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ABSTRACT
Neptune’s external mean motion resonances play an important role in sculpting the observed popu-

lation of transneptunian objects (TNOs). The population of scattering TNOs are known to ‘stick’ to
Neptune’s resonances while evolving in semimajor axis (a), though simulations show that resonance
sticking is less prevalent at a ≳ 200 − 250 au. Here we present an extensive numerical exploration of
the strengths of Neptune’s resonances for scattering TNOs with perihelion distances q = 33 au. We
show that the drop-off in resonance sticking for the large a scattering TNOs is not a generic feature
of scattering dynamics, but can instead be attributed to the specific configuration of Neptune and
Uranus in our solar system. In simulations with just Uranus removed from the giant planet system,
Neptune’s resonances are strong in the scattering population out to at least ∼ 300 au. Uranus and
Neptune are near a 2:1 period ratio, and the variations in Neptune’s orbit resulting from this near
resonance are responsible for destabilizing Neptune’s resonances for high-e TNO orbits beyond the
∼ 20:1 resonance at a ≈ 220 au. Direct interactions between Uranus and the scattering population are
responsible for slightly weakening Neptune’s closer-in resonances. In simulations where Neptune and
Uranus are placed in their mutual 2:1 resonance, we see almost no stable libration of scattering parti-
cles in Neptune’s external resonances. Our results have important implications for how the strengths
of Neptune’s distant resonances varied during the epoch of planet migration when the Neptune-Uranus
period ratio was evolving. These strength variations likely affected the distant scattering, resonant,
and detached TNO populations.

Keywords: Orbital resonances, Trans-Neptunian objects, Resonant Kuiper belt objects, Scattered disk
objects, celestial mechanics

1. INTRODUCTION

Many known trans-neptunian objects (TNOs) are ob-
served to orbit within Neptune’s external mean-motion
resonances (see, e.g., review by Gladman & Volk 2021;
we refer to mean-motion resonances simply as reso-
nances hereafter). In particular, the observed set of
TNOs on orbits with semimajor axes beyond the classi-
cal belt region, a ≳ 50 au, imply the existence of large
intrinsic populations in many of Neptune’s distant reso-
nances (see Crompvoets et al. 2022 for recent population
estimates). TNOs in Neptune’s resonances can either be
objects captured onto resonant orbits that are stable for
a gigayear or longer during the epoch of giant planet
migration, or they can be objects that have temporarily
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‘stuck’ to resonances while evolving in semimajor axis
due to perturbations from the giant planets (see, e.g.,
review by Malhotra 2019). In either case, to understand
the significance of the observed resonant TNO popula-
tions, we need improved models of both the emplace-
ment of dynamically excited TNOs onto their present
day orbits (see, e.g., recent works by Huang et al. 2022;
Nesvorný et al. 2023; Bottke et al. 2023; Kaib et al. 2024
and reviews by Morbidelli & Nesvorný 2020; Gladman &
Volk 2021) as well as the dynamical extent of Neptune’s
resonances in the distant solar system. Volk & Malhotra
(2022) recently showed that, in the current solar system,
Neptune’s resonances remain strong out to surprisingly
large semimajor axes of several hundred au in the high-
perihelion population of distant TNOs. Here we focus
on the role of distant resonances in the lower-perihelion
scattering TNO population where the phenomenon of
resonance sticking is known to occur (e.g. Gallardo 2006;
Lykawka & Mukai 2007; Yu et al. 2018).
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Scattering TNOs are typically defined as objects
whose semimajor axes experience significant changes
over short dynamical timescales due to relatively close
approaches to Neptune at perihelion; the widely used
Gladman et al. (2008) scheme defines them as objects
that experience ∆a > 1.5 au over a 10 Myr integra-
tion of their present-day orbit. Objects with unchang-
ing, non-resonant semimajor axes beyond the classical
belt region (the classical belt being typically defined as
sunward of Neptune’s 2:1 resonance) belong to the dy-
namically ‘detached’ TNO population. The perihelion
distance (q) boundary between detached and scattering
TNOs is complex and semimajor axis dependent (see,
e.g., discussions in Saillenfest 2020 and Batygin et al.
2021), but non-resonant TNOs with q ≲ 37 au are quite
likely to experience significant changes in orbital en-
ergy, and therefore changes in a, as they evolve over
time. This mobility in a allows the particles to en-
counter different resonances, and they often experience
repeated bouts of temporary libration in these reso-
nances in between scattering events. Yu et al. (2018)
examined the detailed sticking behavior of scattering
TNOs with a < 100 au and found that at any given
time, ∼ 40% of the scattering population is temporarily
librating in one of Neptune’s many resonances; these
temporary resonance sticks spanned anywhere from a
few libration cycles (∼ 105 years) to a gigayear. The
wide range of sticking timescales, as well as the large
number of potential resonances with Neptune to stick
to, makes resonance sticking a challenging phenomena
to quantify. In this work, we focus on the short-term
behavior of particles in the strongest of Neptune’s exter-
nal resonances to better understand trends in resonance
sticking behavior.

A reasonable lower boundary in q for the population
of scattering TNOs most likely to experience significant
resonance sticking is q ≈ 33 au. Scattering TNOs with
lower q experience very strong encounters with Nep-
tune (and the other giant planets for very low-q TNOs)
that shorten their dynamical lifetimes compared to the
q ≥ 33 au TNOs (see, e.g., Tiscareno & Malhotra 2003),
reducing the time available for resonance sticking. Most
of our simulations discussed in the following sections will
focus on this q = 33 au scattering population that we
expect to be quite sensitive to changes in Neptune’s reso-
nance strengths. We note that we quantify the strengths
of Neptune’s resonances based on how long particles
tend to remain in or stick to each resonance in numeri-
cal simulations (following, e.g., Lykawka & Mukai 2007);
as we discuss below, this is a more relevant metric for
scattering TNOs than the usual analytically calculated
disturbing function derived strengths.

Lykawka & Mukai (2007) performed numerical sim-
ulations of the scattering population with the current
giant planets and examined the frequency and locations
of resonance sticking events. They found that sticking
was unlikely for scattering particles with semimajor axes
a ≳ 250 au. Presumably this drop-off in resonance stick-
ing is due to the resonances becoming weak at these
semimajor axes compared to the scattering perturba-
tions. Such a drop-off in resonance strengths at large
period ratios due to scattering perturbations has been
shown for comets interacting with Jupiter’s exterior N:1
resonances based both on analytical modeling (Cham-
bers 1997) and more complete numerical integrations
(Fernández et al. 2016). Analytical models (e.g. Pan &
Sari 2004; Batygin et al. 2021) of Neptune’s resonances
predict that the onset of resonance overlap, and thus the
destruction of stable and quasi stable resonant libration
zones, for perihelion distances similar to those of scat-
tering TNOs should occur at semimajor axes a ≈ 500 au
for Neptune’s N:1 resonances (see equation 30 in Pan &
Sari 2004). We would expect to see resonance sticking
continue to occur out to these semimajor axes and then
stop when the resonant islands are no longer distinct
or stable enough for even temporary libration. In con-
trast, resonance sticking in full numerical simulations
of the scattering population drops off much closer in
at a ≈ 250 au (Lykawka & Mukai 2007). This mis-
match between the scattering simulation results and the
analytical resonance model expectations for Neptune’s
resonances is likely partly due to the inherent limita-
tions of analytical approaches in terms of the number
of resonances modeled; typically analytical models only
consider a subset of the lowest-order resonances, which
in the case of the scattering population are the N:1
and N:2 resonances. While these simplified analytical
models appear to work well for predicting the behavior
of Jupiter’s resonances (e.g. Chambers 1997), they are
not sufficient in the case of Neptune’s resonances. The
higher-order resonances surrounding Neptune’s N:1 and
N:2 resonances help weaken these resonances, shrinking
their libration zones at large a and large e. This leads
to faster scattering timescales for low-q TNOs and less
resonance sticking overall. Recent work by Hadden &
Tremaine (2024) demonstrates how numerical mapping
approaches, which do not suffer from resonance order
limitations, can be used to model resonant and scatter-
ing dynamics more accurately in the one-planet case.

