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Abstract  

Using Landau-Ginzburg-Devonshire (LGD) approach we proposed the analytical description 

of the chemical strains influence on the spontaneous polarization and electrocaloric response in 

ferroelectric core-shell nanorods. We postulate that the nanorod core presents a defect-free single-

crystalline ferroelectric material, and the elastic defects are accumulated in the ultra-thin shell, where 

they can induce tensile or compressive chemical strains. The finite element modeling (FEM) based on 

the LGD approach reveals transitions of domain structure morphology induced by the chemical strains 

in the BaTiO3 nanorods. Namely, tensile chemical strains induce and support the single-domain state 

in the central part of the nanorod, while the curled domain structures appear near the unscreened or 

partially screened ends of the rod. The vortex-like domains propagate toward the central part of the rod 

and fill it entirely, when the rod is covered by a shell with compressive chemical strains above some 

critical value. The critical value depends on the nanorod sizes, aspect ratio, and screening conditions 

at its ends. Both analytical theory and FEM predict that the tensile chemical strains in the shell increase 

the nanorod polarization, lattice tetragonality, and electrocaloric response well-above the values 

corresponding to the bulk material. The physical reason of the increase is the strong electrostriction 

coupling between the mismatch-type elastic strains induced in the core by the chemical strains in the 

shell. Comparison with the earlier XRD data confirmed an increase of tetragonality ratio in tensiled 

BaTiO3 nanorods compared to the bulk material. Obtained analytical expressions, which are suitable 

for the description of strain-induced changes in a wide class of multiaxial ferroelectric core-shell 
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nanorods and nanowires, can be useful for strain engineering of advanced ferroelectric nanomaterials 

for energy storage, harvesting, electrocaloric applications and negative capacitance elements. 

 

I. INTRODUCTION 

The influence of shape and size effects, defects, and elastic strains on the phase state, polar and 

structural properties, and related working performances of various nanosized ferroelectrics is still 

poorly explored. In particular, the physical explanation and theoretical description of the strongly 

enhanced spontaneous polarization and lattice tetragonality observed in BaTiO3 core-shell ferroelectric 

nanoparticles [1, 2, 3, 4] have been absent for a long time [5]. Recent X-ray spectroscopic 

measurements [2] revealed a large Ti-cation off-centering in 10-nm quasi-spherical BaTiO3 core-shell 

nanoparticles near 300 K confirmed by the tetragonality ratio 
𝑐

𝑎
≈ 1.0108, which is higher than the 

bulk value, 
𝑐

𝑎
≈ 1.010, and significantly higher in comparison with 

𝑐

𝑎
≈ 1.0075 for 50 nm 

nanoparticles. The off-centering of Ti-cations is a key factor in producing the enhanced spontaneous 

polarization (up to 130 C/cm2 at room temperature) in the core-shell nanoparticles, and the barium 

oleate component in the core-shell matrix (resulting from mechanochemical synthesis during the ball-

milling process [6]) stabilizes the enhanced polar structural phase of the BaTiO3 core. Only recently 

the theoretical models [7, 8, 9], which postulate the appearance of elastic strains caused by elastic 

defects accumulated in the shell, have been proposed, and numerical and analytical solutions for the 

strain-induced polarization changes in spherical core-shell nanoparticles have been derived.  

Depending on the nature of elastic defects (e.g., dilatation centers, such as oxygen or cation 

vacancies, divacancies, OH-complexes, or isovalent impurity atoms), the defects can create 

compressive or tensile elastic strains in the oxide ferroelectrics, which are usually called chemical (or 

compositional) strains [10, 11]. Instead of “chemical” or “compositional” strains we use more narrow 

terminology in Refs.[7 - 9], as well as in some places in this work, namely “Vegard” strains [12, 13]. 

Furthermore, we consider that the strain is linearly proportional to the concentration of elastic defects 

(the Vegard law for chemical strains), and the proportionality coefficient is named the Vegard tensor. 

Assuming that the formation energy of elastic defects is much smaller near the surface than in the bulk 

of the ferroelectric [14], elastic defects (and corresponding strains) are accumulated in a thin layer 

under the surface. It was shown that the Vegard strains are responsible for the strong increase of the 

Curie temperature (above 440 K) and tetragonality (up to 1.032) near the surface of a BaTiO3 film with 

injected oxygen vacancies [15]. 

To the best of our knowledge, analytical solutions for the strain-induced polarization changes 

for other shapes of core-shell ferroelectric nanoparticles are absent. However, an enhanced 

polarization, electrocaloric response, and high lattice tetragonality can be observed in non-spherical 
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nanoparticles (e.g., 𝑐/𝑎 ≈ 1.013 is observed for BaTiO3 nanorods and nanowires [16]), where the 

core-shell structure can be formed spontaneously, because various defects are accumulated at the 

surface and under the surface due to the strong (e.g., exponential) lowering of the defect formation 

energy when approaching the surface [14]. Thus, analytical solutions are important for fundamental 

physics and can help to achieve significant progress in the energy storage [17, 18, 19, 20], harvesting 

[21] and electrocaloric applications [22] of the non-spherical ferroelectric core-shell nanoparticles.  

Since the shape variation is one of the most effective means of controlling depolarization factors 

in ferroelectric nanoparticles, very long nanorods and nanowires with the spontaneous polarization 

directed along their axis have negligibly small depolarization fields, which cannot decrease the 

polarization. Because of this, several theoretical papers [23, 24, 25] predict the increase of a reversible 

spontaneous polarization in homogeneous (without the core-shell structure) ferroelectric nanorods and 

nanowires, when the spontaneous polarization is directed along their axis. The increase of the 

spontaneous polarization can appear due to the positive surface tension coefficient 𝜇 and negative 

electrostriction coupling coefficients 𝑄12 of ABO3-type perovskites, because the dependence of the 

Curie temperature 𝑇𝐶 on the particle radius R is proportional to the positive value −
4𝜇

𝑅
𝑄12 in the 

nanowire (see e.g., Table 1 in Ref. [26]). The increase of 𝑇𝐶 becomes significant for 𝑅 ≤ 5 nm and 

requires very high 𝜇 > (5 − 10) N/m [26]. The flexo-chemical effect [27], being the joint action of 

the chemical strains and flexoelectric effect, can increase 𝑇𝐶, spontaneous polarization, and 
𝑐

𝑎
 in ultra-

small (5 nm or less) spherical or cylindrical BaTiO3 nanoparticles, although the effect rapidly 

disappears with a radius increase (as 
1

𝑅2) and requires very high values of the flexoelectric coupling 

coefficients and strain gradients. 

The chemical strains in the shell influence the core polarization almost independently on its 

size (until the strain relaxation via e.g., mismatch dislocations, appear). For this reason the chemical 

strains can significantly increase the Curie temperature, spontaneous polarization, lattice tetragonality, 

pyroelectric effect and electrocaloric response of the (5 - 50) nm spherical core-shell nanoparticles [7, 

8, 9]. Furthermore, the higher-order electrostriction coupling [28], which needs to be considered for 

chemical strains higher than 1%, can be very important for a correct description of the core-shell 

nanoparticle polar properties [29, 30].  

Using these ideas, this work analyzes polar properties of cylindrical core-shell BaTiO3 nanorods 

and nanowires in the framework of Landau-Ginzburg-Devonshire (LGD) free energy functional, which 

includes the 8-th power of polarization, and thus allows high chemical strains in the shell and the 

nonlinear electrostriction coupling in the core to be considered. The analytical description of polar and 

electrocaloric properties of single-domain core-shell ferroelectric nanowires and long nanorods are 

presented in Section II. The finite element modeling (FEM) results, which show the ranges of 
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analytical solutions applicability and demonstrate the strain-induced domain morphology in core-shell 

nanorods, are presented and analyzed in Section III. Comparison with available experiments, 

discussion of the controllable negative capacitance effect, and conclusion are in Section IV. 

Supplementary Materials [31] contain calculation details. 

 

II. ANALYTICAL DESCRIPTION 

A. The problem formulation for a single-domain ferroelectric nanorod  

Let us consider a core-shell nanorod, whose core of radius 𝑅𝑐 and length 2𝐿𝑐 is a single-domain 

ferroelectric with a spontaneous polarization �⃗⃗� 𝑠 directed along the polar axis 𝑥3. The nanorod geometry 

is shown in Fig. 1. The core permittivity is 휀�̂�, which contains a background contribution, 휀𝑏 [32], and 

the ferroelectric contribution, 휀𝑓. The defect-free core is crystalline, has a tetragonal symmetry, and is 

insulating, since a bulk BaTiO3 has a wide band gap (around 3.4 eV). The core is covered with a 

crystalline shell of cubic symmetry, which has the average thickness Δ𝑅 = 𝑅𝑠 − 𝑅𝑐. We postulate that 

the shell is semiconducting due to the high concentration of free charges. The charge screening is 

formed spontaneously due to the multiple mechanisms of a spontaneous polarization screening by 

internal and external charges in nanoscale ferroelectrics (e.g., Ref. [33] and refs. therein). The free 

charges provide effective screening of the core spontaneous polarization and prevent domain 

formation. The effective screening length in the shell, λ, is relatively small (less than 1 nm), and its 

relative dielectric permittivity tensor, 휀𝑖𝑗
𝑠 , is isotropic, 휀𝑖𝑗

𝑠 = 𝛿𝑖𝑗휀𝑠, and can be large enough (e.g., several 

hundred or higher) which correspond to the paraelectric phase.  

We postulate the presence of elastic defects (e.g., oxygen or cation vacancies, divacancies, OH-

complexes, or isovalent impurity atoms) in the shell and assume that they can induce strong tensile or 

compressive chemical strains [10, 11]. We also assume the validity of the Vegard law [12, 13] for 

chemical strains: the strain is linearly proportional to the concentration 𝛿𝑐 of elastic defects, and the 

proportionality coefficient is the Vegard tensor, denoted as 𝑊𝑖𝑗
𝑐,𝑠(𝑟 ). The Vegard tensor, whose 

components can be calculated from the first principles for certain cases [10], is assumed to have a cubic 

symmetry in average, 𝑊𝑖𝑗
𝑐,𝑠 = 𝛿𝑖𝑗𝑤𝑐,𝑠, where 𝛿𝑖𝑗 is the Kronecker-delta symbol, 𝑤𝑐 and 𝑤𝑠 are the 

averaged tensor magnitudes in the core (denoted by the superscript “c”) and shell (denoted by the 

superscript “s”), respectively. According to the Vegard law, the chemical strains 𝑢𝑖𝑗
𝑐,𝑠

 are equal to 

𝑊𝑖𝑗
𝑐,𝑠𝛿𝑐. Because we assumed that the Vegard tensor has a cubic symmetry, corresponding chemical 

strains have the same symmetry, namely 𝑢𝑖𝑗
𝑐,𝑠 = 𝛿𝑖𝑗𝑢𝑐,𝑠. As a rule, the difference 𝑢𝑠 − 𝑢𝑐 can reach (0.5 

– 3)%, and it is unlikely that it can exceed (5 – 7)% because the concentration of elastic defects cannot 

exceed (5 – 10) % near the surface in accordance with many experiments [14, 15]. 
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FIGURE 1. (a) – the radial cross-section of the core-shell ferroelectric nanorod, (b) – the side-view of 

the core-shell nanorod.  

 

B. Analytical solution for elastic strains, quasi-static polarization and electrocaloric 

properties of single-domain ferroelectric nanowires and nanorods 

The LGD free energy density includes the Landau-Devonshire expansion in even powers of 

the polarization 𝑃3 (up to the 8-th power); the Ginzburg polarization gradient energy; and the elastic, 

electrostriction, and flexoelectric energies, which are listed in Table AI in Appendix A [31]. Material 

parameters corresponding to the bulk BaTiO3 are taken from Refs. [34, 35]. Components of the 

polarization gradient tensor are taken from Ref. [36]. 

