
Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

Pranav Subramaniam
1
, Sanjay Krishnan

1

1
University of Chicago

{psubramaniam,skr}@uchicago.edu

ABSTRACT
In every enterprise database, administrators must define an access

control policy that specifies which users have access to which assets.

Access control straddles two worlds: policy (organization-level prin-

ciples that define who “should” have access) and process (database-

level primitives that actually implement the policy). Assessing and

enforcing process compliance with a policy is a manual and ad-hoc

task. This paper introduces a new paradigm for access control called

Intent-Based Access Control for Databases (IBAC-DB). In IBAC-

DB, access control policies are expressed more precisely using a

novel format, the natural language access control matrix (NLACM).

Database access control primitives are synthesized automatically

from these NLACMs. These primitives can be used to generate

new DB configurations and/or evaluate existing ones. This paper

presents a reference architecture for an IBAC-DB interface, an ini-

tial implementation for PostgreSQL (which we call LLM4AC), and

initial benchmarks that evaluate the accuracy and scope of such a

system. We find that our chosen implementation, LLM4AC, vastly

outperforms other baselines, achieving near-perfect F1 scores on

our initial benchmarks.

1 INTRODUCTION
Over the last several years, there has been a proliferation of easy-

to-use software tools for data science. Organizations of all sizes

and from all industries are applying data-driven models to make

decisions. This trend, which is often called the democratization

of data science [14], is as worrying as it is exciting. On one hand,

some of humanity’s most difficult scientific challenges are being

addressed with data science from particle physics to drug discov-

ery. On the other hand, there are numerous cautionary tales of

data misuse, data breaches, data quality issues, and improper data

sharing [17, 21–23, 27]. Data governance, the process of manag-

ing the availability, usability, integrity, and security of the data in

enterprise systems, has consequently emerged as a key discipline

in enterprise data management. Access control is one of the most

important technical challenges in data governance, where a system

must ensure that only authorized users can access particular data

assets.

In any sizeable organization, it is impractical to exhaustively

map individual users to data assets. Thus, role-based access control

(RBAC) was a key innovation in data governance and is widely

supported by data management platforms where groups of users

can be selectively given access [26]. Such forms of access control

are well-studied in enterprise SQL databases, where roles, views,

and GRANT statements are already used to restrict user access to

data [10, 11, 13]. Similarly, many databases additionally support

Figure 1: Access Control Policies (Written in Natural Lan-
guage Documents) to Process (Written in SQL GRANT state-
ments)

discretionary access control (DAC) where roles can be given dele-

gation privileges. RBAC and DAC help reduce the administrative

burden in defining access control rules for a database.

Despite these features, access misconfiguration is still widely

described as a major cyber-security risk and a business cost [29].

Access control fundamentally straddles two different worlds: pol-

icy and process. Policy describes an organization’s intentions with

respect to access control, data retention, authorization, etc. These

are broad principles that govern how an organization chooses to

delegate access to data assets. Policies are often constructed with

legal or regulatory advice and are specified in documents, reports,

and guidelines. Process, on the other hand, describes the translation

of these policies into actionable code and rules that implement such

functionality. Going from policy to process often requires identify-

ing which text in a document corresponds to access control rules

in a database, and which database components (schema elements,

database roles, etc.) these rules reference.

For example, consider the access control policy document shown

in Figure 1. These documents form a critical part of an organiza-

tion’s security infrastructure and are needed for compliance [4]. An

access control policy document is typically written in natural lan-

guage (NL), and often contains statements that are not relevant for

database access control (e.g., job descriptions, such as “Marketing

managers are responsible for making decisions based on customer

data and product sales.”). Further, even after one has identified the

relevant parts of a policy document (e.g., “Marketing managers

can look at customer data. They are responsible for granting their

read privileges to regional managers, for regional customer data.”),

one must identify which permissions are being given on which

tables/views for which roles/users, and generate the appropriate

SQL role/user creation statements, view creation statements, and

GRANT statements. Lastly, once an access control policy has been

implemented in a database, one should be able to audit the im-

plementation to determine whether the policy was implemented

correctly.

ar
X

iv
:2

40
2.

07
33

2v
1 

 [
cs

.D
B

] 
 1

1 
Fe

b 
20

24



Pranav Subramaniam1 , Sanjay Krishnan1

Often, the individuals or groups in charge of developing pol-

icy, e.g., security experts, organizational counsel, and insurance

providers, do not have the expertise to advise their correct imple-

mentation in a database system. As the database ecosystem grows

with new tools, each one has its own access control idiosyncrasies

and specification languages. Today’s IT practice leaves both policy

makers and database administrators with a lack of information

that would help verify that a given access control implementation

matches an organization’s intent. As a step towards a solution, this

paper studies directly specifying access control policies in natu-

ral language, and automatically implementing and auditing such

policy implementations for correctness. Specifically, we make the

following contributions:

• IBAC-DB: A new paradigm for database access control called

Intent-Based Access Control for Databases (IBAC-DB)
1
. An IBAC-

DB system does not just specify access control rules, but can in-

telligently evaluate these rules against natural language policies

to identify potential violations.

• LLM4AC: A system built from a reference architecture for an

IBAC-DB implementation that provides a novel format for speci-

fying access control policies, automatically implementing them,

and comparing implementations to policies for correctness.

• Differencing Definition and Algorithm: A novel definition

and algorithm for differencing access control policies with their

implementations to compare policies with their implementations.

• Differencing Benchmark Design: a novel benchmark for test-

ing that an IBAC-DB system can correctly determine whether

an access control policy matches its implementation.

Specifically, IBAC-DB enables easy identification and extraction of

database access control rules from NL using the natural language
access control matrix (NLACM), a novel abstraction. We implement

access control policies by adapting NL2SQL systems to generate

access control SQL, a capability which no current NL2SQL systems

possess. We compare a policy to its implementation using a novel

differencing procedure, which uses LLMs to determine which access

control rules were implemented that do not comply with the policy.

We find that the accuracy of this procedure increases greatly when

we prune the candidate matches input to the LLM that do not

have matching DB literals first. This allows LLM4AC to achieve

near-perfect F1 scores on our benchmarks (e.g., F1 scores of 0.99).

2 BACKGROUND
First, we introduce some notation and formalism to scope the IBAC-

DB problem.

2.1 Access Control Definitions
Let us consider access control to a single database. Over this data-

base, there are a set of possible users𝑈 . These users can run a set

of possible SQL statements 𝑆 over this database. An access control

scheme is a set of rules that specifies who should be given access

under what conditions. Formally, an access control scheme for a

database is a program, that determines whether a particular user is

allowed to run the desired SQL statement over the database:

P(𝑢𝑠𝑒𝑟, 𝑠𝑡𝑚𝑡) : 𝑈 × 𝑆 ↦→ {𝑎𝑙𝑙𝑜𝑤𝑒𝑑, 𝑑𝑒𝑛𝑖𝑒𝑑}
1
Inspired by similarly named techniques in network and firewall configurations.

P describes a literal implementation of access control for a par-

ticular database. For example, in an SQL database, P is defined as

a sequence of GRANT statements. However, such programs are

not created in a vacuum. An access control policy is a set of rules

that specifies who should be given access to what resources. For

example, an organization’s regulatory posture may dictate who

has access to data (e.g., only relevant doctors may view electronic

health records). Or, an organization’s security team may implement

a particular minimal privilege strategy (e.g., only senior manage-

ment can modify customer records). Whatever the reason, these

decisions are described at a higher level of abstraction than P.

