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Figure 1: Components of DIMVIS: a panel for (a.1) choosing a dataset and (a.2) adjusting UMAP hyperparameters, and two performance
metrics (a.3) related to the underlying EBM model that supports the visual exploration; (b) a UMAP projection of the dataset, with a selection
of points that determine a visual cluster of interest; (c) shows a ranking of features (single and pairs) for the selected visual cluster, based on
the EBM model’s feature importance; and (d.1) presents the Score of the selection, while (d.2) shows the distribution for one feature.

Abstract
Dimensionality Reduction (DR) techniques such as t-SNE and UMAP are popular for transforming complex datasets into
simpler visual representations. However, while effective in uncovering general dataset patterns, these methods may introduce
artifacts and suffer from interpretability issues. This paper presents DimVis, a visualization tool that employs supervised Ex-
plainable Boosting Machine (EBM) models (trained on user-selected data of interest) as an interpretation assistant for DR
projections. Our tool facilitates high-dimensional data analysis by providing an interpretation of feature relevance in visual
clusters through interactive exploration of UMAP projections. Specifically, DimVis uses a contrastive EBM model that is trained
in real time to differentiate between the data inside and outside a cluster of interest. Taking advantage of the inherent explain-
able nature of the EBM, we then use this model to interpret the cluster itself via single and pairwise feature comparisons in a
ranking based on the EBM model’s feature importance. The applicability and effectiveness of DimVis are demonstrated via a
use case and a usage scenario with real-world data. We also discuss the limitations and potential directions for future research.

CCS Concepts
• Human-centered computing → Visualization; Visual analytics; • Machine learning → Unsupervised learning;
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1. Introduction

Dimensionality Reduction (DR) is an important component of
the visual exploration of complex and high-dimensional datasets,
transforming them into more manageable (but still representa-
tive) lower-dimensional forms with the aim to facilitate interpre-
tation and improve computational efficiency while retaining es-
sential information for analysis [SZS∗17]. However, the outcomes
of modern nonlinear DR techniques such as t-SNE [MH08] and
UMAP [MHM18] can be challenging to interpret due to the lack
of inherent meaning to the extracted shapes/clusters, suboptimal
hyperparameters (e.g., [WVJ16]), and misleading distortions intro-
duced during the process [HFA17, NA18]. To address these chal-
lenges, some visualization tools have been developed with the
goal of inspecting DR projections interactively to assess the global
and local quality of the 2D space [CMJK20, CMJ∗20, CKK24]
and to produce meaningful interpretations to the extracted shapes
and clusters [FKM19, MJE21]. One recent example from Bibal et
al. [BCDF21,BDF23] involved training an interpretable supervised
Machine Learning (ML) model, the decision tree (DT), and use
it to interpret DR layouts. However, DTs suffer from scalability
issues, getting quickly deep and unparsable, and may overfit the
data to achieve high fidelity. One way to overcome these limitations
is by using the Explainable Boosting Machine (EBM) [LCGH13],
a tree-based, cyclic gradient boosting generalized additive model,
which is a powerful alternative that remains interpretable and scal-
able even with large-scale, high-dimensional datasets [CLG∗15].

We propose a new visualization tool, DIMVIS, which employs
EBM models for unveiling the factors influencing cluster forma-
tion and data relationships in nonlinear projections. It enables users
to interactively inspect visual patterns of the DR layout (clusters,
shapes, etc.) to gain insights about their content by training an
EBM model on-the-fly on user-selected data points. The explana-
tion is based on exploring single and pairs of features ranked by
EBM’s intrinsic feature importance regarding their ability to ex-
plain the separation between the selection and the remaining points
of the dataset. The results are visualized with intuitive and sim-
ple visualizations such as bar charts, line plots, histograms, and
heatmaps. We demonstrate DIMVIS via a use case and a usage sce-
nario with healthcare datasets (also used, for example, in [MQB19]
and [CMK20]), showcasing the tool’s capability of analyzing high-
dimensional datasets and enhancing the interpretability of the re-
sulting 2D space from a DR technique.

