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Abstract

Counterfactual explanations provide a popular method for analyzing the predic-
tions of black-box systems, and they can offer the opportunity for computational
recourse by suggesting actionable changes on how to change the input to obtain a
different (i.e. more favorable) system output. However, recent work highlighted
their vulnerability to different types of manipulations.
This work studies the vulnerability of counterfactual explanations to data poisoning.
We formally introduce and investigate data poisoning in the context of counterfac-
tual explanations for increasing the cost of recourse on three different levels: locally
for a single instance, or a sub-group of instances, or globally for all instances. In
this context, we characterize and prove the correctness of several different data
poisonings. We also empirically demonstrate that state-of-the-art counterfactual
generation methods and toolboxes are vulnerable to such data poisoning.

1 Introduction

Many Artificial Intelligence (AI-) and Machine Learning (ML-) based systems are increasingly
deployed in the real world (49; 20). These systems show an impressive performance but are still not
perfect – e.g. failures, issues of fairness, and vulnerability to data poisoning can cause harm when
applied in the real world. Given the threat of failures (intentionally caused or not), transparency of
such deployed AI- and ML-based systems becomes a crucial aspect. Transparency is important not
only to prevent failures but also to create trust in such systems and understand where and how it
is safe to deploy them. The importance of transparency was also recognized by the policymakers
and therefore found its way into legal regulations such as the EU’s GDPR (14) or the more recent
EU AI act (13). Explanations are a popular way of achieving transparency and shaping the field of
eXplainable AI (XAI) (16). However, because of many different use cases and users, many different
explanation methods exist (16; 2; 1; 33). One popular type of explanation method is counterfactual
explanations (45), which are inspired by human explanations (11) and can be used to provide recourse
to individuals. A counterfactual explanation provides (computational) recourse by stating actionable
recommendations on how to change the system’s output in some desired way – e.g. how to change
a rejected loan application into an accepted one. Recent works have shown that counterfactual
explanations are neither robust to model changes (28), nor to input perturbations (4; 43), and also
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Training data If you had earned 500$ more.

Training data If you had earned 10000$ more.

(a) Illustrative example of loan application: Poisoned
training data set leads to a higher cost of recourse.
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(b) Data poisoning at three different levels.

Figure 1

not to adversarial training (38). However, the vulnerability of counterfactual explanation methods to
data poisoning remains unexplored. Data poisoning affects models in the training stage by changing
training samples or adding new instances such that, for instance, the performance (e.g. accuracy) of
the final trained model decreases (24; 41), or fairness issues arise (27; 39). Data poisoning can be
done offline (24) or online (41). It only makes small changes to the training data such as changing
labels, removing samples, or adding new instances, that are likely to remain unnoticed. This poses
a real threat in practice because nowadays many large models are trained on huge data sets – often
based on public data from the internet (49; 20) – where it is impossible to check data in detail
and therefore poisonous data might affect a large number of models trained directly on the data or
indirectly using some pre-trained embeddings or models (35; 8; 47). In the context of counterfactual
explanations, data poisoning could increase the cost of recourse as illustrated in Figure 1a – either
globally for all individuals or for a subset of individuals. Since counterfactual explanations state
actionable recommendations that are to be executed in the real-world, manipulated explanations
would directly affect the individuals by enforcing more costly actions or hiding some information
from them. Although counterfactual explanations are a popular and widely used explanation method,
the effect of data poisoning on them has not been studied yet.

In this work, we study the vulnerability of counterfactual explanations to data poisoning. We formalize
and identify a set of data poisoning mechanisms for counterfactual explanations which injects a small
set of realistic but poisonous data points into the training data set such that the decision boundary of
a newly trained classifier changes to increase the cost of recourse on one of three different levels:
locally for an individual or, a sub-group of individuals, or globally for all individuals. The method
only needs access to an interface for getting predictions and a mechanism for generating closest
counterfactuals, but no access or knowledge about model internals is needed. We empirically find
that existing state-of-the-art methods for computing counterfactuals are vulnerable to data poisoning.

