
Squidgets: Sketch-based Widget Design and Direct
Manipulation of 3D Scenes
JOONHO KIM, University of Toronto, Canada
KARAN SINGH, University of Toronto, Canada

Fig. 1. Humans naturally sketch strokes (cyan) over graphical scenes to communicate desired scene changes
(a,b). These strokes when associated with a curve abstraction of the scene (c) can visually quantify the
desired change to scene attributes to match the user’s sketch (d). Squidgets or ’sketched widgets’ are scene
curves users draw to directly manipulate a graphical scene (e,f). Squidgets can be inherent to the scene (c) or
user created as curve widgets to explicitly control a set of scene attributes (g). User-authored in-situ curve
controllers also integrate seamlessly into the Squidget interaction framework (h).

Squidgets or ’sketch-widgets’ is a novel stroke-based UI framework for direct scene manipulation. Squidgets is
motivated by the observation that sketch strokes comprising visual abstractions of scene elements implicitly
provide natural handles for the direct manipulation of scene parameters. Configurations of such strokes
can further be explicitly drawn by users to author custom widgets associated with scene attributes. Users
manipulate a scene by simply drawing strokes: a squidget is selected by partially matching the drawn stroke
against both implicit scene contours and explicitly authored curves, and used in-situ to interactively control
scene parameters associated with the squidget. We present an implementation of squidgets within the 3D
modeling animation system Maya, and report on an evaluation of squidget creation and manipulation, by
both casual users and professional artists.

1 INTRODUCTION
Sketching, is a well established tool for visual communication. In particular, sketch-based techniques
are ubiquitous in interactive design and graphical content creation. User control of scene objects
and attributes/parameters in such applications however, is typically a disparate combination of
traditional UI components, pre-defined widgets and stroke gestures [SSB08]. While there have
been a number of seminal sketch-based systems for content creation spanning over half a century
[Sut64, ZHH96, IMT99, BBS08, XCS+14], their operational interface has largely relied on pre-defined
stroke gestures and traditional UI elements.

Pen, tablet and stroke-based interfaces are also increasingly used to control general computing
applications. A vein of research has thus adapted the interaction of components like menus/buttons

Authors’ addresses: Joonho Kim, University of Toronto, Toronto, Canada, joonho@dgp.toronto.edu; Karan Singh, University
of Toronto, Toronto, Canada, karan@dgp.toronto.edu.

ar
X

iv
:2

40
2.

06
79

5v
1 

 [
cs

.G
R

] 
 9

 F
eb

 2
02

4

HTTPS://ORCID.ORG/0000-0002-2521-9813
https://orcid.org/0000-0002-2521-9813


2 Joonho Kim and Karan Singh

[AG04] and 3D widgets [SSB08], from a point-and-click to stroke-friendly design. Inspired by
recent research [PCS23], that uses sketchy-renderings of objects for interactive visualization and
exploration, we seek to exploit such renderings for general stroke-based scene interaction.
We thus present Squidgets (sketch-widgets), as a novel stroke-based UI framework for direct

scene manipulation (Figure 1). Our work uses the insight that graphical scenes inherently possess
implicit in-situ handles for scene manipulation, that are based on a user imagined visual abstraction
of the scene (Figure 1(a-c)). Humans naturally sketch strokes over such imagined scene abstractions
to visually indicate desired changes to the scene. We aim to capture this natural interaction
computationally, using squidgets.
Conceptually this is an inverse rendering problem: compute a minimal change to the current

scene attribute values that will result in a manipulated scene, where the over-sketched stroke
matches some part of the scene’s curve abstraction (Figure 1(c,d)).

The benefits of solving such a problem are twofold. First, the over-sketching interaction is natural,
direct, and in-situ for 2D or 3D applications. Second, no explicit gestures, widgets or UI components
for the scene need to be defined or learned by the user.

There are however, three non-trivial and potentially ambiguous aspects to solving this ambitious
problem: inferring the user-imagined curve abstraction of a graphical scene; discerning what part
of this curve abstraction to associate with the over-sketched stroke; and computing the set of scene
attribute value changes that manifest in a scene whose associated visual abstraction best matches
the over-sketched stroke.
The squidgets framework allows each of these sub-problems to be explored, constrained and

addressed independently. Inherent stroke-based visual abstractions of scenes have long been studied
in the non-photorealistic rendering (NPR) literature [GG01]. Such abstractions can be defined using
occluding and other suggestive contours in a scene [Her99] (Section 4), or using image-based
approaches to differential rendering [LMLH07]. Given a user stroke and any curve based visual
scene abstraction, we define a curve similarity metric (Section 4) that is able to match the stroke to
(partial) curves using a mix of spatial and shape proximity. This enables the association of user
strokes to a curve segment from a visual scene abstraction. Finally, scene attributes that affect the
visual appearance of the associated curve segment are sampled around their present values to edit
the scene to visually match the user stroke.

In addition to implicit squidget curves suggested by the visual scene abstraction, squidget curves
can be explicitly authored as custom widgets to control scene attributes within our framework
(Figure 1(g,h)). Explicitly authored squidget curves address two of the three sub-problems: the curves
explicitly define the user imagined visual scene abstraction; and since squidget curve configurations
are explicitly co-related to one or more scene attribute values by simple invertible functions, finding
attribute values to match an over-sketched stroke is straightforward.

We provide an overview of related work (Section 2), followed by details of our squidget framework
(Section 3). Section 4 presents our approach to stroke matching, attribute inference and other
implementation details of a squidget interaction prototype built within the modeling and animation
systemMaya. Section 5 presents a number of applications and squidget usage scenarios. We discuss
the outcomes of a user study (Section 6) followed by limitations and avenues for future work on
squidgets (Section 7).