SOC-2 compliance requires that access control policies be speci-

fied in an access control matrix [4]. An access control matrix defines

rows that are users (or groups) and columns that are data assets.

The cells of this matrix specify the allowed operations of that user

on the asset. Similarly, research institutions that work with identi-

fiable information need to submit data management plans written

in document form to institutional review boards and funding agen-

cies [5, 6]. In general, access control policies are written in natural

language or quasi-natural language (e.g., an access control matrix)

by a database non-expert. To correctly implement such policies, one

must determine which parts of the policy represent access control

rules for the database, and which components of the database those

parts refer to. This can require multiple rounds of communication

between a policy expert and a database expert (e.g., a database

administrator) [1, 2, 7, 16].

2.2 Auditable Access Control
We have to compare two access control schemes P, which is a

scheme specified on the database in SQL, and P∗
, which is a scheme

specified in natural language. Hereafter, we will refer to P as an ac-

cess control “implementation” and P∗
as an access control “policy”.

We fully understand that there is inherent imprecision in natural

language and there might not exist an unambiguous P∗
; however,

we scope our initial exploration of this problem in such a way to

avoid such ambiguities. The main goal is to be able to check for

compliance, or formally:

Definition 1 (Compliance). An access control implementation
P is compliant against a policy P∗ if and only if

∀(𝑢, 𝑡) ∈ 𝑈 ×𝑇 : P(𝑢, 𝑡) =⇒ P∗ (𝑢, 𝑡)

This definition states that every allowed SQL statement in P is

also allowed in P∗
, or in other words, P is at least as restrictive

P∗
. Many solutions have been developed that enable automated

implementation and verification of access control policies. However,

we will see that these come at the cost of restricting access control

rules that can be expressed.

One solution is to adhere to an access control paradigm for

specifying access control policies, such as role-based access control

(RBAC), discretionary access control (DAC), etc. Adhering to these

paradigms alone can greatly simplify defining and implementing

access control policies. For example, if one defines a role-based

access control policy on a database, one need only implement it

by concatenating the SQL describing the roles, tables/views, and

privileges into a SQL GRANT statement. However, implementing

such policies through a database system alone requires database



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

expertise and explicit enumeration of the complete set of access

control rules for all database users.

To reduce the expertise and manual effort needed to implement

an access control policy, prior work has focused on allowing ac-

cess control to be defined via programming languages for access

control [3, 20, 34], which can then be translated into database priv-

ileges, often with guarantees on the correctness of translation, or

automated verification via model-checking.

These programming languages allow automatic and provably

correct implementation of access control policy. However, they

restrict the access control rules that can be expressed, compared to

natural language. For example, ShillDB, a recent contract language

for database access control, cannot express access control rules

on nested queries [34], but natural language could easily express

access control rules on such a query (e.g., Q4, the order priority

checking query, from TPC-H).

Based on existing access control solutions, we find that on the one

hand, one can use NL to represent policies, but then implementation

and auditing for correctness are manual. On the other hand, you can

use access control paradigms or languages which automatically and

correctly implement access control policies, but then the expression

of access control rules is limited.

2.3 Problem Statement
Therefore, in this paper, we solve the problem: how do we enable
access control policies to be expressed in natural language, while still
allowing automated, correct implementation and auditing of access
control schemes? We address this problem by making the following

contributions:

(1) We propose a new paradigm for access control called Intent-based
Access Control for Databases (IBAC-DB), which uses the natural
language access control matrix (NLACM) as the input.

(2) We propose LLM4AC, a reference architecture for an IBAC-DB

interface.

(3) To allow for policy auditing, we define differencing, a procedure
for comparing an access control policy and its implementation.

Note that we cannot formally verify the correctness of imple-

mentations, due to the imprecision of natural language. However,

we find that our differencing procedure for auditing policies is

mostly correct in practice.

2.4 Existing NL2SQL Capabilities
NL2SQL systems seem helpful in implementing NL access control

policies as SQL. Current NL2SQL capabilities focus on converting

natural language questions about information in a database to

queries (typically SELECT queries) [15, 24, 30, 32]. The state-of-the-

art NL2SQL methods develop procedures for prompting LLMs to

generate accurate SQL, such as ChatGPT [15] or GPT-4 [19].

However, to our knowledge, current NL2SQL benchmarks do not

contain examples that generate access control queries [28, 32, 33],

and the database system used for evaluation in most cases is SQLite,

which does not support access control.

Further, it is not obvious how to bridge this gap between state-

of-the-art NL2SQL methods and the access control use case. For

example, enhancing LLM-backed NL2SQL systems by adding naive

prompting of ChatGPT can produce an incorrect answer. When

Figure 2: Comparison ofNL2SQLTranslation by LLMmethod,
with respect to syntax and Forward-Reverse-Forward (FRF)
Accuracy. Columns are access control policies.

given the prompt, Write the postgresql commands to implement
such access control, given the database schema, two of the queries

generated by ChatGPT are "GRANT CREATE ON ALL TABLES IN

SCHEMA public TO data_architect;" and "GRANT CREATE ON

ALL VIEWS IN SCHEMA public TO data_architect;". The second

query is unnecessary, and uses the word "VIEWS" in the grant

statement which does not exist.

Simply using NL2SQL methods as-is by inputting access control

policy documents can also be inaccurate. Consider a straightfor-

ward access control rule: "Grant the user John select access on the

customer table with the option of passing down this privilege."

C3 [15] translates this NL to the SQL "GRANT SELECT ON cus-

tomer TO John;". This is incorrect because it ignores the option

of passing down the privilege–the query must be suffixed with a

"WITH GRANT OPTION".

On the other hand, we find that C3 more accurately generates all

other GRANT statements when given a natural language sentence

that clearly spells out the role, table/view, and privilege, compared

to naive prompting, or prompts engineered using typical prompt

engineering techniques (e.g., few-shot learning, chain-of-thought

prompting, etc.). In Figure 2, we compare naive prompting of Chat-

GPT (the "Naive" method), a chain-of-thought prompting solution

(the "Rolled" method), and C3, a state-of-the-art NL2SQL system,

with respect to accuracy of the generated syntax, and forward-

reverse-forward (FRF) accuracy. We systematically perform this

comparison on access control policies containing role hierarchies

of various complexities, view creation, and discretionary access

control. We synthetically generate 100 policy documents of each

type, and compute the accuracy based on the syntax/FRF accuracy

of the synthesized SQL script. We see that C3’s syntax and FRF ac-

curacy far exceeds prompting solutions. This suggests that altering

NL2SQL methods for access control may facilitate implementation

of access control in databases.

Based on these examples and initial experiments, rather than

trying to train NL2SQL systems to 100%, we hypothesize if access

control policies can be formatted to clearly reflect a role, privilege,

and view, and we can correctly represent access control policies in

terms of the database roles, views, and privileges that correspond

to the policy, then NL2SQL methods adapted for access control can

correctly implement access control policies.

3 ACCESS CONTROL VIA INTENTS
In this section, we explain what an access control policy intent is,

and bridge the gap between NL policy and process for RDBMSs via

a new access control scheme called Intent-based access control for



Pranav Subramaniam1 , Sanjay Krishnan1

databases, or IBAC-DB. Then, we present our system for enabling

this paradigm, LLM4AC.

3.1 Specifying Intents
Database access control rules are specified as GRANT statements,

each of which consists of the allowed SQL operators for a role/user

on a table/view. We refer to NL or SQL that references key elements

of access control rules (roles/users, tables/views, or permitted SQL

operations) as intents. Then, intent-based access control (IBAC-DB)

enables the specification of access control policies using intents.