In the case of natural boundary conditions for polarization vector at the ends and side surface 

of the nanorod (which are used hereinafter) and polarization gradient coefficients higher than 10−11 C-

2m3J (which are used hereinafter), the polarization gradient effects can be neglected inside the 

nanowires (i.e., for 𝐿𝑐 → ∞) and long nanorods with a small effective screening length (i.e., for 

𝑅𝑐 𝐿𝑐 ≪ 0.1⁄  and  ≪ 0.1 nm). In this case a single-domain state is revealed to have minimal energy 

compared to polydomain states. The field dependence of a quasi-static single-domain polarization can 

be found from the following equation [8]: 

𝛼∗𝑃3 + 𝛽∗𝑃3
3 + 𝛾𝑃3

5 + 𝛿𝑃3
7 = 𝐸3

𝑒.                                     (1) 

The parameters 𝛼∗, 𝛽∗, 𝛾, and 𝛿 are the 2-nd, 4-th, 6-th, and 8-th order expansion coefficients 

in the 𝑃3-powers of the Landau free energy. 𝐸3
𝑒 is the static external field inside the core.  
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The depolarization field and elastic stresses contribute to the “renormalization” of the first 

Landau expansion coefficient 𝑎1(𝑇) = 𝑎𝑇(𝑇 − 𝑇𝑐), which becomes the temperature-, radius-, stress-, 

and screening length-dependent function 𝛼∗ [30]: 

 𝛼∗(𝑇, 𝑅𝑐, 𝜎𝑖) = 2𝑎1(𝑇) +
𝑛𝑑

0[ 𝑏𝑛𝑑+ 𝑠(1−𝑛𝑑)+ 𝑠𝑛𝑑(𝐿𝑐 𝜆⁄ )]
− 2𝑄𝑖3𝜎𝑖.                            (2) 

The second term in Eq.(2) is the depolarization field contribution, which is derived in Refs.[23, 29, 

30]. Here ε0 = 8.85 pF/m is a universal dielectric constant, 휀𝑏 is the dielectric permittivity of 

ferroelectric background [37]; 𝑛𝑑 =
1

1+(𝐿𝑐 𝑅𝑐⁄ )2
 is the “effective” depolarization factor of the nanorod 

in the direction of the spontaneous polarization 𝑃3 [38]. The third term originates from the strain-

electrostriction coupling. Here 𝑄𝑖3 are the components of the second-order electrostriction tensor 

components and 𝜎𝑖 are elastic stresses in the core, written in the Voigt notations.  

Due to the nonlinear electrostriction coupling, the coefficient 𝛽∗ is “renormalized” by elastic 

stresses as 

𝛽∗(𝑇, 𝜎𝑖) = 4𝑎11(𝑇) − 4𝑍𝑖33𝜎𝑖.                                           (3a) 

The values 𝑍𝑖33 are the components of the higher-order electrostriction strain tensor in the Voigt 

notation [28]. The values 

𝛾 = 6𝑎111,    𝛿 = 8𝑎1111.                                               (3b) 

The temperature-dependent values 𝑎1(𝑇) and 𝑎11(𝑇) and the constants 𝑎111 and 𝑎1111 are listed in 

Table AI in Appendix A [31]. 

Elastic stresses and strains can be calculated analytically in a cylindrical core-shell nanorod, as 

derived in Appendix B [31]. For a very long nanorod or nanowire, the nonzero components of the core 

strains, 𝑢𝑖
𝑐, written in the Voigt notations, are: 

𝑢3
𝑐 = 𝑢𝑐 + (1 − 𝛿𝑉)𝑄11𝑃3

2 + 𝛿𝑉𝛿𝑢,                             (4a) 

 𝑢1
𝑐 = 𝑢2

𝑐 = (1 − 𝛿𝑉)(𝑢𝑐 + 𝑄12𝑃3
2) + 𝛿𝑉 [𝑢𝑠 +

(s11−s12)𝛿𝑢+(s11𝑄12−𝑠12𝑄11)𝑃3
2

2(s11+s12)
].             (4b) 

Here the relative shell volume (𝛿𝑉) and “effective” mismatch strain (𝛿𝑢) are introduced as: 

𝛿𝑉 =
𝑉𝑠

𝑉
= 1 −

𝑅𝑐
2

𝑅𝑠
2,     𝛿𝑢 = 𝑢𝑠 − 𝑢𝑐.                           (4c) 

In Eq.(4c) we define the shell volume as 𝑉𝑠 = 𝜋𝐿𝑐(𝑅𝑠
2 − 𝑅𝑐

2) and the nanorod volume as 𝑉 = 𝜋𝐿𝑐𝑅𝑠
2. 

In a general case, the effective mismatch strain 𝛿𝑢 is created not only by the difference between the 

core and the shell chemical strains (𝑢𝑐 and 𝑢𝑠), as assumed in Eq.(4c), but also be the lattice constants 

mismatch and/or different thermal expansion coefficients in the core and the shell. However, here we 

consider the simplest case when the elastic defects are postulated to be present in the shell only, and 

other contributions to 𝛿𝑢 are absent, i.e., 𝛿𝑢 ≡ 𝑢𝑠 and 𝑢𝑐 = 0 in Eqs.(4). Hence, below we can consider 

that 𝛿𝑢 is the effective chemical strain. 
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Consideration of the surface tension leads to the appearance of terms proportional to −2s12
𝜇

𝑅𝑠
 

and −(s11 + s12)
𝜇

𝑅𝑠
 in the expressions (4a) and (4b), respectively (see Appendix B [31] for details). 

Due to the reasons discussed in the Introduction, the terms appear negligibly small (less than 0.01 %) 

for the considered radii of nanorods and nanowires (𝑅𝑠 ≥ 10 nm) and realistic surface tension 

coefficient 𝜇 < 4 N/m. 

The tetragonality ratio of the lattice constants 𝑐 and 𝑎, is given by expression: 

 
𝑐

𝑎
=

1+𝑢3
𝑐

1+𝑢1
𝑐 ≈ 1 + 𝑢3

𝑐 − 𝑢1
𝑐.                                                   (5a) 

From Eq.(4), the tetragonality ratio is equal to: 

𝑐

𝑎
= 1 + (Q11 − Q12)𝑃3

2 −
1

2
𝛿𝑉 [

(2s11+s12)Q11−(s11+2s12)Q12

s11+s12
𝑃3

2 +
s11−s12

s11+s12
𝛿𝑢].   (5b) 

The first two terms in Eq.(5b) coincide with the expression for a bulk ferroelectric with the spontaneous 

polarization 𝑃3 in the tetragonal ferroelectric phase, which has a cubic parent phase. The next two 

terms, proportional to the relative shell volume 𝛿𝑉, are caused by the elastic anisotropy between the 

tetragonal core and cubic shell, as well as by the effective chemical strain, 𝛿𝑢. From Eq.(5), the non-

zero tetragonality can exist in the paraelectric core-shell nanorods and is equal to 
𝑐

𝑎
= 1 +

s11−s12

s11+s12

𝛿𝑢 𝛿𝑉

2
. 

After substitution of the elastic strains from Eq.(4) into Eq.(1) we obtain the equation of state 

for the electric polarization 𝑃3: 

 𝛼𝑅𝑃3 + 𝛽𝑅𝑃3
3 + 𝛾𝑃3

5 + 𝛿𝑃3
7 = 𝐸3

𝑒.                                 (6) 

The renormalized coefficients in Eq.(6) are given by expressions: 

𝛼𝑅 = 2 {𝑎1 − 𝛿𝑢 𝛿𝑉
Q11+Q12

s11+s12
} +

𝑛𝑑

0[ 𝑏𝑛𝑑+ 𝑠(1−𝑛𝑑)+𝑛𝑑(𝐿𝑐 𝜆⁄ )]
,               (7a) 

𝛽𝑅 = 4 {𝑎11 + 𝛿𝑉
s11(Q11

2 +Q12
2 )−2s12Q11Q12

2(s11
2 −s12

2 )
} − 8

𝑍211

𝑠11+𝑠12
𝛿𝑉𝛿𝑢.                  (7b) 

For a very thick shell (i.e., for 𝛿𝑉 → 1 at 𝑅𝑠 ≫ 𝑅𝑐) expressions (7) transform into the well-known 

expressions [39] for the renormalized Landau coefficients in the ferroelectric thin film with in-plane 

spontaneous polarization, clamped to the infinitely thick substrate. In the case the “effective” strain, 

𝛿𝑢, is determined by the different chemical strains, and/or lattice constants, and/or thermal expansion 

coefficients in the film and its substrate. In the opposite case of a very thin shell (i.e., for 𝛿𝑉 → 0 at 

𝑅𝑠 → 𝑅𝑐) expressions (7) transform to the coefficients of a bulk ferroelectric. 

The field dependence of a static single-domain pyroelectric coefficient Π3 and the electrocaloric 

(EC) temperature change Δ𝑇𝐸𝐶  in an external field 𝐸3
𝑒 are given by the following expressions [40]: 

Π3(𝐸3
𝑒) = −(

𝜕𝑃3

𝜕𝑇
)
𝐸3

𝑒
,                                            (8) 
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Δ𝑇𝐸𝐶(𝐸3
𝑒) ≅ 𝑇 ∫

1

𝜌𝑃𝐶𝑃
Π3

𝐸3
𝑒

0
𝑑𝐸 ≈

𝑇

𝜌𝐶𝑃
(
𝛼𝑇

2
[𝑃3

2(𝐸3
𝑒) − 𝑃3

2(0)] +
𝛽𝑇

4
[𝑃3

4(𝐸3
𝑒) − 𝑃3

4(0)] +

𝛾𝑇

6
[𝑃3

6(𝐸3
𝑒) − 𝑃3

6(0)]),                                               (9) 

where 𝛼𝑇 =
𝜕𝛼𝑅

𝜕𝑇
, 𝛽𝑇 =

𝜕𝛽𝑅

𝜕𝑇
, and 𝛾𝑇 =

𝜕𝛾

𝜕𝑇
. For the case when 𝐸3

𝑒 is equal to the coercive field 𝐸𝑐, Eq.(9) 

contains several contributions to the EC effect, which are proportional to the even powers of the 

spontaneous polarization 𝑃𝑠 and the factor 
𝑇

𝜌𝐶𝑃
: 

Δ𝑇𝐸𝐶(𝐸𝑐) ≈ −
𝑇

𝜌𝐶𝑃
(
𝛼𝑇

2
𝑃𝑠

2 +
𝛽𝑇

4
𝑃𝑠

4 +
𝛾𝑇

6
𝑃𝑠

6);                        (10a) 

the heat difference is: 

Δ𝑄𝐸𝐶(𝐸𝑐) ≈ −𝑇 (
𝛼𝑇

2
𝑃𝑠

2 +
𝛽𝑇

4
𝑃𝑠

4 +
𝛾𝑇

6
𝑃𝑠

6).                         (10b) 

Let us underline that Eqs.(10) are valid only for a single-domain quasi-homogeneous 

distribution of 𝑃3, because the derivation of the right-hand side in Eq.(9), given in Ref.[40], accounts 

for neither the domain structure appearance nor the possible polarization rotation in the core-shell 

BaTiO3 nanorods. Also, it is necessary to consider the heat dissipation and temperature gradient in the 

case of significant 𝑟 -dependence of 𝑃3(𝑟 , 𝐸3
𝑒 , 𝑇) for realistic thermal boundary conditions, as well as 

consider that all experimental measurements are performed at the finite rate of the temperature change 

(e.g., in adiabatic conditions). To describe the real experimental measurements of the EC effect, it is 

necessary to solve the thermal problem taking into account the finite rate of the heat transfer and the 

non-uniform temperature distribution in a multilayer and/or multidomain system (see, e.g., Ref.[41]). 