2 RELATEDWORK
Squidgets relate to techniques for direct, interactive scene manipulation. A large body of re-
search spanning 50 years [Sut64], has specifically addressed the transformation (eg. transla-
tion/rotation/scaling) of 3D scene objects in scenes. We refer readers to a recent survey paper
[MCG+19]) tracing this research from desktop to immersive devices. Techniques designed for



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 3

constrained tasks like docking [Bie90], have also been compared across various input modalities
[BIAI17]. Object manipulation techniques interact with a 3D spatial context that can be physical
(such as tangible 3D proxy), or virtual (like mouse controlled 3D widgets) [BKLP04]. Squidget
curves provide our spatial context, controlled by 2D (Figure 1) or 3D (Figure 11) stroke input.
We further note, that transforming 3D objects with squidgets (Figure 7) is but one example, of

our ability to homogeneously manipulate arbitrary scene object attributes using squidget strokes
(Figure 4(c),(d)). In this regard our work is related to the paradigms of sketch-based gestures, scene
proxies, custom widgets, and direct in-situ manipulation.

2.1 Sketch-based gestures
The recognition and use of sketch or stroke-based gestures can be roughly categorized into gestures
that are hard-coded or visually matched[JGHD09]. Hard-coded gestures tend to be expressive,
but context specific and difficult to customize. Visual matching, such as the simple $1 Gesture
Recognizer [WWL07], geometrically match a given strokes to a user-given set of gesture templates.
These gestures are typically scene agnostic and can be mapped to general directives (eg. invoking
undo using a scratch gesture). Similar to visually matched gestures, squidgets match user drawn
strokes to the set of squidget curves in a graphical scene.

2.2 Scene proxies and custom widgets
UI widgets are visual 3D elements designed to provide an in-situ interface to manipulating ob-
jects and aspects of a virtual scene [Bie86]. Widgets are typically hand-designed to capture the
form/function of scene attributes they control, and can range from simple spatial transform widgets,
to custom controllers specific to complex objects such as the human face in Figure 1(h). Point-
click-and-drag interaction of widgets can be improved using stroke-based techniques [SSB08]. Our
squidget framework is able to homogeneously interact using over-sketching with such curve-based
widgets Figure 1(h).

Curves have also been used as visual proxies and manipulation handles for deformable objects
[SF98, NSACO05]. Interaction with these curves are manifested as a deformation of the object
vertices. Squidgets are inspired by such techniques, and generalize their control beyond deformable
objects (eg. the mug in Figure 4(c)) to any scene elements whose visual appearance can be controlled
by some set of attributes (eg. the cone-angle of a spotlight in Figure 4(c)).

2.3 Direct in-situ manipulation
In-situ visualization and control of object attributes in a scene can greatly streamline a sketch-based
workflow [XAGW16]. Squidgets take such a design further, allowing user to directly sketch the
visual change they expect as a result of changes in object attribute values.

Such direct visual control requires an inverse mapping from the visual abstraction of objects and
other scene elements to their attribute values. Inverse computation for direct control is popular in a
number of domains on Computer Graphics such as skeletal kinematics (IK) [ALCS18, GCR13], facial
expressions [LA10, KS21], CAD modeling [MB21], and animation [IMH07, CiRL+16]. Squidgets
are inspired by these solutions from specific graphical contexts to built a general framework for
manipulating scene attributes using sketch-strokes.

2.4 Non-photorealistic Rendering (NPR)
Finally, the fundamental insight behind squidgets is that imagined curves in a scene provide natural
manipulation handles. Crucial to understanding and algorithmically computing such implicit curves
that comprise a visual scene abstraction, is grounded in non-photorealistic rendering research.



4 Joonho Kim and Karan Singh

There is a rich body of literature in Computer Graphics [GG01] and perceptual psychology
[Tod04] on understanding and creating salient stroke-based NPR abstractions of graphical scenes.
This sketch-stroke abstraction can be computed for 2D/3D shape automatically as shape features
like ridges/valleys and view-dependent contour lines from 2D images [CV01] or 3D models [BH19].
The extracted strokes can be segmented into perceptual parts, for example using a corner detection
technique [WEH08]. We rely on this body of work to compute a set of strokes that define a visual
sketch abstraction for 2D or 3D graphical scenes.

3 SQUIDGETS

Implicit Squidgets

Set Implicit Squidget

Select Implicit Squidget Manipulate Selected Squidget

Implicit Squidget (Hold+Drag)

Cursor

NPR Silhouette

Curve Controller

Selected

Control Mode

Stroke

<hold>

<shift>

<ctrl>

Fig. 2. Implicit Squidgets comprise a set of perceived curves (2D or 3D) that are already scene curves or
computed using an NPR contour rendering of scene objects. In the default control mode, user drawn strokes
are matched against all scene squidget curves (explicit and implicit), scene attributes corresponding to the
closest matched squidget are then computed and set so the squidget curve best-fits the user stroke, and
further be interactively dragged to refine the associated attributes values in real-time.

Squidgets serve as visual proxies and manipulation handles to scene attributes, facilitating rapid
referencing and direct visual adjustment of scene attributes. A squidget comprises a curve element
𝐶 and a corresponding state or values of a set of attributes 𝐴. Changes to the values of 𝐴 result in a
visual change to 𝐶 in the scene. Squidgets explore the idea that scene attributes 𝐴, can be naturally
manipulated by directly specifying the desired visual change to an associated curve 𝐶 .

Formally, let a function 𝑓 map attribute values 𝐴 to a squidget curve 𝐶 = 𝑓 (𝐴). Manipulating a
scene with squidgets requires computing the inverse mapping. Given an user stroke 𝑆 , we seek
attribute values𝐴′, such that the edited squidget curve (𝐶′ = 𝑓 (𝐴′)) ≈ 𝑆 . For example in Figure 1(c),
drawing the cyan user stroke 𝑆 , results in re-computing the translation attribute of the red squidget
curve𝐶 (and associated lamp object), so that the translated squidget curve𝐶′ matches 𝑆 (Figure 1(d)).