Related Work Most existing work (6) on exposing the vulnerability of explanations is centered
in the vision domain and focuses either on adversarial examples or model manipulation. Only very
little work considers domain-independent data poisoning (6). For instance, there exist data poisoning
against partial dependence plots (7), SHAP (5), and concept-based explainability tools (10). The
authors of (7) propose a genetic algorithm for perturbing the training data such that SHAP importances
or attributions change. Their proposed method assumes that it is possible to change (possibly) all
samples in the training set, which might constitute a very strong and unrealistic assumption in reality.
Furthermore, changing many (or all) samples in the training data set might harm the model’s predictive
performance – this, however, is not evaluated in (7). A similar approach, with the same limitations,
is proposed in (5) where partial dependence plots are targeted. In the context of counterfactual
explanations, the authors of (38) propose an adversarial training objective such that the cost of
recourse decreases for a sub-group of individuals. Note that this approach is model-specific and
different from data poisoning since it proposes the use of a malicious cost function and therefore
assumes full control over the training procedure. In this work, we consider data poisonings and argue
that changing or adding training instances might often be more actionable in practice.
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2 Foundations of Counterfactual Explanations and Recourse

A counterfactual explanation (often just called counterfactual) states actionable changes to the features
of a given instance such that the system’s output changes. Usually, an explanation is requested in
the case of an unexpected or unfavorable outcome (34) – in the latter case, a counterfactual is also
referred to as recourse (21), i.e. recommendations on how to change the unfavorable into a favorable
outcome. Because counterfactuals can mimic ways in which humans explain (11), they constitute
among one of the most popular explanation methods in literature and in practice (29; 42). There are
two important properties that must be considered when formalizing and computing counterfactual
explanations (45): 1) the contrasting property, requiring that the stated changes indeed change the
output of the system; and 2) the cost of the counterfactual – i.e. the cost and effort it takes to execute
the counterfactual in the real world should be as low as possible in order to maximize its usefulness
(e.g. counterfactuals with very few changes or as small as possible changes). Both properties can be
combined into an optimization problem (see Definition 1).

Definition 1 ((Closest) Counterfactual Explanation). Assume a classifier (binary or multi-class)
h : Rd → Y is given. Computing a counterfactual δ⃗cf ∈ Rd for a given instance x⃗orig ∈ Rd is
phrased as the following optimization problem: argmin

δ⃗cf ∈Rd

ℓ
(
h(x⃗orig + δ⃗cf), ycf

)
+C · θ(δ⃗cf) where ℓ(·)

penalizes deviation of the prediction h(x⃗cf := x⃗orig + δ⃗cf) from the requested outcome ycf, θ(·) states
the cost of the explanation (e.g. cost of recourse) which should be minimized, and C > 0 denotes the
regularization strength balancing the two properties. CF(x⃗, h) denotes the counterfactual δ⃗cf of an
instance x⃗ under a classifier h(·) iff the target outcome ycf is uniquely determined.

Note that the cost of the counterfactual, here modeled by θ(·), is highly domain and use-case specific
and therefore must be chosen carefully in practice and might require domain knowledge. In many
implementations and toolboxes (19), the p-norm is used as a default.

Remark 1. In the case of recourse – i.e. a counterfactual explanation δ⃗cf (Definition 1) for turning
an unfavorable into a favorable outcome –, we refer to the cost θ(δ⃗cf), as the cost of recourse.

In this work, w.l.o.g., we refer to y = 0 as the unfavorable, and y = 1 as the favorable outcome. Be-
sides those two essential properties (contrasting and cost), there exist additional relevant aspects such
as plausibility (26; 31), diversity (30), robustness (46; 48; 23; 4), fairness (3; 44; 37; 36), etc. which
have been addressed in literature (19). There exist numerous methods and implementations/toolboxes
for computing counterfactual explanations in practice (19) – most include some additional aspects
such as plausibility, diversity, etc.: FACE (31) is a model-agnostic algorithm for computing feasible
and actionable counterfactuals. Instead of computing a single counterfactual only, the method also
outputs a path of intermediate actionable steps that lead from the original instance to the final coun-
terfactual. Counterfactuals Guided by Prototypes (26) is another method focusing on plausibility.
Here a set of plausible instances (prototypes) are used to pull the final counterfactual instance (i.e.
x⃗orig + δ⃗cf) closer to these plausible instances and by this make them more plausible. DiCE (30) is a
model-agnostic method for computing a set of diverse closest counterfactual explanations instead of
a single one only. Nearest Training Sample method constitutes a straightforward baseline method
for computing plausible counterfactual explanations that can be implemented by picking the closest
sample, with the requested output ycf, from a given set (e.g. training set) as the counterfactual instance.