 

C. Quasi-static polarization, tetragonality, and electrocaloric properties of single-

domain ferroelectric nanowires 

Analytical results, calculated using Eqs.(1)-(10) and presented in the subsection, are visualized 

in Mathematica 13.2 [42]. The calculations were performed for single-domain BaTiO3 core-shell 

nanowires (𝑅𝑐 𝐿𝑐⁄ << 0.01) with different relative shell volumes (0 ≤ 𝛿𝑉 ≤ 1) over a wide 

temperature range (0 – 1000) K. Due to the virtual absence of the depolarization field in the very long 

or infinite single-domain nanowire, the effective screening length value does not influence the polar 

properties, tetragonality, and EC response shown in Figs. 2 - 4. 

The dependence of the core spontaneous polarization 𝑃𝑠 on the relative shell volume 𝛿𝑉 and 

chemical strain 𝛿𝑢 calculated at room temperature is shown in Fig. 2(a). It is seen that the compressive 

strains (𝛿𝑢 < 0) suppress the spontaneous polarization, and tensile strains (𝛿𝑢 > 0) induce and 

enhance the spontaneous polarization. The increase of 𝛿𝑉 leads to the 𝑃𝑠 increase for 𝛿𝑢 > 0, and 

supports the paraelectric state for 𝛿𝑢 ≤ 0. The temperature dependence of 𝑃𝑠 calculated for different 

values of 𝛿𝑉, negative, zero, and positive 𝛿𝑢  are shown in Figs. 2(b)- 2(f). Purple curves, which 
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correspond to 𝛿𝑉 = 0 (no shell), coincide with the temperature dependence of the spontaneous 

polarization of an unstrained bulk BaTiO3. The bulk polarization monotonically decreases from 

30 µC/cm2 for 𝑇 = 0 to 0 for 𝑇 > 𝑇𝐹𝐸, which corresponds to the paraelectric phase. The bulk 

ferroelectric-paraelectric transition temperature, 𝑇𝐹𝐸 ≈ 405 K, is ≈20 K greater than 𝑇𝑐 ≈ 383 K. Red 

curves, which correspond to 𝛿𝑉 = 1 (no core), show the maximal strain-induced changes of 𝑃𝑠. It is 

seen from Figs. 2(b)-2(d) that 𝑃𝑠 monotonically decreases with 𝛿𝑉 increasing for 𝛿𝑢 ≤ 0. The 

monotonic trend gradually disappears with an increase of 𝛿𝑢, and the curves order changes for some 

“critical” value, 𝛿𝑢 = 𝛿𝑢𝑐𝑟, which can be estimated from the condition 𝛼𝑅 = 0 for 𝑇 = 𝑇𝑐. From 

Eq.(7a) for 𝛼𝑅, the value 𝛿𝑢𝑐𝑟 depends on the nanorod aspect ratio 𝑅𝑐 𝐿𝑐⁄ , length 𝐿𝑐, and effective 

screening length 𝜆, and is approximately equal to 0.25 %. Indeed, it is seen from Fig. 2(e), where 𝛿𝑢 =

0.3%, that 𝑃𝑠 decreases with a 𝛿𝑉 increase for 𝑇 < 400 K, and then increases with a 𝛿𝑉 increase for 

𝑇 > 400 K. For 𝛿𝑢 ≫ 𝛿𝑢𝑐𝑟, 𝑃𝑠 monotonically increases with a 𝛿𝑉 increase (see e.g., Fig. 2(f) for 𝛿𝑢 =

1.5%), and the ferroelectric-paraelectric transition temperature increases up to 900 K with a 𝛿𝑉 

increase. 

The dependence of the core tetragonality ratio 
𝑐

𝑎
 on the relative shell volume 𝛿𝑉 and chemical 

strain 𝛿𝑢 calculated at room temperature is shown in Fig. 3(a). It is seen that compressive strains 

decrease the tetragonality ratio; and the tetragonality increases for tensile strains. The increase of 𝛿𝑉 

leads to the increase of 
𝑐

𝑎
 ratio for 𝛿𝑢 > 0, and the ratio decreases with an increase of 𝛿𝑉 for 𝛿𝑢 ≤ 0. 

The temperature dependence of 
𝑐

𝑎
 calculated for different values of 𝛿𝑉, negative, zero, and positive 

chemical strains 𝛿𝑢  are shown in Figs. 3(b)-3(f). Purple curves, which correspond to 𝛿𝑉 = 0 (no 

shell), coincide with the temperature dependence of 
𝑐

𝑎
 ratio for an unstrained bulk BaTiO3, which 

monotonically decreases from 1.014 for 𝑇 = 0 to 1 for 𝑇 → 𝑇𝐹𝐸. Red curves, which correspond to 

𝛿𝑉 = 1 (no core), show the maximal strain-induced change of 
𝑐

𝑎
. It is seen from Figs. 3(b)-3(d) that 

𝑐

𝑎
 

monotonically decreases with an increase of 𝛿𝑉 for 𝛿𝑢 ≤ 0. It is seen from Fig. 3(e), where 𝛿𝑢 =

0.3%, that 
𝑐

𝑎
 decreases with a 𝛿𝑉 increase for 𝑇 < 400 K, and then increases with a 𝛿𝑉 increase for 

𝑇 > 400 K. For 𝛿𝑢 ≫ 𝛿𝑢𝑐𝑟, the core tetragonality monotonically increases with a 𝛿𝑉 increase, 

becoming weakly temperature-dependent and reaches the maximal value 1.015 for 𝛿𝑉 = 1 [see e.g., 

Fig. 3(f) for 𝛿𝑢 = 1.5%].  

The dependence of the core EC temperature change Δ𝑇𝐸𝐶 on the relative shell volume 𝛿𝑉 and 

chemical strain 𝛿𝑢 calculated at room temperature is shown in Fig. 4(a). It is seen that compressive 

strains decrease the EC cooling effect, which corresponds to Δ𝑇𝐸𝐶 < 0; and tensile strains significantly 

increase the magnitude of Δ𝑇𝐸𝐶 < 0. The increase of 𝛿𝑉 leads to the increase of negative Δ𝑇𝐸𝐶 for 

𝛿𝑢 > 0, and supports the paraelectric state with Δ𝑇𝐸𝐶 = 0 for 𝛿𝑢 ≤ 0. The temperature dependence of 
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Δ𝑇𝐸𝐶 calculated for different values of 𝛿𝑉, negative, zero, and positive chemical strains 𝛿𝑢  are shown 

in Fig. 4(b)-4(f). Purple curves, which correspond to 𝛿𝑉 = 0, are the Δ𝑇𝐸𝐶 values of an unstrained bulk 

BaTiO3, which reach the maximal value –(3.4 – 3.8) K in the temperature range (280 - 380) K. Red 

curves, which correspond to 𝛿𝑉 = 1 (no core), show the maximal strain-induced changes of Δ𝑇𝐸𝐶, 

which can reach -5.8 K for the tensile strain +1.5%. It is seen from Figs. 4(b)-4(d) that |Δ𝑇𝐸𝐶| 

maximum monotonically decreases with a 𝛿𝑉 increase for 𝛿𝑢 ≤ 0. It is seen from Fig. 4(e), where 

𝛿𝑢 = 0.3%, that the EC cooling decreases with a 𝛿𝑉 increase for 𝑇 < 400 K, and then increases with 

a 𝛿𝑉 increase for 𝑇 > 400 K. For 𝛿𝑢 ≫ 𝛿𝑢𝑐𝑟, the EC cooling effect monotonically increases with a 

𝛿𝑉 increase and exists up to 900 K, which is the ferroelectric-paraelectric transition temperature for 

𝛿𝑉 → 1 [see e.g., Fig. 4(f) for 𝛿𝑢 = 1.5%]. 

Analytical results, shown in Figs. 2-4, demonstrate that the synergy of electrostriction coupling 

and tensile chemical strains can significantly increase the ferroelectric-paraelectric temperature (up to 

900 K in comparison with 400 K for bulk BaTiO3), tetragonality (up to +1.015 in comparison with 

1.011 for bulk BaTiO3), and EC cooling (up to -6 K in comparison with -3 K for bulk BaTiO3) of the 

core-shell BaTiO3 nanowires with co-axial polarization. We would like to underline that the results 

should also be valid for the very long single-domain nanorods whose ends are well-screened. However, 

the single-domain state should become unstable, as well as the polarization vector should rotate in the 

unscreened and/or not very long core-shell nanorods. Thus, the analytical results, derived in this 

section, require numerical verification (especially in the case 𝜆 ≥ 0.05 nm and 𝑅𝑐 𝐿𝑐 > 0.1⁄ ). 

Corresponding FEM results are presented in the next section. 
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FIGURE 2. (a) The dependence of the BaTiO3 nanowire spontaneous polarization on the relative shell volume 

𝛿𝑉 and chemical strain 𝛿𝑢 calculated at room temperature 𝑇 =298 K, 𝑅𝑐 = 10 nm, and 𝑅𝑐 𝐿𝑐⁄ ≤ 10−3. Color 

scale is the polarization in μC/cm2. (b-e) The spontaneous polarization dependence on temperature 𝑇 calculated 

for different values of 𝛿𝑉 varying from 0 (purple curves) to 1 (red curves) with a step of 0.05; and chemical 

strains 𝛿𝑢 =-1.5% (b), -0.3 % (c), 0 (d), 0.3 % (e), and 1.5% (f).  
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FIGURE 3. (a) The dependence of the BaTiO3 nanowire tetragonality ratio 𝑐/𝑎 on the relative shell volume 𝛿𝑉 

and chemical strain 𝛿𝑢. Color scale is the ratio 𝑐/𝑎. (b-e) The tetragonality dependence on temperature 𝑇 

calculated for different values of 𝛿𝑉 varying from 0 (purple curves) to 1 (red curves) with a step of 0.05; and 

chemical strains 𝛿𝑢 =-1.5% (b), -0.3 % (c), 0 (d), 0.3 % (e), and 1.5% (f). Other parameters are the same as in 

Fig. 2. 

R
e
la

ti
v
e

 s
h
e

ll 
v
o

lu
m

e
 δ

V
  

  

(c)  

(a) 

(b) 

(d) 

δu = -1.5% 

Chemical strain δu (%) 

T
e

tr
a

g
o
n

a
lit

y
 r

a
ti
o

 c
/a

  

  

Temperature T (K) 

T
e

tr
a

g
o
n

a
lit

y
 r

a
ti
o

 c
/a

  

  

c/a 

Temperature T (K) 

T
e

tr
a

g
o
n

a
lit

y
 r

a
ti
o

 c
/a

  

  

Temperature T (K) 

δu = -0.3% δu = 0.0% 

T=298 K 

FE PE 

(e) 

δu =+0.3% 

Temperature T (K) 

T
e

tr
a

g
o
n

a
lit

y
 r

a
ti
o

 c
/a

  

  

(f) 

δu =+1.5% 

Temperature T (K) 

T
e

tr
a

g
o
n

a
lit

y
 r

a
ti
o

 c
/a

  

  



13 

 

 

FIGURE 4. (a) The dependence of the BaTiO3 nanowire EC temperature change 𝛥𝑇𝐸𝐶 on the relative shell 

volume 𝛿𝑉 and chemical strain 𝛿𝑢. Color scale is the temperature change 𝛥𝑇𝐸𝐶 in Kelvin. (b-e) The dependence 

of 𝛥𝑇𝐸𝐶 on temperature 𝑇 calculated for different values of 𝛿𝑉 varying from 0 (purple curves) to 1 (red curves) 

with a step of 0.05; and chemical strains 𝛿𝑢 =-1.5% (b), -0.3 % (c), 0 (d), 0.3 % (e), and 1.5% (f). Other 

parameters are the same as in Fig. 2. 
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III. FINITE ELEMENT MODELING  

The FEM is performed in COMSOL@MultiPhysics software. The COMSOL@MultiPhysics 

model uses the electrostatics module for the solution of the Poisson equation, solid mechanics, and 

general math (PDE toolbox) modules for the self-consistent solution of time-dependent LGD equations 

listed in Table AI in Appendix A [31]. FEM is performed for different discretization densities of the 

self-adaptive tetragonal mesh, and randomly small initial polarization distributions. The size of the 

computational region is not less than 4040160 nm3. Material parameters of BaTiO3 are listed in 

Table AI in Appendix A [31]. The minimal size of a tetrahedral element in a mesh with fine 

discretization is equal to the unit cell size, 0.4 nm, the maximal size is (0.8 – 1.2) nm, and 4 nm in the 

dielectric medium outside the nanorod. The dependence on the mesh size is verified by increasing the 

minimal size to 0.8 nm. We verified that this results in minor changes in the electric polarization, 

electric field, and elastic stress and strain, such that the spatial distribution of each of these quantities 

becomes less smooth (i.e., they contain numerical errors in the form of a small random noise).  