IBAC-DB achieves this using a novel abstraction called the natural
language access control matrix, or NLACM. A NLACM specifies data-

base access control rules as follows: a row represents privileges for

a database role/user, a column represents privileges for a table/view,

and a cell represents the allowed SQL operators. In this way, each

matrix cell represents an access control rule.

Definition of NLACM.: Let 𝐷 be a database schema, which con-

sists of: (i) table schema definitions, (ii) view definitions, (iii) role

and user definitions. Then, a NLACM is a𝑚 × 𝑛 matrix where each

row represents the database privileges of a role/user in the database,

and each column represents a table/view. The (𝑖, 𝑗)th cell represent

the privileges of role 𝑖 on table/view 𝑗 .

NLACMs specify access control rules not already implemented

in the database. Toward this, they have the following constraints:

• Each role/user appears in only one row of the NLACM.

• Each view appears in only one column of the NLACM.

• (Principle of Failsafe Defaults): There can be roles, views in the

DB that do not appear in the NLACM, and we assume they do

NOT have any privileges defined.

• Empty cells are permitted, indicating no privilege is assigned.

• Non-empty cells indicate which SQL operators are permitted for

a given role/user on a given view.

• Each role and each view can be expressed either as NL or SQL,

and the privileges can be a list of SQL operators, or NL.

• Columns are table names expressed in NL, or view definitions

that appear in the database.

We provide a solution for specifying database access control

policies in NL whose implementation is in SQL, but our solution is

compatible with any language for implementing database access

control. This is because of how database access control is imple-

mented in RDBMSs. Whenever a user issues SQL queries, the DBMS

uses specialized algorithms to check the query against GRANT state-

ments [8, 9]. Therefore, access control is carried out according to

the SQL standard rather than an implementation involving system

internals.

3.2 The Benefits of NLACMs
Using NLACMs for access control policies instead of plain NL has

three key benefits: (i) NL access control policy documents often

contain information irrelevant to implementing the policy in a

database. The structure of NLACMs guarantee that all NL will be

relevant to the database. (ii) NL is often ambiguous with respect to

the access control rules. The structure of NLACMs alleviate this

ambiguity. (iii) NLACMs maintain much of the expressivity of NL

Figure 3: The LLM4AC Architecture

for access control despite their structure. In this section we discuss

these benefits of NLACMs in depth.

NL policies often contain irrelevant information to implementing

access control policies. For example, an access control policy tem-

plate [2] has a sentence, This policy is the property of CompanyName
and is intended for internal use only. It should not be reproduced, par-
tially or wholly, in whatever form.. Another example is, A database
administrator is responsible for the usage, accuracy, efficiency, security,
maintenance, administration and development of an organization’s
computerized database(s), providing support to some or all depart-
ments depending on the size of the organization.. These sentences are
clearly not intended to be implemented as GRANT statements on a

database. On the other hand, the NLACM’s structure lends itself

precisely to database access control rules: the (𝑖, 𝑗)th cell represents
the allowed SQL operators for role/user 𝑖 on table/view 𝑗 .

Even when NL describes database access control rules, it can be

very ambiguous. For example, one database access control policy

says, SELECT privilege grants a user’s access on views and tables
should be limited to authorized personnel.. It is unclear whether
this sentence is intended as a general guideline, or a sentence that

should result in GRANT statements on the database. Specifically,

it is unclear whether to assume that authorized personnel have

SELECT privileges on all tables and views in the database. It is also

unclear which roles and users are being referenced by "authorized

personnel". If this sentence appeared in a NLACM, it would make it

clear that this sentence is not a general guideline, and there should

be a one-to-one or one-to-many relationship between "authorized

personnel" and the database roles/users.

Although NLACMs are a constrained version of NL, they can still

be used to express many access control constraints using NL. For

example, NLACMs can represent role hierarchies (e.g., a NLACM

entry says, "Same as role x"), subsumed views (e.g., a NLACM

column name says, "the first 100 rows of View 1"), and dynamic

access control constraints (e.g., "read access only from 9am-5pm

on weekdays"). Lastly, NLACMs allow IBAC-DB to subsume RBAC

(role-based AC) and DAC (discretionary AC), because IBAC-DB

intents can be written in NLACMs using plain SQL. In this case, the

NLACM becomes a standard ACM representing RBAC and DAC

policies.



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

Figure 4: LLM4AC Synthesizer Procedure for Policy Imple-
mentation

Figure 5: LLM4ACDifferencer Procedure for Policy Auditing.

3.3 A Reference Architecture for IBAC-DB
We propose a reference architecture and system, LLM4AC, for an
IBAC-DB interface (see Figure 3 for the full architecture). LLM4AC

synthesizes access control policies and compares for the compliance

of the implementation as follows: it takes a NLACM expressing an

access control policy and a DB schema as input, synthesizes database
access control rules (GRANT statements), and then assesses the

compliance of the implementation by generating a NLACM from

the DB access control rules and differencing the resulting NLACM

and the NLACM expressing the policy. We explain each of these

steps in detail below and explain the design space for a system built

using this reference architecture.

Synthesizer. The synthesizer procedure is shown in Figure 4.

LLM4AC takes a NLACM representing a policy and a DB schema as

input. Then, we use a LLM-backed NL2SQL system, such as C3[15],

which we modify for access control by implementing the novel

prompting strategies for generating tables/views, privileges, and

GRANT statements from NL in Figure 4. Specifically, we add rules

for generating access control SQL and accompanying few-shot

examples. We also add chain-of-thought prompting to generate

privileges from NL descriptions. The output is a SQL file consisting

of GRANT statements, and CREATE ROLE/USER statements.

Generator. The generator procedure simply extracts the list of

role/user-privilege-table/view triples from the database (either in

the form of a list of GRANT statements issued, or a metadata table

containing privileges), and constructs an ACM from these triples.

Differencer. The differencing procedure is shown in Figure 5. The

differencer takes two NLACMs as input and determines if the sec-

ond NLACM is in violation compared to the first. That is, either

there are roles or views that are assigned privileges in the second

NLACM that are not in the first NLACM, or the same role or view

in the second NLACM has more permissive privileges than in the

first. The differencer performs the following high-level steps: (a)

label each role, view, or privilege in the NLACM as NL or SQL, (b)

determine which role-view pairs are shared by both NLACMs by

first identifying role-view pairs that share literals from the data-

base, and then giving only these candidate pairs to LLM prompts

specialized for comparing NL vs NL and NL vs SQL, (c) for the

role-view pairs deemed identical by the LLM, determine whether

the privileges are subsumed. The output of differencing will be the

role-view pairs and privileges that are in violation.

TheDesign Space. (1)DBMS SQL Syntax RulesDifferent DBMSs

have varying support for access control. For example, SQLite’s SQL

variant has no constructs for access control at all, while PostgresQL

supports table and row-level access control, but must implement

column-level access control indirectly. Databricks SQL has SQL

keywords specifically for column-level access control. Each access

control SQL variant requires different rules and few-shot examples

for the synthesizer to be successful. (2) LLMChoiceDifferent LLMs

are trained to generate different variants of SQL with varying levels

of accuracy. Therefore, the LLM must be chosen to align with the

desired SQL variant. (3) NL2SQL System Choice Similarly to (2),

there are many choices for NL2SQL systems. We recommend (and

use) LLM-backed systems, as they are more easily adaptable for

generating many variants of SQL, using rules/few-shot prompting,

instead of more expensive fine-tuning.