3 Data Poisoning of Counterfactual Explanations

Data poisoning of counterfactuals can have effects on different levels: all individuals are affected
(global effect), only some sub-groups are affected (sub-groups effect), or only a single individual is
affected (local effect). Also, data poisoning can aim for different effects on counterfactuals , such
as hiding attributes or increasing the cost of recourse (Remark 1). Since providing (computational)
recourse is a core application of counterfactuals, increasing the cost of recourse has the most severe
consequence in the real world because it would harm individuals directly by making the recourse
more costly. Therefore, in this work, we focus on data poisoning for increasing the cost of recourse.
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3.1 Data Poisoning for Increasing the Cost of Recourse

In this work, we study the effect of data poisoning on the cost of recourse (Remark 1). That is, we
focus on data poisoning with the primary goal of increasing the cost of recourse, in a pre-defined
region in data space, as stated in Definition 2.
Definition 2 (Data Poisoning for Increasing the Cost of Recourse). Given an original training data
set Dorig ⊂ {X ×Y}n and a probability density ϕ(·) assigning a high likelihood to targeted instances,
we transform (i.e. poison) Dorig into a new data set Dpoisoned ⊂ {X × Y}m by means of a data
poisoning mechanism T : {X ×Y}n → {X ×Y}m, such that the cost of recourse θ(·) increases for
instances under ϕ(·):

Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDpoisoned)

]
> Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDorig)

]
where Dpoisoned = T (Dorig) (1)

where ◦ denotes the function composition, hD denotes a classifier that was derived from the data set
D, and CF(·, ·) a method for generating counterfactuals.

The density ϕ(·) allows us to vary the level of the poisoning – e.g. for a global effect, we could use
a class-wise density for targeting all instances from a specific class, or in the case of a local effect,
we could use a delta-density to target a single instance or a small group of instances. In this work,
we focus on data poisoning attacks T (·) that add new (poisonous) instances to the training data set
to increase the cost of recourse (Definition 2). In this context, we formally define (Definition 3) a
poisonous data set (40) for increasing the cost of recourse – i.e. a data set that increases the cost of
recourse (Definition 2) if added to the original training data Dorig.
Definition 3 (Poisonous Data Set). We say that a data set Dpoison ⊂ {X × Y}m is recourse
poisoning for a training data set Dorig ⊂ {X × Y}n iff a classifier h : X → Y trained on Dpoison ∪
Dorig shows an increase in the cost of recourse (Definition 2): Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDpoison∪Dorig)

]
>

Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDorig)

]
Consequently, we write the data poisoning mechanisms T (·) (Definition 2) as follows: T (Dorig) =
Dorig ∪ Dpoison where Dpoison refers to a poisonous data set from Definition 3. From a practical point
of view, besides increasing the cost of recourse (as stated in Definition 2), the poisonous data set
Dpoison (Definition 3) should have the following properties:

1. The number of poisonous instances Dpoison is small: argmin |Dpoison|
2. The poisonous instances Dpoison are realistic – i.e. they are on the data manifold pdata(·) and

have a high likelihood: argmax pdata(x⃗i, yi) ∀ (x⃗i, yi) ∈ Dpoison

3. In the case of aiming for a local or sub-group effect, poisonous instances only target those
specified groups, but do not affect any other instances – i.e. the cost of recourse of untargeted
instances should not change: Ex⃗∼ϕ′

[
θ ◦CF(x⃗, hDpoison∪Dorig)

]
≈ Ex⃗∼ϕ′

[
θ ◦CF(x⃗, hDorig)

]
where ϕ′ denotes the density of all untargeted instances.

4. The predictive performance of the classifier is maintained1:
argmin E[ℓ(hDpoison∪Dorig(x⃗i)), yi)] where ℓ(·) denotes some suitable loss function.

Considering all these aspects, we formalize the finding of a poisonous data set Dpoison (Definition 3)
as a multi-objective optimization problem:

argmin
Dpoison

(
|Dpoison|,E[ℓ(hDpoison(x⃗i)), yi)],

∑
(x⃗i,yi)∈Dpoison

−pdata(x⃗i, yi)
)

(2a)

s.t. Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDpoison∪Dorig)

]
> Ex⃗∼ϕ

[
θ ◦CF(x⃗, hDorig)

]
(2b)

Ex⃗∼ϕ′
[
θ ◦CF(x⃗, hDpoison∪Dorig)

]
≈ Ex⃗∼ϕ′

[
θ ◦CF(x⃗, hDorig)

]
(2c)

In the following, we study a few (general) aspects and properties of Eq. (2) and poisonous data sets
(Definition 3) that will serve as a foundation for the final data poisoning algorithm (Algorithm 1).