3.1 Squidget Classification
Every visually perceived curve in a scene is a potential squidget. As shown in Figure 4, perceived
curves include both real rendered scene curves, and virtual curves that can be visually imagined
from the scene context.



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 5

Set Continuous Squidget

Set Discrete Squidget

Explicit Squidgets

Set Continuous Squidget (Hold + Drag)

Cursor

Cursor

Selected

Create Mode

Stroke

Control Mode

Stroke

Connect Squidgets

Create Squidget

<Enter>
<hold>

<esc>

<esc>

<esc>

Create Canvas

Rotation

[-5.5, -6.4, -4.6]

Disconnect SquidgetsDelete Canvas

Delete Squidget

Fig. 3. Explicit squidgets comprise a set of curves (2D or 3D) that are explicitly authored in (create mode).
During creation, curves are drawn (on planar canvases or directly in 3D) and associated with selected scene
object attributes, to form discrete squidget curves, which serve as a bookmark for the configuration of attribute
values when created. Multiple discrete squidgets can be connected to define a continuous squidget that
interpolates the curves, as well as the union of their bookmarked attribute values. In control mode, user
drawn strokes on canvases or 3D objects are matched against explicit and implicit squidgets and the closest
matching squidget is selected to manipulate its associated attributes.

a) b) c) d)

Fig. 4. All perceived scene curves are potential squidgets including: real curves (left) that are part of the
scene’s construction (green), or explicitly authored squidgets (white); and virtual curves (center) imagined by
a user (highlighted in red). A user draw stroke (cyan) can manipulate scene attributes (right), such that their
associated squidget curve matches the user stroke.

Implicit Squidgets: We refer to curves (both real and virtual) that are already part of any given
scene as implicit squidgets. Graphical scenes often include objects constructed using real curves,
such as the orange mug with an extruded circular profile (green) in Figure 4(a). We also perceive
boundaries of high visual contrast in a scene as virtual curves [BH19]. Such curves including
boundaries, ridge and valley curves, silhouettes and other suggestive contours on objects (red
curves on mug in Figure 4(b)) are well-known in NPR literature and easy to automatically compute
from a given scene. Curves such as the elliptical boundary marking the cone angle of a spotlight
on the plane in Figure 4(b) can also present a virtual squidget.
Implicit squidgets are thus visually inherent curve handles associated with scene objects and

attributes that a user can exploit tomanipulate a scene. Note, that while there is no a-priori coherence
between virtual curves and scene attributes (i.e. NPR contours can change discontinuously with



6 Joonho Kim and Karan Singh

small changes in associated scene attributes), as manipulation handles, we can treat virtual squidgets
as curves embedded on scene object(s), that deform and change with these objects and attributes.

Explicit Squidgets:We capture the increasingly popular approach to hand-crafting in-situ curve
controllers (Figure 12), by allowing users to "sketch widgets" as explicit squidget curves. A curve 𝐶
can be explicitly drawn using our framework (Figure 3) and associatedwith the values of any selected
set of attributes 𝐴, serving as an in-situ scene bookmark for a discrete configuration of values of 𝐴.
A number of such discrete squidgets can further, be combined in a sequence to define a continuous
interpolated squidget. For example, two discrete squidgets 𝐶0, 𝐴0 and 𝐶1, 𝐴1 can be combined
into a weight 𝑤 ∈ [0, 1] interpolated, continuous squidget curve 𝑖𝑛𝑡𝑒𝑟𝑝 (𝐶0,𝐶1,𝑤) (with 𝐶0 =

𝑖𝑛𝑡𝑒𝑟𝑝 (𝐶0,𝐶1, 0),𝐶1 = 𝑖𝑛𝑡𝑒𝑟𝑝 (𝐶0,𝐶1, 1)), and similarly interpolated attributes 𝑖𝑛𝑡𝑒𝑟𝑝 (𝐴0, 𝐴1,𝑤) for
a set 𝐴′ that could be the union or intersection of attribute sets 𝐴0, 𝐴1.

Fig. 5. Explicitly created squidget curves can be manifest on surfaces (a), canvases in space (b-c), or using VR
controls (d).

Any modeling and selection tools can be used to create an explicit discrete squidget curve 𝐶 and
associated scene attributes 𝐴, for example, curves can be drawn directly projected on a desired
scene object (Figure 5(a)), or directly in 3D in VR (Figure 5(d)). We also facilitate the drawing of
curves on planar canvases in 3D (Figure 5(b-c)). 3D drawing canvases are popular [DXS+07], as they
allow constrained and predictable planar curves to be drawn in 3D, and provide a natural visual
grouping of collections of squidget curves and scene object attributes that they control (Figure 5(c)).
Users can further connect multiple discrete squidgets in sequence into a continuous squidget

(Figure 3). Continuous squidgets are visually indicated by a piecewise linear path connecting the
center points of the discrete squidget curves.

Fig. 6. Explicitly authored curves can be associated with discrete configurations of face attributes to capture
a smile (left) and a laugh (right); and further combined into a continuous squidget, where the curves and
related face attributes can be interpolated (center).



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 7

As an illustration, 3D faces are often controlled by many (typically over 30) psuedo-muscle
attributes [KS21]. An expressive smile and laugh (Figure 6(left and right)) each produced by a
configuration of a subset of these attributes, can be discretely associated with explicitly authored
squidget curves (white). These curves can be combined into a continuous squidget that captures an
animated expression, as the two curves and their attributes are interpolated (Figure 6(center)).
In general, a squidget is thus a family of curve shapes with a corresponding family of scene

attribute values, that enable in-situ user interaction with scene attributes.