3.4 LLM4AC: Our System
In this paper, we build a system based on our reference architecture,

LLM4AC. LLM4AC uses ChatGPT as the LLM, and PostgresQL as

the database. slightly alter C3’s existing prompt for translating NL

to SQL to also translate view creation, we use chain-of-thought

prompting [31] to generate privileges from NL descriptions.

4 LLM4AC, IN DEPTH
4.1 The Synthesizer, In-Depth

Definition 2 (The Synthesizer Problem). Given a NLACM
𝑀 and a database 𝐷 , consisting of table/view definitions, roles, and
users, generate the set of GRANT statements over 𝐷 implementing
the access control rule specified in each cell of𝑀 .

Prior Work. As mentioned in Section 2, the closest prior work

for synthesizing SQL GRANT statements from NL is NL2SQL sys-

tems. There are many state-of-the-art NL2SQL systems. Some of

these systems train separate models using grammars to avoid syn-

tax errors [18]. Many of them leverage LLMs (e.g., by fine-tuning

LLMs and/or using prompt engineering, including few-shot prompt-

ing and describing rules for translation). However, none of these

systems are built to generate GRANT or DDL statements.

To bridge this gap, we observe that because many LLM-backed

state-of-the-art NL2SQL systems use fine-tuning and prompt en-

gineering, adapting them for access control may simply require

adding prompts or examples specific to access control applications.

We enhance one such system which has been observed to be

state-of-the-art [32], C3 [15]. C3 is a prompt engineering-based

NL2SQL system that uses few-shot examples that include rules to

avoid specific syntax errors, and completion prompting to boost



Pranav Subramaniam1 , Sanjay Krishnan1

performance.We enhance C3 with new access control-specific rules,

few-shot examples, and prompts that allow it to accurately translate

NL for GRANT statements. We call our variant of C3 C3-AC.
We now describe the synthesizer procedure in detail. Given a

NLACM and a DB with no roles or privileges,

(1) Extract the roles/user strings from the NLACM and generate a

"CREATE ROLE/USER..." statement for each role/user.

(2) Extract the table/view SQL from the NLACM. generate a "CRE-

ATE VIEW..." statement for each table/view in the NLACM. We

achieve this using the following prompt: Complete postgres SQL
statement only and with no explanation, and do not grant priv-
ileges on tables, roles, and users that are not explicitly requested
in the statement. CREATE VIEW. This completion-style prompt

is similar to that used by C3, but we have adapted it for access

control.

(3) Map the privileges to SQL operators. Once we have mapped

the NLACM roles, tables, and views to the DB, we then map

the natural language privileges of the resulting Type 1 NLACM

(the roles and views are found directly in the database, but the

privileges can be expressed in natural language). We use the

following prompt: Consider the following statement: <NL for privi-
leges>. According to this, which of the database operations SELECT,
UPDATE/INSERT, DELETE, CREATE, GRANT are permitted for role
<r> on table/view <v>?

(4) Synthesize a SQL script from the CREATE ROLE/USER state-

ments, CREATE VIEW statements, and GRANT statements syn-

thesized at each step.

LLMs are known to have syntax errors when generating SQL [18].

We observe that C3 is usually imprecise in one specific way: when

DB literals are used in the NL to be implemented, C3 may generate

these literals incorrectly when synthesizing SQL for views (e.g.,

"Live_Final" becomes "Live Final", "More then 80 centimeters" be-

comes ">80cm", etc.). When such queries fail to execute, we repair

them using the following procedure:

(1) Parse the query for its DB literals (and exclude SQL keywords),

column names, and table names.

(2) Use the table and column names to query the specific columns

used by the query for values contained in the NL. Call the result-

ing list of DB literals 𝑅.

(3) Embed the literals 𝑅 using BERT.

(4) For each parsed literal from the SQL, use nearest-neighbor search

on 𝑅 to find the highest-matching literal.

(5) Replace the literal in the SQL query with the top match from 𝑅.

4.2 The Differencer, In-Depth
A key problem when implementing access control policies is audit-

ing the implementation for compliance. We cannot verify compli-

ancewithout a deterministicmethod for comparingNL and SQL, but

we can use LLMs to audit the implementation for compliance. We

will show empirically that our policy auditing procedure is mostly

accurate. Concretely, we audit policy implementations for compli-

ance by comparing the NLACM containing the NL that expresses

policy, and the ACM constructed from privileges implemented on

DB. We compare two different policies by comparing two NLACMs

that are meant to express policies.

Considering this goal, we define differencing according to the

following intuition: given NLACM 1 and NLACM 2, where NLACM

1 represents an access control policy, and NLACM 2 represents

its implementation on the database, we want to know whether

NLACM 2 matches NLACM 1, and if not, then does NLACM 2 at

least grant fewer privileges than NLACM 1. Considering this, we

define the difference between NLACM 1 and NLACM 2 as: (i) the

roles present in NLACM 2 that are not in NLACM 1, (ii) the views

present in NLACM 2 that are not in NLACM 1, (iii) the privileges

that are more permissive on the same role-view pair in NLACM 2

than on NLACM 1. By this definition, if there is a difference between

NLACM 1 and NLACM 2, we can also conclude that NLACM 2 is

in violation with respect to NLACM 1.

Formally, we define the difference between two NLACMs as

follows:

Strict Inequality (LLM4AC’s default).: Which database roles are

in𝑀2, but not in𝑀1? Which database tables/views are in𝑀2, but

not𝑀1? Because we assume the principle of failsafe privileges, any

role/view in𝑀2 but not𝑀1 implies that𝑀2 is granting privileges

on roles/views that𝑀1 is not, meaning𝑀2 is in violation compared

to 𝑀1. Lastly, for each role 𝑟 and view 𝑣 shared between 𝑀1 and

𝑀2, are the privileges assigned to 𝑟 on 𝑣 in𝑀2 subsumed by those

of𝑀1? If not, then𝑀2 is in violation.

Full Procedure.We now write out the full procedure, both steps

and prompts, below.

Concretely, given NLACMs𝑀1 and𝑀2, let 𝑅1 be the roles of𝑀1

and 𝑅2 be the roles of𝑀2. Similarly, let𝑉1 be the views of𝑀1 and𝑉2
be the views of𝑀2. Let 𝑅1𝑁 be the set of roles expressed in natural

language, and 𝑅1𝐷 be the set of roles expressed in SQL. Similarly,

let 𝑉1𝑁 be the set of views expressed in natural language, and

𝑉1𝐷 be the set of views expressed in SQL. Assume similar naming

conventions for 𝑀2. Then, we compare 𝑀1 and 𝑀2 by choosing

a role/view from all roles/views in 𝑀2 each role/view of 𝑀1 (i.e.,

∀𝑟 ∈ 𝑅1, we match 𝑟 to a role in 𝑅2).

We use different prompts for the cases: (i) 𝑟 is NL, and we com-

pare to natural language roles, 𝑅2𝑁 . (ii) 𝑟 is NL, and we compare to

SQL roles 𝑅2𝐷 , (iii) 𝑟 is SQL, and we compare to NL roles 𝑅2𝑁 . We

similarly use different prompts for these cases when dealing with

comparing views.

Then, the full procedure is:

(1) Classify the roles/views of each of𝑀1 and𝑀2 as NL or SQL by

searching for SQL keywords in the text.

(2) Determine which roles and views are the same, and which are dif-

ferent using a prompt for NL roles/views to NL roles/views, or the

NL to SQL prompt chosen to lift DB to NL. Store all explanations.