However, we will show in this work that there is an
additional reason for the mismatch between models of
Neptune’s resonances in the one-planet case and the
findings of full scattering simulations: dynamical in-
teractions between Uranus and Neptune strongly influ-
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ence the strength of Neptune’s resonances and drive the
a ≈ 250 au drop-off in resonance sticking in the present-
day scattering population. In the low-perihelion regime
of the scattering TNOs, single-planet models (whether
analytical or numerical) fail to capture this dynami-
cal influence that weakens Neptune’s resonances. Res-
onance sticking is a very important dynamical process
in shaping the present-day scattering TNO population,
but variations in the strength of Neptune’s resonances
during the epoch of planet migration would also leave
an imprint on the production of the initial population
of scattering, resonant and detached TNOs. It is thus
important to have more complete models of Neptune’s
external resonances and a better understanding of what
affects their strengths.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe how we numerically model Neptune’s
resonances, show how we identified Uranus’s important
role in affecting them, and describe how we quantify
resonance strengths from our simulations. In Section 3
we present our exploration of how the Neptune-Uranus
period ratio affects Neptune’s external resonances, and
we isolate the specific dynamical effects responsible for
destabilizing the distant resonances in today’s scatter-
ing population. Section 4 discusses the implications of
our findings for the scattering population and for using
the distant resonant and detached populations to con-
strain the migration history of the giant planets. We
summarize our results in Section 5.

2. SIMULATING NEPTUNE’S RESONANCES

A conceptually simple way to explore the strength
and boundaries of Neptune’s resonances is to produce
Poincarè maps, also called surfaces of section. In a sim-
plified system with just the Sun and Neptune present,
these maps of any particular resonance can be produced
by simulating test particles with fixed perihelion dis-
tances over a small range of semimajor axis, a, near
the exact resonant value and recording the evolution of
these particles’ orbits and the angle ψ between the par-
ticle and Neptune at every perihelion passage (following,
e.g., Wang & Malhotra 2017; Malhotra et al. 2018; Lan
& Malhotra 2019); ψ is illustrated in the top panel of
Figure 1. We note that here and throughout the entire
manuscript, we use barycentric rather than heliocentric
semimajor axes. For particles with perihelion distances
consistent with scattering TNOs (q ≈ 33−37 au), those
on resonant orbits remain relatively stable in semima-
jor axis, tracing out distinct resonant islands in a-ψ
space, while those on scattering orbits wander randomly
through that space filling in a sea of background points.

Figure 1 shows example a-ψ evolution for q = 33 au
particles in and near the 2:1, 7:3, and 5:2 resonances in
the circular restricted three-body problem with the Sun
and Neptune as perturbers. The details of our methods
and how these maps are generated are described in Sec-
tion 2.1, but we briefly highlight here a few key features
of Neptune’s external resonances. In general, a particle
in a p:q external resonance will visit q distinct resonant
islands over a resonant cycle (q orbital periods of the
resonant particle); so N:2 resonant particles (such as
the 5:2 particles in Figure 1) trace out two islands, N:3
particles trace out three islands, and so on. Particles in
external N:1 resonances follow this pattern in that indi-
vidual particles trace out a single island, but the struc-
ture of these resonances is distinct in that there are three
possible libration islands to choose from. These are the
two so-called asymmetric islands centered near ψ ∼ 90◦

and ψ ∼ 270◦1 (note in Figure 1 that these two islands
are traced by distinct, differently colored particles) and
the larger symmetric island centered on ψ = 180◦. We
refer the reader to Volk & Malhotra (2022) for addi-
tional details on the structure of these resonances. In
our later maps of Neptune’s resonances in various sim-
ulations, we examine how all of these resonant islands
become stronger, weaker, or disappear entirely.

In Section 2.1, we describe how the simplified three-
body model shows that Neptune’s resonances should re-
main strong out to semimajor axes of several hundred
au in the scattering population. We then expand our
simulations to map Neptune’s resonances under the in-
fluence of the other giant planets (following the methods
described in Volk & Malhotra 2022) to show that the
distant resonances become much weaker for scattering
TNOs. In Section 2.2 we show that Uranus is primarily
responsible for this weakening. In Section 2.3 we de-
scribe how we quantify resonance strengths in our sim-
ulations and present the present-day strengths of Nep-
tune’s resonances in the scattering population.

2.1. Exploring resonances in the scattering TNO
population

We start by comparing the a-ψ evolution of particles in
Neptune’s resonances in the simple Sun-Neptune-TNO
problem to those in simulations with all four giant plan-
ets. To do this, we created an illustrative a-ψ mosaic
from 165 au to 285 au in the circular restricted three-
body problem, as shown in the left panel of Figure 2. We
included the Sun and Neptune as the only perturbers in

1 The exact center of libration for the asymmetric islands of an
N:1 resonance are eccentricity-dependent (see, e.g., Nesvorný &
Roig 2001).
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Figure 1. Top: Illustration of the angle ψ, which describes
a TNO’s position relative to Neptune when the TNO is at
perihelion. Bottom: Example evolution of resonant (colored)
and non-resonant (gray) particles with q = 33 au in a-ψ space
for the 2:1, 7:3, and 5:2 resonances in the circular restricted
three-body problem (Sun + Neptune + massless test parti-
cles). Within each panel, individual resonant particles are
given distinct colors; note the clear islands traced out by the
resonant particles.

our simulations, with Neptune on a circular orbit with
its current semimajor axis. We then initialized mass-
less test particles with perihelia of 33 au and inclina-
tions of 0◦ with respect to Neptune’s orbital plane along
lines of constant semimajor axis spanning from ψ = 0◦

to ψ = 360◦ at the expected location of all the N:1,
N:2, and N:3 resonances in this semimajor axis range.
We ran the simulation forward through approximately
1000 orbital periods for each test particle (the simulation
timescale was set to 1000 times the closest N:1 orbital
period for each set of test particles across a small semi-
major axis range) using the rebound ias15 integrator
(Rein & Liu 2012; Rein & Spiegel 2015), recording the
orbit of each particle every time it passed through per-
ihelion. The left panel in Figure 2 shows the position
of the particles at each perihelion passage in a-ψ space.
We plotted any non-resonant particles, loosely defined
as any that deviated 5 au or more in a from their start-

ing points, in light gray and the particles that remain
resonant in darker colors; this highlights the resonant
particles against the background chaos of non-resonant
particles.