3.2 Squidget Interaction and Control
Users interact with the graphical scene by simply drawing strokes. Strokes perform two functions:
selecting a squidget from the set of scene squidgets (based on curve similarity Section 4.4); and
manipulating the scene attributes for the selected squidget, so it best matches the user stroke. For
example, the cyan stroke in Figure 1(b) is used to first select the implicit red squidget (due to strong
curve shape similarity); then the squidget and associated lamp are translated so the red curve best
matches the cyan input stroke.
For small or incremental changes to a widget curve a single user stroke Figure 1(b) can suffice

to both select and manipulate the squidget. For large changes to squidgets in a scene with many
squidgets, it may be necessary to draw two strokes: an approximately replicating stroke to un-
ambiguously select a desired squidget; and a subsequent manipulation stroke. In Figure 4(c) for
example, the cyan manipulation stroke is closer in shape to the handle (white curve) of the mug,
than to the silhouette (red curve), and would thus require a prior selection stroke to deform the
mug silhouette curve. This is easy accomplished using a modifier while drawing a stroke to indicate
that it is the first of a pair of strokes, where the stroke being drawn will be used for selection, and
will be followed by a manipulation stroke. Unless specifically stated however, we assume the more
efficient workflow where a single stroke is used to both select and manipulate a squidget.
The stroke is matched for similarity (Section 4.4) against both implicit and explicitly authored

squidgets. The best matching squidget curve is selected. Optionally, nothing can be selected if all
matching scores are poor and below a given threshold.
Once a squidget is selected, its associated attributes need to be set to match the user stroke.

For explicitly authored squidgets, this is simply the associated attribute configuration for discrete
squidgets, and weight interpolated attribute values based on where the user stroke crosses the
piecewise linear path for a continuous squidget.

Fig. 7. The user stroke is matched for similarity against all scene squidgets. The cuboid contour best matches
the stroke in (a), causing the object and contour to translate to fit the curve (b). Once selected, squidgets can
be interactively transformed (c). The torus’ contour is selected (d) and translated (e) to match a second stroke.

For implicit squidgets, one needs to find a minimal change to the associated set of attributes
such that the change deforms the curve to match the user drawn stroke. For common attributes
like deforming points on the squidget curve (Figure 4(c)) the change is direct, and for others like
transformations (translate/rotate/scale) (Figure 7), the change in attribute value can be analytically
computed. In general, We can optimize for such attribute values using a local search from the



8 Joonho Kim and Karan Singh

current values of associated attributes. For example, the cyan stroke drawn in Figure 4(d), can edit
the spotlight cone-angle associated with the elliptical red squidget in Figure 4(c), by searching for a
nearby cone-angle value whose hot-spot best fits the user stroke.
Implicit and continuous squidgets further allow users to interactively refine the controlled

attributes by dragging their values in real-time. A user stroke held at its end-point (0.3 seconds
in our implementation) remains active allowing the stroke to be dragged around spatially. This
behavior interactively manipulates the user stroke along the interpolation path for continuous
widgets, or as a transformed stroke for implicit squidgets (Figure 3). Modifiers can also be employed
to specify or restrict the subset of attribute values to change. For example, modifiers with implicit
squidgets can force the interactive refinement to be restricted to translate/rotate/scale (Figure 3).

4 IMPLEMENTING A SQUIDGET FRAMEWORK
While the squidget framework supports a wide range of implementations for a variety of applications
and workflows, in this section we discuss details for all aspects of an implementation with the 3D
animation system Maya 2024’s C++ API. User input can be provided by a mouse, track-pad, or
Wacom Cintiq 24HD Touch tablet.

There are two modes to our squidget framework: create, dealing with the creation/deletion
of squidgets and their association with scene attributes; and control dealing with the interactive
stroke-based manipulation of scene attributes.

4.1 Squidget Creation
A squidget is a scene curve 𝐶 (implicit or explicit) whose appearance can be controlled by an
associated set of scene attributes 𝐴.
Implicit squidgets comprise existing curves in the scene, as well imagined curves that can be

automatically created using NPR, from silhouettes and other feature curves on scene objects. In
both cases, the curves are associated with the attributes that define their respective scene objects.
We use an NPR toon-rendering in Maya, to create imagined curves from scene objects. Arbitrary
object attributes can visually change toon curves, illustrated in our implementation using object
transforms. We note that while view-dependent toon curves can change discontinuously upon
object transformation, we can treat them 3D curves pasted on their respective objects, for squidget
control.

Explicit squidgets are curves authored and associated with an arbitrary set of scene attributes
using our framework. While these curves can be created using any curve drawing tools in Maya,
we streamline their creation and attribute association management using canvases.

A canvas 𝐵 can serve both, as a planar surface in 3D upon which to project a user stroke, and as a
repository for selected object attributes to be associated with strokes drawn on the canvas. Given a
screen space user stroke 𝑆 as a poly-line with points [𝑥0, ..., 𝑥𝑘 ], we project 𝑥𝑖 onto a canvas plane 𝐵,
by casting a ray through the screen to intersect with the canvas as a curve 𝐵𝑆 = [𝑥𝐵0 , ..., 𝑥𝐵𝑘 ]. In our
implementation, we simply utilize Maya planes for canvases, designed with translucency to allow
users to view and interact with the scene through the plane. Canvases are associated with a set of
scene object attributes 𝐵.𝐴, recursively computed from selected object hierarchies upon canvas
creation, that all squidgets drawn on that canvas control. When an explicit curve is drawn on a
canvas 𝐵, the current attribute values 𝐵.𝐴 are associated with a discrete squidget. We experimented
with other attribute selection schemes such as automatically selecting recently changed attributes,
or re-selecting attributes for each drawn squidget, but found our proposed canvas-centric approach
provided a good balance between simplicity and flexibility of selection.
Canvases can also be used to constrain the best-match squidget search for a given user stroke.