Locally Increasing the Cost of Recourse As discussed in Section 2, the simplest way of achieving
recourse is by means of the closest counterfactual as stated in Definition 1 – i.e. the smallest change

1However, because the decision boundary is changed, some drop in the predictive performance might be
inevitable.
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that reaches/crosses the decision boundary. Regarding local poisoning, it can be shown that, under
some assumptions, samples on the decision boundary are data poisoning instances (Definition 3).
Theorem 1 (Local Recourse Poisoning Data Sets for 1-Nearest Neighbor Classifiers). Let hD(·) be
a k-nearest neighbor classifier (with k = 1) for some data set D. For any (x⃗orig, yorig) ∈ D, let x⃗′

denote the closest instance (assuming uniqueness) on the decision boundary under a p-norm θ(·).
Then, Dpoison = {(x⃗′, yorig)} is a poisonous data set (Definition 3) at x⃗orig – i.e. the cost resources
increases for x⃗orig, i.e.: θ ◦CF(x, hD∪{(x⃗′,yorig)}) > θ ◦CF(x, hD)

Although a 1-NN classifier is somewhat simplistic, it is quite flexible and might be a good local
approximation for many different classifiers. Therefore, Theorem 1 provides valuable insights on the
nature of recourse poisoning data sets (Definition 3) for locally increasing the cost of recourse.

Globally Increasing the Cost of Recourse Similar to Theorem 1, it is possible, under some
assumptions, to state a poisonous data set (Definition 3) in the case of a linear Support Vector
Machine classifier (SVM) for globally increasing the cost of recourse.
Theorem 2 (Global Recourse Poisoning Data Set for linear SVM). Let hD : Rd → {−1, 1}, x⃗ 7→
sign(w⃗⊤x⃗ + b) be a linear SVM classifier, and assume that the training data set D is linearly
separable. Then, a poisonous data set Dpoison (Definition 3) for all negatively classified samples
(i.e. ∀ x⃗ ∈ Rd : h(x⃗) = −1) is given as follows: Dpoison = {(x⃗,−1) | x⃗ ∈ Rd with − w⃗⊤x⃗− b ≥
1− ξ, ξ ∈ (0, 1)}

Note that Theorem 2 states that a recourse poisoning data set can be constructed by considering all
samples inside the maximum margin of h(·). In practice, however, it is likely possible that already a
small subset of Dpoison constitutes a poisonous data set (Definition 3) as well.

3.2 Data Poisoning on Counterfactual Explanations

Based on the findings from Section 3.1, we formalize a method (see Algorithm 1) for generating
poisonous data sets (Definition 3) – i.e. poisonous instances that are added to the training set, to
increase the cost of recourse. Consequently, our proposed Algorithm 1 constitutes and implementation
of a data poisoning T (·) from Definition 2. Note that this proposed method supports data poisonings
on different levels (i.e. local, sub-groups, and global levels).

For practical purposes, we assume that we have (or created) a set of samples Dtarget = {(x⃗j , y)} all
with the same prediction y ∈ {0, 1}, where x⃗j ∼ ϕ, from the region in data space that is targeted
by the poisoning – e.g. this could be a subset of the training data set. We propose to fix the size
of the poisonous data set (Definition 3) (i.e. the number of poisonous instances {z⃗i} is fixed) and
approximate the original multi-objective optimization problem Eq. (2) by Eq. (3).

argmin
{z⃗i}

(
argmin
x⃗j∈Dtarget

∥z⃗i − x⃗j∥p,E[ℓ(hDorig∪Dpoison(x⃗l)), yl)]
)

(3a)

s.t.
∑

x⃗∈Dtarget

θ ◦CF(x⃗, hDorig∪Dpoison) >
∑

x⃗∈Dtarget

θ ◦CF(x⃗, hDorig) (3b)

Ex⃗∼ϕ′
[
θ ◦CF(x⃗, hDorig∪Dpoison)

]
≈ Ex⃗∼ϕ′

[
θ ◦CF(x⃗, hDorig)

]
(3c)

where the poisonous data set (Definition 3) Dpoison is constructed as Dpoison = {(z⃗i, y)}.

