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UVTM: Universal Vehicle Trajectory Modeling
with ST Feature Domain Generation

Yan Lin, Jilin Hu, Shengnan Guo, Bin Yang, Christian S. Jensen, Youfang Lin, Huaiyu Wan

Abstract—\Vehicle movement is frequently captured in the form of trajectories, i.e., sequences of timestamped locations. Numerous
methods exist that target different tasks involving trajectories such as travel-time estimation, trajectory recovery, and trajectory prediction.
However, most methods target only one specific task and cannot be applied universally. Existing efforts to create a universal trajectory
model often involve adding prediction modules for adapting to different tasks, while also struggle with incomplete or sparse trajectories.

To address these shortcomings, we propose the Universal Vehicle Trajectory Model (UVTM) designed to support different tasks
based on incomplete or sparse trajectories without the need for retraining or extra prediction modules. To addresses task adaptability
on incomplete trajectories, UVTM divide the spatio-temporal features of trajectories into three distinct domains. Each domain can be
masked and generated independently to suit the input and output needs of specific tasks. To handle sparse trajectories effectively,
UVTM is pre-trained by reconstructing densely sampled trajectories from sparsely sampled ones, allowing it to extract detailed spatio-
temporal information from sparse trajectories. Experiments involving three representative trajectory-related tasks on two real-world
vehicle trajectory datasets provide insight into the intended properties performance of UVTM and offer evidence that UVTM is capable

of meeting its objectives.

Index Terms—Spatio-temporal data mining, vehicle trajectory mining, pre-training and fine-tuning, self-supervised learning.

1 INTRODUCTION

A Trajectory is a sequence of timestamped locations that
captures the movement of an object. Figure pro-
vides an example where a trajectory 7 captures the travel
of a vehicle from [; to Ils5. This trajectory consists five
timestamped GPS points: T = ((I1,t1), (I2,t2),. .., (l5,t5)).
Substantial spatio-temporal information can be mined from
this trajectory, e.g., 1) the travel time of the trip, t5 — ¢1;
2) the road segments that the trip visited, e, ez, e4, and eg;
3) the average travel speed on each road segment, which can
reflect traffic conditions; 4) accelerations and decelerations
that capture driving behavior. Such information provides
a rich foundation for analyzing the movement patterns of
individual vehicles and traffic patterns on road networks,
which in turn powers various important tasks in Intelligent
Transportation System (ITS). These tasks include trajectory
prediction [1f], [2]], [3]], [4], travel time estimation [5], [6], [7],
[8], anomaly detection [9], [10]], trajectory clustering [11],
[12], [13]], [14]], and trajectory recovery [15], [16], [17].

Given the rich spatio-temporal information that trajec-
tories can provide and their applicability across multiple
tasks, the same set of trajectories is often utilized for var-
ious tasks simultaneously. Traditionally, individual models
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are created and trained for each specific task. Thus, these
models often solely concentrate on task-specific informa-
tion, which hinders their adaptability to other tasks and
potentially restricts their effectiveness. Moreover, training
and storing multiple models for different tasks adversely
affect computational and storage efficiency. Consequently,
there is a pressing need to develop a universal trajectory
model that can be trained once on a dataset and effectively
address various types of tasks.

Several existing studies [18], [19], [20], [21] have in-
troduced universal trajectory models through representa-
tion learning techniques. These methods commonly involve
training a trajectory encoder, which maps each trajectory
to an embedding vector. However, utilizing the embed-
ding vector alone is insufficient for most tasks. To make
task-specific predictions, supplementary prediction mod-
ules must be connected to the embedding vector — as
illustrated in Figure — which requires additional fine-
tuning processes. Apart from the need for fine-tuning, ex-
isting methods suffer from two significant shortcomings
that prevent them from fully achieving the objective of
constructing a general trajectory model.

First, existing methods face limitations in adapting to
different types of tasks due to the requirement of the
integrity of a trajectory’s features. There is a wide range of
trajectory-related tasks that involve varying arrangements
of input and output features. Some tasks, especially, involve
incomplete trajectory points and spatio-temporal features
as the input. For instance, in origin-destination (OD) travel
time estimation [22], only the origin, destination, and depar-
ture time of a trajectory are known prior to its occurrence.
Similarly, in trajectory recovery [23], there are often long
spans of missing trajectory points among the known ones.

Existing methods typically have strict requirements re-
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Fig. 1. Overview of the existing efforts on universal vehicle trajectory modeling and their limitations.

garding the integrity of the input features in order to
function properly. Specifically, they commonly specify that
the spatio-temporal features of all points in a trajectory
be provided as input. For example, t2vec [18] requires the
coordinate and timestamp of each trajectory point, while
Trembr [19] and START [20] necessitate the road segment
and timestamp for each point. Consequently, these methods
are unable to adapt to tasks such as OD travel time esti-
mation and trajectory recovery, where the requirement of
the integrity of a trajectory’s features cannot be fulfilled, as
illustrated in Figure[I(b)} scenario ®.

Second, existing methods scale poorly with long vehi-
cle trajectories and underperform on re-sampled sparse
trajectories. In real-world settings, vehicle locations are
often sampled at high rates, resulting in long vehicle tra-
jectories. State-of-the-art methods, including PreCLN [24]
and START [20], utilize Transformer-based [25] trajectory
encoders to capture long-term correlations in these trajec-
tories. However, Transformers exhibit poor scalability with
long trajectories due to their quadratic complexity, O(N?),
in the trajectory length N. Additionally, the data storage
requirements for these lengthy trajectories are substantial.

To address these issues, a common approach is to re-
sample the original trajectories into sparser ones with larger
sampling intervals to enhance computational and storage
efficiency. However, existing methods encounter perfor-
mance issues when working with such sparse trajectories
as they struggle to address the information loss caused
by the sparsity properly. For instance, in Figure sce-
nario ®, a sparse trajectory 7' = {(I1,%1), (la, ta), (I5,t5)}
is re-sampled from the original trajectory 7. When existing
methods are fed with 7 as input, they tend to overlook
spatio-temporal information not explicitly captured in 7.
For example, distinguishing whether the vehicle traverses
road segments ez, e4 Or e3,e5 between points (I1,%1) and
({4,t4) poses a challenge for existing methods.

To this end, we propose the Universal Vehicle Trajectory
Model (UVTM). UVIM is designed to be trained once
and then adjusted to effectively address various trajectory-
related tasks, facilitating its adapability and efficiency in
ITS applications. UVIM incorporates specialized designs

that excel at overcoming the limitations of current meth-
ods mentioned earlier. To address the first limitation, we
divide the spatio-temporal features in trajectories into three
distinct domains. Each domain can be masked and gener-
ated independently to meet the specific input and output
requirements of the task at hand. These designs empower

UVTIM to adapt to tasks involving incomplete trajectories.

In response to the second limitation, we pre-train UVIM

to enable it to extract spatio-temporal and road segment

features embedded in the densely sampled trajectories, even
when presented with only the sparsely re-sampled ones.

This pre-training ensures that UVITM consistently delivers

strong performance when confronted with sparse trajectory

data. In summary, the primary contributions of the paper
are as follows.

