek−q)
, (4)
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then expanding the dispersion as Ek±q = Ek ± qT∇kEk + 1
2q

TH(Ek)q + O(q3), with H(Ek) the Hessian matrix
Hab(Ek) = ∂2Ek/∂ka∂kb, and using ω ≫ |q| ≡ q (since ωp remains finite for finite V ), we find

Π0(q, ω) ≃ − 2

L

∑
k

fF (Ek)
qTH(Ek)q

ω2
. (5)

We can moreover make use of the fact that the off-diagonal matrix elements of the Hessian are odd with respect to
the components of k, as well as the invariance of the remaining integrals under permutations of the indices of H, such
that we end up with the simple form

Π0(q, ω) = − 2

L

∑
k

fF (Ek)

∑
a q

2
aHaa(Ek)

ω2

= − q2

ω2

2

L

∑
k

fF (Ek) t cos
kx
2

(
cos

ky
2

+ cos
kz
2

)
=

q2

ω2

ξ0
6
. (6)

Inserting this expression into Eq. (3), we finally find

ω2
plasmon(q) ≃ ω2

p

(
1 +

κ

ω2
p

q2
)
, (7)

with

ω2
p = −V ξ0

6
, (8)

and

κ = −Uξ0
12

. (9)

V is hence pivotal to the very existence of the plasmon altogether, while U rather governs its dispersion. Moreover,
both ωp and κ are sensitive to the lattice on which the electrons evolve through the −ξ0/6 factor. Finally, recalling
that in free space V ∼ e2, and that the kinetic energy is proportional to the inverse band mass via t ∼ 1/m∗, we may
thus rewrite ξ0 ∼ −6 ρ/m∗, with

ρ =
2

L

∑
k

fF (Ek) cos
kx
2

(
cos

ky
2

+ cos
kz
2

)
. (10)

The plasma frequency is then recast as

ωp ∼
√

e2ρ

m∗ . (11)

Up to a factor of 4π, this is the classical expression, apart from the fact that the electron density n has been replaced
by ρ. The difference stems from the way we represent the density distribution on the lattice. In contrast to the
Fermi gas, for which a homogeneous electron density is given by a continuous (constant in this case) function of the
position, we here deal with a discretized and periodic function of the position R: n(R) ∼

∑
j δ(R− rj), where rj is

a lattice vector. The Coulomb potential then couples to this set of discrete and periodic lattice bonds, and taking its
Fourier transform results in contributions from the lattice harmonics. Therefore, the lattice-dependent ρ appears in

the plasma frequency instead of n = 2
∫

d3k
(2π)3 fF (

k2

2m∗ ) for the Fermi gas.
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