FEM are performed for cylindrical core-shell nanorods of different sizes (5 nm < 𝑅𝑐 < 25 nm, 

20 nm < 𝐿𝑐 < 100 nm) and aspect ratios (𝑅𝑐 𝐿𝑐 ≥ 0.1⁄ ). The corresponding geometry of the nanorod 

is shown in Fig. 1. We postulated that the elastic defects are concentrated in an ultra-thin shell layer of 

thickness 2 nm ≤ ∆𝑅 ≤ 5 nm under the surface of the nanorod, and the corresponding chemical strains 

obeys the linear Vegard law. The magnitude of the chemical strains 𝛿𝑢 varies from -3 % to +3 %. The 

effective screening length 𝜆 in the shell varies from 0.01 nm to 1 nm. As a rule, the increase of 𝜆 above 

0.1 nm leads to an instability of the single-domain state and induces the formation of various domain 

morphologies, most interesting of which are discussed below. Stable structures were obtained after a 

long simulation time, 𝑡 ≫ 103𝜏, where the parameter 𝜏 is the Landau-Khalatnikov relaxation time, 𝜏 =

 𝛤 |𝛼(0)|⁄ . 

The distributions of spontaneous polarization, strain components, and tetragonality 𝑐/𝑎 in defect-

free, tensiled and compressed (by elastic defects) BaTiO3 nanorods are shown in Fig. 5. Chemical 

strains are absent for the top row (a), where 𝛿𝑢 = 0, localized under the side surface of the rod in the 

2 nm thick shell layer, being equal to 𝛿𝑢 = +1% for the middle row (b), and 𝛿𝑢 = −1% for the bottom 

row (c).  

The axial polarization component 𝑃3 tends to align along the rod axis in the central part of the 

defect-free nanorod, and the lateral components, 𝑃1 and 𝑃2, are almost absent in the central region [see 

Fig. 5(a) for 𝛿𝑢 = 0]. The axial strain component 𝑢3 is maximal (~1%) in the middle of the defect-

free nanorod, and the lateral strain components, 𝑢1 and 𝑢2, are much smaller (~0.2%) in the region. 

The strain and polarization behaviors determine the tetragonality (see e.g., Eq.(5)), and therefore 𝑐/𝑎 



15 

 

is maximal in the central part of the nanorod reaching the value 1.01 in the region. The lateral 

polarization components, 𝑃1 and 𝑃2, form an inversely polarized 90-degree vertex-type domain 

structure near the top and bottom ends of the nanorod. The strains 𝑢1 and 𝑢2 have a localized maximum, 

𝑢3 and tetragonality have a localized minimum near the ends. 

The axial polarization component 𝑃3 tends to align along the rod axis in the central part of the 

nanorod tensiled by elastic defects in the shell, and the lateral components, 𝑃1 and 𝑃2, are almost absent 

in the central region [see Fig. 5(b) for 𝛿𝑢 = +1%]. The strain component 𝑢3 is maximal in the middle 

of the rod, and strain components, 𝑢1 and 𝑢2, are almost absent in the region. The strains 𝑢1 and 𝑢2 are 

maximal in the tensiled shell. The tetragonality 𝑐/𝑎 is maximal in the central part of the rod, where it 

varies in the range (1.011 - 1.015). The lateral polarization components, 𝑃1 and 𝑃2, form a distorted 

meron-like domain structure near the top and bottom ends of the nanorod. The strains 𝑢1 and 𝑢2 have 

a diffuse maximum near the ends. The strain component 𝑢3 and tetragonality have a diffuse minimum 

near the ends, except for the shell region where they reach maximal values, 2% and 1.015, respectively. 

The spontaneous polarization tends to align perpendicular to the rod axis in the central part of 

the nanorod compressed by elastic defects in the shell [see Fig. 5(c) for 𝛿𝑢 = −1%]. The strain 

component 𝑢3 is small (~ -0.4%) in the middle of the rod, and strain components, 𝑢1 and 𝑢2, can be 

significantly higher (up to +0.8%) near the rod axis. Because of this, the tetragonality is minimal 

(~0.990) in the central part of the rod and near the ends and reaches the highest values (1.001 - 1.005) 

in the compressed shell. The lateral polarization components, 𝑃1 and 𝑃2, form a classical vortex-type 

domain structure entire the nanorod. The strains 𝑢1 and 𝑢2 have a localized maximum, 𝑢3 and 

tetragonality have a localized minimal near the ends of the nanorod. 

The characteristic features of polarization vector morphology in the middle and near the ends of 

the core-shell nanorod are shown in Fig. 6 in the form of arrow fields in the lateral {𝑥1, 𝑥2} cross-

sections. Figure 7 shows corresponding distributions of the radial polarization component, 𝑃𝑟. It is 

seen from Fig. 6, that the polarization vector becomes curled and forms the vertex-like or chiral meron-

like structures near the rod ends, or vortex-like structure in the rod volume, in dependence on the 

chemical strain magnitude in the shell. Analytical calculations and FEM results, performed in Ref. [43] 

for strain-free unscreened BaTiO3 nanorods (i.e., for 𝜆 → ∞ and 𝛿𝑢 = 0), reveal the similar chiral 

meron-like structures near the rod ends, which axial polarization has the flexoelectric nature. They 

termed them “flexon” because a change of the flexoelectric coefficient sign leads to a reorientation of 

their axial polarization. FEM performed in this work for tensiled screened BaTiO3 nanorods (i.e., for 

0.01 nm ≤ 𝜆 ≤ 1 nm and 0.3% ≤ 𝛿𝑢 ≤ 3%) proved that the flexoelectric coupling determines the 

meron-like structures chirality and related domain morphology.  
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The curled structures in the system tend to minimize the free energy consisting of the negative 

Landau energy, and from the positive polarization gradient energy, elastic and depolarization field 

energies (see Appendix A [31] for details and Refs.[43, 44]). The negative Landau energy is maximal 

and the positive polarization gradient energy is minimal in the single-domain state of the nanorod. The 

elastic energy can significantly increase or decrease (which is dependent on the sign and value of the 

chemical strain 𝛿𝑢) the Landau energy due to the electrostriction coupling. For instance, see Eqs.(7) 

for qualitative understanding of the Landau energy coefficients renormalization by the strains. The 

domain formation, which leads to the decrease of the depolarization field divergency, simultaneously 

decreases the positive depolarization field energy. The polarization screening is incomplete near the 

rod ends (even for relatively small 𝜆 = 0.1 nm), and the depolarization field is maximal in the spatial 

regions. The curled domain structures, which emerge near the ends of the rod for all considered 𝛿𝑢, 

minimize the positive energy of the depolarization electric field. Since the length of the rod is 3 times 

bigger than its width, the vortices vanish approaching the central part of defect-free and tensiled rods, 

where the negative Landau energy dominates for 𝛿𝑢 > 0. At the same time, the vortices fill the core 

of the compressed rods, where the negative Landau energy is much smaller for 𝛿𝑢 < 0. 

Hence, the FEM reveals that the chemical strain in the shell can induce vertex-like (see Fig. 6(a) 

and 7(a)), meron-like (see Fig. 6(b) and 7(b)), or vortex-like (see Fig. 6(c) and 7(c)) transitions of 

domain structure morphology in the nanorod core. In particular, tensile chemical strains induce and 

support the single-domain state in the central part of the nanorod core, meanwhile the curled domain 

structures appear near the unscreened or partially screened ends of the rod. The vortex-like domains 

propagate towards the central part of the rod and fill it entirely, when the rod is covered with the 

compressed shell.  

FEM results shows that the vortex intergrowth occurs for chemical compressive strains above 

some critical value, 𝛿𝑢𝑉𝑅
𝑐𝑟 , which depends on the temperature, nanorod sizes, aspect ratio and screening 

conditions at the nanorod ends. The value 𝛿𝑢𝑉𝑅
𝑐𝑟  can be estimated as: 

𝛿𝑢𝑉𝑅
𝑐𝑟 ≈

1

 𝛿𝑉
(𝛼𝑇(𝑇 − 𝑇𝑐) +

𝑛𝑑

2 0[ 𝑏𝑛𝑑+ 𝑠(1−𝑛𝑑)+ 𝑠𝑛𝑑(𝐿𝑐 𝜆⁄ )]
)

s11+s12

Q11+Q12
.             (11) 

From Eq.(11), larger 𝛿𝑉 (i.e., thicker shells) decreases 𝛿𝑢𝑉𝑅
𝑐𝑟 . Since we consider the case 𝑇 < 𝑇𝑐, 

the first term in Eq.(11) is negative and the second term is always positive. Thus, the condition 𝛿𝑢𝑉𝑅
𝑐𝑟 =

0 becomes valid for a definite nanorod aspect ratio and length (assuming the fixed effective screening 

length and temperature). Hence, the shape and strain changes allow the control of the domain 

morphology in the core-shell nanorods of multiaxial ferroelectrics. 
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FIGURE 5. The distribution of spontaneous polarization components, strains, and tetragonality c/a in the defect-

free (a), tensiled (b), and compressed (c) core-shell BaTiO3 nanorods. Color scales are the polarization 

components in μC/cm2, strain components in %, and tetragonality in dimensionless units. Chemical strains are 

absent for the top row (a), where 𝛿𝑢 = 0. Chemical strains are localized under the side surface of the rod in the 

2 nm thick shell, being equal to 𝛿𝑢 = +1% for the middle row (b), and 𝛿𝑢 = −1% for the bottom row (c). The 

rod radius is 10 nm, the length is 60 nm, the screening length is 0.1 nm, and the temperature 𝑇 =298 K. The 

“rotated” coordinate 𝑥1
′ = (𝑥1 − 𝑥2) √2⁄ . 

 

 

FIGURE 6. The distribution of spontaneous polarization vector in the defect-free (a), tensiled (b), and 

compressed (c) core-shell BaTiO3 nanorods. Arrows show the orientation of the polarization vector, and their 

color scale shows the polarization component 𝑃3 in μC/cm2. Chemical strains are absent for the top row (a), 
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where 𝛿𝑢 = 0, localized under the side surface of the rod in the 2 nm thick shell layer, being equal to 𝛿𝑢 =

+1% for the middle row (b) and 𝛿𝑢 = −1% for the bottom row (c). Other parameters are the same as in Fig. 5. 

 

 

FIGURE 7. The distribution of spontaneous polarization radial component 𝑃𝑟 in the defect-free (a), tensiled (b), 

and compressed (c) core-shell BaTiO3 nanorods. Color scale shows 𝑃𝑟 in μC/cm2. Chemical strains are absent 

for the top row (a), where 𝛿𝑢 = 0, localized under the side surface of the rod in the 2 nm thick shell layer, being 

equal to 𝛿𝑢 = +1% for the middle row (b) and 𝛿𝑢 = −1% for the bottom row (c). Other parameters are the 

same as in Fig. 5. 
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(b) Radial polarization in tensiled BaTiO3 nanorods, δu = +1% 
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To resume, both analytical LGD-based theory and FEM predict that the chemical strains in the 

shell can increase the nanorod core polarization, lattice tetragonality, and EC cooling effect well-above 

the values corresponding to the bulk material, as well as the strain control of the domain morphology 

is possible. The physical reason of the effects is the strong electrostriction coupling between the 

mismatch-type elastic strains induced in the core by the chemical strains in the shell. 