2. Related Work

In early research on DR interpretation, static visualizations were
generated by considering the layout as a whole, without giving the
users the ability and flexibility to specify their own regions of inter-
est [dSRM∗15]. Interactive interpretation of selections and groups,
as is the case for DIMVIS, has been explored for example in Prob-
ing Projections [SDMT16], where groups of points (obtained either
by selection or a clustering algorithm) are compared to each other
or to the rest of the dataset via individual histograms for each di-
mension; the users then must visually determine dimension impor-
tance by themselves. This approach provides a strong foundation
but may present problems with very high-dimensional datasets, and
the interpretations are inherently univariate.

Some examples of recent work that are more related to DIMVIS

are those from Marcilio-Jr et al. [MJE21] and Fujiwara et
al. [FKM19]. In both cases, users can define groups of points of
interest and interpret them by contrasting their features against out-
side points. Fujiwara et al. use an adapted version of contrastive
PCA [AZBZ18], which in itself is an adapted version of the clas-
sic PCA for highlighting the differences between two sets of data
points. Although relevant, we argue that being a linear algorithm,
interpretations based on adapted versions of PCA will still have
limitations when dealing with very high-dimensional and complex
groups of points. Marcilio-Jr et al. [MJE21] used Shapley values
to generate explanations for each data point based on its distance
to the centroids of the specified clusters, which are then visual-
ized with a relatively complex visual abstraction based on merging
histograms and connecting them with edges (as lines). In contrast,
DIMVIS uses basic, simple visualizations that are arguably more
natural and easily interpreted, and the explanations come directly
from an inherently interpretable and robust supervised model in-
stead of being generated with a black-box, model-agnostic method.

DT-SNE [BDF23] is a simpler but static approach combining
t-SNE with supervised decision trees for interpreting projections
with features, and IXVC [BCDF21] supports users in interactively
explaining projections with decision trees. However, decision trees,
especially visualized as node-link diagrams, can become quickly
hard to interpret, and the increase in the number of dataset features
may heavily affect their scalability. On the contrary, DIMVIS uses
EBM – which can be as powerful as ensemble learning models –
and offers simple and scalable visual representations for exploring
the most important features in user-selected data contrastively.

3. DIMVIS: System Overview and Use Case

DIMVIS is an open-source, web-based visualization tool [Dim23]
which uses the state-of-the-art, supervised “glass-box” EBM
model [LCGH13] to interpret visualizations generated with unsu-
pervised DR techniques. We chose the EBM because its results and
pre-defined visualizations (which we used) have already been suc-
cessfully evaluated with real-world domain experts [CLG∗15].

After selecting the dataset (shown in Figure 1(a.1)), initially only
views indicated in (a.1), (a.2), and (b) are shown. To initiate the ex-
ploration and trigger the remaining views, a lasso selection of data
points must be made in the UMAP view (b) containing a visual
cluster perceived by the user as being of interest. As soon as a se-
lection is made, an EBM model is trained in the background (more
details below) and the remaining visualizations are presented. The
model’s precision and recall are visible (in Figure 1(a.3)), as well
as single and pairwise feature importances extracted from the EBM
model and visualized in a bar chart sorted in descending order from
top to bottom (see Figure 1(c)). On click, users can explore further
a feature with a Score line plot (Figure 1(d.1)) and a Density his-
togram (Figure 1(d.2)), or two features with a Score heatmap.

We further explain the tool by introducing a first use case with
the Breast Cancer Wisconsin (Original) dataset (entries: 699; di-
mensions: 9 (graded 1–10); classes: 2) obtained from the UCI ML
repository [DG17]. The class labels (Benign or Malignant) are only
used as a final verification for the insights (Figure 2(e)).
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Figure 2: Exploration of three clusters (C1–C3) produced by UMAP in (b) and local Feature Importances for the top three important features
of the EBM model (c), trained on each cluster. (a) shows the dataset, UMAP hyperparameters, and EBM’s precision and recall for C3. The
most important feature (pair) per cluster is further explained in (d), with the selection mapped with a negative Score and the remaining points
a positive one. For a single feature, Density histograms show the distribution of values. (e) reveals the GT labels used solely for verification.