Specifically, we use the following prompts:

(a) Prompt for NL vs SQL views ((i) and (iii)): Which database
table or view from the list <𝑅2𝐷> does this phrase <r> most likely
describe? Begin your answer with this table/view.

(b) Prompt for NL vs NL views ((ii)): Which database table or view
description from the list most likely describes the same table
or view as this phrase? Begin your answer with your chosen
description from the list.

(c) Prompt for NL vs SQL roles ((i) and (iii)): Which database role
from the list does this phrase most likely describe?



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

(d) Prompt for NL vs NL roles ((ii)):Which database role description
from the list most likely describes the same role as this phrase?

(e) SQL vs SQL: simply compare role lists. In the case of views,

implement views on DB and determine equality pairwise.

(3) For the roles or views that are the same, determine whether the

privileges of 𝑀2 are in violation of those of 𝑀1 and label them

accordingly. Store the explanation. (we prompt ChatGPT as to

whether one set of privileges exceeds the other).

LLM4ACAt Scale.Using LLM4AC to difference two NLACMswith

dimensions𝑚1×𝑛1 and𝑚2×𝑛2 requires𝑂 (𝑚𝑚𝑖𝑛×𝑛𝑚𝑖𝑛) calls to the
LLM for privilege subsumption, in the worst case. This may seem

prohibitively expensive for large NLACMs, both in terms of runtime

and monetary cost of using commercial LLMs, like ChatGPT.

Firstly, we argue that large NLACMs will not be part of a typical

workload for LLM4AC. NLACMs are written by users who want to

ensure access control rules are implemented correctly on a small,

specific set of roles/users and tables/views. They will likely use

differencing to test their policy implementations on a test database

containing no roles or users, only base tables.

That said, suppose a user now wants to difference with respect

to their production database, which already has many users and

view definitions. Then, the NLACM generated from the database

may be large, but this does not cause a scalability issue in terms of

LLM calls because we ask the LLM to choose from a list of values

during role-view mapping instead of checking each pair. If the list

of values exceeds the LLM’s context window, we find that chunking

the list is an accurate strategy. This can also greatly alleviate the

scale problem. For example, ChatGPT has a context window length

of 8192 tokens, and a list of 10 view definitions, each roughly 50

tokens long, on average, resulting in only 10 calls of 500 tokens

each, with 500 more tokens of output. This costs 5500 tokens. This

is cheaper compared to 100 pairwise comparisons, each consisting

of at least 100 tokens and 1 token of output (a yes/no token) (10001

tokens).

Now, suppose a user wants to create a large NLACM. For exam-

ple, they want a NLACM that expresses a policy for their whole

production database. LLM4AC will not force users to write it them-

selves. Instead, because NLACMs can be a mix of NL and SQL,

users can specify only the key access control rules in NL, and then

LLM4AC will perform the role-view mapping step of differencing

to determine which roles and views written in the user’s NLACM

already have privileges in the database. LLM4AC will then drop

such overlapping roles and views and union this NLACM with the

NLACM generated from the database.

5 EVALUATION
In this section, we propose a benchmark for evaluating IBAC-DB

systems (Section 5.1). We use this benchmark to show that our

system, LLM4AC, can accurately synthesize and difference access

control policies (Sections 5.2 and 5.3), especially compared to other

baselines. Finally, we use this benchmark to determine if there are

types of access control policies on which LLM4AC is not as accurate

(Section 5.4).

For all experiments, the DBMS is PostgreSQL. We use ChatGPT

(gpt-3.5-turbo) as the LLM, and ChatGPT’s APIs for all prompt-

ing.

5.1 IBAC-DB Benchmark Design
We design a benchmark to test IBAC-DB systems that implement

access control policies in PostgresQL. The goal of the benchmark

is to test how accurately an IBAC-DB system synthesizes a SQL

implementation of a NLACM policy, and how accurately an IBAC-

DB system can compare two NLACMs. We describe the benchmark

design for each of IBAC-DB synthesizers and differencers.

5.1.1 The Differencer Benchmark.

Differencer Evaluation Scenarios. It is essential that IBAC-DB
system differencers be able to accurately compare a policy to its im-

plementation for compliance, and compare access control policies

to ensure they actually match. To this end, we measure differenc-

ing with respect to two scenarios: (i) policy auditing: compare a

NLACM containing NL to its implementation on the DB, which

is a NLACM containing SQL. (ii) policy comparison: compare two

NLACMs containing NL.

Differencer Evaluation Metric.We evaluate differencing with

respect to: (i) role-view mapping accuracy: how accurately LLM4AC

can find the shared roles and views between the two NLACMs,

(ii) privilege subsumption accuracy: how accurately LLM4AC can

determine whether the privileges contained in the second NLACM

subsumed those of the first.

We use F1 scores to measure role-view mapping and privilege

subsumption accuracies. Specifically, for role-view mapping, a true

positive is a role-view pair shared by both NLACMs that was de-

tected by LLM4AC’s differencing procedure. A true negative is a

role-view pair not shared by both NLACMs that was not detected

by LLM4AC’s differencing procedure. A false positive is a role-view

pair not shared by both NLACMs that LLM4AC’s differencing pro-

cedure incorrectly determines is shared. A false negative is a shared

role-view pair that LLM4AC determines is not shared. Similarly,

for privilege subsumption, a true positive is a privilege of the sec-

ond NLACM that is subsumed by that of the first, and this was

detected by LLM4AC’s differencing procedure. A true negative is a

privilege not subsumed by that of the first that was not detected

by LLM4AC’s differencing procedure. A false positive is a privilege

not subsumed that LLM4AC’s differencing procedure incorrectly

determines is subsumed. A false negative is a subsumed pair of

privileges that LLM4AC determines is not.

Differencer Benchmark Details. To evaluate LLM4AC with re-

spect to policy auditing and comparison, we construct threeNLACMs:

a base NLACM containing NL, a SQLNLACM containing the ground

truth SQL in the base, and a perturbed NLACM, which is the base

NLACM with a NL perturbation applied, such that the resulting

NL is syntactically different, but semantically equivalent (e.g., all

column names are replaced with synonyms). Then, policy audit-

ing is differencing the base NLACM to the SQL NLACM. Policy

comparison is the accuracy of differencing the base and perturbed

NLACMs.

An IBAC-DB systemneeds to have high cross-domain performance–

that is, the differencer should accurately compare policies on databases

with a variety of schemas and policy specifications unseen by

the model. To test this using our benchmark, we construct these

NLACMs from: (i) databases spanning multiple training domains,

and (ii) syntactically different but semantically equivalent NL (e.g.,



Pranav Subramaniam1 , Sanjay Krishnan1

column names expressed using carrier phrases instead of their ac-

tual names). We gather this data from an existing benchmark, Dr.

Spider [12], a NL2SQL benchmark with databases spanning several

training domains, and several NL perturbations.

There are only 5 databases in Dr. Spider that have NL-query-

perturbation triples for all perturbation types. We create the equiv-

alent base-SQL-perturbed NLACMs for each of these databases. We

list the databases and some basic characteristics here:

(1) orchestra: 4 tables, 27 columns

(2) dog_kennels: 8 tables 57 columns

(3) employee_hire_evaluation: 4 tables, 21 columns

(4) student_transcript_tracking: 11 tables, 78 columns

(5) car_1: 6 tables, 29 columns

NLACM Construction. To construct the necessary NLACM pairs

for policy comparison and auditing, we extract the NL describing

database views from Dr. Spider. We automatically generate the roles

and privileges in the NLACM. To experiment with NL perturba-

tions of roles and views as well, we define and use the following

perturbations:

(1) Role synonyms: replace all role names with synonyms (e.g.,

“Nonprofit Organization intern” → “Charitable Organization

Administration Intern”

(2) Role descriptions: replace all role names with descriptions of

the role. (e.g., “A person who works in a charitable organization

to gain experience in overseeing operations and programs.”)