 

IV. DISCUSSION 

A. Evidence of tetragonality increase obtained from XRD results 

 

The BaTiO3 nanorods were obtained using a single-step hydrothermal technique and studied by 

Kovalenko et al. [16]. In the work [16], the phase and structure of the as-prepared BaTiO3 nanopowder 

were determined using an X-ray diffractometer (XRD) with Cu–Kα radiation. The crystallite size was 

evaluated based on the size of the coherent scattering region calculated using the Scherrer equation 

from the full width at half-maximum of the (100) and (001) diffraction peaks. The tetragonality (c/a) 

was determined by the splitting of (200) peak into (200) and (002) reflections, which are characteristic 

of the tetragonal structure of BaTiO3. The broadening of the low-angle diffraction lines was used to 

estimate the sizes of coherent scattering regions, strains, and anisotropy using Williamson-Hall 

technique. The sizes of the BaTiO3 nanorods were analyzed using a field-emission scanning electron 

microscope employing a voltage of 3 kV, and the size distribution was obtained from the SEM images.  

In this work we refined the XRD data found in Ref. [16], and the lattice constants ratio, 𝑐/𝑎, 

appears as high as 1.013 for two powder samples consisting with nanorods, marked as NR1 and NR2, 

respectively (compare Table I in this work with Table I in Ref.[16]). The nanorods average aspect 

ratio, 𝑅𝑐 𝐿𝑐⁄ , is 0.17 and 0.12, their average diameter is 70 nm and 90 nm, and their average length is 

410 nm and 770 nm for the samples NR1 and NR2, respectively. 

 
Table I. Characteristic of the BaTiO3 nanorods taken from Ref. [16]. 

Sample Average radius, nm Average aspect ratio e001 e100 c/a 

NR1 35 0.17 1.83 0.73 1.013 

NR2 45 0.12 1.67 0.66 1.013 

 

The 𝑐/𝑎 ratio of the samples is higher than the known value for the bulk BaTiO3 single crystal, 

𝑐

𝑎
= 1.010 [45]. Moreover, the high 𝑐/𝑎 corresponds to different average aspect ratios and radii of the 

rods, which indicates a weak relation between 𝑐/𝑎 and the depolarization field effects. The shifting of 

the diffraction lines (002) and (200) towards lower angles compared to a bulk BaTiO3 was observed 

for the samples and indicated the lattice expansion due to the presence of OH groups in the crystalline 

nanorods, apparently into trans-position [46], which leads to the high tetragonality equal to 1.013. The 

lattice strain in the (001) direction is 2 - 2.5 times greater compared to those in the (100) direction, 

https://www.sciencedirect.com/topics/materials-science/scherrer-equation
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being unrelated with the nanorod aspect ratio. However, the difference in lattice strains does not affect 

the degree of anisotropy and tetragonality of the crystalline nanorods, which is consistent with the 

statement about the effect of OH groups on tetragonality [46]. Furthermore, comparison with the XRD 

data [16] confirmed the increase of tetragonality ratio in tensiled BaTiO3 nanorods compared to the 

bulk material. 

B. The negative capacitance effect  

It was experimentally demonstrated that in a double-layer capacitor made of paraelectric 

strontium titanate (SrTiO3) and ferroelectric lead zirconate-titanate (PbxZr1-xTiO3), the total 

capacitance is greater than it would be for the SrTiO3 layer of the same thickness as used in the double-

layer capacitor [47]. This proves the stabilization of PbxZr1-xTiO3 in the state of negative differential 

capacitance (NC) [48]. The NC effect is very important for advanced applications in nanoelectronics 

[IRDS™ 2021: Beyond CMOS]. Replacing the standard insulator in the gate stack of a field-effect 

transistor (FET) with a ferroelectric NC insulator of the appropriate thickness has several advantages. 

The main advantage is that it is a relatively simple replacement for conventional FETs, which 

significantly reduces heat dissipation of nano-chips with a high density of critical electronic elements.  

However, it is very difficult to find the analytical conditions of the NC effect appearance and 

stability (materials pairs, geometry, temperature and thicknesses ranges) in a general case. Many 

empirical demonstrations of the NC effect in ferroelectric double-layer capacitors are available [49, 

50, 51, 52], and only several works, which contain semi-analytical expressions for the conditions of 

the NC effect appearance and consider the inevitable appearance of the domain structure in the 

ferroelectric layer, exist (see e.g., Refs. [53, 54, 55]).  

Our analytical calculations and FEM show that ferroelectric BaTiO3 nanorods, which ends are 

covered by the thin layer (thickness ℎ𝑠 ≤ 10 nm) of paraelectric SrTiO3, can be suitable candidates for 

the controllable reduction of the SrTiO3 layer capacitance due to the NC effect emerging in the BaTiO3. 

Short nanocylinders, e.g., nanopellets (or nanodisks), which length ℎ𝑐 = 2𝐿𝑐 is smaller (or much 

smaller) than their width 2𝑅𝑐 (see Fig. 8(a)), are preferable for the capacitor structures miniaturization. 

In this case the SrTiO3 layers act as a cover for the BaTiO3 core. The physical origin of the NC effect 

is the specific energy-degenerated metastable states of the spontaneous polarization in BaTiO3 

nanocylinders, some examples of which are schematically shown in Fig. 8(b). The free energy 

potential of these states has relatively flat negative wells, which couple to the positive parabolic 

potential of the SrTiO3 layers (see read and blue curves in Fig. 8(c)). In result, the total potential relief 

of the BaTiO3 becomes significantly flatter that the SrTiO3 potential, and the charge 𝑄 stored at the 

electrodes covering the three-layer SrTiO3-BaTiO3-SrTiO3 capacitor of the thickness 2ℎ𝑠 + ℎ𝑐 can 

become bigger than the charge 𝑄𝑟 at the electrodes covering the SrTiO3 layer of the thickness 2ℎ𝑠. The 

effective differential capacitance of any electroded system, 𝐶𝑒𝑓𝑓, is equal to the first derivative of the 

https://irds.ieee.org/images/files/pdf/2021/2021IRDS_BC.pdf
https://irds.ieee.org/images/files/pdf/2021/2021IRDS_BC.pdf
https://irds.ieee.org/images/files/pdf/2021/2021IRDS_BC.pdf
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𝑄 over applied voltage U, 𝐶𝑒𝑓𝑓 =
𝑑𝑄

𝑑𝑈
. If the voltage dependence 𝑄(𝑈) is steeper than 𝑄𝑟(𝑈), the 

differential capacitance of the SrTiO3-BaTiO3-SrTiO3 capacitor (thickness 2ℎ𝑠 + ℎ𝑐) can be greater 

than the capacitance 𝐶𝑟 = 0 𝑠

2ℎ𝑠
 of the reference SrTiO3 capacitor (thickness 2ℎ𝑠). 

 In Appendix C [31] we derived that the NC effect exists in the range of thicknesses ℎ𝑐 and ℎ𝑠, 

chemical strains 𝛿𝑢, shell relative volume 𝛿𝑉, and temperatures 𝑇, which satisfy the conditions: 

𝑇 − 𝑇𝑐 −
𝛿𝑢 𝛿𝑉

𝛼𝑇

Q11+Q12

s11+s12
+

ℎ𝑠

0( 𝑠ℎ𝑐+2 𝑏ℎ𝑠)𝛼𝑇
> 0,       𝑇 − 𝑇𝑐 −

𝛿𝑢 𝛿𝑉

𝛼𝑇

Q11+Q12

s11+s12
< 0.               (12) 

In Eq.(12) we regard that ℎ𝑐 ≪ 2𝑅𝑐. The term 
𝛿𝑢 𝛿𝑉

𝛼𝑇

Q11+Q12

s11+s12
 is the shift of the bulk Curie temperature 

𝑇𝑐 induced by the chemical strains. The term 
ℎ𝑠

0( 𝑠ℎ𝑐+2 𝑏ℎ𝑠)𝛼𝑇
 is the decrease of 𝑇𝑐 originated from the 

depolarization field of a single-domain BaTiO3 core. Hence, the conditions (12) are valid for the 

BaTiO3 core in the region of size-induced paraelectric (PE) phase coexisting with the “shallow” 

ferroelectric (FE) phase. Notably that the energy-degenerated metastable domain states occur exactly 

in the region of PE and FE phases coexistence in the ferroelectrics with the first order FE-PE phase 

transition. The difference of the three-layer capacitance and reference capacitance is given by the 

expression: 

∆𝐶 = 𝐶𝑒𝑓𝑓 − 𝐶𝑟 = 0 𝑠

2ℎ𝑠
(

ℎ𝑠
𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠

0{𝛼𝑇(𝑇−𝑇𝑐)−𝛿𝑢 𝛿𝑉
Q11+Q12
s11+s12

}+
ℎ𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠

− 1)
ℎ𝑐 𝑠

𝑠ℎ𝑐+2 𝑏ℎ𝑠
.             (13) 

The dependence of the dimensionless ratio, 
∆𝐶

𝐶𝑟
, on the relative strain 𝛿𝑢𝛿𝑉 and thickness ratio 

ℎ𝑐

ℎ𝑠
 calculated at room temperature is shown in Fig. 8(d). The ratio 

∆𝐶

𝐶𝑟
 is negative (which corresponds to 

𝐶𝑒𝑓𝑓 < 𝐶𝑟) in the lower rectangular region Fig. 8(d). The region corresponds to the PE phase of a bulk 

BaTiO3. The ratio 
∆𝐶

𝐶𝑟
 is zero along the black horizontal line 𝑇 = 𝑇𝑐 +

𝛿𝑢 𝛿𝑉

𝛼𝑇

Q11+Q12

s11+s12
 and positive (which 

corresponds to the NC effect) between the black horizontal line and the black hyperbolae, 

1

𝑠(ℎ𝑐 ℎ𝑠⁄ )+2 𝑏
= 𝛿𝑢 𝛿𝑉

Q11+Q12

s11+s12
− 𝛼𝑇(𝑇 − 𝑇𝑐). The hyperbolae is the boundary between the size-

induced PE phase and the single-domain FE phase, and thus 𝐶𝑒𝑓𝑓 sharply increases approaching the 

PE-FE boundary and diverges (𝐶𝑒𝑓𝑓 → ∞) at it. Note that the red color in Fig. 8(d) corresponds to 
∆𝐶

𝐶𝑟
≥

5, and white color corresponds to the region of the “deep” single-domain FE phase, where 
∆𝐶

𝐶𝑟
< −1 

and tends to −∞ approaching the FE-PE boundary.  
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FIGURE 8. (a) Three-layer capacitor consisting of the BaTiO3 nanocylinder, which ends are covered by the 

paraelectric SrTiO3 layers. (b) Typical metastable states of the spontaneous polarization in the SrTiO3-BaTiO3-

SrTiO3 nanocapacitor. (c) Schematic illustration of the free energy dependence on the polarization for the single-

domain bulk BaTiO3 (the green curve), paraelectric SrTiO3 shell (the blue curve) and the BaTiO3 core with the 

metastable polarization states (the red curve). (d) The dependence of the dimensionless ratio, 
∆𝐶

𝐶𝑟
, on the relative 

strain 𝛿𝑢𝛿𝑉 and thickness ratio 
ℎ𝑐

ℎ𝑠
 calculated for 𝑇 =298 K and 휀𝑠 = 300, which corresponds to SrTiO3. Color 

scale is the ratio 
∆𝐶

𝐶𝑟
 in dimensionless units. Other parameters are the same as in Fig. 2. 
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It is seen from Eqs.(12)-(13) and Fig. 8(d) that the magnitude of the NC effect is controlled by 

the chemical strain and relative shell volume (namely, by the product 𝛿𝑢𝛿𝑉), as well as by the thickness 

ratio 
ℎ𝑐

ℎ𝑠
. Since it is relatively easy to change the sizes and geometry of core-shell nanoparticles (i.e., 

parameters 𝛿𝑉, ℎ𝑠 and ℎ𝑐), they are suitable objects for the NC effect control. 