DIMVIS utilizes the UMAP algorithm [MHM18] and users
can interactively adjust UMAP’s hyperparameters – “Number of
Neighbors” (Neighbors) and “Minimum Distance” (Min Dist) –
to explore different projections (see Figure 2(a)). The projection
in Figure 2(b) contains three distinct clusters (C1–C3), and no GT
labels to simulate a typical unsupervised learning scenario. When
a group of points is selected with the lasso functionality, the EBM
gets retrained and selected points are marked with class 0 while
the remaining points are marked with class 1. Using the inher-
ent interpretability features of the EBM model, we rank the main
features (single and pairs) that contribute to the separation of the
cluster according to the trained model, using the Mean Absolute
Score (Weighted). As shown in Figure 2(c), the most important
single and pair of features are: the number of bare nuclei for C1
(BARENUC, ≈1.7), clump thickness for C2 (CLUMPTHIC, ≈3.2),
and the combination of uniformity of cell size and bland chromatin
for C3 (SIZEUN & BLANDCHR, ≈1.2). That can be further explored
in relation to the actual values and the distribution of the data en-
tries (see below). More algorithmic details regarding EBM can also
be found in Lou et al. [LCGH13].

When a user clicks on a single feature in the bar chart (Fig-
ure 2(c), C1), a line plot and a histogram appear, displaying the im-
pact of that specific feature (BARENUC, in this case) on the model’s
predictions. As illustrated in Figure 2(d), C1 (top), the line plot
shows the Score, i.e., the contribution of each feature’s value in-

side (negative values) or outside (positive values) of the selection.
It also shows the quantified uncertainty, that is, the variance in the
final predictions, encoded as gray bands. For C2, for example, we
can see that values of CLUMPTHIC up to 3.5 are more related to the
points inside the selected cluster, with high certainty. The rest of the
values are more related to the points outside the cluster, although
with less certainty. The histogram depicts the Density, which is a
simple distribution of the values for a specific feature across all
points globally. For C1, the feature BARENUC has a clear separation
between low and high values that seems to be related to the cluster
formation, while for C2, CLUMPTHIC does not seem to show any
clear pattern for points inside or outside the cluster (which shows
why it is important to consider this view together with the Score
line plot). Additionally, DIMVIS allows users to explore pairs of
features, as shown in Figure 2(d). The heatmap uses color intensity
to represent the level of interaction (i.e., from purple for negative
Score to yellow for positive Score). In Figure 2(d), C3, we see that
points where one of the two features is low while the other is high
are more related to the cluster (see green boxes); when both fea-
tures are low, or both are high, then the Score is higher, indicating
a stronger relation to the points outside the cluster.

In the next section we explore different aspects of the user expe-
rience of DIMVIS by simulating a usage scenario in the domain of
healthcare, one of the important application areas of DR.
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Figure 3: The individual feature importance of SkinThick explains why the user-selected left and right subclusters in (a) and (b), respectively,
were formed. The left subcluster (negative Score) contains points mostly with moderate values for SkinThick (Density) and low uncertainty
(see the tight, gray band), while the right subcluster includes points with low values for SkinThick and relatively moderate uncertainty.

4. Usage Scenario: Interpreting Clusters in a Projection

For this hypothetical scenario, we follow a physician specializing
in diabetes (which we will call Sara). She recently learned about
UMAP but, while enthusiastic, she remains doubtful about the re-
liability of such projections. Hence, she turns to DIMVIS for an
in-depth analysis of UMAP projections. Sara uploads to DIMVIS

(Figure 1(a.1)) the Pima Indian diabetes dataset (entries: 768; di-
mensions: 8; classes: 2) from the UCI ML repository [DG17].