We then generated a similar a-ψ map from 165 au to
285 au for Neptune’s resonances in the present-day so-
lar system with the Sun and all four giant planets as
perturbers for the test particles. To do this, we queried
JPL Horizons for the positions, masses, and velocities
of the Sun, Jupiter, Saturn, Uranus, and Neptune. We
then initialized massless test particles with perihelia of
33 au and inclinations of 0◦ (with respect to the ecliptic)
along four lines of constant ψ spanning the entire semi-
major axis range: ψ = 70◦ and ψ = 290◦ (corresponding
approximately to the centers of asymmetric libration for
Neptune’s N:1 resonances at our chosen perihelion dis-
tances), ψ = 90◦ (corresponding to the center of the N:2
resonances), and ψ = 180◦ (corresponding to the center
of the N:3 resonances). Initializing particles at constant
ψ rather than along lines at the expected resonant semi-
major axes is more efficient in the non-idealized problem;
we found that with the four choices of ψ, a resolution of
0.06 au in a was sufficient to resolve all the resonance
of interest. We note that because the planets are not
co-planar, test particles initialized with ecliptic i = 0 in
the full simulations results in a small inclination disper-
sion relative to Neptune’s orbital plane. The relaxation
of the assumption of co-planarity in this full model also
necessitates a slight re-definition of ψ; in the full model,
ψ is the difference in mean longitudes of the test parti-
cle and Neptune at the particle’s perihelion, ψ = λ−λN
(see Volk & Malhotra 2022 for details). We find that
the relative sticking strengths of Neptune’s resonances
for q = 33 au is insensitive to a reasonably wide range of
inclinations, so the specific choice of reference frame for
our i = 0 runs is unimportant (discussed further below).
As above, we integrated these particles with the ias15
integrator and recorded their orbits at every perihelion
passage. The resulting a-ψ map is shown in the right
panel of Figure 2 with the same color scheme as above.

This comparison reveals that the overall structure
of Neptune’s resonances is significantly affected by the
presence of the other giant planets. Most notably, the
strengths of the N:1 resonances drop off sharply by
a ∼ 220 au, which is where the 20:1 would be lo-
cated, before briefly reappearing at a ∼ 260 au. Hand-
measured widths of the stable libration zones of the N:1
resonances in the full simulations show that they are sig-
nificantly weaker in this region when compared to the
same measurements from the simplified simulations (as
seen when comparing the left and right panels of Fig-
ure 2). Additionally, in the full problem the N:2 reso-
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Figure 2. Barycentric semimajor axis (a) vs. ψ for particles in Neptune’s distant resonances, with perihelia of 33 au; each
resonant particle is plotted in a different color while the background scattering population is plotted in gray. On the left, only
the Sun and Neptune are included as perturbers. On the right, the Sun and all four giant planets are included as perturbers.
Note how the N:1 resonances in the 4-planet problem get weaker as the semimajor axis increases and begin to drop out entirely
at the 20:1 position, with a brief resurgence around the 26:1 position. This contrasts the more gradual shrinking of distant
resonances in the three-body problem

nances disappear slightly past the position of the 20:1
at ∼ 225 au (41:2), and the N:3 resonances drop out at
∼ 180 au (44:3). In the simplified model, the N:2 res-
onances continue over our entire semimajor axis range,
and the N:3 resonances persist to a ∼ 235 au.

To ensure that our low-inclination simulation results
can be generalized to the wider scattering population,
we ran a few additional simulations of Neptune’s res-

onances in the full, four giant planet model with test
particles at a range of larger inclinations. We find that
the resonances are essentially unchanged for inclinations
of 10◦. For inclinations of 20◦ and 30◦, there is a small
amount of enhanced sticking to the most distant reso-
nances in our range; this is consistent with the expected
increase in the scattering timescale with Neptune due to
the particles not always being near the plane of the plan-
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ets at perihelion (see, e.g., Di Sisto & Rossignoli 2020).
The insensitivity of our simulations to test particle in-
clinations is consistent with modeling done by Gallardo
(2019), who found that the strengths of exterior N:1 res-
onances at high eccentricity are particularly insensitive
to inclination. We thus only explore the low-inclination
regime in the rest of the paper.

2.2. Identifying what is destabilizing resonances in the
distant scattering population

To investigate the mechanism responsible for destabi-
lizing Neptune’s distant resonances, we consider a case
study centered on Neptune’s 20:1 resonance, the lowest-
a N:1 resonance that lacks a clear stable libration zone
in the full simulations (right panel of Figure 2). We first
ran a set of simulations targeting just the 20:1 resonance
over a range of perihelion distances q = 33 − 45 au in
both the simplified model and the full, four giant planet
model. For each value of q (varied in 1 au increments),
we initialized 240 massless test particles evenly spaced
in ψ from 0◦ to 360◦ at the center of the 20:1 resonance
(a ≈ 221.6 au). The inclination of all test particles were
set to zero; in the simplified model this makes them
truly co-planar with Neptune while in the full model
they have very small inclinations relative to Neptune.
We again used the ias15 integrator to integrate forward
over 1000 test particle orbital periods, recording the test
particles’ orbits every perihelion passage to produce a-
ψ maps. The boundaries of the 20:1 resonance’s stable
libration zones in these a-ψ maps of both the simplified
and full models were hand measured and are plotted
in a-e space in Figure 3 to show the width of the 20:1
resonance as a function of e; this figure also shows an
extended eccentricity range to higher-q for the simplified
model (which is much less computationally intensive to
run). While the maximum width of the 20:1 resonance
is similar in both models, its location in q is shifted to
higher values in the full model compared to the Neptune
and Sun only case (the resonance is widest at q = 38 au
when only the sun and Neptune are included in the sim-
ulation whereas it is widest at q = 44 au in the full
model). There is a significant decrease in the width and
strength of the 20:1 resonance at low q when all giant
planets are included in the simulation.

This led us to investigate whether one of the three gi-
ant planets other than Neptune is destabilizing the 20:1
resonance at higher eccentricities. Using the same sim-
ulation set up as described above in Section 2.1 for gen-
erating the four-planet model a-ψ maps, we ran six sim-
ulations of Neptune’s resonance in the semimajor axis
region surrounding the 20:1 with the following objects
included:

Figure 3. Eccentricity vs. semimajor axis of the 20:1 res-
onance with Neptune. In gray are resonance widths with
only Neptune and the Sun acting as perturbers. In blue are
resonance widths with all four giant planets included as per-
turbers. Notice how resonance width decreases with higher
eccentricity in the four-planet case relative to the simplified
case.

• Sun + Saturn + Uranus + Neptune + TNOs

• Sun + Jupiter + Uranus + Neptune + TNOs

• Sun + Jupiter + Saturn + Neptune + TNOs

• Sun + Jupiter + Neptune + TNOs

• Sun + Saturn + Neptune + TNOs

• Sun + Uranus + Neptune + TNOs

where in each case the Sun and planets are massive per-
turbers and the TNOs are massless test particles.

In doing this, we were able to isolate the effects of
each planet’s short-term perturbations on Neptune’s res-
onances. We found that when just Jupiter and/or Sat-
urn were removed from the simulation, the 20:1 reso-
nance remained weak at q = 33 au. However, whenever
Uranus was removed from the simulation, the 20:1 res-
onance was nearly as strong as predicted by the simple
three-body problem and did not drop out relative to the
neighboring resonances. We also ran a simulation with
the Sun, Jupiter, Saturn, and Neptune as massive per-
turbers but added a J2 term to represent the averaged
secular effect of Uranus on the other planets and the
TNO test particles (we used Malhotra & Ito 2022’s J2
value and formulation for the simulation modifications).
The 20:1 resonance in this simulation behaved very sim-
ilarly to the simulation without Uranus, though some of
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the higher-order resonances nearby appear less distinct.
Figure 4 shows a comparison between a few of these test
simulations.