 

C. Conclusions 

Using the LGD approach, we derive analytical expressions for the spontaneous polarization, 

tetragonality, and electrocaloric response in core-shell nanorods. We postulate that the nanorod core 

presents a defect-free single-crystalline ferroelectric material, and the elastic defects are accumulated 

in an ultra-thin shell, where they can induce tensile or compressive chemical strains. 

The FEM reveals the strain-induced transitions of domain structure morphology in the 

nanorods. Namely, tensile chemical strains induce and support the single-domain state in the central 

part of the nanorod, while the curled domain structures appear near the unscreened or partially screened 

ends of the rod. The vortex-like domains propagate towards the central part of the rod and fill it entirely 

when the rod is covered with the shell compressed by elastic defects. The vortex intergrowth occurs 

for compressive strains above some critical value, which depends on the nanorod sizes, aspect ratio, 

and screening conditions at the nanorod ends.  

Both analytical theory and FEM predict that the tensile chemical strains in the shell increase of 

the nanorod polarization, lattice tetragonality, and electrocaloric cooling effect well-above the values 

corresponding to the bulk material. The physical reason of the increase is the strong electrostriction 

coupling between the mismatch-type elastic strains induced in the core by the chemical strains in the 

shell. Comparison with the XRD data published earlier confirmed the increase of tetragonality ratio in 

tensiled BaTiO3 nanorods compared to the bulk material.  

Analytical calculations and FEM show that BaTiO3 nanopellets, which ends are covered by 

SrTiO3 layers, can be suitable candidates for the controllable the NC effect. Obtained analytical 

expressions, which are suitable for the description of strain-induced changes in a wide class of 

multiaxial ferroelectric core-shell nanorods, nanowires and nanopellets, can be useful for prediction 

and strain engineering of advanced ferroelectric nanomaterials. 
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Ferroelectric Core-Shell Nanorods and Nanowires” 

 

APPENDIX A. The LGD free energy functional 

The LGD free energy functional 𝐺 of the core polarization 𝑷 additively includes a Landau 

expansion on the 2-nd, 4-th, 6-th, and 8-th powers of the polarization, 𝐺𝐿𝑎𝑛𝑑𝑎𝑢; a polarization gradient 

energy contribution, 𝐺𝑔𝑟𝑎𝑑; an electrostatic contribution, 𝐺𝑒𝑙; the elastic, linear, and nonlinear 

electrostriction couplings and flexoelectric contributions, 𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜; and a surface energy, 𝐺𝑆. The 

functional 𝐺 has the form [1, 2, 3]: 

𝐺 = 𝐺𝐿𝑎𝑛𝑑𝑎𝑢 + 𝐺𝑔𝑟𝑎𝑑 + 𝐺𝑒𝑙 + 𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜 + 𝐺𝑉𝑆 + 𝐺𝑆,                      (A.1) 

𝐺𝐿𝑎𝑛𝑑𝑎𝑢 = ∫ 𝑑3𝑟
0<𝑟<𝑅𝑐

[𝑎𝑖𝑃𝑖
2 + 𝑎𝑖𝑗𝑃𝑖

2𝑃𝑗
2 + 𝑎𝑖𝑗𝑘𝑃𝑖

2𝑃𝑗
2𝑃𝑘

2 + 𝑎𝑖𝑗𝑘𝑙𝑃𝑖
2𝑃𝑗

2𝑃𝑘
2𝑃𝑙

2],       (A.2a) 

𝐺𝑔𝑟𝑎𝑑 = ∫ 𝑑3𝑟
0<𝑟<𝑅

𝑔𝑖𝑗𝑘𝑙

2

𝜕𝑃𝑖

𝜕𝑥𝑗

𝜕𝑃𝑘

𝜕𝑥𝑙
,                                           (A.2b) 

𝐺𝑒𝑙 = − ∫ 𝑑3𝑟
0<𝑟<𝑅𝑐

(𝑃𝑖𝐸𝑖 +
𝜀0𝜀𝑏

2
𝐸𝑖𝐸𝑖) −

𝜀0

2
∫ 휀𝑖𝑗

𝑠 𝐸𝑖𝐸𝑗𝑑3𝑟
𝑅𝑐<𝑟<𝑅𝑠

−
𝜀0

2
∫ 휀𝑖𝑗

𝑒 𝐸𝑖𝐸𝑗𝑑3𝑟
𝑟>𝑅+𝛥𝑅

,  

(A.2c) 

𝐺𝑒𝑠+𝑓𝑙𝑒𝑥𝑜 = − ∫ 𝑑3𝑟
0<𝑟<𝑅𝑐

(
𝑠𝑖𝑗𝑘𝑙

2
𝜎𝑖𝑗𝜎𝑘𝑙 + 𝑄𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝑃𝑘𝑃𝑙 + 𝑍𝑖𝑗𝑘𝑙𝑚𝑛𝜎𝑖𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛 +

1

2
𝑊𝑖𝑗𝑘𝑙𝑚𝑛𝜎𝑖𝑗𝜎𝑘𝑙𝑃𝑚𝑃𝑛 + 𝐹𝑖𝑗𝑘𝑙𝜎𝑖𝑗

𝜕𝑃𝑙

𝜕𝑥𝑘
),  

(A.2d) 

𝐺𝑆 =
1

2
∫ 𝑑2𝑟

𝑟=𝑅𝑐
𝑎𝑖𝑗

(𝑆)
 𝑃𝑖𝑃𝑗 .                                            (A.2e) 

The coefficient 𝑎𝑖 linearly depends on temperature T:  

𝑎𝑖(𝑇) = 𝛼𝑇[𝑇 − 𝑇𝐶(𝑅𝑐)],                                                        (A.3a) 

where 𝛼𝑇 is the inverse Curie-Weiss constant, and 𝑇𝐶(𝑅𝑐) is the ferroelectric Curie temperature 

renormalized by electrostriction and surface tension as [1, 2]: 

𝑇𝐶(𝑅𝑐) = 𝑇𝐶 (1 −
𝑄𝑐

𝛼𝑇𝑇𝐶

2𝜇

𝑅𝑐
),                                               (A.3b) 

where 𝑇𝐶 is a Curie temperature of a bulk ferroelectric. 𝑄𝑐 is the sum of the electrostriction tensor 

diagonal components, which is positive for most ferroelectric perovskites with cubic m3m symmetry 

in the paraelectric phase, namely 0.005 < 𝑄𝑐  < 0.05 (in m4/C2). 𝜇 is the surface tension coefficient. 
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Table AI. LGD coefficients and other material parameters of a BaTiO3 core in Voigt notations. 

Adapted from Ref. [4]. 

Parameter, its description, and 

dimension  

(in the brackets) 

The numerical value or variation range of the 

LGD parameters 

Expansion coefficients 𝑎𝑖 in the 

term 𝑎𝑖𝑃𝑖
2 in Eq.(A.2b) 

(C-2·mJ) 

a1 = 3.33(T−383)105 

Expansion coefficients 𝑎𝑖𝑗 in the 

term 𝑎𝑖𝑗𝑃𝑖
2𝑃𝑗

2 in Eq.(A.2b) 

(C-4·m5J) 

a11 = 3.6 (T − 448)106, 

a12 = 4.9108 

Expansion coefficients 𝑎𝑖𝑗𝑘 in the 

term 𝑎𝑖𝑗𝑘𝑃𝑖
2𝑃𝑗

2𝑃𝑘
2 in Eq.(A.2b) 

(C-6·m9J) 

a111 = .6109, 

a112 = 2.9109, 

a123 = 3.641010+7.6(T − )1010. 

Expansion coefficients 𝑎𝑖𝑗𝑘𝑙 in the 

term 𝑎𝑖𝑗𝑘𝑙𝑃𝑖
2𝑃𝑗

2𝑃𝑘
2𝑃𝑙

2 in Eq.(A.2b) 

(C-8·m13J) 

a1111 = 4.84107, a1112 = 2.53107, 

a1122 = 2.80107, a123 = 9.35107. 

Linear electrostriction tensor 𝑄𝑖𝑗𝑘𝑙 

in the term 𝑄𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝑃𝑘𝑃𝑙 in 

Eq.(A.2e) 

(C-2·m4) 

In Voigt notations 𝑄𝑖𝑗𝑘𝑙 → 𝑄𝑖𝑗, which are equal to 

Q11=0.11, Q12= −0.045, Q44=0.059 

Nonlinear electrostriction tensor 

𝑍𝑖𝑗𝑘𝑙𝑚𝑛 in the term 

𝑍𝑖𝑗𝑘𝑙𝑚𝑛𝜎𝑖𝑗𝑃𝑘𝑃𝑙𝑃𝑚𝑃𝑛 in Eq.(A.2e) 

(C-4·m8) 

In Voigt notations 𝑍𝑖𝑗𝑘𝑙𝑚𝑛 → 𝑍𝑖𝑗𝑘. 𝑍𝑖𝑗𝑘 varies in the range 

−1 ≤ 𝑍𝑐  ≤ 1 [5] 

Nonlinear electrostriction tensor 

𝑊𝑖𝑗𝑘𝑙𝑚𝑛 in the term 

𝑊𝑖𝑗𝑘𝑙𝑚𝑛  𝜎𝑖𝑗𝜎𝑘𝑙𝑃𝑚𝑃𝑛 in Eq.(A.2e) 

(C-2·m4 Pa-1) 

In Voigt notations 𝑊𝑖𝑗𝑘𝑙𝑚𝑛 → 𝑊𝑖𝑗𝑘. 𝑊𝑖𝑗3 varies in the range 

of 0 ≤ 𝑊𝑐 ≤ 10−12 as a very small free parameter, and we 

can neglect it, putting 𝑊𝑖𝑗3 = 0 

Elastic compliances tensor, 𝑠𝑖𝑗𝑘𝑙, 

in Eq.(A.2e) 

(Pa-1) 

In Voigt notations 𝑠𝑖𝑗𝑘𝑙 → 𝑠𝑖𝑗, which are equal to  

s11=8.310-12,  s12= −2.710-12,  s44=9.2410-12. 

Polarization gradient coefficients 

𝑔𝑖𝑗𝑘𝑙 in Eq.(A.2c) 

(C-2m3J) 

In Voigt notations 𝑔𝑖𝑗𝑘𝑙 → 𝑔𝑖𝑗, which are equal to: 

g11=5.010-10,  g12= -0.210-10,  g44= 0.210-10. 