Without any selection, DIMVIS trains a supervised EBM model
(precision: 0.81; recall: 0.82) and visualizes the Global Feature Im-
portances from the most to the least important: Glucose, BMI, Age,
DPF, Insulin, Pregnan, SkinThick, and BloodPr (not shown due to
space limits). Now that she has gained an overview, Sara wants to
investigate why a cluster in Figure 1(b) is split into left and right
subclusters. By using a lasso to choose the left subcluster (cf. Fig-
ure 1(b)), the tool fits the EBM model (precision and recall: 1.00;
see Figure 1(a.3)) to this selection of points (against the rest) and
recomputes feature importance locally. Insulin and SkinThick are
the two most important dimensions and require further examination
(see Figure 1(c)). When selecting the right subcluster, the feature
ranking produces the opposite result (SkinThick first and then In-
sulin). She acknowledges that these two dimensions are by far the
most important for the formation of this entire cluster.

Sara clicks on the first feature, which is Insulin (Figure 1(c),
green box), and the Score and Density graphs appear in Fig-
ure 1(d.1 and d.2). In Figure 1(d.1), negative Score, she notices that
the values of the selected points for Insulin are very low with most
entries in the first bucket [0-52.9] (Figure 1(d.2)). This feature fol-
lows a linear trend with high uncertainty (see the wide, gray band)
for the rest of the data points, as shown in Figure 1(d.1), positive
Score. However, the same effect is observable for the right subclus-
ter (omitted due to space limits). She decides to continue with the
exploration of the second important feature, which is SkinThick.
She checks the individual feature importance of SkinThick for the
left and right subclusters, as presented in Figure 3, (a) and (b), re-
spectively. She understands that the former contains mostly points
with moderate values (cf. Density graph) and low uncertainty for
this dimension (tight gray bar in Score graph; green box), while
the latter demonstrates most points concentrated in values [0-8.25]
with somewhat moderate uncertainty (see the green box in Fig-
ure 3(b)). Notably, Sara identified the opposite effect for SkinThick
in the right subcluster compared to what she had seen in the inspec-
tion of the left subcluster. She concludes, then, that the common
trait for this entire cluster is Insulin, while the reason behind its
division into two subclusters is the different values in SkinThick.

5. Discussion

Design choices. Although in its current version DIMVIS uses
UMAP and EBM, the architecture of the tool allows it to be model-
agnostic and flexible. The choices of EBM and UMAP were made
since they are both state-of-the-art methods that can scale to large
and high-dimensional datasets, but the flexible design of the work-
flow ensures its potential adaptability to emerging, future algo-
rithms. Also, one of the strengths of EBM is that it can be inter-
preted with simple visualizations of single or pairs of features (as
opposed to, for example, visualizing decision trees as non-space-
filling node-link diagrams). The visualizations used for DIMVIS

are inherited from the EBM model (pre-evaluated, for example,
with real-world medical data [CLG∗15]) and do not represent a
novelty of this paper. As such, a future direction could be to en-
hance the presentation beyond what is currently used. However,
more complex visualizations may have a steeper learning curve and
suffer in terms of scalability, effectiveness, and ease of use.

Limitations and future work. One important future work is an
objective comparison to other similar tools and techniques so as
to determine concretely how the detected explanations (e.g., fea-
tures and their ranks) differ from other possible methods for gen-
erating similar explanations. This is one of our short-term plans
for future work. We also intend to refine the user experience based
on feedback from domain experts (as in Section 4) and perform a
formal user study to validate our findings further and gather more
feedback on possible improvements. Different possible visualiza-
tion techniques (with variable degrees of complexity) will be tested
with users to determine whether it is worth it to move beyond the
current ones and how to do it. We intend to investigate ways to im-
prove the computational efficiency of the underlying model by, for
example, using GPU-based implementations of both the DR and
the EBM algorithms. Finally, DIMVIS can currently only compare
one data selection against the remaining projection, making a direct
comparison between two subclusters a somewhat inefficient task.
We intend to test the ability to select and compare two specific data
subsets directly to streamline this process.

6. Conclusion

In this paper, we presented DIMVIS, a visualization tool using a su-
pervised EBM model to interpret UMAP projections interactively.
Our tool helps users with the in-depth exploration of cluster forma-
tions and their analysis based on the impact of single and pairwise
features on the data. The applicability and usefulness of DIMVIS

were tested with two use cases that showcase diverse settings for
understanding real-world, high-dimensional data.
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