We found that strokes that project entirely onto and within a first visible canvas, were typically



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 9

associated with squidgets on that canvas. This allows us to explicitly constrain the processing of
such strokes, to a single canvas and its squidgets, making our system more robust to ambiguities in
stroke matching, specially in complex scenes with many canvases and squidgets (Figure 17(a)).
A stroke in create mode can be responsible for discrete squidget creation/deletion, continuous

squidget connection/disconnection, and canvas deletion. Simple gesture processing can be used to
distinguish the stroke operation as follows: discrete squidgets or continuous squidget paths are
deleted using a cross-out stroke gesture, where the stroke crosses the curve representing a canvas,
a squidget, or a path, at least twice; A stroke crossing a sequence of multiple discrete squidget
curves exactly once is used to create a continuous squidget; all other strokes are used to create
discrete squidgets.
Discrete squidget curves are created from strokes by fitting a NURBS spline to the projected

stroke point sequence [𝑥𝐵1 , ..., 𝑥𝐵𝑘 ], and then re-sampled as a poly-line with a fixed number of points
(default 30).

Continuous squidget curves, are created by strokes crossing𝑚 discrete squidget curves [𝐶1, ...𝐶𝑚].
We establish an𝑚 point poly-line path through the mid-points of each curve in [𝐶1, ...𝐶𝑚]. The path
is parameterized to control an interpolation weight𝑤𝑖𝑛[0, 1], that uniformly defines a piece-wise
interpolation path between curve pairs 𝐶𝑖−1,𝐶𝑖 , for𝑤 ∈ [(𝑖 − 1)/𝑚, 𝑖/𝑚].

4.2 Squidget Control
In Control mode, a stroke is first matched against a list of implicit and explicit squidget curves to
select the best matched squidget, and then manipulate the selected squidget’s associated attributes
to match the stroke or a subsequent manipulation stroke (signified by a modifier key during the
first stroke).

Squidget Selection: When user strokes are completely contained within the extents of a canvas,
we restrict our search to squidget curves belonging to that canvas.

For explicit squidgets, we compute a matching distance (similar to [WWL07]) from a stroke
𝑆 , to a candidate squidget curve 𝐶 , by first re-sampling the stroke to have the same number of
control points as 𝐶 , and then summing the pairwise distance between corresponding points (i.e.
𝑑𝑖𝑠𝑡 (𝑆,𝐶) = ∑

𝑖 ( |𝑥𝑆𝑖 − 𝑥𝐶𝑖 |2)). The distance is also computed against the reverse ordering of stroke
points. To make the matching spatially agnostic, points can be translated to their respective local
origins using the point averages for the stroke and the curve. We also note that for strokes 𝑆 drawn
in 2D the distance computation and matching above is performed in 2D between points on 𝑆 and
points on 𝐶 projected in screen space.
For continuous squidgets, when the stroke cross the path at some parameter 𝑤 , the distance

is computed against the interpolated squidget curve at parameter 𝑤 . When the stroke does not
cross the path, we can analytically compute a least squares best-fit curve whose shape most closely
matches the stroke, or the value𝑤 where the 𝑑𝑖𝑠𝑡 (𝑆,𝐶 (𝑊 )) is minimized.

Implicit squidgets require thematching distance to be computed against an imagined sub-segment
of the NPR toon curves. We do this by first segmenting the NPR toon curves representing implicit
squidgets, using corner detection [WEH08]). We can further employ a partial matching between
the toon curve and the user stroke. We map our stroke 𝑆 onto𝐶 (in screen space in case of 2D input
strokes) to identify a mapping of 𝑆 to a portion of𝐶 . In practice, each stroke point is projected to its
closest point on𝐶 , to create a partial curve𝐶𝑆 , and a mapping of stroke points to toon curve points.
Spatial vs. Shape distance: We can further decompose the 𝑑𝑖𝑠𝑡 function to match a stroke and

curve, into a spatial and shape component. In other words, we can compute a best-fit transform A,
such that: argminA (𝑑𝑖𝑠𝑡 (𝑆,A𝐶𝑆 )). Matrix (𝐴) can be decomposed into a Rotation and Translation



10 Joonho Kim and Karan Singh

matrix: A =

[
R ®𝑇
0 1

]
. We can find these components using polar decomposition and average point

translation similar to the method found in [MHTG05]. The matrix (𝐴) can be defined as a local
object transform Al = X−1AX, where X is the local to screen space transform for the object in the
scene.

When trying to select from multiple Implicit Squidgets, we select the best 𝐴 that maximizes the
score:

score = (1 − 𝜆) ∗ 1
𝑑𝑖𝑠𝑡 (𝑆,A𝐶𝑆 )

+ 𝜆 ∗ 1
𝑑𝑒𝑣 (A0

l ,Al)

where A0
l is the original local object transformation, 𝑑𝑒𝑣 (A0

l ,Al) is the squared vector norm of the
matrix translation components: |A0

l .𝑡 − Al .𝑡 |2, and 𝜆 = 0.7.
Squidget Manipulation: Once a squidget is selected, its associated attribute values need to be

set to cause the squidget curve to best-fit match the user manipulation stroke.
These attribute values are directly obtained based on the selection computation for explicit

squidgets, and for spatial object transformation using implicit squidgets. For arbitrary attributes
like the spotlight cone-angle in Figure 4(d), a local numerical search for attribute values that
minimize the distance between the resulting implicit squidget and the user stroke, can be employed.

Finally, for further interactive control of squidgets, users can employ a hold-and-drag technique
to interactively refine the attribute values like a virtual slider: for example by moving along the
path of a continuous squidget to refine the weight 𝑤 and its consequent attribute values; or by
interactively moving the object transform of an implicit squidget. We further show that modifiers
can be used to selectively control the changed attributes, for example to perform constrained
translation/rotation (Figure 15(a)).

5 APPLICATIONS
In this section, we present many examples of applications incorporating squidgets.

5.1 Spatial Scenes

Fig. 8. (a) An implicit stroke is drawn to match the contour of the cloud. (b) The cloud resizes to fit along the
stroke shape.