Flexoelectric coefficients 𝐹𝑖𝑗𝑘𝑙 in 

Eq.(A.2d) 

(10-11m3/C) 

In Voigt notations 𝐹𝑖𝑗𝑘𝑙 → 𝐹𝑖𝑗, which are equal to  

F11 = 2.4, F12 = 0.5, F44 = 0.06 (these values are recalculated 

from Ref.[6]) 

Surface energy coefficients 𝑎𝑖𝑗
(𝑆)

 in 

Eq.(A.2f) 

0 

(that corresponds to the natural boundary conditions) 

Core radius 𝑅𝑐 (nm) Variable: 5 − 50 
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Background permittivity 휀𝑏 in 

Eq.(A.2d)    

(unity) 

7 

* 𝛼 = 2𝑎1, 𝛽 = 4𝑎11, 𝛾 = 6𝑎111, and 𝛿 = 8𝑎1111 

 

APPENDIX B. Analytical solution of elastic problem for a ferroelectric nanowire 

The free energy expansion on polarization 𝑃3 and stress 𝜎𝑖 powers has the following form: 

Δ𝐹 = 𝑎1𝑃3
2 + 𝑎11𝑃3

4 + 𝑎111𝑃3
6 − 𝑄11𝜎3𝑃3

2 − 𝑄12(𝜎1 + 𝜎2)𝑃3
2 − 𝐸3𝑃3 −

1

2
𝑠11(𝜎1

2 + 𝜎2
2 + 𝜎3

2) −

𝑠12(𝜎1𝜎2 + 𝜎1𝜎3 + 𝜎3𝜎2) −
1

2
𝑠44(𝜎4

2 + 𝜎5
2 + 𝜎6

2) − (𝜎1 + 𝜎2 + 𝜎3)𝑢𝑉𝑇 .                   (B.1) 

Here 𝑄𝛼𝛽 are electrostriction coefficients, 𝐸3 is the electric field component along the wire axis, and  

𝑢𝑉𝑇 is the chemical and/or thermal expansion strain. Hereinafter we use the Voigt notations for 𝜎𝑖 or 

matrix notation for 𝜎𝑛𝑚 (𝑥𝑥 → 1, 𝑦𝑦 → 2, 𝑧𝑧 → 3, 𝑧𝑦 → 4, 𝑧𝑥 → 5 and 𝑥𝑦 → 6) when necessary.  

Variation of Eq.(B.1) with respect to stress gives “modified Hooke’s” law  

𝑢1 = 𝑠11𝜎1 + 𝑠12(𝜎2 + 𝜎3) + 𝑄12𝑃3
2 + 𝐹12

𝜕𝑃3

𝜕𝑧
+ 𝑢𝑉𝑇,                      (B.2a) 

𝑢2 = 𝑠11𝜎2 + 𝑠12(𝜎1 + 𝜎3) + 𝑄12𝑃3
2 + 𝐹12

𝜕𝑃3

𝜕𝑧
+ 𝑢𝑉𝑇,                     (B.2b) 

𝑢3 = 𝑠11𝜎3 + 𝑠12(𝜎2 + 𝜎1) + 𝑄11𝑃3
2 + 𝐹11

𝜕𝑃3

𝜕𝑧
+ 𝑢𝑉𝑇,                     (B.2c) 

𝑢4 = 𝑠44𝜎4 + 𝐹44
𝜕𝑃3

𝜕𝑦
,                                           (B.2d) 

𝑢5 = 𝑠44𝜎5 + 𝐹44
𝜕𝑃3

𝜕𝑥
 ,                                          (B.2e) 

𝑢6 = 𝑠44𝜎6.                                                          (B.2f) 

Similar equations are valid in the diffuse shell except for the absence of the electrostriction 

term. From general symmetry consideration, we can suggest that the displacement vector has the radial 

and axial components, 𝑢𝜌(𝑧, 𝜌) and 𝑢𝑧(𝑧, 𝜌), which depend on the polar radius 𝜌 and axial coordinate 

z. A general homogeneous solution for the mechanical displacement of a radially symmetric wire is 

[7]: 

𝑈𝑧 = 𝑢0 + 𝑎𝑧, 𝑈𝜌 = 𝑏𝜌 +
𝑐

𝜌
.                                               (B.3) 

Here the constants 𝑢0, 𝑎, 𝑏, and 𝑐 should be determined from the boundary and/or interfacial 

conditions. In this case, the components of strain tensor in cylindrical coordinate system are:  

𝑢𝑧𝑧 =
𝜕𝑈𝑧

𝜕𝑧
≡ 𝑎, 𝑢𝜌𝜌 =

𝜕𝑈𝜌

𝜕𝜌
≡ 𝑏 −

𝑐

𝜌2 , 𝑢𝜓𝜓 =
𝑈𝜌

𝜌
≡ 𝑏 +

𝑐

𝜌2,                   (B.4a) 

𝑢𝑧𝜌 =
1

2
(

𝜕𝑈𝜌

𝜕𝑧
+

𝜕𝑈𝑧

𝜕𝜌
) ≡ 0,   𝑢𝜌𝜓 = 0,   𝑢𝑧𝜓 = 0.                             (B.4b) 

It is seen from Eqs.(B.2) that the solution (B.3), obtained for the single-domain rod with a 

homogeneous polarization, is valid in a general case too, and thus the strain field (B.4) corresponds to 

the following stress tensor: 
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𝜎𝑧𝑧 = 𝐴,    𝜎𝜌𝜌 = 𝐵 −
𝐶

𝜌2 ,    𝜎𝜓𝜓 = 𝐵 +
𝐶

𝜌2 ,   𝜎𝑧𝜌 = 𝜎𝜌𝜓 = 𝜎𝑧𝜓 = 0.            (B.5) 

Here the constants 𝐴, 𝐵, and 𝐶 should be determined from the boundary and/or interfacial conditions. 

They are related with the constants 𝑢0, 𝑎, 𝑏, and 𝑐 by Eqs. (B.2). Below we apply the general solution 

(B.4)-(B.5) to the considered physical problem. 

B.1. The core-shell model for long nanorods and nanowires  

Let consider a bilayer nanorod which has a ferroelectric core and a paraelectric shell. For the 

sake of simplicity, we suppose that the core and the shell have the same isotropic elastic compliances 

tensor. Note that the radially symmetric solution is impossible even for the cubic anisotropy of elastic 

properties. From Eq.(B.5) the solution for the core can be written as  

𝜎𝑧𝑧
𝑐 = 𝐴𝑐, 𝜎𝜌𝜌

𝑐 = 𝐵𝑐, 𝜎𝜓𝜓
𝑐 = 𝐵𝑐.                                     (B.6a) 

Here we omitted the divergent term ~ 1 𝜌2⁄  to keep the solution finite. From Eq.(B.5) the solution for 

the shell can be written as  

𝜎𝑧𝑧
𝑠 = 𝐴𝑠, 𝜎𝜌𝜌

𝑠 = 𝐵𝑠 −
𝐶𝑠

𝜌2 , 𝜎𝜓𝜓
𝑠 = 𝐵𝑠 +

𝐶𝑠

𝜌2.                         (B.6b) 

The strain components for the core and shell of the nanorod are expressed via the stress components as 

follows: 

𝑢𝜌𝜌
𝑠,𝑐 = 𝑠11𝜎𝜌𝜌

𝑠,𝑐 + 𝑠12(𝜎𝜓𝜓
𝑠,𝑐 + 𝜎𝑧𝑧

𝑠,𝑐) + 𝑄12𝑃3
2 + 𝑢𝑠,𝑐,                      (B.7a) 

𝑢𝜓𝜓
𝑠,𝑐 = 𝑠11𝜎𝜓𝜓

𝑠,𝑐 + 𝑠12(𝜎𝜌𝜌
𝑠,𝑐 + 𝜎𝑧𝑧

𝑠,𝑐) + 𝑄12𝑃3
2 + 𝑢𝑠,𝑐,                     (B.7b) 

𝑢𝑧𝑧
𝑠,𝑐 = 𝑠11𝜎𝑧𝑧

𝑠,𝑐 + 𝑠12(𝜎𝜓𝜓
𝑠,𝑐 + 𝜎𝜌𝜌

𝑠,𝑐) + 𝑄11𝑃3
2 + 𝑢𝑠,𝑐.                     (B.7b) 

Here only nontrivial components are listed; 𝑢𝑐 and 𝑢𝑠 are the “effective” (e.g., chemical and/or thermal) 

strains of the core and shell, respectively. Interfacial and boundary conditions for either continuity 

(B.8a) or absence of stress (B.8b), have the following form: 

𝜎𝜌𝜌
𝑐 (𝜌 = 𝑅𝑐) = 𝜎𝜌𝜌

𝑠 (𝜌 = 𝑅𝑐),                             (B.8a) 

𝜎𝜌𝜌
𝑠 (𝜌 = 𝑅𝑠) = −

μ

𝑅𝑠
,    𝜎𝑧𝑧(𝑧 = ±ℎ) = 0                         (B.8b) 

Due to the reasons discussed in the Introduction, one can neglect the surface tension contribution (~
μ

𝑅𝑠
) 

in Eq.(B.8b). Interfacial conditions of the strain and displacement components continuity at the shell-

core interface are:  

𝑈𝜌
𝑐(𝜌 = 𝑅𝑐) = 𝑈𝜌

𝑠(𝜌 = 𝑅𝑐)  ⇔  𝑢𝜓𝜓
𝑐 (𝜌 = 𝑅𝑐) = 𝑢𝜓𝜓

𝑠 (𝜌 = 𝑅𝑐),              (B.8c) 

𝑈𝑧
𝑐(𝜌 = 𝑅𝑐) = 𝑈𝑧

𝑠(𝜌 = 𝑅𝑐)  ⇔  𝑢𝑧𝑧
𝑐 (𝜌 = 𝑅𝑐) = 𝑢𝑧𝑧

𝑠 (𝜌 = 𝑅𝑐).                (B.8d) 

The condition (B.8b) of stress-free top and bottom ends of the nanorod could not be satisfied with 

solutions like Eqs. (B.4)-(B.5) at all surface of the ends, 𝑧 = −𝐿𝑐 and 𝑧 = +𝐿𝑐, therefore, we are 

subjected to use the Saint-Venant’s principle [8], which allows one to replace the so-called “weak” 

form of Eq.(B.8b) with the condition that the average normal stress, 𝜎𝑧𝑧
𝑠,𝑐

, is equal to zero: 
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𝑅𝑐
2𝐴𝑐 + (𝑅𝑠

2 − 𝑅𝑐
2)𝐴𝑠 = 0 ⇔ 𝐴𝑠 (1 −

𝑅𝑠
2

𝑅𝑐
2) = 𝐴𝑐.                             (B.9a) 

The solution of Eqs. (B.8a) is 

𝐶𝑠 = 𝑅𝑠
2𝐵𝑠 and 𝐵𝑠 (1 −

𝑅𝑠
2

𝑅𝑐
2) = 𝐵𝑐.                                        (B.9b) 

So that the in-plane stress components can be simplified as: 

𝜎𝜌𝜌
𝑠 = 𝐵𝑐

1−
𝑅𝑠

2

𝜌2

1−
𝑅𝑠

2

𝑅𝑐
2

,   𝜎𝜓𝜓
𝑠 = 𝐵𝑐

1+
𝑅𝑠

2

𝜌2

1−
𝑅𝑠

2

𝑅𝑐
2

,       𝜎𝜌𝜌
𝑐 = 𝜎𝜓𝜓

𝑐 = 𝐵𝑐.                            (B.10) 

Next, the conditions of displacement continuity can be rewritten as  

[𝑠11𝜎𝜓𝜓
𝑠 + 𝑠12(𝜎𝑧𝑧

𝑠 + 𝜎𝜌𝜌
𝑠 ) − {𝑠11𝜎𝜓𝜓

𝑐 + 𝑠12(𝜎𝑧𝑧
𝑐 + 𝜎𝜌𝜌

𝑐 ) + 𝑄12𝑃3
2} + 𝑢𝑠 − 𝑢𝑐]|

𝜌=𝑅𝑐
= 0,  (B.11a) 

[𝑠11𝜎𝑧𝑧
𝑠 + 𝑠12(𝜎𝜓𝜓

𝑠 + 𝜎𝜌𝜌
𝑠 ) − {𝑠11𝜎𝑧𝑧

𝑐 + 𝑠12(𝜎𝜓𝜓
𝑐 + 𝜎𝜌𝜌

𝑐 ) + 𝑄11𝑃3
2} + 𝑢𝑠 − 𝑢𝑐]|

𝜌=𝑅𝑐
= 0.  (B.11b) 