From these tests, we can conclude that the weaken-
ing of the 20:1 resonance at q = 33 au is related to the
presence of Uranus, as the resonance is weak whenever
Uranus is present in the simulation, but unaffected by
the presence of Jupiter or Saturn. We also conclude
that the weakening is not purely or dominantly due to
the secular effects of Uranus. It is clear that gravita-
tional perturbations by Uranus can have a significant im-
pact on Neptune’s distant resonances for high eccentric-
ity TNOs–a regime typically assumed to be dominated
only by the gravitational effects of Neptune. We ran one
more test simulation near the 20:1 resonance to examine
whether the weakening of the resonances when Uranus
is present is due to Uranus’s direct influence on the test
particles (via, e.g., resonant interactions with Uranus)
or is due to Uranus’s influence on the other giant plan-
ets’ orbits; as we will discuss in Section 3, Neptune and
Uranus are near a mutual resonance, so Neptune’s or-
bital evolution is influenced significantly by non-secular
effects from Uranus. In this test simulation, we modified
rebound’s whfast integrator (Rein & Tamayo 2015)
such that Uranus was included as a perturber for the
Sun and the other giant planets, but was not included
in the force calculations for the test particles2. The re-
sults of this test simulation are also shown in Figure 4,
and the resonance structures are the most similar to
the full Sun plus all four giant planets simulations. This
suggests that, near the 20:1 resonance at least, the weak-
ening of Neptune’s resonances is caused by variations in
Neptune’s orbit due to its near resonance with Uranus.

We explore in more detail how Uranus is affecting a
wider range of Neptune’s resonances in Section 3. But,
first, we must establish a more quantitative method to
measure resonance strengths in our simulations.

2.3. Quantifying resonance strengths

Previously, we have used resonance width (in semi-
major axis) to characterize the strength and stability
of Neptune’s external resonances. This is a useful met-
ric in many circumstances, such as in the Sun-Neptune-
TNO three-body problem. In the three-body case, Nep-
tune’s resonances generally have clear boundaries in a-ψ

2 We chose to use whfast for this modification because it in-
volved just a very simple alteration to the ‘kick’ subroutine for the
test particles within the drift-kick-drift scheme for the whfast al-
gorithm. We ran a test to ensure that the whfast results for a
full Sun plus four giant planets plus test particles simulation are
comparable to the results of our ias15 simulations. The switch in
integrator for this test does not affect the results.

phase space. These well-defined boundaries break down
and become more chaotic when all giant planets are in-
cluded in our simulations. This makes identifying the
boundaries of resonances in the four-planet model more
subjective, as the dimensions change depending on the
parameters used to plot the test particles (such as lim-
iting test particles by change in semimajor axis over a
specified simulation time). This is especially difficult
when studying scattering (low-q) populations. Because
of this we sought a different, more concretely defined,
metric for measuring the strength and stability of reso-
nances in the full six-body problem (Sun + four giant
planets + TNO).

The following describes the basic behavior of some
typical low-q test particles simulated in the full six-body
case. Test particles initialized near the edge of more sta-
ble, closer-in resonances will often move in and out of
resonance over the span of a simulation due to chaotic
gravitation interactions with the giant planets. There-
fore, these test particles cannot be defined as explicitly
in or out of resonance, but rather are transient. This
is one difficulty when it comes to measuring widths of
resonances in the six-body problem: do we count tran-
sient particles as resonant or not? In the case of further
out resonances (such as the 20:1 at q = 33 au and be-
yond), there may be no simulated test particles that
are persistently resonant over the timescale we are con-
sidering. But that does not mean there is no resonant
interaction, and it would be inaccurate to say that these
resonances have a width or strength of zero. So some-
how, we must account for test particles that transiently
pass in and out of, or stick, to each resonance; exam-
ple typical sticking behavior is demonstrated in Figure
5. Additionally, even test particles that spend most of
their time librating in a resonance will often ‘slip’ in
ψ at chaotic boundaries, so purely considering confine-
ment of ψ doesn’t provide a full measure of the stability
and strength of a resonance Overall, using the width to
measure these resonances based only on long-term sta-
ble libration does not accurately capture the strength
of these sticking interactions that are very important in
the scattering TNO population.

In these situations, it is far more useful to look at
the total resonant lifespan of test particles in a given
simulation (see, e.g., Lykawka & Mukai 2007). That is,
how long do test particles spend interacting with a given
resonance as a fraction of the total simulation time, even
if these interactions are not continuous. We quantify this
fractional resonance occupation time averaged over all
the test particles in a given region around a resonance
as our resonance strength parameter (exact details of its
calculation are provided in Appendix A). Figure 6 shows
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Figure 4. Barycentric semimajor axis (a) vs. ψ for particles near Neptune’s 20:1 resonance (a ≈ 221 au) with perihelion
distance q = 33 au. In all panels, we plot particles that remain within 10 au of their initial semimajor axis in colored points,
with each particle plotted in a different color (these are the particles that tend to interact with the resonances); less stable
particles that quickly scatter away from their starting a are plotted as gray background points. In the top panel, only the Sun
and Neptune act as perturbers on the test particles. In the middle left panel, the Sun and all major planets except for Uranus
act as perturbers. In the middle right panel, the Sun and all 4 major planets and the Sun act as perturbers. In the bottom left
panel, all giant planets except Uranus act as perturbers, with the addition of a J2 parameter to simulate Uranus’ secular effects.
In the bottom right panel, the Sun and all four giant planets are included as perturbers in the integration of the massive bodies,
but the test particles are only perturbed by the Sun, Jupiter, Saturn, and Neptune. Note the similarity between the simplified
(Sun + Neptune) model at the top and the middle left panel with Uranus excluded from the simulation. The destabilization of
the 20:1 resonance only occurs when Uranus is included in the simulation; the destabilization remains when Uranus perturbs
Neptune’s orbit but is not included as a perturber for the test particles themselves.
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35:2 17:1

<- 35:2

<- 17:1

Figure 5. Example evolution of a test particle that scatters and sticks to Neptune’s resonances. We show the evolution in
barycentric a vs time (upper left), ψ vs time (upper right), q vs time (lower left) and in a-ψ space (lower right). We highlight
sticking events in the 35:2 ( ψ alternates between ∼ 90◦ and ∼ 270◦ at each perihelion passage) and the 17:1 (ψ first librates in
the leading asymmetric island then the trailing island).
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Figure 6. Relative strength of the N:1 (black), N:2 (pink),
and N:3 (yellow) resonances with Neptune for low-inclination
particles with q = 33 au in a model of the current solar sys-
tem (with the Sun and all four giant planets as perturbers).
Our strength metric is normalized to the largest value across
all resonances and is a measure of how confined test particles
are to each resonance (see Appendix A).

the relative strengths of Neptune’s distant resonances at
q = 33 au using this metric. This method is also utilized
in the next section to quantify resonance strength.

The dramatic drop-off in our resonance strength met-
ric is consistent with scattering population simulations
that show a dramatic reduction in resonance sticking at
large semimajor axes (a ≳ 250 au; Lykawka & Mukai
2007). We have established that Uranus is directly
linked to this drop-off in resonance strength (Figure 4).
Neptune’s current orbital period is 1.96 times Uranus’s
orbital period, which is close to their mutual 2:1 reso-
nance. In the next section, we explore how this near-
resonance might contribute to weakening Neptune’s dis-
tant external resonances.

3. EXPERIMENTING WITH THE
NEPTUNE-URANUS PERIOD RATIO

As discussed in Section 2.2, it is clear that Uranus has
a significant influence on Neptune’s distant resonances,
and there are hints that a lot of that influence is due to
how Uranus affect’s Neptune’s orbital evolution. Uranus
and Neptune are not far from a mutual 2:1 resonance,
so here we we explore how the proximity to that mu-
tual resonance can reduce stability in Neptune’s distant
resonances. To test this we ran a series of simulations
with Neptune’s semimajor axis shifted slightly from its
present day value to change its mutual orbital period ra-
tio with Uranus. We chose to simulate the phase space
between Neptune’s 2:1 and 28:1 resonances at the equiv-
alent of q = 33 au, for Neptune to Uranus (N:U) period
ratios from 1.76 out to 2.36, far from their mutual 2:1.