5.1.1 2D Applications. (Figure 8) In this example, we present how a user could change the size of
a cloud to fit the stroke shape. 2D applications, which often naturally support drawing gestures,
can seamlessly incorporate squidgets to allow quick editing of scene parameters through matching
object contours with a user stroke.



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 11

Fig. 9. A self-authored, continuous squidget with four keyed attribute states that translates and rotates a
torus.

5.1.2 Shape Transformation. (Figure 9) In this example, we present a transformation with four
keyed parameter states combined into a continuous squidget. This continuous squidget exhibits
visual guidance through twomediums: 1) the torus’s motion path is conveyed through the squidget’s
track, and 2) the torus’s spatial orientation matches the key elements along the path. The user can
use the draw and drag method to interpolate torus transform states.

Fig. 10. Multiple squidgets control different parameters of a light cone on one canvas: (a) light visibility, (b)
light intensity, and (c-d) spot-light position through altering rotation.

5.1.3 Scene Lighting. (Figure 10) In this example, we present several hand-authored squidgets for
scene lighting. The flexibility of curve shapes allows users to dictate squidget utility through visual
form. An on and off switch is comprised from two discrete squidgets with opposite orientation
while a linear slider shape determines light intensity. These squidgets present familiar indicators
we observe from real world light switches. We also replace the local nature of performing rotations
with a global control by specifying light location rather than the local light cone rotation.

5.1.4 VR. (Figure 11) In this example, we present a method of using squidgets in VR environments.
Squidget curves can be formed in VR environments not bound to an object surface or canvas to key
and interpolate parameters outside of 2D viewports. Users can pose beyond limitations of 2D visual
mediums to more accurately pose objects that may otherwise be limited from depth perception.

5.2 Characters and Faces
5.2.1 Face Control. (Figure 12) In this example, we present several hand-authored squidgets for
facial posing. Face rigs often have many handles for each part of the face, but posing often requires
manipulating multiple handles together. Squidgets allow users to generate higher-level abstraction
handles (such as smile and frown handles) to simplify facial animation by controlling these self-
authored handles without losing local control.



12 Joonho Kim and Karan Singh

Fig. 11. Within a VR environment, curves can be drawn to control an wood-chopper (a-b). 3D curves drawn
in VR (c) can be used to match body contours at a specified camera view (d) to correct the body tilt (e-f).

Fig. 12. Squidgets can pose combinations of individual FACs control handles to drive complex facial pose
interpolations: (b) smile, neutral, frown, jaw open, (c) eye-lid open and close, (d) eye brow raise. The authored
squidgets can be used synchronously to create complex facial expressions (e-f).



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 13

Fig. 13. Squidgets can control character rigs to key multiple poses (a-c) for a jumping motion (d-g).

5.2.2 Character Animation. (Figure 13) In this example, we present the motion sequence for a
jump connected together through a continuous squidget. Squidgets can be used to visualize motion
sequences in real time by keyframing poses and inbetweening using sketch gestures.

Fig. 14. Using previously hand-authored squidgets to move the boat and moon, we can create a parent
squidget to control previous continuous squidgets (a) by keying squidget values (b-d). By controlling this
parent squidget (e), we can drive multiple squidgets together (f-h)

5.2.3 Squidgets for Squidgets. (Figure 14) In this example, we present a squidget controlling other
squidgets. Because self-authored squidgets themselves contain scene parameters, these squidget
parameters can be driven by other squidgets. Nested squidgets provided a multi-timeline animation
workflow where individual motion sequences are encapsulated into larger sequence containers.
Thus characteristic motion sequences keyed by squidgets can be re-used by other squidgets to
modularize complex actions.



14 Joonho Kim and Karan Singh

6 EVALUATION

Fig. 15. Study scenarios with various tasks: arranging object using implicit squidgets (a), creating squidgets
for a boat scene (b), and using both squidgets for character control (c).

We evaluated squidgets two ways: with an informal 7 participant user study; and by a free-form
interactive session with 4 animation professionals.

6.1 User Study
We evaluated our framework with 5 casual users 𝐶1, ...𝐶5 and 2 experienced artists 𝐸1, 𝐸2 against a
series of tasks. Our study was broken down into three scenarios: In scene 0, users arranged shapes
using implicit squidgets andMaya’s internal transformation tool (move and rotate). In scene 1, users
followed a tutorial on how to author explicit squidgets to complete a series of tasks. Tasks involved
creating squidgets to control different sets of parameters (transform and rendering attributes). In
scene 2, users used both implicit squidgets and explicit squidgets to control a character rig.
For each of the three scenarios, users were prompted through a text window with directives

such as: "Create a simple squidget that raises her arm above her head and waves." or "Use our Tool
to draw strokes on the scene to overlay the yellow objects over the blue objects." Before the study,
users viewed a tutorial video explaining how to use squidgets and later filled out a post-study form
with questions pertaining to their experience using the tool. Participants completed the study using
either a mouse or pen-interactive display.

Results
For scene 0, we randomly assigned the tool usage order (Squidgets or Maya) with participants
and measured the time spent using each tool and accuracy of shape placement. We found that on
average participants took around 40% more time to arrange the shapes using Squidgets than using
Maya’s internal tools despite having similar placement accuracy. Results from our study revealed a
balanced preference among participants, with 3 of the participants preferring Maya’s tools and 4
preferring squidgets (including the 2 experienced artists). Though many participants found our
tool more responsive, noting how translations were quick and easy to control, difficulty with out of
view-plane rotations and inadvertent snapping of objects due to an incorrectly inferred squidget,
were frustrating. Although we provided an undo feature, we found that participants preferred
prioritizing proximity to the mouse location over stroke shape when selecting a shape. This can
easily be fixed with parameter tuning. We recognize that there is a trade-off with fine-tune controls
that Maya provides and natural quickness of squidgets, and imagine a workflow involving quick
parameter tuning with Squidgets and precise adjustments with a traditional interface or constraint
snapping.
The explicit widgets in scene1 and scene2, received widespread acclaim from all participants.