(3) Privilege synonyms: replace permitted SQL operators with

synonyms. (e.g., “SELECT, UPDATE, INSERT, GRANT” → "This

position holds the authority to CHOOSE, ESTABLISH, BESTOW

permissions on this database perspective.")

(4) Privilege carrier phrases: replace permitted SQL operators

with carrier phrases that imply them. (e.g., “SELECT, UPDATE,

INSERT, GRANT” → “This role is authorized to perform actions

on this database view.”)

The base, SQL, and perturbed NLACMs should be equivalent.

That is, the (i,j)th cell of all three NLACMs should describe the

same privileges on the same role on the same view. We construct

NLACMs that each contain 10 views and 10 roles. We chose this size

of NLACM because human users will create NLACMs manually, so

it is unlikely that NLACMs will be large.

5.1.2 The Synthesizer Benchmark.

Synthesizer Evaluation Scenarios. It is essential that IBAC-DB
system synthesizers be able to accurately implement a policy, re-

gardless of the complexity or variety of queries that must be gener-

ated. The main difficulty of translating NLACMs to SQL is trans-
lating views, as view definitions can be very complex, involving

multi-way joins, complex filters, etc. To this end, we measure syn-

thesizing with respect to the types of SQL queries that must be

generated when given NL descriptions of database views. We use

the following taxonomy:

(1) Simple projections (single SELECT over multiple columns)
(2) Complex projections (SELECT over multiple columns, ag-

gregates, over multiple conditions of multiple tables, etc.)

(3) Simple whole-table aggregations (single GROUP BY over
1-2 attributes in a single table)

(4) Simple joins (join between two or three tables on clearly
specified FKs)

(5) Multi-way joins (join between more than three tables)
(6) Common table expressions (uses the HAVING keyword)
(7) Simple conditions (1-3 conditions each using single predi-

cates on an attribute, or an aggregate of an attribute)
(8) Complex conditions (conditions can be lengthy, there may

be self-defined conditions, self-defined variables in the
condition, etc.)

Synthesizer EvaluationMetric.We input this NLACM to LLM4AC’s

Synthesizer and test the execution accuracy of the result. Specifi-

cally, we execute the resulting GRANT statements on one copy of

the databases, and execute the ground truth on a separate copy of

the databases. PostgreSQL stores the results as a list of privileges

in a table. We compare these tables to see if they are equal.

Synthesizer Benchmark Details. To gather these queries of vary-
ing types and complexity, and their NL to be translated into SQL,

we use a mix of the TPC-H queries and queries from several Spider

databases.

• TPC-H: 8 tables. We select queries from the set given in the

benchmark, and we extract the NL from the business questions

describing each query, available in the TPC-H specification.

• Spider [32]: contains 166 separate databases, each containing

between 3 and 14 tables. We choose queries from three databases

from Spider: department_management, culture_company, and
bike_1. The NL is the ground truth input to a NL2SQL system

whose ground truth output is the query.

We gather up to 5 queries for each category above from the TPC-

H queries and Spider queries, resulting in 33 queries altogether.

We modify each query to create a view from its result. Then, we

randomly generate 10 roles, and privileges on each view to create

one NLACM with dimensions 10 rows and 33 columns.

5.2 LLM4AC Differencing: Macrobenchmark
In this section, we use our IBAC-DB benchmark to evaluate the

accuracy of LLM4AC’s differencer.

Evaluation Baselines.We compare LLM4AC’s prompting differ-

encing procedure to the following baselines for role-view mapping:

(1) Plain LLM: LLM4AC prunes out incorrect answers by only in-

cluding candidates that share DB literals. But is this DB literals

comparison actually necessary? To explore this, we include a

plain use of the LLM where answers are not pruned out. Every-

thing else is kept the same.

(2) Sentence Similarity: Embed the input role/view and the list of

roles/views using SentenceBERT [25]. Then, return the sentence

with the least cosine similarity.

(3) Token Similarity: Embed the tokens of the input role/view and

the tokens of each role/view in the list using BERT. For each

role/view in the list, average the token embeddings and choose

the role/view whose cosine similarity has the least distance to

the average embedding of the input role/view.



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

Figure 6: NL vs NL Role-View Mapping F1 Errors across all
DBs and Perturbations. Lower is better.

Figure 7: NL vs NL Privilege Subsumption F1 Errors across
all DBs and Perturbations. Lower is better.

Figure 8: NL vs SQL Role-View Mapping F1 Errors across all
DBs and Perturbations. Lower is better.

(4) Jaccard Similarity: Choose the role/view from the list whose

tokens have the highest Jaccard similarity with the tokens of the

input.

For all baselines except Jaccard, we adjust them for comparing

NL and SQL by generating a NL description of the SQL query, and

comparing the NL description to a list of NL roles/views of the

other NLACM.

We do not include baselines for privilege subsumption as it is

an ill-defined learning problem and, as we will see, prompting

performs sufficiently well on it.

Policy Comparison.: Figure 7 and Figure 6 shows that, across

databases and perturbations, role-view mapping appears to be more

difficult than privilege subsumption. Further, LLM4AC or sentence

embeddings outperform other role-view mapping methods.

Figure 9: NL vs SQL Privilege Subsumption F1 Errors across
all DBs and Perturbations. Lower is better.

Implementation Comparison.: Figure 9 and Figure 8 show that

overall, LLM4AC outperforms the baselines. For other methods, the

F1 errors are all higher compared to those of policy comparison.

The F1 error for Plain LLM is higher than for other methods, which

initially suggests that using LLMs is not preferable. However, this

is because all the errors are still due to mistakes that could have

been fixed by comparing DB literals. In this case, this would sim-

ply be a matter of using SQL parsing and then string matching.

LLM4AC incorporates this observation, leading to its high perfor-

mance. The other methods have high errors, likely due to the noise

introduced when translating the SQL to NL. For example, the view

ChatGPT explains the view definition CREATE VIEW query2view0
SELECT Model FROM CAR_NAMES GROUP BY Model ORDER BY
count(*) DESC LIMIT 1 using NL: This SQL query creates a view
called "query2view0" that selects the "Model" column from a table
called "CAR_NAMES". It then groups the results by "Model", counts
the number of occurrences of each model, and orders the results in
descending order based on the count. Finally, it limits the output to
only show the model with the highest count. Essentially, this query
finds the most common car model in the "CAR_NAMES" table.. The
baselines must somehow match this long description to the NL

question: How many car models are produced by each maker ? Only
list the count and the maker full name .

Overall, we observe that our baselines perform quite well at

policy comparison. Even Jaccard similarity has a F1 of 0.7 on the Dr.

Spider perturbations. This is because many of these perturbations

do not change many tokens in the original text, only replacing

certain phrases (e.g., column names or DB values) with synonyms,

phrases, etc. This also helps explain why word embeddings can

be even worse than Jaccard similarity. This is because by naively

averaging embeddings over words, it is no longer possible to match

on DB literals, which would enable more accurate matching.