« We propose the UVTM, a versatile and robust universal
vehicle trajectory model. UVTM can be trained once and
effectively adapt to multiple trajectory-related tasks with-
out additional prediction modules, even when confronted
with incomplete or sparse trajectories.

o We separate the features in trajectories into three domains,
allowing each domain to be masked and generated sepa-
rately based on the specific input and output requirements
of the task. This flexibility enables the UVIM to adapt
to various types of tasks, particularly those involving
incomplete trajectories.

e We pre-train UVTM by reconstructing densely sampled
trajectories using their re-sampled sparse counterparts.
This process enhances UVTM’s robustness to sparsity and
maintains its performance on sparse trajectories.

e We conduct extensive experimental study on two real-
world datasets and three representative tasks, offering
insight into the performance properties of the proposed
model, and providing evidence that the model is capable
of meeting its design goals.

2 RELATED WORK
2.1 Task-specific Trajectory Models

Task-specific models are designed and trained for specific
tasks. These models are commonly used for trajectory-
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related tasks due to their ease of implementation.

For travel time estimation, path-based approaches in-
cluding WDR [26], DeepTTE [27], DeepETA [28], WD-
DRA [29], and DRTTE [30] predict travel times based on the
given travel paths. On the other hand, origin-destination-
based approaches including TEMP [31], ST-NN [32], MU-
RAT [33]], DeepOD [5], and DOT [22] estimate travel times
by considering the origin, destination, and departure time.
For trajectory recovery, TrImpute [23] is a non-learning-
based method. In contrast, AttnMove [15], MTrajRec [16],
and RNTrajRec [17] are learning-based methods built on the
seq2seq framework [34]. For trajectory prediction, models
like DeepMove [1], HST-LSTM [2], and ACN [35] lever-
age recurrent neural networks [36] to capture sequential
patterns in trajectories. PreCLN [37] integrates contrastive
learning [38]] to improve prediction accuracy.

While task-specific trajectory models have their advan-
tages, their adaptability and computational efficiency are
limited in ITS applications. Models tailored to specific tasks
cannot be easily repurposed for other tasks, leading to the
need for separate models for each task, which can adversely
affect computational resources and storage efficiency.

2.2 Universal Trajectory Models

In response to the limitations of task-specific models, there
is a growing interest in universal trajectory models that can
accommodate multiple tasks.

Among these models, trajectory2vec [39] constructs be-
havior sequences from trajectories to extract key information
and then utilizes an auto-encoding framework [40] to com-
press each sequence into an embedding vector. t2vec [18]]
employs a denoising auto-encoding framework to enhance
its resilience to trajectory noise. Trembr [19] leverages auto-
encoding techniques to extract road network and temporal
information embedded in trajectories effectively. SML [24]
integrates the contrastive predictive coding framework [41],
providing an innovative method for learning embedding
vectors for trajectories. START [20] introduces a compre-
hensive approach to trajectory embedding learning by com-
bining masked language model [42] and SimCLR [38] to
enhance its learning capability.

While these universal trajectory models exhibit versa-
tility, they often require additional prediction modules to
generate task-specific predictions based on their output em-
bedding vectors. Furthermore, their adaptability is limited,
particularly for tasks that include incomplete trajectories,
and they tend to underperform when dealing with sparse
trajectories.

3 PRELIMINARIES
3.1 Definitions

Definition 1 (Road Network). A road network is modeled
as a directed graph G = (V, £), where V is a set of nodes,
each node v; € V models an intersection between road
segments or the end of a segment, and £ is a set of edges,
each edge e¢; € £ models a road segment linking two
nodes. An edge is given by starting and ending nodes:
e; = (vj,vg).

Fig. 2. A trajectory and its map-matched counterpart.

Definition 2 (Trajectory). A trajectory 7T is a se-
quence of timestamped point locations: T =
(s t), (I t2), o (L 7)), where [ = (I8, 11%)
are the spatial coordinates of the i-th location, I

and Ziat denote longitude and latitude, respectively, and

timestamp t; is the time at which /; is visited.

Definition 3 (Sampling Interval). A trajectory’s sampling
interval 7 is the time interval between its consecutive
points, ie., n = t; — t;—1,i € {2,3,...,|T|}. Given a
trajectory that is originally densely sampled, its sparse
counterpart can be obtained by re-sampling the trajec-
tory with a larger interval p.

It is important to note that we assume consistent sam-
pling intervals to ensure consistency in the experimental
evaluation. Nevertheless, the proposed model can be ap-
plied to trajectories with varying sampling intervals.

Definition 4 (Map-matched Trajectory). By using a map-
matching algorithm [43], a trajectory 7 can be pro-
jected onto the underlying road network G. The
map-matched trajectory can be denoted as 7T =
((I1,t1), (L2, t2), - oo, (L) ty7))), Where I; = (e4,74), €5 €
£ is the map-matched road segment occupied by location
l;, and 7; is the fraction of the length of the road segment
traveled by time ;.

Example 1. Figure [2| gives an example of a trajectory
T ={(l,t),
(la, t2), (Is,t3), (14,t4)), where the locations are denoted
in diamonds. Map-matching yields map-matched trajec-
tgry T = <(ll, tl), (lg, tQ),
(I3,t3), (l4,t4)), where the locations are in squares. For
example, [y is map-matched onto I3, which is in the
middle of road segment e,. Thus, we use 73 to denote the
fraction of t}le length of es that the vehicle has traveled,
resulting in Iy = (ez,r2).

3.2 Problem Statement

Universal Vehicle Trajectory Modeling. The objective is to
construct a universal vehicle trajectory model fg, where 0
denotes a set of learnable parameters. During evaluation,
fo takes a certain arrangement of trajectory 7 as input and
generates an output tailored to the particular task at hand,
denoted as Y = fy(arrange(T)). For example, for OD travel
time estimation, arrange(7") extracts the origin, destination,
and departure time of 7, and Y is the estimated travel time;
for trajectory prediction, arrange(7) retains the historical
part of T, and Y is the predicted future part of 7.
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Fig. 3. Overall framework of the proposed Universal Vehicle Trajectory Model (UVTM).

4 METHODOLOGY
4.1 Overall Framework

The overall framework of the proposed UVTM is illustrated
in Figure 31 We first divide the spatio-temporal features of
trajectories into three distinct domains: spatial, temporal,
and road segment, as depicted in Figure Each point
in the trajectory can be represented as a tuple consisting of
these three domains. We refer to the tuple representing the
i-th point in the trajectory T as g .

Each feature domain in g/ can be masked and generated
independently. Specifically, a domain can be replaced with a
special mask token to indicate that it needs to be generated.
Additionally, the tuple 9im)s filled with the mask token, can
represent all feature domains of a sub-trajectory that require
generation. For each input tuple containing the mask token,
a series of tuples is auto-regressively generated, creating
a span of generated tuples. This generation process begins
with a tuple g, filled with a special start token added to the
input, and proceeds iteratively by adding the last generated
tuple to the input to produce the next generated tuple. The
process concludes when a tuple gy filled with a special
end token is produced. Figure provides an example
where three spans are generated corresponding to the three
input tuples. The flexibility provided by the above design
enables UVTM to adapt to various tasks, as it can accept
task-specific input arrangements and generate the desired
output.