Universally, participants found squidgets to be user-friendly and intuitive. Multiple participants
praised the simplification of key-framing motions, highlighting how squidgets made this process



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 15

3.71

3.57


3.29


3.57


3.43

3.43

3.00

3.58

3.17

Fig. 16. Post-study survey questions and results from six participants.

significantly easier and quicker (𝐶1,𝐶4, 𝐸1). They also appreciated how squidget curves provide
visual cues and previews for animations (𝐶1,𝐶4). We observed howmany participants used squidgets
to imitate temporal parametric control rather than spatial controls to visualize animations (Figure 17).
Furthermore, squidgets enabled users to efficiently control multiple parameters simultaneously,
especially when manipulating multiple facial handles to create complex facial expressions (𝐸1).
Some participants provided feedback requesting additional features like the ability to refine a

continuous squidget by inserting more discrete squidget curves, or controlling the timing along the
interpolation path, indicating a desire for more nuanced control over animations, including non-
linear animation curves. All these features can be easily incorporated with a more comprehensive
implementation of our framework.
Remarkably, participants expressed genuine enjoyment while using the tool, with some even

describing it as fun. At the conclusion of scenes 1 and 2, participants were asked whether they
wished to continue using our tool. All but one chose to extend their interaction, even beyond the
scheduled study duration to create intricate animation sequences (Figure 17), underscoring the
tool’s engaging and user-friendly nature for even those who unfamiliar Maya. The study duration
was estimated to be 1 hour long, but some users spent over 2 hours playing with the tool.

Overall, the study while somewhat informal, highlighted the playful, versatile, and naturally
engaging nature of the squidget framework as a comprehensive, stroke-based interface for creative
applications.

6.2 Interactive sessions with experts
We also performed an in-depth free-form session (30 mins. to 1.5 hours long) with 4 animation
professionals 𝑃1, ...𝑃4, interactively demonstrating squidgets and having qualitative discussions
about our idea. Here we distill the pros and cons of both the concept and our current prototype
from the sessions:

Positives:
• Explicit squidgets are "fun", "very intuitive", and "promising".



16 Joonho Kim and Karan Singh

• Explicit squidgets can be used to modularize key-frame animation by creating animation
sequences for smaller modules and controlling each squidget module with a meta squidget.

• Explicit Squidgets could be created in-situ for non-tangible scene parameters (such as
lighting) to provide artists more accessibility towards difficult to reach parameters.

• Implicit squidgets representing skeletons could be a powerful way to roughly pose characters
by allowing users to draw character outlines of the pose [GCR13] . This would "save artists
hundreds of hours" by allowing squidgets to pose the character and then the artist can
perform edits and tweaks to polish the pose. Additionally, stroke color could enforce
constraints on different body parts for more accurate parameter adjustments.

Negatives:
• Implicit squidgets may suffer from ambiguity if selected from too many near-by squidgets
or too-similarly shaped curves (multiple scene objects with similar shapes).

• Non-planar rotations with implicit squidgets can be challenging.
• Explicit Squidgets have the potential for visual clutter if too many squidgets are created,
obstructing the viewport.

• Explicit Squidgets may have problems if the same attribute is coupled to multiple different
squidgets. Changing one squidget may thus affect the states of the others.

Fig. 17. Examples of self-authored widgets from user-study participants: squidget controlling other squidgets
(a), walking animation (b), bouncing moon (c), ballerina pirouette (d-e), and climbing a lamppost (f).

7 CONCLUSION
Inspired by hand-crafted custom widgets, and the observation that users naturally sketch desired
changes over graphical scenes, we propose squidgets, UI interaction framework, where user strokes
indicate visual change that is manifest by directly manipulating scene attributes. We present and



Squidgets: Sketch-based Widget Design and Direct Manipulation of 3D Scenes 17

evaluate an example implementation of the squidget concept, within the 3Dmodeling and animation
system Maya.

Limitations and Future work:Our work has many limitations. Conceptually, squidgets capture
an ill-posed and ambiguous inverse control problem. Despite this, we found that by constraining
the number of squidget curves in a scene and their mapping to scene attributes, interacting with
squidgets can be predictable and satisfying. Our example implementation makes a number of
assumptions to further restrict the problem. For example, we only show control of transform
attributes using implicit widgets, leaving general attribute control to future work. There may also
be inherent redundancy in scene attributes. For example, a stroke indicating a larger sphere inMaya,
can be realised by a change to the sphere’s radius, its scale transform, or an infinite combination
of the two. Such redundancy can be mitigated by authoring explicit squidgets that clarify the
attributes to controlled by the squidget.

In summary, the overall concept of squidget based interactionwas receivedwithmuch enthusiasm
in our user study, and we hope that this work will fuel further work in direct, in-situ, sketch-based
scene interaction.

Acknowledgements: Acknowledgements are anonymized during this review process.

REFERENCES
[AG04] Georg Apitz and François Guimbretière. Crossy: a crossing-based drawing application. In Steven Feiner

and James A. Landay, editors, Proceedings of the 17th Annual ACM Symposium on User Interface Software and
Technology, Santa Fe, NM, USA, October 24-27, 2004, pages 3–12. ACM, 2004.

[ALCS18] Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou, and Ariel Shamir. Inverse kinematics techniques in
computer graphics: A survey. Computer Graphics Forum, 37:35–58, 09 2018.

[BBS08] S.H. Bae, Ravin Balakrishnan, and Karan Singh. ILoveSketch: as-natural-as-possible sketching system for
creating 3d curve models. In Proc. User Interface Software and Technology, 2008.

[BH19] Pierre Bénard and Aaron Hertzmann. Line drawings from 3d models: A tutorial. Found. Trends. Comput. Graph.
Vis., 11(1–2):1–159, sep 2019.