5.3 LLM4AC Synthesizer: Macrobenchmark
In this section, we test the performance of LLM4AC’s synthesizer.

We see that LLM4AC’s synthesizer is mostly accurate, failing at

multi-way joins and nested queries. We observe these errors for

the following reasons: (1) C3 can occasionally choose the wrong

tables for a multi-way join (2) C3 can “forget” that a nested query

is needed.



Pranav Subramaniam1 , Sanjay Krishnan1

Query Type Accuracy

Single column Projection 50 / 50

Multiple column Projection 50 / 50

Single Whole-table Aggregation 30 / 30

Single join 50 / 50

Multi-way join 10 / 20

Common Table Expression 40 / 40

Nested Queries 0 / 10

Single WHERE clause condition 50 / 50

Multiple WHERE clause conditions 30 / 30

Total Accuracy 310 / 330

Table 1: LLM4AC Synthesizer Execution Accuracy. The only
errors were nested queries and multi-way joins.

Figure 10: NL vs NL Role-View Mapping F1s by Perturbation.
Darker is better, and shading is row-wise.

5.4 LLM4AC Differencer: Microbenchmark
We study the variations in the LLM4AC Differencer performance

due to specific NL perturbations or databases. We find that, even

after stratifying the results across databases and NL perturbations,

LLM4AC still outperforms other baselines (Section 5.4.1). We then

study LLM4AC’s performance in-depth (Section 5.4.2).

5.4.1 LLM4AC vs Baselines, by DB/Perturbation. Policy Compar-
ison. When we compute the F1s for each perturbation, we find

that LLM4AC vastly outperforms all other methods, followed by

sentence embeddings (Figure 10 and Figure 11). We find that this

is because naively providing all inputs to prompting generates in-

correct answers that are fixed simply by comparing sentences with

shared DB literals instead. On the other hand, sentence embeddings

have more obscure errors: namely, when the correct answer is a

more abstract sentence (e.g., "Howmany orchestras has a conductor

done?") sentence embedding similarity is incorrect. We find the

same pattern over databases (Figure 12 and Figure 13).

Figure 11: NL vs NL Privilege Subsumption F1s by Perturba-
tion. Darker is better, and shading is row-wise.

Figure 12: NL vs NL Role-View Mapping F1s by DB. Darker is
better, and shading is row-wise.

Figure 13: NL vs NL Privilege Subsumption F1s by DB. Darker
is better, and shading is row-wise.

Implementation Comparison. Figure 14 and Figure 15 show the

results for differencing stratified by perturbation. Based on the F1

scores listed, we do not find a difference between the performance

of LLM4AC relative to other role-view mapping methods with

respect to perturbation. Similarly, Figure 16 and Figure 17 show the

results stratified by database. We do not find a difference between

the performance of LLM4AC relative to other role-view mapping

methods with respect to database, either.

5.4.2 LLM4AC’s Performance, In-Depth. We analyze LLM4AC’s

performance variations on various databases and perturbations to

better characterize its performance. We do not show LLM4AC’s

privilege subsumption performance, as it performs perfectly with

no variation across databases and perturbations.



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

Figure 14: NL vs SQLRole-ViewMapping F1s, by Perturbation.
Darker is better, and shading is row-wise.

Figure 15: NL vs SQL Privilege Subsumption F1s by Perturba-
tion. Darker is better, and shading is row-wise.

Figure 16: NL vs SQL Role-View Mapping F1s by DB. Darker
is better, and shading is row-wise.

Policy Comparison. In Figure 21, we show LLM4AC’s NL vs NL

F1 scores stratified by perturbation, in order to determine if pol-

icy comparison varies by perturbation type. Overall, LLM4AC’s

performance shows slight variations by perturbation. Similarly, in

Figure 20, LLM4AC’s performance stratified by database has almost

no variation among different databases. That said, the LLM4AC’s

Figure 17: NL vs SQL Privilege Subsumption F1s by DB.
Darker is better, and shading is row-wise.

Figure 18: LLM4AC’s NL vs SQL Role-View Mapping F1s by
DB. y-axis is boxplot of F1s across perturbations.

Figure 19: LLM4AC’s NL vs SQL Role-View Mapping F1s by
Perturbation. y-axis is boxplot of F1s across databases.

performance at comparing raw NL to its keyword synonym pertur-

bation is noticeably lower compared to other perturbations. That is,

LLM4AC’s role-view mapping performance at detecting whether

NL is the same as replacing SQL keyword indicators with keyword

synonyms is lower compared to other perturbations. This is be-

cause ChatGPT hallucinates by assuming the correct answer is not

among the answer choices provided (even when there is only one

answer choice provided, which is the correct one). This leads to a

lower recall, and therefore a lower F1.



Pranav Subramaniam1 , Sanjay Krishnan1

Figure 20: LLM4AC’s NL vs NL Role-View Mapping F1s by
DB. y-axis is boxplot of F1s across perturbations.

Figure 21: LLM4AC’s NL vs NL Role-View Mapping F1s by
Perturbation. y-axis is boxplot of F1s across databases.

Implementation Comparison. In Figure 19, we show LLM4AC’s

NL vs SQL F1 scores stratified by perturbation, in order to deter-

mine if implementation comparison varies by perturbation type.

Similarly, in Figure 18, LLM4AC’s performance stratified by data-

base has almost no variation among different databases. LLM4AC’s

performance shows little variation across database, and slight vari-

ation across perturbation. That said, the LLM4AC’s performance at

comparing NL whose column indicators have been replaced with

column values is noticeably lower compared to other perturbations.

This is because ChatGPT hallucinates by assuming the correct an-

swer is not among the answer choices provided when matching

SQL to NL whose column indicators have been replaced by values

in the column. One way to solve this would be to input the distinct

values that can appear in a column as well, as hints to the LLM

about which column may have the chosen value. But this would

likely require a LLM with a very large context length.

6 CONCLUSION
In this paper, we recognize the problem of automating the policy

comparison and auditing of access control policies written in NL.

To facilitate this, we propose IBAC-DB, a new access control para-

digm. We define a reference architecture for IBAC-DB which can be

applied across several different LLMs and DBMSs. Then, we build

one possible system, LLM4AC, using this reference architecture.

We find that LLM4AC performs well compared to other role-view

mapping methods, and that LLM4AC performs reliably: it has low

performance variation by database and NL perturbation.



Intent-Based Access Control:
Using LLMs to Intelligently Manage Access Control

REFERENCES
[1] [n.d.]. Access Control Policy and Implementation Guides. https://csrc.nist.gov/

projects/access-control-policy-and-implementation-guides.

[2] [n.d.]. Database Security Policies: Examples and Creation. https://study.com/ac

ademy/lesson/database-security-policies-examples-and-creation.html.

[3] [n.d.]. OASIS eXtensible Access Control Markup Language (XACML) TC. https:

//www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml. Accessed

12-10-23.

[4] [n.d.]. SOC 2 Compliance. https://www.aicpa-cima.com/topic/audit-assurance/

audit-and-assurance-greater-than-soc-2.

[5] 2020. Access Control Policy. https://www.luc.edu/its/aboutus/itspoliciesguideli

nes/accesscontrolpolicy/.

[6] 2022. IT Access Control and User Access Management Policy. https://www.nw

polytech.ca/about/administration/policies/fetch.php?ID=320.

[7] 2023. What is the Purpose of a Data Access Control Policy? https://satoricyber.co

m/data-access-control/what-is-the-purpose-of-a-data-access-control-policy/.