For each N:U period ratio simulation we included all
four giant planets with their orbital parameters being

queried from JPL Horizons in barycentric coordinates.
We then changed only Neptune’s semimajor axis to cor-
respond with our desired N:U period ratio. All of Nep-
tune’s other orbital parameters were left at their present
day values, and we recomputed the new barycenter of
the simulated system. Before adding test particles to
this modified system, we made sure that the giant plan-
ets’ orbits remained stable, particularly Neptune’s semi-
major axis and eccentricity, for the 4.6 Myr maximum
duration of our resonance simulations.

For each N:U period ratio, we then ran a set of sim-
ulations with test particles spanning the expected loca-
tions of Neptune’s N:1 resonances from the 2:1 to the
28:1, with a ±0.5 period ratio range around each N:1
to include the nearby higher-order resonances. For the
N:U=1.96 simulation (Neptune’s current day position),
we assigned all particles a perihelion distance of 33 au
to match our previous simulations of scattering bod-
ies. When moving Neptune’s semimajor axis to change
the N:U period ratio, we scaled the test particle per-
ihelia; e.g, q = 33.3 au with Neptune at a = 30.37 au
(N:U= 2.00), q = 33.65 au with Neptune at a = 30.65 au
(N:U= 2.02), and q = 37.3 au with Neptune at a = 34 au
(N:U= 2.36). For each simulation, the 1000 particles
were allocated uniformly across the N±0.5 period ra-
tio range along lines of constant ψ values as follows: 500
particles targeted the centers of the asymmetric N:1 res-
onant islands (250 at ψ = 70◦ for the leading island, and
250 at ψ = 70◦ for the trailing island), 250 targeted the
centers of the N:2 resonances at ψ = 90◦, and 250 tar-
geted the centers of N:3 resonances at ψ = 180◦. The
particles were initialized at perihelion (mean anomaly of
zero), so their longitude of perihelia were determined by
the desired ψ value. Their semimajor axis and eccentric-
ity were set by the period ratio with Neptune and fixed
perihelion distance. We set inclinations and longitudes
of ascending node to zero; as noted in Section 2.1, be-
cause the planets are not co-planar in our simulations,
this amounts to allowing the test particles to have a
small inclination dispersion relative to Neptune (a few
degrees at most over the timescale of our simulations).
We found that these initial parameters for test particles
were adequate to resolve the general structure of Nep-
tune’s resonances when plotted in phase space and to
calculate resonance strengths.

As before, we ran these simulations for a duration of
1000 test particle orbital periods of the target N:1 res-
onance in each simulation using ias15. We analyzed
resonance strengths for each N:U period ratio using the
methods described in Section 2.3 and Appendix A. The
resulting mosaics of individual particle residence times
near the investigated resonances are shown Figure 7
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for four selected N:U period ratios, and the calculated
strengths of each N:1 resonance for the same N:U period
ratios are shown in Figure 8.

Examining our full range of simulated N:U period ra-
tios, we find that resonance stability drops off steeply
for ratios between 1.96 and 2.00 as well as between 2.00
and 2.02. Between N:U period ratios of 2.02 and 2.36,
resonance strength returns steadily. To visualize these
trends in overall resonance strength with N:U period ra-
tios, we averaged individual resonance strength values
across a range of N:1 resonances for each set of N:U pe-
riod ratio simulations. This “average strength” value is
shown in Figure 9 for Neptune’s closer-in N:1 resonances
(2:1 through 14:1; left panel) and distant N:1 resonances
(15:1 through 28:1; right panel) highlighting the general
weakening of all simulated resonances for various N:U
period ratios. To provide a baseline for comparison, at
each modified value of Neptune’s semimajor axis we also
ran a set of simulations with Uranus removed from the
simulation and calculated the strengths of Neptune’s 2:1
through 28:1 in the absence of Uranus’s destabilizing ef-
fects.

Figure 9 shows that the reduction in resonance
strength due to Uranus is much more dramatic for
the distant resonances than the closer-in resonances,
regardless of the specific N:U period ratio. The weak
trend in the baseline simulation’s average distant reso-
nance strength (right panel) shows that the other giant
planets do influence the strength of Neptune’s distant
resonances but to a much lesser extent than Uranus. For
both the closer-in and distant resonances, the present
day N:U period ratio is actually more favorable for
Neptune’s resonance strengths than N:U period ratios
smaller but farther from their mutual 2:1; the gen-
eral proximity of Neptune to Uranus, which increases
Uranus’s influence on Neptune’s orbital evolution, is
a significant factor in the destabilization of Neptune’s
resonances. It is also clear that if Neptune and Uranus
were any closer to their mutual 2:1 resonance than they
are today, all of Neptune’s external resonances would
be significantly weakened. We discuss the implications
of this further in Section 4.

We performed a few additional simulations to better
isolate which aspect of Uranus’s influence on Neptune
is the most important, and whether any of the weaken-
ing is due to more direct effects of Uranus on the test
particles themselves. One obvious influence Uranus has
on Neptune is that it causes Neptune’s eccentricity to
vary over time, and the amplitude of these variations
increases as the N:U period ratio approaches 2:1; we
tested whether increasing Neptune’s eccentricity vari-
ations in the absence of Uranus itself weakened Nep-

tune’s resonances. We ran two sets of simulations with
Neptune at its present day semimajor axis and only the
Sun, Jupiter, and Saturn as additional perturbers. In
these simulations, we imposed sinusoidal variations in
Neptune’s eccentricity and precession of its longitude of
perihelion to mimic its present day evolution as well as
amplified variations to mimic proximity to the N:U 2:1
without actually including Uranus in the simulation; in
the latter case, we based the variation on the N:U= 1.98

simulations in which Neptune’s eccentricity maximum
was nearly double its present day value. To do this, we
used fictitious forces within rebound similar to those
described in Wolff et al. (2012) for the Mercury integra-
tor (the implementation of these integrator modifica-
tions within rebound is described in Hermosillo Ruiz
et al. in prep). In both scenarios, we modeled test par-
ticles in Neptune’s 2:1 through 28:1 resonances, calcu-
lated the associated resonance strengths, and visually
inspected maps like those shown in Figure 7. There
were no significant differences in Neptune’s resonances
as a result of increasing Neptune’s eccentricity; both of
these test simulations behaved essentially the same as
our baseline simulations with Uranus removed.

The other notable aspect of Neptune’s evolution that
can be attributed to Uranus is that Neptune’s barycen-
tric semimajor axis experiences sinusoidal variations
with a period of ∼ 4300 years; this is the period associ-
ated with the near 2:1 N:U resonance, and the amplitude
of these variations are larger when the planets are closer
to the resonance. This period is equal to a bit more
than 26 times Neptune’s orbital period and thus equal
to the orbital periods of TNOs near our most distant set
of N:1 resonances where the resonance strengths drop
off (though we see the drop-off being closer in than the
26:1). We note that there is also a longer-period mod-
ulation of the amplitude of Neptune’s barycentric semi-
major axis variations that has a period of ∼ 1.15 Myr,
though that is significantly longer than the orbital or
resonant libration timescales for the N:1 resonances we
consider. To see whether Neptune’s resonances regained
any strength at larger distances where the orbital peri-
ods are better separated from this short-term period in
Neptune’s a variations, we extended our present-day so-
lar system configuration simulations out to Neptune’s
50:1 resonance; there was no apparent return of reso-
nant stability for particles with q = 33.