To facilitate the model’s ability to extract information
and correlations from feature domains, we introduce the fea-
ture domain embedding layer and the hierarchical trajectory
encoder. Additionally, to enhance the model’s robustness to
sparse trajectories, the learnable parameters in the model
are pre-trained by reconstructing the feature domains of
densely sampled trajectories given their re-sampled sparse
counterparts. The next sections detail designs and modules
in the proposed UVTM.

4.2 ST Feature Domains

In order to improve the model’s ability to handle different
tasks, we divide the spatio-temporal (ST) features in trajec-
tories into three domains. Each domain can be masked and

generated separately, depending on the specific input and
output requirement of the respective task.

4.2.1 Tuple of Feature Domains

Given the i-th point (I;, t;) of trajectory T, we split its spatio-
temporal features into three domains: spatial, temporal, and
road segment.

The spatial domain contains features related to the co-
ordinate ;. These features include I; itself, and a set ({;)
of road segments located within a distance of § meters
from ;. Q(I;) enhances the model’s understanding of the
relationship between coordinates and road segments.

The temporal domain contains the timestamp t; mea-
sured in seconds. To standardize t¢;, we subtract it from the
initial timestamp ¢ of the trajectory.

The road segment domain consists of road segment e;
and fraction r; from [;, which can be obtained through map-
matching the coordinate I; following Definition

Finally, we transform (I;, ;) into a fuple consisting of the
above three domains as:

97 = (i, QL)) ta (eq,73))

4.2.2 Auto-regressive Generation

M

To generate a feature domain in the tuple g/, we fill that
domain with the mask token [m], denoting a masked do-
main. This tuple is then provided to the model as input.
Next, the masked domain is generated through an auto-
regressive process, where each input tuple corresponds to a
series of generated tuples refer to as a span. The generation
begins by adding a tuple gj; = ([s], [s], [s]) with all domains
filled with the start token [s| to the input. The model
then outputs the generated tuple §/ . Subsequently, §/ is
added back to the input. Finally, the model outputs a tuple
9gie] = ([e], [e], [e]) with all domains filled with the end token
[e], indicating the completion of the generation. An example
of this generation process can be observed in the input tuple
g] and the generated span (§/ , gle]) in Figure @

In cases where all feature domains of a sub-trajectory
need to be generated, this sub-trajectory is replaced by a
single tuple gj,,) = ([m], [m], [m]) with all domains filled
with the mask token [m]. The generation follows a similar
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Fig. 4. The feature domain embedding layer.

auto-regressive process as described above, with the distinc-
tion that the generation process is iterated by appending
the previously generated tuple to the input to derive the
subsequent generated tuple. The end of the generation is
determined by the model itself, i.e., the output of the tuple
9gle)- An example of this generation process can be observed
in the input tuple gj,,,) and the generated span ( a7, a7, ie])
in Figure This design further enhances the model’s
flexibility, particularly in tasks such as trajectory recovery
and trajectory prediction, where the length of the trajectory
that needs to be generated cannot be predetermined.

When multiple input tuples with masked domains are
provided, these tuples are organized into an input sequence
for the model. Next, the model generates the spans sequen-
tially, with each span being generated following the above
described procedures. Figure provides an example,
where the three spans corresponding to the three input
tuples are sequentially generated.

4.2.3 Dual-layer Positions

Since each input tuple g/ corresponds to a span of gener-
ated tuples, we follow the practice of GLM [44] and employ
dual-layer positions.

The first layer of positions, denoted as 771-1, indicates the
relationship between each input tuple g/ and the span of
generated tuples. Specifically, both g/ and its corresponding
span of generated tuples have the same first layer positions,
which is 7.

The second layer of positions, denoted as P?, represents
the order of tuples within each span of generated tuples.
For g/, the second layer position is always 0. Conversely,
for the span of generated tuples of length IV, the positions
are sequentially numbered starting from 1 up to V.

4.2.4 Feature Domain Embedding Layer

To enhance the model’s ability to extract information from
the three feature domains of each tuple, we propose an
embedding layer that projects domains into the latent space,
as illustrated in Figure [4]

The continuous features in the tuple g7, i.e., ling, llat,
t;, and 7;, exhibit periodic characteristics. To mirror these
characteristics, we encode these continuous features by
drawing inspiration from the learnable Fourier features [45],
[46], leveraging the cyclic nature of trigonometric functions.
Given an input continuous feature z € R, the encoding

module ¢ projects it onto a d-dimensional latent space,
defined as follows:

O(x) = Wlcos(zva) | sin(zve)], = € {I", 1™ 1,7}, (2)

where vy € R%Y? represents a learnable projection vector,
and W4 € R?*4 denotes a learnable projection matrix.
Importantly, distinct sets of vy and W g are utilized for the
four types of continous features.

On the other hand, segment ¢;, the segments in Q(;),
and the special tokens {[m], [s], [e]} are discrete features.
For these, we employ an index-fetching embedding module
for each feature. These modules involve learnable matrices
E: € REIXd Bo ¢ REXD and Eyen € R34 The
embedding vector for a discrete feature is retrieved as the
corresponding row vector from these matrices. For example,
the embedding vector of road segment e; is obtained as the
e;-th row vector from E¢, denoted as E¢(e;).

Finally, the above embedding vectors are gathered to
form a embedding matrix for the tuple g/ . Formally, the
embedding vectors for the spatial, temporal, and road net-
work domains of g/ are calculated as follows:

2 = B + Bl
2P = 27 + MultiHead(2"}", Eq(l;), Eq(l;))
de = @(tz)

z" = Eg(e;) + D(ry)

®)

Here, MultiHead represents the dot-product attention de-
fined in the Transformer [25], with NN, attention heads.
Eq(l;) denotes the set of embedding vectors for all seg-
ments in Q(/;). In scenarios where any feature domain is one
of the special tokens, the embedding vector of that domain
is the embedding vector of the corresponding special token.
Finally, the embedding matrix for the tuple g/ is expressed
as Z; = (2P, zle, 2I™) € R34,

»~q

4.3 Hierarchical Trajectory Encoder

To model the correlations between different tuples in a
trajectory and to execute the generation process described
in Section [#.2.2} we propose a trajectory encoder that takes a
sequence of matrices Z; and generates a sequence of tuples
g/ as output.

4.3.1 Hierarchical Attention

To extract the correlations between the feature domains of a
tuple, we take the embedding matrix Z; and apply a matrix-
level self-attention mechanism. This mechanism, along with
mean pooling and position encoding, allows us to obtain the
hidden state h; of the tuple. Formally:

h; = Mean(MultiHead(Z;, Z;, Z;)) + PE(P}) + PE(P?),

)
where h; is the hidden state of the i-th tuple, Z; is treated
as a sequence of length 3, and PE represents the positional
encoding from the Transformer [25].

Performing the generation process described in Sec-
tion involves a sequence of tuples provided as input.
We obtain the hidden state of each tuple in the sequence
using Equation [4] resulting in a sequence H = (hy,ho,...)
of hidden states. Then, we extract the correlations between
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different tuples in the sequence using a sequence-level self-
attention mechanism. This mechanism incorporates a resid-
ual connection, layer normalization, and a feed-forward
network. Formally:

H' = MultiHead(H, H, H)

O’ = LayerNorm(H' + H) (5)

O = LayerNorm(FFN(O') + O"),

where O represents the sequence of output states and

FFN is the feed-forward network composed of two fully
connected layers.