[8] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. 1996. A temporal access control

mechanism for database systems. IEEE Transactions on Knowledge and Data
Engineering 8, 1 (1996), 67–80. https://doi.org/10.1109/69.485637

[9] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. 2000. TRBAC: a temporal

role-based access control model. In Proceedings of the Fifth ACMWorkshop on Role-
Based Access Control (Berlin, Germany) (RBAC ’00). Association for Computing

Machinery, New York, NY, USA, 21–30. https://doi.org/10.1145/344287.344298

[10] Elisa Bertino, Gabriel Ghinita, Ashish Kamra, et al. 2011. Access control for

databases: Concepts and systems. Foundations and Trends® in Databases 3, 1–2
(2011), 1–148.

[11] Elisa Bertino and Ravi Sandhu. 2005. Database security-concepts, approaches,

and challenges. IEEE Transactions on Dependable and secure computing 2, 1 (2005),
2–19.

[12] Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexan-

der Hanbo Li, Wuwei Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve Ash,

William Yang Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, and Bing Xi-

ang. 2023. Dr.Spider: A Diagnostic Evaluation Benchmark towards Text-to-SQL

Robustness. arXiv:2301.08881 [cs.CL]

[13] Surajit Chaudhuri, Raghav Kaushik, and Ravishankar Ramamurthy. 2011. Data-

base access control and privacy: Is there a common ground?. In CIDR. Citeseer,
96–103.

[14] Sophie Chou, William Li, and Ramesh Sridharan. 2014. Democratizing data sci-

ence. In Proceedings of the KDD 2014 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA. 24–27.

[15] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jin-

shu Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT.

arXiv:2307.07306 [cs.CL]

[16] Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, and

Jessi Ashdown. 2021. Data Governance: The Definitive Guide. O’Reilly Media,

Inc.

[17] Bridget A Fahey. 2021. Data federalism. Harv. L. Rev. 135 (2021), 1007.
[18] Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. 2023. CatSQL:

Towards Real World Natural Language to SQL Applications. Proc. VLDB Endow.
16, 6 (feb 2023), 1534–1547. https://doi.org/10.14778/3583140.3583165

[19] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and

Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A

Benchmark Evaluation. arXiv:2308.15363 [cs.DB]

[20] Yaga Dylan Hu Vincent, Kuhn Richard. [n.d.]. Verification and Test Methods for

Access Control Policies/Models. https://csrc.nist.gov/pubs/sp/800/192/final.

[21] Marijn Janssen, Paul Brous, Elsa Estevez, Luis S Barbosa, and Tomasz Janowski.

2020. Data governance: Organizing data for trustworthy Artificial Intelligence.

Government Information Quarterly 37, 3 (2020), 101493.

[22] Wolfgang Kerber. 2020. From (horizontal and sectoral) data access solutions

towards data governance systems. (2020).

[23] Thema Monroe-White, Brandeis Marshall, and Hugo Contreras-Palacios. 2021.

Waking up to Marginalization: Public Value Failures in Artificial Intelligence

and Data Science. In Proceedings of 2nd Workshop on Diversity in Artificial Intelli-
gence (AIDBEI) (Proceedings of Machine Learning Research), Deepti Lamba and

William H. Hsu (Eds.), Vol. 142. PMLR, 7–21. https://proceedings.mlr.press/v142

/monroe-white21a.html

[24] Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen tau Yih, Sida I. Wang,

and Xi Victoria Lin. 2023. LEVER: Learning to Verify Language-to-Code Genera-

tion with Execution. arXiv:2302.08468 [cs.LG]

[25] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. arXiv:1908.10084 [cs.CL]

[26] RS Sandhu, E Coyne, H Feinstein, and C Youman. [n.d.]. Role-Based Access

Control Models, 1996.

[27] Adil Hussain Seh, Mohammad Zarour, Mamdouh Alenezi, Amal Krishna Sarkar,

Alka Agrawal, Rajeev Kumar, and Raees Ahmad Khan. 2020. Healthcare data

breaches: insights and implications. In Healthcare, Vol. 8. MDPI, 133.

[28] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou, Ayushi

Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-

narayanan. 2020. ATHENA++: Natural Language Querying for Complex Nested

SQL Queries. Proc. VLDB Endow. 13, 11 (2020), 2747–2759.
[29] Sooel Son, Kathryn SMcKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing

Access-Control Bugs in Web Applications.. In NDSS. Citeseer.
[30] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for

Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel

Tetreault (Eds.). Association for Computational Linguistics, Online, 7567–7578.

https://doi.org/10.18653/v1/2020.acl-main.677

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei

Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting

Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[32] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,

James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir

Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and

Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Ellen Riloff,

David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for

Computational Linguistics, Brussels, Belgium, 3911–3921. https://doi.org/10.186

53/v1/D18-1425

[33] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating

Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

[34] Ezra Zigmond, Stephen Chong, Christos Dimoulas, and Scott Moore. 2019. Fine-

Grained, Language-Based Access Control for Database-Backed Applications.

The Art, Science, and Engineering of Programming 4, 2 (Sept. 2019). https:

//doi.org/10.22152/programming-journal.org/2020/4/3

https://csrc.nist.gov/projects/access-control-policy-and-implementation-guides
https://csrc.nist.gov/projects/access-control-policy-and-implementation-guides
https://study.com/academy/lesson/database-security-policies-examples-and-creation.html
https://study.com/academy/lesson/database-security-policies-examples-and-creation.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.aicpa-cima.com/topic/audit-assurance/audit-and-assurance-greater-than-soc-2
https://www.aicpa-cima.com/topic/audit-assurance/audit-and-assurance-greater-than-soc-2
https://www.luc.edu/its/aboutus/itspoliciesguidelines/accesscontrolpolicy/
https://www.luc.edu/its/aboutus/itspoliciesguidelines/accesscontrolpolicy/
https://www.nwpolytech.ca/about/administration/policies/fetch.php?ID=320
https://www.nwpolytech.ca/about/administration/policies/fetch.php?ID=320
https://satoricyber.com/data-access-control/what-is-the-purpose-of-a-data-access-control-policy/
https://satoricyber.com/data-access-control/what-is-the-purpose-of-a-data-access-control-policy/
https://doi.org/10.1109/69.485637
https://doi.org/10.1145/344287.344298
https://arxiv.org/abs/2301.08881
https://arxiv.org/abs/2307.07306
https://doi.org/10.14778/3583140.3583165
https://arxiv.org/abs/2308.15363
https://csrc.nist.gov/pubs/sp/800/192/final
https://proceedings.mlr.press/v142/monroe-white21a.html
https://proceedings.mlr.press/v142/monroe-white21a.html
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.22152/programming-journal.org/2020/4/3
https://doi.org/10.22152/programming-journal.org/2020/4/3

	Abstract
	1 Introduction
	2 Background
	2.1 Access Control Definitions
	2.2 Auditable Access Control
	2.3 Problem Statement
	2.4 Existing NL2SQL Capabilities

	3 Access Control via Intents
	3.1 Specifying Intents
	3.2 The Benefits of NLACMs
	3.3 A Reference Architecture for IBAC-DB
	3.4 LLM4AC: Our System

	4 LLM4AC, In Depth
	4.1 The Synthesizer, In-Depth
	4.2 The Differencer, In-Depth

	5 Evaluation
	5.1 IBAC-DB Benchmark Design
	5.2 LLM4AC Differencing: Macrobenchmark
	5.3 LLM4AC Synthesizer: Macrobenchmark
	5.4 LLM4AC Differencer: Microbenchmark

	6 Conclusion
	References