We ran one last set of simulations to determine
how much of the observed weakening of Neptune’s
present-day resonances in the scattering population is
attributable just to the Uranus-induced variations in
Neptune’s orbit. As described in Section 2.2 for simu-
lations near Neptune’s 20:1 resonance, we ran a set of
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Figure 7. Test particle period ratio with Neptune vs. ψ in the phase space from Neptune’s 2:1 to 28:1 resonances (∼ 50−280 au)
for four different Neptune : Uranus period ratios. In each simulation, particles are initialized with the equivalent of q = 33 au for
present-day Neptune’s orbit. Dark blue test particles indicate a longer normalized residence time, which is defined as a function
of its change in semimajor axis (∆a) across multiple small time intervals (see Appendix A). Lighter yellow test particles indicate
a shorter normalized residence time. Particles assigned a residence time of 0 (i.e., particles that scatter for the entire simulation)
are plotted in light gray for clarity to separate them from the resonant-interacting particles. Uranus is included as a full perturber
in all but the left-most plot; in the limited Uranus effects simulation, Uranus interacts with the other massive bodies but not
directly with the test particles. Notice the dramatic destabilization of Neptune’s external resonances when Neptune is set to
be in the 2:1 resonance with Uranus. We discuss in Section 3 how the stability of Neptune’s external resonances depends on
the the mutual period ratio between Uranus and Neptune. In the leftmost figure, note that the destabilization remains when
Uranus perturbs Neptune, but is not included in the force calculations for the test particles.
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Figure 8. Relative sticking strengths of Neptune’s N:1 res-
onances for different Neptune : Uranus period ratios see Ap-
pendix A for the definition of our strength parameter). The
black triangles and dashed line show the strengths in the
current solar system (Sun plus all four giant planets on their
present-day orbits); the gray circles and dashed line shows
the strengths with Uranus removed. The four sets of col-
ored points and lines show strengths from simulations with
Jupiter, Saturn, and Uranus on their current orbits, and Nep-
tune’s semimajor axis adjusted to the labeled period ratio
with Uranus (these are the same simulations shown in Fig-
ure 7). The purple colored points and lines show strengths
from simulations where Uranus is included as a perturber
for the other massive bodies but not for the test particles.
In all simulations, the strengths have been normalized such
that Neptune’s external 2:1 resonance has a strength of 100.
There is a very rapid drop-off in N:1 resonance strengths
with increasing N at the exact N:U 2:1 resonance. The res-
onance strengths plateau past the ∼ 5 : 1 in the simulation
with Uranus removed. In the simulations with Uranus, the
destabilization of Neptune’s distant N:1 resonances is more
pronounced when the N:U period ratio is closer to 2:1. The
simulations with limited gravitational effects from Uranus on
the test particles show similar destabilization.

simulations for the 2:1 through 28:1 resonances in which
the Sun and all four giant planets were fully interacting
on their present-day orbits, but the test particles did
not feel any direct gravitational effects from Uranus.
The residence time mosaic for this set of simulations is
shown in Figure 7 (we labeled these as ‘limited Uranus’
in the figures) immediately alongside the full simulation.
There is a remarkable similarity between the two scenar-
ios, especially at and beyond Neptune’s 20:1 resonance.
The intermediate N:1 resonances (between the 10:1 and
20:1) do appear stronger when Uranus does not directly
perturb the test particles, and this is reflected in the
resonance strength measurements shown in Figure 8;
we also include the averaged resonance strengths from
the limited Uranus simulations in Figure 9. When we
compare the resonance strengths in Figure 8 from the

simulations with Neptune on its current orbit without
Uranus, with limited Uranus effects, and with the full
influence of Uranus, we note only small differences in
the strengths of Neptune’s resonances out to the ∼ 10:1,
at which point the full simulation resonances strengths
begin to decrease significantly; the limited Uranus simu-
lation resonance strengths maintain similarity to the no
Uranus simulations a bit further out before dramatically
decreasing at the ∼ 15:1. It is clear that the variations
in Neptune’s orbit due to Uranus are responsible for
most of the weakening in Neptune’s distant resonances,
though more direct perturbations from Uranus have
some influence on the intermediate resonances.

To briefly summarize what we conclude from our nu-
merical simulations:

• In the absence of Uranus, Neptune’s exterior mean
motion resonances in the q = 33 au scattering pop-
ulation would be significantly stronger and extend
out to much larger period ratios.

• At the present day Neptune to Uranus period ra-
tio (N:U = 1.96), nearly all of the weakening in
Neptune’s most distant resonances (beyond the
∼ 20:1) in the scattering population can be at-
tributed to the variations in Neptune’s orbit in-
duced by the near-resonance with Uranus (partic-
ularly the a variations) rather than to Uranus’s di-
rect gravitational influence on the scattering pop-
ulation

• Neptune’s intermediate resonances in the present-
day solar system (the ∼ 10:1 through the ∼ 19:1
are slightly weakened by Uranus’s direct gravita-
tional influence.

• All of Neptune’s external resonances would be
significantly weaker if Neptune and Uranus were
closer to their mutual 2:1 resonance, essentially
vanishing at N:U=2.

We discuss the implications of these points in Section 4.

4. DISCUSSION

Our exploration of Neptune’s resonance strengths in
the current giant planet configuration and alternative
configurations has several important implications for the
current and past evolution of the TNO populations.
First, we now have an explanation for the drop-off in
resonance sticking at large a in the scattering TNO pop-
ulation (seen by, e.g., Lykawka & Mukai 2007 in numer-
ical models of the scattering population). The drop-off
occurs because variations in Neptune’s orbit (particu-
larly its semimajor axis) induced by the near 2:1 res-
onance with Uranus essentially destabilizes Neptune’s
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Figure 9. Resonance strengths as a function of the Neptune : Uranus period ratio averaged across Neptune’s 2:1 through 14:1
resonances (left panel) and 15:1 through 28:1 resonances (right panel). The blue points and dashed lines show the averaged
strengths in simulations with the Sun and all four giant planets, with Neptune’s semimajor axis increased or decreased to
change its period ratio with Uranus. The black points and dashed lines show the averaged strengths in simulations with the
same values of Neptune’s semimajor axes but with Uranus removed (i.e., simulations with the Sun, Jupiter, Saturn, and Neptune
as perturbers). The red stars highlight the present day N:U period ratio (1.96) in the simulations with Uranus removed; the
average resonance strengths measured each simulation are normalized relative to these two values (both red stars are at y=100).
The purple triangles represent the averaged strength from a set of simulations where Uranus perturbs the orbits of Neptune and
the other giant planets, but is not included in the force calculations on the test particles. Note that these values are similar to the
those of the 1.96 N:U period ratio simulations with the full effects of Uranus included. Neptune’s more distant resonances (right
panel) are much more dramatically weakened by the presence of Uranus across all tested N:U period ratios. All of Neptune’s
resonances show the most dramatic weakening at period ratios close to the N:U 2:1, and less weakening at higher N:U period
ratios.

resonances beyond a ∼ 200− 250 au entirely for nearly
Neptune-crossing eccentricities (q = 33 au). If Neptune
had migrated further outward by several au in semi-
major axis in the early solar system and was thus bet-
ter dynamically separated from Uranus, the present-day
scattering TNO population would experience more res-
onance sticking at large semimajor axes. The variations
in Neptune’s orbit also slightly weaken Neptune’s closer-
in resonances, though there is additional weakening from
Uranus’s direct gravitational influence on the scattering
population.