4.3.2 Output Layer

To generate the tuple of feature domains from the ¢-th
output state O;, we utilize four fully connected networks
to establish an output layer. Formally:

li =W.0; +b,
ti=Wi0;+b,
é; = argmax(p(é;)), p(é;) = Softmax(W .O; + b,)
7i = W, 0; + by,
where W, € R2X4 W, € R¥*¢ W, e RUEHDxd 4nd
W, € R'*? denote the projection matrices, while b, € R?,

b, € R, b, € RUEIHD and b, € R are biases. The generated
tuple is then formed as:

If é; = [e], we denote §] = g

Given the ground truth tuple g/, we can supervise the
generated tuple g/ with the following loss function:

(6)

Li =1 — tillz + s — tillz + 15 — r4ll2) — logp(é:),  (8)
e]

where 1;% equals 0if g = g|) and equals 1 otherwise.

4.4 Pre-training

In order to improve the model’s ability to handle sparsity,
we propose pre-training the model by reconstructing feature
domains in densely sampled trajectories based on their
re-sampled sparse counterparts. This approach allows the
model to extract detailed spatio-temporal and road segment

information from dense trajectories, even when only sparse
trajectories are given. Consequently, the model can maintain
its performance when dealing with sparse trajectories that
have varying sampling intervals.

4.4.1 Reconstruction Procedure

Initially, a dense trajectory 7 is selected from the dataset,
where its sampling interval 7 is no longer than 15 seconds.
The Fast Map Matching (FMM) algorithm [47] is then ap-
plied to obtain the trajectory’s map-matched counterpart 7.
Simultaneously, to emulate sparse trajectories with longer
sampling intervals, 7 is resampled at an interval ;, where
w1 > n and p is divisible by 7, to derive a sparse counterpart
T’. This process is formulated as follows:

T = <(llv tl)v (ll+u/nv tl-Ht/n)v (l1+2y,/n7 t1+2y,/n): ey (ZIT|at\T\)> (9)

Notice that the last trajectory point in 7 is retained in 7~ to
maintain the integrity of the re-sampled trajectory.

Comparing the trajectory point (l;,t;) in 7" to the cor-
responding point (I;,t;) in 7, the road segment domain is
absent and needs to be generated. This can be represented
by a tuple g7 = ((I;, 2(1;)), ts, [m]). On the other hand, the
sub-trajectory of 7 that lies between each pair of consecutive
points in 7" also requires generation. This can be denoted
by the tuple gp,).-

The objective is to reconstruct the missing feature do-
mains in 7”7, which involves generating all feature domains
in 7. To achieve this, a sequence:

inPUt = <9T y 9[m]> 9T+,L/7,7g[m]79£_2,,,/n, s ag|77-’\> (10)

consisting of tuples mentioned above is provided as the
input sequence to the model. Next, the model generates
a span for each tuple in the input sequence, following
the process described in Section Specifically, for the
input tuple g7, the model generates the span (j7, gle])-
Conversely, for the input tuple gj,,}, the model generates the
span representing the sub-trajectory in 7 occurring between
the pair of consecutive points in 77, with the tuple g at the
end.

To allow the model to extract bi-directional correlations
from T, we generate the spans of tuples with a shuffled or-
der of the spans [48]]. The shuffled spans are then generated
sequentially, with the head and tail of each span concate-
nated together as a sequence. For example, the sequence:

OUtPUt = @]——,ﬁﬁpg[e]7§3—7§27:r1,g[e]> (11)

consisting of spans of generated tuples is the output of
the model for one pre-training sample, with the generation
order of (gf, QJTH, gie)) first, followed by (a7, g];l,g[e]).
Additionally, we apply a casual mask on the MultiHead in
Equation | to prevent information leakage.

4.4.2 Optimization Objective

Given a dense trajectory dataset T, where the sampling
interval of each trajectory is below 15 seconds, we employ a
variety of re-sampling intervals to create multiple sparse tra-
jectories from each dense trajectory. This process enhances
the model’s ability to handle trajectories with varying sam-
pling intervals. During pre-training, we use three re-sample
intervals: 1 minute, 2 minutes, and 4 minutes.
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Fig. 6. Unique input and output arrangements for different tasks.

Each pair of dense trajectory 7 and its sparsely re-
sampled counterpart 7' serves as a pre-training sample in
Section By utilizing the loss function in Equation
the loss function £ of each pre-training sample can be
calculated as the average of the loss £, for all generated
tuples corresponding to the dense trajectory 7. Finally,
during the pre-training process, the optimization objective
is to minimize the sum of the loss L7 across all pre-training
samples constructed earlier. Formally:

> > —Lr,

p€{1lmin,2min,4min} 7 €T

argmax (12)

0

where 6 denotes the set of learnable parameters in the
model.

4.5 Task Adaptation

The model’s flexibility allows it to adapt to various
trajectory-related tasks after pre-training, especially those
involving input of incomplete trajectories. We provide three
representative tasks as examples.

4.5.1 Origin-Destination Travel Time Estimation (OD TTE)

We adopt the OD-based variant of the TTE task, which
involves estimating the travel time of a trajectory given
only its origin [,, destination [l;, and the departure
time ¢,. The model is provided with an input sequence
((loyto, [m]), (La, [m], [m])). Next, the model generates the
span corresponding to the input tuple (Ig, [m], [m]) follow-
ing the procedure outlined in Section The generated
span is expressed as (((la,2(la)), ta, (€a,7a)), gje])- Finally,
ty is regarded as the estimated arrival time. Figure
provides an example of the above procedure.

4.5.2 Trajectory Recovery (TR)

This task aims to recover a sparse trajectory’s dense coun-
terpart. The proposed model can handle this task using a
similar procedure as described in Section The only
difference is that the spans can be generated in their original
order without shuffling. Whether a sub-trajectory between
a pair of sparse trajectory’s consecutive points is absent can
be deduced from the sampling interval. Specifically, suppose
we have two trajectory points (I;,¢;) and (l;+1,t;+1) from a
sparse trajectory, and a desired sampling interval 7 for the
recovered dense trajectory. If ;1 —¢; > 7 then we insert the
tuple gj,,,) between these two points, indicating that there is
an absent sub-trajectory to be generated.

Input Tuples Spans of Generated Tuples

(b) Trajectory prediction

4.5.3 Trajectory Prediction (TP)

This task aims to predict future trajectory points given
historical ones. Suppose the first n points of a trajectory
T are known. The model is provided with an input se-
quence (g7 ,...,9),gim))- Next, the model generates the
span of future tuples corresponding to g, following the
procedure outlined in Section [£.2.2] The generated span can
be expressed as (9] 1,01 2, -k Y[e]), Where N is the
length of the trajectory. An example of the above procedure
is illustrated in Figure[6(b)}

The model can be directly applied to a task post pre-
training in a zero-shot manner by providing the model with
the task-specific input arrangements detailed above. In our
experiments, fine-tuning with task-specific generations is
conducted post pre-training to further improve the model’s
performance on tasks. Subsequent sections will delve into
the comparison of performance between fine-tuned and
non-fine-tuned models, the rate of convergence in fine-
tuning, and the scalability of the fine-tuning dataset.