[BIAI17] Lonni Besançon, Paul Issartel, Mehdi Ammi, and Tobias Isenberg. Mouse, tactile, and tangible input for 3d
manipulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17,
page 4727–4740, New York, NY, USA, 2017. Association for Computing Machinery.

[Bie86] E. A. Bier. Skitters and jacks: Interactive 3d positioning tools. In Proc. I3D 86, pages 183–196, 1986.
[Bie90] E. A. Bier. Snap-dragging in three dimensions. In Proc. I3D 1990, pages 193–204, 1990.

[BKLP04] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 3D User Interfaces: Theory and Practice.
Addison Wesley Longman Publishing Co., Inc., USA, 2004.

[CiRL+16] Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong, Haegwang Eom, Sunjin Jung,
and Junyong Noh. Sketchimo: Sketch-based motion editing for articulated characters. ACM Trans. Graph.,
35(4), jul 2016.

[CV01] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE Transactions on image processing,
10(2):266–277, 2001.

[DXS+07] Julie Dorsey, Songhua Xu, Gabe Smedresman, Holly Rushmeier, and Leonard McMillan. The mental canvas: A
tool for conceptual architectural design and analysis. In Proceedings of the 15th Pacific Conference on Computer
Graphics and Applications, PG ’07, page 201–210, USA, 2007. IEEE Computer Society.

[GCR13] Martin Guay, Marie-Paule Cani, and Rémi Ronfard. The line of action: An intuitive interface for expressive
character posing. ACM Trans. Graph., 32(6), nov 2013.

[GG01] Bruce Gooch and Amy Gooch. Non-photorealistic rendering. CRC Press, 2001.
[Her99] Aaron Hertzmann. Introduction to 3d non-photorealistic rendering: Silhouettes and outlines. Non-Photorealistic

Rendering. SIGGRAPH, 99(1), 1999.
[IMH07] T. Igarashi, T. Moscovich, and J. F. Hughes. Spatial keyframing for performance-driven animation. In ACM

SIGGRAPH 2007 Courses, SIGGRAPH ’07, page 25–es, New York, NY, USA, 2007. Association for Computing
Machinery.

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching interface for 3d freeform design.
SIGGRAPH ’99, pages 409–416, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[JGHD09] Gabe Johnson, Mark Gross, Jason Hong, and Ellen Do. Computational support for sketching in design: A
review. Foundations and Trends in Human-Computer Interaction, 2:1–93, 01 2009.



18 Joonho Kim and Karan Singh

[KS21] Joonho Kim and Karan Singh. Optimizing ui layouts for deformable face-rig manipulation. ACM Trans. Graph.,
40(4), jul 2021.

[LA10] John P Lewis and Ken-ichi Anjyo. Direct manipulation blendshapes. IEEE Computer Graphics and Applications,
30(4):42–50, 2010.

[LMLH07] Yunjin Lee, Lee Markosian, Seungyong Lee, and John F. Hughes. Line drawings via abstracted shading. ACM
Trans. Graph., 26(3):18, 2007.

[MB21] Elie Michel and Tamy Boubekeur. Dag amendment for inverse control of parametric shapes. ACM Transactions
on Graphics, 40(4):173:1–173:14, 2021.

[MCG+19] D. Mendes, F. M. Caputo, A. Giachetti, A. Ferreira, and J. Jorge. A survey on 3d virtual object manipulation:
From the desktop to immersive virtual environments. Computer Graphics Forum, 38(1):21–45, 2019.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. Meshless deformations based on
shape matching. ACM transactions on graphics (TOG), 24(3):471–478, 2005.

[NSACO05] AndrewNealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketch-based interface for detail-preserving
mesh editing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH), 24(3):1142–1147, 2005.

[PCS23] Karran Pandey, Fanny Chevalier, and Karan Singh. Juxtaform: Interactive visual summarization for exploratory
shape design. ACM Trans. Graph., 42(4), jul 2023.

[SF98] Karan Singh and Eugene Fiume. Wires: A geometric deformation technique. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, 1998.

[SSB08] Ryan Schmidt, Karan Singh, and Ravin Balakrishnan. Sketching and Composing Widgets for 3D Manipulation.
Computer Graphics Forum, 27(2):301–310, 2008.

[Sut64] Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In Proceedings of the SHARE
Design Automation Workshop, DAC ’64, pages 6.329–6.346, New York, NY, USA, 1964. ACM.

[Tod04] James T Todd. The visual perception of 3d shape. Trends in cognitive sciences, 8(3):115–121, 2004.
[WEH08] Aaron Wolin, Brian Eoff, and Tracy Hammond. Shortstraw: A simple and effective corner finder for polylines.

SBIM, 8:33–40, 2008.
[WWL07] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits or training: A $1

recognizer for user interface prototypes. In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07, page 159–168, New York, NY, USA, 2007. Association for Computing
Machinery.

[XAGW16] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. Object-oriented drawing. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, page 4610–4621, New York, NY, USA,
2016. Association for Computing Machinery.

[XCS+14] Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan Singh. True2form: 3d
curve networks from 2d sketches via selective regularization. ACM Transactions on Graphics, 33(4), 2014.

[ZHH96] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. Sketch: An interface for sketching 3d scenes. In Proc. SIGGRAPH
’96, pages 163–170, 1996.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Sketch-based gestures
	2.2 Scene proxies and custom widgets
	2.3 Direct in-situ manipulation
	2.4 Non-photorealistic Rendering (NPR)

	3 Squidgets
	3.1 Squidget Classification
	3.2 Squidget Interaction and Control

	4 Implementing a Squidget Framework
	4.1 Squidget Creation
	4.2 Squidget Control

	5 Applications
	5.1 Spatial Scenes
	5.2 Characters and Faces

	6 Evaluation
	6.1 User Study
	6.2 Interactive sessions with experts

	7 Conclusion
	References