The simplest explanation for this additional destabi-
lization of Neptune’s present-day resonances by Uranus
is overlap between Neptune’s external resonances and
Uranus’s external resonances. This likely explains the
rapid deterioration of stable libration in Neptune’s res-
onances for the simulations in which we placed Neptune
and Uranus at their exact 2:1 period ratio. When Nep-
tune and Uranus are in their mutual 2:1 resonance, each
of Neptune’s exterior N:1 and N:2 resonances will be
overlapped by an exterior N:1 resonance of Uranus. This

overlap between multiple strong resonances causes the
strengths of Neptune’s N:1 resonances to drop off very
quickly in Figure 8; in Figure 7 there is no apparent sta-
ble libration in any resonance with Neptune beyond the
∼ 5 : 1 for the simulation with N:U = 2. When Neptune
and Uranus are not at their exact 2:1 period ratio, there
will still be places where their exterior resonances hap-
pen to overlap or otherwise interact. Gallardo (2020)
discusses how Uranus’s resonances are faintly visible in
dynamical maps of Neptune’s resonances (they highlight
Uranus’s 4:1 resonance just exterior to Neptune’s 2:1 in
their Figure 23). They note that Uranus’s resonances
are stronger at higher eccentricities, such as those in the
low-q scattering population we consider here (see also
Figure 4 in Gallardo 2018). This is likely why Nep-
tune’s distant resonances regain strength at large a for
the lower-e, higher-q orbits in the detached population
(see Figure 3 and Volk & Malhotra 2022).

Overlap between Neptune’s external resonances and
three-body resonances involving Neptune, Uranus, and
TNOs also potentially contribute to the weakening of
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Neptune’s resonances. Many main belt asteroids are
known to exist in three-body resonances, mostly involv-
ing Jupiter and Saturn (e.g. Gallardo 2018). Given the
short orbital periods of main belt asteroids, their orbital
parameters are typically much more tightly constrained
than TNOs; it is thus more rare for TNOs to have orbit-
fits accurate enough for secure identification in reso-
nances as narrow as three-body resonances tend to be.
Gallardo (2018) discuss 3 TNOs likely in the the 2 +1U-
3N three-body resonance with Neptune and Uranus (a
resonance identified by Smirnov & Markov 2017); they
conclude that the influence of three-body resonances on
Neptune’s two-body resonances leads to chaotic diffu-
sion but is not a problem that has been sufficiently well
studied. Overlap between Neptune’s external two-body
resonances, Uranus’s external two-body resonances, and
potential three-body resonances with both planets likely
plays a role in setting some of the smaller scale, noisier
structures seen in the patterns of resonance strengths in
Figures 6 and 8.

Beyond resonance sticking in the present-day scatter-
ing population, the strong dependence of Neptune’s dis-
tant resonance strengths on the Neptune to Uranus pe-
riod ratio (and on Neptune’s orbital variations due to
interactions with Uranus) has very important implica-
tions for using Neptune’s current resonant populations
to constrain the migration history of the giant planets.
As the orbits of both Neptune and Uranus evolved dur-
ing the epoch of giant planet migration, their period ra-
tio and amount of dynamical coupling would vary over
time. Thus the strengths of Neptune’s distant external
resonances could vary significantly depending on the ex-
act interactions between Uranus and Neptune; this could
dramatically change the likelihood of capturing TNOs
into Neptune’s resonances at different times during mi-
gration. In particular, overall predictions for distant res-
onance populations from planet migration simulations
could be very sensitive to how close Neptune and Uranus
approach their mutual 2:1 resonance, with distant reso-
nance capture probabilities likely dropping to near zero
if the two planets spend significant time too close to that
resonance. A recent exploration of more realistic planet
migration modeling by Kaib et al. (2024) found many
simulations in which Neptune and Uranus crossed their
mutual 2:1; they note that this crossing is unlikely to
have happened in the real solar system, but these sim-
ulations highlight the expectation that the N:U period
ratio during migration can be quite variable.

The observed semimajor axis distribution of TNOs
that are stably in Neptune’s distant resonances and
those on stable orbits that are near but not in reso-
nance provide powerful constraints on the migration his-

tory of the planets. The stable distant resonant TNOs
are likely scattering TNOs that stuck to the resonances
while Neptune was still migrating and were pushed into
more stable phase space. The strength of the resonances
during migration, and thus the probability of sticking to
them and being captured, varies depending on the N:U
period ratio (Figure 9). Thus the relative populations
of captured TNOs across a wide range of Neptune’s dis-
tant resonances will be a sensitive probe of the period
ratio history of the two planets, though the observed
populations are a combination of stable and transiently
resonant objects (e.g. Crompvoets et al. 2022) that must
be disentangled.

The non-resonant TNOs on stable (i.e., not scattering
orbits) sunward of these distant resonances are often in-
terpreted as resonant drop-outs. These could be TNOs
that stuck to the resonances and evolved through sec-
ular interactions to low-enough eccentricities to be left
behind as Neptune migrated (e.g. Gomes et al. 2005).
They also could have been dropped from resonance by
discrete jumps in Neptune’s semimajor axis during mi-
gration as Neptune interacted with the most massive
planetestimals in the pre-migration disk (e.g. Nesvorný
et al. 2016; Kaib & Sheppard 2016; Lawler et al. 2019).
The sensitivity of Neptune’s resonance strengths to the
N:U period ratio hints at an additional possibility: res-
onance drop-outs could also occur if the two planets ap-
proach too closely to their mutual 2:1 resonance during
migration. While our investigation only focused on the
low-q population, and Neptune’s distant resonances at
the present-day N:U period ratio remain strong for the
higher-q orbits associated with the resonance drop-outs,
the destabilization of Neptune’s resonances is very dra-
matic as the planets approach their mutual resonance.
To confirm that a mutual Neptune-Uranus resonance af-
fects resonance strengths for the lower-e/high-q TNO
population, we re-ran our simulation with the N:U= 2

period ratio with test particles distributed across Nep-
tune’s external resonances at q = 40 au. Manual in-
spection of these simulation results reveals no apparent
libration in any of Neptune’s 2:1 through 28:1 through
external resonances. Resonance dropouts at higher-q
could indeed result from temporary excursions toward
N:U= 2 period ratios during migration.

It is clear that the distribution of TNOs in and near
Neptune’s distant resonances should be sensitive to the
history of the N:U period ratio during migration. We
note that the overall evolution of the scattering popula-
tion could be sensitive to this as well. For low-q scat-
tering objects, sticking to Neptune’s resonances essen-
tially ‘pauses’ their diffusion in semimajor axis, increas-
ing the time it takes for a particle to be removed from
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the scattering population. Temporary enhancements or
reductions in the sticking strengths of Neptune’s reso-
nances during migration could change the decay rate of
the overall scattering population. The history of the
N:U period ratio could thus also affect how much of the
primordial scattering population is retained during mi-
gration.

5. SUMMARY AND CONCLUSIONS

We have explored the phase space of Neptune’s mean
motion resonances from a ≈ 50−285 au for eccentricities
typical of scattering TNOs, finding:

• In the three-body problem (Sun, Neptune, and
test particles) as well as in a solar system with
Uranus removed (Sun, Jupiter, Saturn, Neptune,
and test particles) Neptune’s external mean mo-
tion resonances would remain strong out to several
hundred au in the scattering TNO population.

• In the current solar system (Sun, Jupiter, Sat-
urn, Uranus, Neptune, and test particles), Nep-
tune’s resonances become unstable beyond a ≈
200−250 au for low-q orbits, explaining the lack of
resonance sticking seen in simulations of the high-
a scattering TNO population.

• The destabilization of Neptune’s most distant res-
onances in the scattering population is due to vari-
ations in Neptune’s orbit that are caused by the
proximity of Uranus and Neptune to their mutual
2:1 resonance.