5 EXPERIMENTS

To access the performance of the proposed model, we
conduct experiments on two real-world trajectory datasets
under varying experimental settings.

5.1 Datasets

We conduct experiments using two real-world vehicle tra-
jectory datasets: Chengdu and Porto. These datasets consist
of vehicle trajectories from Chengdu, China, and Porto,
Portugal, respectively. The Chengdu dataset was released
by Didﬂ and consists of GPS trajectories of taxis operatin:
in Chengdu. The Porto dataset was released on Kaggl
for a vehicle trajectory prediction contest. We also fetch the
road network of Chengdu and Porto from OpenStreetMapﬁ
for map-matching. For consistency in our analyses, these
datasets are both standardized to a sampling interval of 15
seconds. Trajectories that feature fewer than 6 points, being
relatively short, are excluded from our study. An overview
of dataset statistics can be found in Table[l]

1. https:/ / gaia.didichuxing.com/

2. https:/ /www.kaggle.com/competitions/
pkdd-15-predict-taxi-service-trajectory-i/data

3. https:/ /www.openstreetmap.org/


https://gaia.didichuxing.com/
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.openstreetmap.org/
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TABLE 1
Dataset statistics.

Dataset | Chengdu Porto
Time span 10.01-11.30, 2018 07.01-09.01, 2013
Longitude scope 104.04300~104.12654  -8.65200~-8.57801
Latitude scope 30.65523~30.72699 41.14201~41.17399
Number of road segments 2,505 2,225
Number of trajectories 121,394 55,120
Number of points 3,032,212 1,482,751

5.2 Comparison Methods

To assess the performance of the proposed model across
the three trajectory-related tasks outlined in Section we
benchmark its performance against a variety of state-of-the-
art methods. These include both universal trajectory models
and methods specifically designed for the tasks at hand.

5.2.1 OD TTE Methods

We benchmark the performance of the proposed model on
the OD TTE task against the following origin-destination
travel time estimation methods.

e RNE [49]: determines the path distances between road
segments by referencing their latent embeddings.

o TEMP [31]: calculates the mean travel times of historical
trajectories that align closely in terms of locations and
time.

¢ LR: establishes a linear mapping from input features to
travel times based on training labels.

e GBM: an advanced non-linear regression model, which
we implement via XGBoost [50].

e ST-NN [32]: concurrently predicts both travel distances
and travel times for OD pairs.

e MURAT [33]: jointly predicts travel distance and time
while utilizing the departure time as extra information.

e DeepOD [5]: exploits the correlation between input fea-
tures and historical trajectories during training.

o DOT [22]: a two-stage framework that generates an image
representation of trajectories for estimating travel time.

5.2.2 Trajectory Recovery Methods

We compare the proposed model on the TR task against the
following trajectory recovery methods, including both non-
learning-based and learning-based approaches.

o Shortest Path [51]: recovers paths between consecutive
points in sparse trajectories with Dijkstra’s shortest path
algorithm [52] on road networks.

o Linear [53]]: extends sparse trajectories using linear inter-
polation.

o TrImpute [23]: imputes sparse trajectories with a crowd
wisdom-based algorithm.

« DHTR [54]: combines the seq2seq framework [34] and
Kalman filtering to recover dense trajectories.

e AttnMove [15]: leverages Attention mechanisms to pre-
dict the sequence of road segments.

e MTrajRec [16]: employs a GRU-based auto-regressive
model to recover road network-constrained trajectories.

o RNTrajRec [17]: integrates the transformer model and the
inherent road network structure to recover trajectories.

5.2.3 Trajectory Prediction Methods

The following trajectory prediction methods for compari-
son encompass both models specifically designed for the
TP task, as well as general trajectory models. To generate
predictions, a prediction module implemented with fully-
connected network is incorporated into the embedding vec-
tors produced by these general trajectory models.

o trajectory2vec [39]: constructs behavior sequences to ex-
tract high-level correlations in trajectories.

e t2vec [18]: builds upon an auto-encoding framework,
offering a more robust general trajectory model.

e DeepMove [1]: an end-to-end Attentional RNN-based
sequential model designed for predicting future move-
ments.

o Transformer [25]: a widely-used sequential model that
excels at extracting correlations in long sequences.

e Trembr [19]: integrates road network information with
auto-encoding for general trajectory modeling.

e START [20]: incorporates both spatio-temporal correla-
tions and travel semantics for general trajectory modeling.

It is noteworthy that Trembr and START require road seg-
ment features for optimal functioning, which are not directly
obtainable in the context of sparse trajectories. Therefore,
the trajectories recovered by the most effective TR baseline,
RNTrajRec, are served as input to them during evalua-
tion. These combinations are denoted as Trembr+RNTR and
START+RNTR. We also report their performance when they
are fed with map-matched, real dense trajectories.

5.2.4 \Variations without pre-training or fine-tuning

To further assess the effectiveness of the pre-training and
fine-tuning processes within the proposed model, we intro-
duce two additional variations for comparison.

« UVTM w/o pt: excludes the pre-training process in Sec-
tion}4.4 and supervises the model solely with task-specific
generation.

« UVIM w/o ft: bypasses the fine-tuning process. After
pre-training the model, directly employs it to handle
tasks with task-specific input arrangements in a zero-shot
manner.

5.3 Settings

In both datasets, trajectories are initially sorted by departure
time, and then they are divided into training, validation,
and testing sets with ratios of 8:1:1. All methods undergo
training using the training set, and the validation set is
employed for hyper-parameter tuning and early stopping.
The final metrics are derived from the testing set. For the TR
and TP tasks, three sampling intervals are used, i.e., 1, 2, and
4 minutes, to simulate different levels of sparsity in trajec-
tories. The TR task aims to recover these sparse trajectories
into dense ones with a 15-second sampling interval. The TP
task aims to predict the road segments, fraction, coordinates,
and times of the trajectories’ destinations, given historical
trajectories except their last points.

To quantify the performance of the different approaches,
we employ different metrics for the three downstream tasks.
1) For the OD TTE task, we use the root mean squared
error (RMSE), mean absolute error (MAE), and the mean
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absolute percentage error (MAPE) to evaluate the accuracy
of estimated travel times. 2) For the TR task, following
MTrajRec [16], the Precision and Recall of the recovered road
segments are determined. Specifically, for each evaluation
sample, we gather the set £r of recovered road segments
and the set £ of ground truth road segments from the
road segment features. Then, the Precision is calculated as
IE%SG\, and the Recall is calculated as % Addition-
ally, the MAE of distances for the recovered coordinates and
road locations is determined. The distance between a pair of
recovered and ground truth trajectory points is determined
either by their shortest distance on the Earth’s surface or
the road network, depending on whether we are evaluating
the recovered coordinates or road locations. 3) For the TP
task, we report the Accuracy of the predicted road segment
indices, the distance MAE of the predicted coordinates and
road locations, and the MAE of the predicted time. Each
experiment is conducted 5 times and the average metric
values are reported.

The proposed method is implemented using Python and
PyTorch [55ﬂ Baselines are configured according to the
optimal parameter settings suggested in their respective
papers. Three key hyper-parameters in the proposed model
are considered during experiments, with their ranges and
optimal values reported in Table [2}

TABLE 2
Hyper-parameter range and optimal values.