The explicit form of Eqs.(B.11a-b) is 

𝑠12𝐴𝑠 + (𝑠11

1+
𝑅𝑠

2

𝑅𝑐
2

1−
𝑅𝑠

2

𝑅𝑐
2

+ 𝑠12) 𝐵𝑐 + 𝑢𝑠 − 𝑢𝑐 = 𝑠12𝐴𝑐 + (𝑠11 + 𝑠12)𝐵𝑐 + 𝑄12𝑃3
2,       (B.11c) 

𝑠11𝐴𝑠 +
2𝑠12𝐵𝑐

1−
𝑅𝑠

2

𝑅𝑐
2

+ 𝑢𝑠 − 𝑢𝑐 = 𝑠11𝐴𝑐 + 2𝑠12𝐵𝑐 + 𝑄11𝑃3
2.                    (B.11d) 

Taking into account (B.9a), one obtains: 

𝑠12𝐴𝑐 + 2𝑠11𝐵𝑐 = (
𝑅𝑐

2

𝑅𝑠
2 − 1) (𝑄12𝑃3

2 − 𝑢𝑠 + 𝑢𝑐),              (B.11e) 

𝑠11𝐴𝑐 + 2𝑠12𝐵𝑐 = (
𝑅𝑐

2

𝑅𝑠
2 − 1) (𝑄11𝑃3

2 − 𝑢𝑠 + 𝑢𝑐).              (B.11f) 

The solution of the system of Eqs.(B.11e)- (B.11f) is 

𝐴𝑐 = (
𝑅𝑐

2

𝑅𝑠
2 − 1) (

𝑠11𝑄11−𝑠12𝑄12

𝑠11
2 −𝑠12

2 𝑃3
2 −

𝑢𝑠−𝑢𝑐

𝑠11+𝑠12
),                            (B.12a) 

𝐵𝑐 =
1

2
(

𝑅𝑐
2

𝑅𝑠
2 − 1) (

𝑠11𝑄12−𝑠12𝑄11

𝑠11
2 −𝑠12

2 𝑃3
2 −

𝑢𝑠−𝑢𝑐

𝑠11+𝑠12
).                           (B.12b) 

Using Eq.(B.9), the rest of the constants are 

𝐴𝑠 =
𝑅𝑠

2

𝑅𝑐
2 {

𝑠11𝑄11−𝑠12𝑄12

𝑠11
2 −𝑠12

2 𝑃3
2 −

𝑢𝑠−𝑢𝑐

𝑠11+𝑠12
} , 𝐵𝑠 =

𝑅𝑐
2

2𝑅𝑠
2 {

𝑠11𝑄12−𝑠12𝑄11

𝑠11
2 −𝑠12

2 𝑃3
2 −

𝑢𝑠−𝑢𝑐

𝑠11+𝑠12
}.        (B.12c) 

Using the constants (B.12) and expressions (B.6)-(B.7) for the components of the stresses and strains, 

we obtain the core srain as follows 

𝑢𝑧𝑧
𝑐 =

𝑅𝑐
2

𝑅𝑠
2 {𝑢𝑐 + 𝑄11𝑃3

2} + (1 −
𝑅𝑐

2

𝑅𝑠
2) 𝑢𝑠,                             (B.13a) 

 𝑢𝜌𝜌
𝑐 = 𝑢𝜓𝜓

𝑐 =
𝑅𝑐

2

𝑅𝑠
2 {𝑢𝑐 + 𝑄12𝑃3

2} + (1 −
𝑅𝑐

2

𝑅𝑠
2) 𝑢𝑠 + (1 −

𝑅𝑐
2

𝑅𝑠
2)

(s11−s12)(𝑢𝑐−𝑢𝑠)+s11𝑄12𝑃3
2−𝑠12𝑄11𝑃3

2

2(s11+s12)
. (B.13b) 

Consideration of the surface tension in Eq.(B.8b) leads to the appearance of constant terms 

proportional to −2s12
𝜇

𝑅𝑠
 and −(s11 + s12)

𝜇

𝑅𝑠
 in the right-hand side of expressions (B.13a) and (B.13b), 
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respectively; but these terms are negligibly small (less than 0.01 %) and are set to zero for the 

considered radii of nanorods and nanowires (𝑅𝑠 ≥ 10 nm) and realistic surface tension coefficient 𝜇 <

4 N/m. 

Finally, using Eq.(B.13), one could calculate the tetragonality 
𝑐𝑙𝑐

𝑎𝑙𝑐
≈ 1 + 𝑢𝑧𝑧

𝑐 − 𝑢𝜌𝜌
𝑐  as: 

𝑐𝑙𝑐

𝑎𝑙𝑐
= 1 + (Q11 − Q12)𝑃3

2 +
1

2
(

𝑅𝑐
2

𝑅𝑠
2 − 1) [

{(2s11+s12)Q11−(s11+2s12)Q12}𝑃3
2

s11+s12
+

(s11−s12)(𝑢𝑐−𝑢𝑠)

s11+s12
]   (B.14) 

Equation of state for polarization could be obtained by the minimization of the free energy (B.1) 

with respect to 𝑃3, which yields: 

2{𝑎1 − 𝑄11𝜎𝑧𝑧
𝑐 − 𝑄12(𝜎𝜌𝜌

𝑐 + 𝜎𝜓𝜓
𝑐 )}𝑃3 + 4𝑎11𝑃3

3 + 6𝑎111𝑃3
5 = 𝐸3.    (B.15) 

After substitution of the elastic stresses into Eq.(B.15) we obtain the equation of state with 

renormalized coefficients: 

2 {𝑎1 − (1 −
𝑅𝑐

2

𝑅𝑠
2)

Q11+Q12

s11+s12
(𝑢𝑠 − 𝑢𝑐)} 𝑃3 + 4 {𝑎11 + (1 −

𝑅𝑐
2

𝑅𝑠
2)

s11(Q11
2 +Q12

2 )−2s12Q11Q12

2(s11
2 −s12

2 )
} 𝑃3

3 +

6𝑎111𝑃3
5 = 𝐸3                                                    (B.16) 

 

APPENDIX С. Analytical calculations of the negative capacitance effect 

In the case ℎ𝑐 ≪ 2𝑅𝑐 the electric potential 𝜑 of the three-layer capacitor, shown in Fig. 8(a) in 

the main text, is given by expressions: 

𝜑𝑠1(𝑥3) = −
𝑥3−2ℎ𝑠−ℎ𝑐

𝜀0𝜀𝑠
𝐷3,     ℎ𝑐 + ℎ𝑠 ≤ 𝑥3 ≤ ℎ𝑐 + 2ℎ𝑠,                         (C.1a) 

𝜑𝑐(𝑥3) = (
ℎ𝑠+ℎ𝑐−𝑥3

𝜀0𝜀𝑏
+

ℎ𝑠

𝜀0𝜀𝑠
) 𝐷3 −

1

𝜀0𝜀𝑏
∫ 𝑃(�̃�)𝑑�̃�

ℎ𝑐+ℎ𝑠

𝑥3
,      ℎ𝑠 ≤ 𝑥3 ≤ ℎ𝑐 + ℎ𝑠,            (C.1b) 

𝜑𝑠2(𝑥3) = −
𝑥3

𝜀0𝜀𝑠
𝐷3 + 𝑈,     0 ≤ 𝑥3 ≤ ℎ𝑠.                                                 (C.1c) 

Here we introduce an electric displacement, 𝐷3 =
𝜀𝑠ℎ𝑐�̅�+𝜀0𝜀𝑠𝜀𝑏𝑈

2ℎ𝑠𝜀𝑏+ℎ𝑐𝜀𝑠
, which is constant in all three layers. 

The electrode charge Q of the three-layer capacitor is given by expression: 

𝑄 = −휀0휀𝑠
𝑑𝜑𝑠1

𝑑𝑥3
|

𝑥3=2ℎ𝑠+ℎ𝑐

= �̅� ⋅
ℎ𝑐𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
+ 휀0

𝑈𝜀𝑏𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
.                    (C.1d) 

Here we introduce the average polarization �̅�(𝑥1, 𝑥2) =
1

ℎ𝑐
∫ 𝑃3(𝑥1, 𝑥2, �̃�)𝑑�̃�

ℎ𝑠+ℎ𝑐

ℎ𝑠
.  

The charge of the reference SrTiO3 capacitor is 𝑄𝑟 = 𝐶𝑟𝑈, where the reference capacitance is 

𝐶𝑟 =
𝜀0𝜀𝑠

2ℎ𝑠
. The difference of the effective and reference capacitance is given by expression: 

∆𝐶 =
𝑑𝑄

𝑑𝑈
− 𝐶𝑟 =

𝑑�̅�

𝑑𝑈
⋅

ℎ𝑐𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
+

𝜀0𝜀𝑏𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
−

𝜀0𝜀𝑠

2ℎ𝑠
≡ (

𝑑�̅�

𝑑𝑈
−

𝜀0𝜀𝑠

2ℎ𝑠
)

ℎ𝑐𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
.             (C.2) 

The NC effect (∆𝐶 > 0) corresponds to the condition 
𝑑�̅�

𝑑𝑈
>

𝜀0𝜀𝑠

2ℎ𝑠
. The magnitude of �̅� can be estimated 

from the equation: 

[𝛼𝑆𝑅 +
2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
] �̅�+𝛽𝑅𝑃3

3̅̅ ̅ + 𝛾𝑃3
5̅̅ ̅ + 𝛿𝑃3

7̅̅ ̅ =
𝜀𝑠 𝑈

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
,                  (C.3) 
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where 𝛼𝑆𝑅 = 2 (𝑎1 − 𝛿𝑢 𝛿𝑉
Q11+Q12

s11+s12
) (see Eq.(7a) in the main text). The average electric field 

corresponding to Eq.(C.3) is 𝐸3 =
−�̅�

𝜀0

2ℎ𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
+

𝜀𝑠 𝑈

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
. Note that the effective factor 

2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
 in Eq.(C.3) coincides with the depolarization field factor 

𝑛𝑑

𝜀0[𝜀𝑏𝑛𝑑+𝜀𝑠(1−𝑛𝑑)+𝜀𝑠𝑛𝑑(𝐿𝑐 𝜆⁄ )]
 in 

Eq.(2) in the particular case 𝜆 → ℎ𝑠, 𝐿𝑐 → ℎ𝑐 2⁄  and 𝑛𝑑 → 1 (which is a good approximation for 

𝐿𝑐 𝑅𝑐⁄ ≪ 1).  

Under the condition of negligibly small contribution of the nonlinear polarization powers in 

Eq.(C.3), the terms 𝛽𝑅𝑃3
3̅̅ ̅ + 𝛾𝑃3

5̅̅ ̅ + 𝛿𝑃3
7̅̅ ̅ can be omitted, and the derivative 

𝑑�̅�

𝑑𝑈
 can be estimated as: 

 
𝑑�̅�

𝑑𝑈
≈

𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
[𝛼𝑆𝑅 +

2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
]

−1

.                      (C.4) 

Under the validity of Eq.(C.4), the NC effect can be reached under the conditions 

𝜀𝑠

𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠
[𝛼𝑆𝑅 +

2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
]

−1

>
𝜀0𝜀𝑠

2ℎ𝑠
,        𝛼𝑆𝑅 +

2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
> 0.                (C.5) 

The conditions (C.5) are equivalent to the condition: 

−
2ℎ𝑠

𝜀0(𝜀𝑠ℎ𝑐+2𝜀𝑏ℎ𝑠)
< 𝛼𝑆𝑅 < 0.                                                (C.6) 

The substitution of 𝛼𝑆𝑅 = 2 {𝑎1 − 𝛿𝑢 𝛿𝑉
Q11+Q12

s11+s12
} in Eqs.(C.5)-(C.6) yields Eqs.(12) in the main text. 
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