• Uranus has a more direct influence on Neptune’s
closer-in resonances, weakening them sightly com-
pared to simulations in which Uranus is not
present; this is likely the result of overlap between
Neptune and Uranus’s two-body resonances as
well as potentially weaker three-body resonances.

• The strengths of all of Neptune’s external reso-
nances are quite sensitive to Neptune’s period ra-
tio with Uranus; if Neptune and Uranus are placed

at their 2:1 resonance, there would be almost no
stable libration in Neptune’s resonances.

Our results imply that the drop-off in resonance stick-
ing in the high-a scattering TNO population (e.g.,
Lykawka & Mukai 2007) is not a generic outcome of
small body scattering dynamics, but is instead a re-
sult of Uranus’s perturbations on Neptune. The exact
pattern of destabilization for Neptune’s resonances as
a result of Neptune-Uranus interactions is complex and
has important implications for the behavior of Neptune’s
resonances during the era of planet migration when in-
teractions between Neptune and Uranus were evolving.
The overall number of stable distant resonant TNOs
captured during migration, the relative stable popu-
lations between the distant resonances, as well as the
number and distribution of resonant dropouts could be
very sensitive to the history of Neptune and Uranus’s
period ratio. Future, large-scale surveys such as the
Vera Rubin Observatory’s Legacy Survey of Space and
Time (LSST) will dramatically improve observational
constraints on the distant resonant, scattering, and de-
tached TNO populations (e.g. Ivezić & et al. 2019).
These observations should reveal complex patterns in
the number of temporarily resonant scattering TNOs
that reflect the relative strengths of the resonances.
The revealed distributions of stably resonant and de-
tached TNOs will provide important constraints on the
relative orbital histories of Uranus and Neptune.
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APPENDIX

A. RESONANCE STRENGTH CALCULATION

As was explained in Section 2.3, we wanted to better quantify the strength of resonances that accounts for test
particles that ‘stick’ transiently in addition to stably librating particles. We do this by considering total resonance
occupation timescales as a fraction of simulation time. For example, a test particle may start as non-resonant then
move into Neptune’s 20:1 resonance, librate for 200 orbits, then be scattered away. If the duration of the simulation is
1000 20:1 orbital periods (∼3.3 Myr), then that test particle can be said to be resonant for 20% of the simulation time.
For this particular resonance, this one particle can be assigned a strength value of 0.2. As discussed in Section 2.3,
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the nature of the sticking events and resonance behavior we are interested in makes it difficult to rely solely on
the confinement of ψ to determine periods of resonant interactions; the symmetric libration zones of Neptune’s N:1
resonances in particular span nearly the entire ψ = 0−360◦ range, and even particles in the the more confined resonant
islands will experience slips in ψ through the full range. So instead we rely on relative confinement of semimajor axis
to determine periods of resonant interactions. We note that this method of determining resonant interactions only
works for the low-q scattering particles we are considering. High-q particles can remain at constant a over significant
timescales without any resonant interactions, whereas low-q particles are very mobile in a if they are not interacting
with resonances. Even if low-q particles stay at constant a without true resonant libration, they typically only do so
because they are interacting with a resonance boundary, so it is reasonable to include them in the strength calculation.

We extend our analysis of individual test particle resonance interaction timespans to assign an overall strength value
to a given resonance based on the entire set of test particles using the following steps:

• Define a window in period ratio with Neptune around a target resonance. We define the boundaries of N:1
resonances with a window size of ±0.15 in period ration with Neptune on either side of the exact resonant ratio;
for N:2 resonances we use a period ratio window of ±0.1, and ±0.075 for N:3 resonances. An example of this for
the 20:1 resonance would be a period ratio with Neptune from 19.85 to 20.15, corresponding to a = 220.36−222.6.
These values adequately cover the expected width of each resonance type, without overlapping onto neighboring
strong resonances. We only limit our target windows by period ratio, not ψ.

• Identify every test particle that passes through this window throughout the duration of the simulation and assign
that particle a ‘residence time ratio’, si, that describes the resonant interaction with a target resonance. This is
done as follows:

– Define a sliding timescale window (∆t). We set this to be 100 perihelion passages, which is ∼ 10% of
the overall simulation time (T = 1000 orbital periods of the N:1 resonance nearest that particle’s starting
semimajor axis). For each particle that passes though our period ratio region of interest, we start the sliding
time window at t = 0 and find the maximum and minimum period ratio recorded for that particle over ∆t.
If these values are wholly within the period ratio bounds, then we consider this particle ‘bound’ to that
phase space window in that given timespan of the simulation.

– The start of the sliding time window is then set to t = 1, then t = 2, then t = 3 (the times of the next three
perihelion passages), and so on until the window end reaches the end of the simulation, with the above
determination made for each window.

– Once we have recorded the number Nres of all time windows in which the test particle was bound to
the period ratio range, we calculate the fraction of the total simulation time test particle i was resonant:
si = Nres/(T −∆t).

– Note: Our simulations output the orbital elements of each test particle at every perihelion passage. The
timing between each perihelion passage is not always the same because the test particles are evolving in
semimajor axis and thus not every particle achieves exactly 1000 perihelion passages over the simulation.
However, when a particle as resonant, its orbital period is the same as that of the target resonance, so the
normalization of si as a fraction of the expected 1000 resonant orbital periods is unaffected.

• A unitless strength value for a particular resonance can then be determined by the sum of residence time ratios
(si) for all the particles that enter that region of phase space throughout the duration of the simulation. This is
then normalized to the total number of test particles that are initialized in that region at the beginning of the
simulation time (ntp,0). The strength value S is thus:

S =

∑N
0 si

ntp,0
. (A1)

We note that some of the particles whose si values are included in S were initialized outside of the period ratio
range from which ntp,0 is determined. But because we are considering a low-q scattering population, and many
of the particle initialized near a resonance will scatter fairly quickly, the value of S in our simulations is always
between 0 and 1, and S is approximately the average of all residence time ratios of for particles in the target
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period ratio window. This normalization scheme is tailored to our scheme of initializing particles along lines
of constant ψ and equally spaced in the semimajor axis; other normalizations would need to be considered for
alternative test particle distributions.

As noted above, our strength parameter S is best suited for the low-q scattering population we focus on. It is also best
used as a relative rather than absolute strength measurement; this is why we typically normalize resonance strengths
to the value of S for the strongest resonance in a simulation (e.g., Figure 6). There are many different ways resonance
strength or stickiness can be parameterized. Our resonance strength parameter differs from the relative resonance
stickiness parameter used by Lykawka & Mukai (2007); they normalize the residence time in individual resonances
to the total residence time across all resonances, whereas we normalize to the total simulation time. The overall
trends in both versions of the resonance strength/stickiness are quite similar (see their Figure 5). However, note that
their simulations differ significantly from ours because they examine the entire scattering population over much longer
timescales with far fewer test particles in each resonance due to the longer timescales.

When plotting a-ψ phase diagrams in Figure 7, we use a modified version of a particle residence time to better
highlight general particle stability. We used the same sliding window method as described above for examining
particle behavior for the duration of the simulation, but looked only at semimajor axis stability in each window rather
than confinement to a specific period ratio range. If the semimajor axis of a particle changed by no more than 2 au
(roughly twice the width of typical resonances in the range we are interested in) we considered it stable for that time
window. The fraction of all examined time windows for which a particle was stable is then the ‘normalized residence
time’ parameter used to color-code particles in the a-ψ maps in Figure 7. We found this scheme the most effective for
visually illustrating the changes in resonant behavior in our different simulations.
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