Parameter | Range
d 32, 64,128, 192, 256
Ny, 1,2,4,8, 16
§ (meters) | 10,50, 100, 150, 200

5.4 Comparison with Baselines
5.4.1 Comparison on Overall Accuracy

Tables 8][4, and | present the performance results of different
approaches for the OD TTE, TR, and TP tasks, respectively.
The results indicate that the proposed model is capable of
consistently outperforming comparison methods on diverse
trajectory-related tasks, demonstrating its adaptability.

For the OD TTE task, the proposed model performs bet-
ter than the state-of-the-art baseline, DOT, owing to its pre-
training that enhances its understanding of the correlations
between trajectories and travel times. The superiority is fur-
ther substantiated by the fact that while DOT outperforms
UVTM wfo pt, it still lags behind the pre-trained and fine-
tuned UVTM.

For the TR task, a limitation associated with the com-
parison methods is that they are typically trained to fit
sparse trajectories with a specific sampling interval, thereby
constraining their generalizability. In contrast, the proposed
model, by leveraging pre-training, can adapt to trajecto-
ries with varying sampling intervals without necessitating
complete re-training. The performance of UVTM w/o ft
shows that the model can match or even exceed the best-
performing baselines without fine-tuning, emphasizing its
robustness to varying sampling intervals.

4. Codes available at https://github.com/Logan-Lin/UVTM

TABLE 3
Origin-destination travel time estimation accuracy comparison of
different approaches.

Datasets | Chengdu / Porto

Methods \ MAE (min) |  RMSE (min) | MAPE (%) |
RNE 1.087 / 2.357 4.967 / 7.168 18.185 / 53.894
TEMP 0.816 / 2.610 1.100 / 3.414 13.003 / 59.178
LR 0.815 / 2.596 1.097 / 3.408 12.997 / 58.390
GBM 0.773 / 2.200 1.202 / 3.116 11.142 / 43.308
ST-NN 0.770 / 2.136 1.031 / 3.027 12.470 / 45.285
MURAT 0.731 / 1.971 0.979 / 2.827 11.931 / 41.259
DeepOD 0.640 / 1.899 0.880 / 2.780 10.517 / 36.956
DOT 0.614 / 1.777 0.841 / 2.644 9.937 / 34.883
UVIM w/opt | 0.666 / 1.871 0.933 / 2.797 10.501 / 34.895
UVIM w/o ft | 2203 / 3.470 2469 /4694  35.039 / 45.700
UVTM 0.561 / 1.615 0.784 / 2.470 8.853 / 31.391

Bold denotes the best result, underline denotes the second-best
result. | means lower is better.

For the TP task, while Trembr and START are effective
in modeling dense trajectories, their performance decreases
notably with sparse trajectories. Pairing them with TR meth-
ods does not yield optimal results due to the accumulation
of errors in this configuration. In contrast, the proposed
model is tailored to accommodate sparsity, resulting in
excellent performance even when faced with sparse trajecto-
ries. Table | demonstrates that the proposed model, utilizing
sparse trajectories sampled at 1-minute intervals, can even
outperform Trembr and START fed with dense trajectories
sampled at 15-second intervals.

5.4.2 Comparison on Efficiency

We assess the efficiency of the different approaches across
three dimensions: model size, training time, and testing
time. The model size reflects the memory requirements
during operation, while the training and testing time pro-
vide insights into the efficiency during training and testing.
The calculations for model sizes are determined based on
the types and numbers of learnable parameters of each
approach. Furthermore, the training and testing times are
recorded on a machine equipped with an Intel(R) Xeon(R)
Gold 5215 CPU and an nVidia(R) Quadro RTX 8000 GPU.

As detailed in Table [7, the proposed model exhibits
similar or superior efficiency when compared with the lead-
ing methods for each task. Notably, in real-world scenarios
where multiple tasks are performed on the same dataset,
our model showcases even higher computational efficiency
compared to existing solutions. This is because our model
can be trained once and perform different tasks, while
existing solutions require separate training and storage for
each task. For instance, to execute the TTE, TR, and TP tasks
on the Chengdu dataset, opting for state-of-the-art baselines
would necessitate a training time of 20.675 minutes per
epoch. In comparison, training our model only requires
1.668 minutes per epoch.

5.5 Performance Analysis
5.5.1 Efficacy of Pre-training

The advantage of pre-training is assessed by comparing the
convergence rate of the proposed model on tasks when
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TABLE 4

Trajectory recovery accuracy comparison of different approaches.

10

Sampling Interval p

1 minute / 2 minutes / 4 minutes

Datasets |

Methods

Precision (%) 1

Recall (%) 1

MAE (Coor, meters) |

MAE (Road, meters) |

Chengdu

Shortest Path
Linear
TrImpute
DHTR
AttnMove
MTrajRec
RNTrajRec

62.638 / 43.504 / 29.431
66.642 / 48.604 / 36.209
77.520 / 60.179 / 57.526
53.514 / 53.608 / 50.985
84.162 / 81.402 / 78.645
85.039 / 82.596 / 80.684
87.653 / 83.174 / 79.404

59.346 / 40.949 / 27.607
65.557 / 45.234 / 30.496
76.202 / 58.461 / 53.747
58.868 / 47.918 / 46.311
81.839 / 76.612 / 69.257
83.351 / 80.113 / 72.952
86.025 / 80.150 / 72.633

213.10 / 428.69 / 752.19
183.64 / 385.23 / 675.85
166.82 / 276.56 / 408.64
205.59 / 317.45 / 450.61
252.59 / 280.20 / 354.39
243.01 / 264.15 / 311.53
215.24 / 234.27 / 326.92

206.91 / 391.39 / 586.09
169.46 / 378.96 / 564.19
155.71 / 265.34 / 387.36
300.67 / 470.46 / 547.41
201.51 / 258.69 / 323.52
173.67 / 204.58 / 282.88
114.04 / 148.04 / 292.61

UVIM w/o pt
UVIM w/o ft
UVTM

83.720 / 77.425 / 72.471
87.664 / 83.592 / 79.096
89.071 / 84.373 / 80.828

82.827 / 73.933 / 62.757
85.837 / 78.406 / 70.717
88.249 / 81.520 / 73.212

194.30 / 272.86 / 479.49
137.69 / 217.85 / 350.29
133.38 / 192.54 / 304.72

86.15 / 230.68 / 448.98
81.81 / 167.16 / 315.07
67.98 / 143.48 / 275.37

Porto

Shortest Path
Linear
TrImpute
DHTR
AttnMove
MTrajRec
RNTrajRec

69.780 / 53.590 / 40.492
72.961 / 60.966 / 48.529
76.781 / 66.492 / 50.021
63.287 / 58.897 / 52.658
79.541 / 75.751 / 71.248
78.081 / 72.847 / 64.566
80.305 / 77.094 / 75.573

60.354 / 46.263 / 33.758
63.146 / 48.401 / 35.507
69.599 / 58.676 / 43.052
62.511 / 56.444 / 42.462
67.116 / 56.751 / 48.991
71.853 / 60.068 / 46.110
74.953 / 65.370 / 50.965

202.17 / 434.37 / 679.72
196.51 / 403.05 / 621.88
132.76 / 275.43 / 430.22
235.32 / 292.65 / 355.23
184.70 / 222.51 / 304.31
168.34 / 283.90 / 496.96
135.17 / 175.42 / 294.08

165.02 / 319.32 / 478.66
132.76 / 275.43 / 430.22
128.48 / 235.63 / 347.30
285.68 / 336.48 / 389.18
134.17 / 184.03 / 251.92
121.64 / 215.40 / 391.67
111.75 / 152.49 / 230.30

UVIM w/o pt
UVIM w/o ft
UVTM

81.058 / 73.842 / 67.189
81.716 / 79.067 / 74.732
82.640 / 79.494 / 77.068

77.683 / 61.987 / 42.688
75.144 / 63.059 / 50.269
78.605 / 66.850 / 53.436

132.97 / 229.11 / 496.99
118.79 / 194.37 / 338.30
103.06 / 164.75 / 282.61

69.70 / 204.01 / 488.13
76.46 / 159.81 / 320.79
63.18 / 138.66 / 242.08

Bold denotes the best result, and underline denotes the second-best result. T means higher is better, and | means lower is better.

TABLE 5

Trajectory prediction accuracy comparison of different approaches.

Sampling Interval p

1 minute / 2 minutes / 4 minutes

Datasets |

Methods

Accuracy (%) 1

MAE (Coor, meters) |

MAE (Road, meters) |

MAE (Time, seconds) |

Chengdu

trajectory2vec
t2vec
DeepMove
Transformer
Trembr+RNTR
START+RNTR

31.496 / 24.403 / 17.163
53.349 / 43.303 / 35.058
58.499 / 45.985 / 37.338
65.192 / 60.028 / 55.139
52.065 / 43.196 / 34.655
59.462 / 48.466 / 40.941

1514.5 / 1682.8 / 1861.6
528.65 / 602.45 / 731.00
319.14 / 461.73 / 664.93
374.36 / 402.11 / 431.01
421.95 / 482.67 / 561.89
375.39 / 421.45 / 481.32

1322.0 / 1616.5 / 1957.5
286.18 / 434.27 / 635.45
258.96 / 397.95 / 607.42
236.86 / 287.61 / 320.92
398.76 / 455.98 / 532.03
355.00 / 399.66 / 457.35

14.474 / 20.722 / 37.256
13.016 / 19.539 / 34.488
11.994 / 19.435 / 35.039
16.287 / 29.848 / 34.226
14.346 / 19.110 / 28.659
12.771 / 14.439 / 19.443

UVIM w/o pt
UVIM w/o ft
UVTM

71.795 / 50.041 / 33.882
67.064 / 61.766 / 53.949
82.820 / 78.921 / 72.083

376.05 / 540.89 / 857.43
368.30 / 452.75 / 544.02
260.31 / 303.44 / 362.32

263.83 / 568.73 / 942.64
230.24 / 320.19 / 443.43
128.44 / 200.80 / 260.13

5.301 / 10.198 / 9.562
6.084 / 12.189 / 9.910
3.821 / 7.919 / 7.131

Porto

trajectory2vec
t2vec
DeepMove
Transformer
Trembr+RNTR
START+RNTR

13.396 / 10.178 / 5.440
38.945 / 30.805 / 22.812
43.774 / 33.562 / 23.645
43.441 / 39.425 / 33.685
40.128 / 34.857 / 26.004
52.118 / 43.617 / 34.931

1709.3 / 2108.9 / 2488.5
432.77 / 528.89 / 732.13
252.22 / 390.57 / 679.62
323.58 / 351.18 / 402.32
413.20 / 471.45 / 620.77
351.98 / 416.83 / 503.32

2227.4 / 2425.6 / 3003.6
206.95 / 346.72 / 641.26
197.89 / 328.93 / 681.40
216.18 / 256.89 / 283.72
393.18 / 448.74 / 597.73
333.56 / 396.39 / 483.41

31.442 / 46.097 / 54.585
17.420 / 28.436 / 48.651
16.998 / 26.309 / 46.629
18.231 / 30.541 / 49.083
18.915 / 21.843 / 28.683
14.729 / 17.722 / 22.455

UVIM w/o pt
UVIM w/o ft
UVTM

61.480 / 46.938 / 31.304
48.770 / 48.474 / 44477
68.529 / 67.697 / 65.125

307.23 / 369.86 / 649.71
325.58 / 370.04 / 454.70
238.83 / 232.15 / 322.63

145.36 / 295.58 / 624.11
170.32 / 193.40 / 279.12
99.67 / 103.79 / 140.17

10.853 / 11.316 / 11.643
11.509 / 18.342 / 18.081
6.845 / 9.449 / 11.549

Bold denotes the best result, and underline denotes the second-best result. T means higher is better, and | means lower is better.

TABLE 6
Trajectory prediction accuracy comparison between baselines fed with

dense trajectories and the proposed model.

employed with and without pre-training. Specifically, we

Figure[7]

Datasets

Chengdu / Porto

track the performance metrics of the proposed model on
tasks across training epochs. The findings are shown in

The observations are clear: across both TR and TP tasks,

the pre-trained model consistently outperforms its non-

Methods o \ Accuracy (%) MAE (Coor, m.) MAE (Time, sec.)
Trembr  15sec. | 66.077 / 52.063  399.40 / 362.84 8.534 / 15.046
START 15sec. | 74.990 / 62.997 354.76 / 318.26 8.068 / 12.476
UVTM 4 min. | 72.083 / 65.125 362.32 / 322.63 7.131 / 11.549
UVTM 1 min. | 82.820 / 68.529 260.31 / 238.83 3.821 / 6.845

pre-trained counterpart in terms of convergence rate. This
demonstrates the model’s capability to smoothly transi-
tion between different tasks with minimal fine-tuning. By

Bold denotes the best result, underline denotes the second-best result. achieving SllperiOI' performance in fewer epOChS, the pre-

training process enhances computational efficiency, partic-
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TABLE 7
Efficiency metrics of different approaches.

Datasets Chengdu / Porto
Model size Train time Test time
Tasks Methods (MBytes) (min/epoch) (sec)
RNE 2.446 / 2.173 0.100 / 0.040 0.170 / 0.062
ST-NN 1.185 / 1.185 0.112 / 0.082 0.220 / 0.085
OD MURAT 9.120 / 8.847 0.153 / 0.095 0.210 / 0.075
TTE DeepOD 8.184 / 7.928 0.382 / 0.171 0.328 / 0.099
DOT 8.763 / 8.496 1.552 / 0.752 1.672 / 0.926
UVIM 10.146 / 9.333 0.533 / 0.336 1.231 / 0.647
TrImpute 2.778 / 1.262 -/- 6.110K / 2.199K
DHIR 6.426 / 6.426 0.176 / 0.115  2.503K / 0.257K
TR AttnMove 6.799 / 6.250 6.844 / 2.460 92.673 / 32.081
MTrajRec 19.180 / 18.495 8.470 / 4.437 0.125K / 54.062
RNTrajRec 20.639 / 19.876  8.925 /4.463  0.144K / 60.861
UVIM 10.146 / 9.333 1.668 / 1.470 21.984 / 15.237
trajectory2vec 6.306 / 6.306 0.158 / 0.085 0.204 / 0.110
t2vec 7.170 / 7.170 0.278 / 0.109 0.221 / 0.113
DeepMove 5.282 / 5.282 0.253 / 0.126 0.567 / 0.292
TP Transformer 6.295 / 6.295 1.090 / 0.538 3.568 / 1.596
Trembr+RNTR | 26.103 / 25.792 9.468 / 5.072 0.149K / 62.500
START+RNTR | 28.708 / 27.099 10.198 / 5.420  0.158K / 65.468
UVTM 10.146 / 9.333 1.667 / 1.450 3.357 / 1.703

—8— w/ pretrain ;4 = 1 minute —— w/ pretrain ;1 = 2 minutes —e— w/ pretrain ; = 4 minutes

—+— w/o pretrain ;1 = 1 minute —— w/o pretrain y = 2 minutes —— w/o pretrain y = 4 minutes
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Fig. 7. Comparison of convergence rate with or without pre-training in
Chengdu.

ularly in situations where a single dataset is utilized for
multiple tasks.

5.5.2 Scalability of Pre-training with Limited Data

The construction of pre-training samples in the proposed
model requires a certain amount of densely sampled trajec-
tories. Thus, it is of interest to determine how effectively the
model operates when faced with limited dense trajectories.
To assess this aspect, we examine the scalability of the
model in scenarios where only a subset of the training dense
trajectories is available for the pre-training phase.

The results in Figure [§| offer several insights. Notably,
the proposed model exhibits strong consistency. Even when
the pre-training is performed with limited data, the per-

formance remains relatively robust. This underscores the
model’s potential in practical contexts where obtaining
large-scale dense trajectories might pose challenges. Fur-
thermore, a significant improvement in performance is evi-
dent when comparing the results at 20% scale to those of the
model without any pre-training (0% scale). This is further
evidence of the benefits of the pre-training.

5.5.3 Scalability of Fine-tuning with Limited Task-specific
Data

Comparing the model’s performance with and without fine-
tuning in both Tables 3| and 5} reveals a clear advantage
when fine-tuning is applied. This can be credited to the
difference in input arrangements between pre-training and
specific tasks. Such a marked difference raises the question:
does the model rely on extensive fine-tuning datasets to
achieve optimal performance?

To answer the question, we investigate the model’s scal-
ability under scenarios where only a fraction of the task-
specific data is available for fine-tuning. It is clear from
the results in Figure 9] that the proposed model exhibits a
remarkable stability at approximating its best performance
when given just 20% of the full fine-tuning datasets. Com-
paring these results against a scenario where no fine-tuning
is performed (0% scale), we see that even a minuscule
fine-tuning dataset can facilitate the model to improve its
accuracy on tasks. These findings underscore the model’s
utility in the real-world, where gathering large-scale task-
specific labeled datasets can be challenging.

5.5.4 Effectiveness of Hyper-parameters

We analyze the influence of the three primary hyper-
parameters in Table 2] on the performance of the model.
The results are presented in Figure We highlight the
following observations:

1) The embedding dimensionality d determines the expres-
sive power of the model. As evident from Figure
an increase in d typically yields improved performance.
However, beyond d = 128, the gains in performance are
marginal, while the computational and memory over-
heads continue to grow. Therefore, d = 128 appears to
be an ideal trade-off between performance and computa-
tional efficiency.

The number of Attention heads [V}, controls the represen-
tational capacity of the encoder in our model. Drawing
from Figure the most beneficial value of both
Precision and MAE occur at N}, = 8.

The distance threshold ¢ determines the spatial scope of
road segment neighbors. The insights from Figure
suggest its primary effect is on the precision of the
generated road segments, with minimal influence on the
accuracy of predicted coordinates. A peak in Precision
is observed at § = 100. Employing a smaller threshold
might result in missed road segment candidates, while
a larger threshold can introduce more noise into the
generation progress.

2)

3)

5.5.5 Effectiveness of Modules

To determine the impact of individual features and modules
in the proposed model, we conduct an ablation study. This
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TABLE 8
Effectiveness of features and modules on the sparse trajectory
recovery task in Chengdu.

Sampling Interval | 1 minute / 2 minutes / 4 minutes

Variations | Precision (%) MAE (Coor, meters)
w/o neigh. 76.834 / 74.494 / 71.950  128.36 / 193.41 / 300.30
w/0 coor. 78.891 / 77.345 / 72433 162.03 / 284.03 / 444.69
w/o time 86.821 / 83.230 / 77.055  140.98 / 203.23 / 318.81
w/o shuffle 84.406 / 77.467 / 73.589  158.95 / 276.26 / 433.86

85.548 / 79.874 / 74.162
86.051 / 81.433 / 76.964
89.071 / 84.343 / 80.828

142.02 / 216.87 / 323.66
145.67 / 218.25 / 327.71
133.38 / 192.54 / 304.72

Flat encoder
FC num. enc.
UVIM

involves contrasting the performance of the complete model
with the performance of the following variations.

1) w/o neigh.: excludes the set of road segment neighbors
Q(I;) in Equation

w/o coor.: excludes the coordinate feature /; in Equation [T}
w/o time: excludes the time feature ¢; in Equation [i}

w/o shuffle: does not shuffle the order of generated spans
during the pre-training procedure.

Flat encoder: calculates h; as the mean pooling of Z;
instead of using self-attention.

FC num. enc.: replaces the encoding module & with a fully

connected network.

2)
3)
4)

5)

6)

The results are computed on Chengdu’s test set for
the TR task, as shown in Table |8 We draw the following
observations:

1) The road segment neighbors, coordinates, and time fea-
tures collectively enhance the efficacy of the model. Ex-

cluding any of these features yields a noticable drop in
performance.

2) Omitting shuffling when performing pre-training limits
the model’s ability to capture bi-directional correlations
in trajectories, causing a decline in performance.

3) The hierarchical attention in the trajectory encoder and
the encoding module in the feature domain embedding
layer are effective at enhancing the model’s performance.

6 CONCLUSION

In this paper, we introduce UVTM, a versatile and robust
universal vehicle trajectory model. UVTM is distinguished
by its ability to be trained once on a given dataset and
subsequently adapt to a variety of trajectory-related tasks
without relying on additional prediction modules. To en-
sure its applicability across diverse tasks, particularly those
involving input of incomplete trajectories, UVIM separates
spatio-temporal features in trajectories into three distinct
domains. This design enables the independent masking and
generation of each domain to accommodate the unique
input and output needs of different tasks. Furthermore,
UVTM'’s robustness to sparsity is enhanced through a pre-
training process. During this process, UVIM learns to recon-
struct the feature domains of densely sampled trajectories
from their re-sampled sparse counterparts, thus maintaining
its performance in the presence of sparsity. The versatil-
ity and robustness of UVIM are able to improve both
computational and storage efficiency in ITS, facilitating the
execution of multiple tasks with a single model and enabling
efficient dataset downsizing through re-sampling. Empirical
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evaluation on two real-world vehicle trajectory datasets and
three representative tasks demonstrates UVTM’s superior
performance, proving UVIM'’s effectiveness in achieving its
objective of universal trajectory modeling.
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