Note that the objective in Eq. (3) replaces the original plausibility constraint in Eq. (2). That is, we
construct poisonous instances that are very similar to the given samples Dtarget – note that it was
observed (12) that small perturbations often remain unnoticed by the human, which gave rise to
adversarial attacks (12; 32). By this, we aim to make the poisonous instances more difficult to detect.

Implementation We propose to compute an approximate solution to Eq. (3) by constructing instances
z⃗i that are on the decision boundary or behind it and are close to samples in Dtarget – Theorem 1 and
Theorem 2 suggest that those samples form a poisonous data set (Definition 3). We construct such
instances by computing closest counterfactual explanations δi (Definition 1) of samples (x⃗j , y) ∈
Dtarget that are close to the decision boundary:

z⃗i = x⃗j + δj for some x⃗j where δj is "small" (4)

where we estimate the distance δi to the decision boundary by computing a closest counterfactual
– i.e. δi = CF(x⃗i, h). Note that the counterfactual δ⃗cf used in Eq. (4) is not necessarily computed
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Algorithm 1 Data Poisoning for Increasing the Cost of Recourse
Input: Samples Dtarget = {(x⃗i, y)} from the data space region that is targeted; Mechanism CF(·, h)
for generating closest counterfactuals; Number n of poisonous instances; Parameters: k, b
Output: Poisoned training data set Dpoisoned

1: {δi = θ ◦CF(x⃗i, h) ∀x⃗i ∈ Dtarget} ▷ Estimate distances to decision boundary
2: Dpoison = {}
3: for n-times do
4: (x⃗, y) ∼ weighted_sampling (Dtarget, {δi}) ▷ Prefer samples close to the decision boundary
5: ∆cf = CF(x⃗, h; k) ▷ k diverse closest CFs
6: for δ⃗cf ∈ ∆cf do
7: for α ∈ [1, b] do
8: z⃗ = x⃗+ α ∗ δ⃗cf ▷ Add samples along δ⃗cf

9: Dpoison = Dpoison ∪
{
(z⃗, y)

}
10: end for
11: end for
12: end for
13: Dpoisoned = Dtrain ∪Dpoison ▷ Add Dpoison to training set

by the same counterfactual generation method that is targeted by the data poisoning (Definition 3).
Maintaining predictive performance objective in Eq. (2) and not changing the cost of recourse should
for untargeted instance, are both considered implicitly in Eq. (4) – because the poisonous instances
z⃗i are close to the targeted instances in Dtarget, a sufficiently flexible classifier should not change its
behavior in other regions in data space. Furthermore, because we only consider samples x⃗j that are
close to the decision boundary, the corresponding z⃗i (which constitute a counterfactual instance of
x⃗j) are expected to be very similar to x⃗j and therefore satisfying the plausibility constraint in Eq. (2).
To increase the robustness of the poisoning, we propose to use not only a single closest counterfactual
in Eq. (4) but a set of diverse closest counterfactual explanations. We also propose to extend the
counterfactual direction δ⃗cf by multiplying it with a factor α > 1, to create an even larger increase in
the cost of recourse. The pseudo-code of data poisoning is given in Algorithm 1.

Correctness From Theorem 1 it follows (see Corollary 1) that Algorithm 1 computes valid poisonous
data sets for a k-NN classifier with k = 1.
Corollary 1 (Correctness of Algorithm 1). Let hD(·) be a k-nearest neighbor classifier (with k = 1)
for some data set D. For any Dtarget = {(x⃗orig, yorig)} where (x⃗orig, yorig) ∈ D, Algorithm 1 computes
a poisonous data set (Definition 3) that increases the cost of recourse of x⃗orig.

Although k-NN classifiers with k = 1 might seem simplistic, they constitute a flexible classifier that
might be used as an approximation of other more sophisticated classifiers.

Runtime The runtime of Algorithm 1 can be broken down to O(n ·k ·ρ) where n and k are the hyper-
parameters of the algorithm referring to the number of poisonous instances (i.e. size of the poisonous
data set), and ρ denotes the computational complexity (i.e. runtime) for computing a counterfactual
which is utilized to construct the poisonous sample(s) Eq. (4) (see line 8 in Algorithm 1) – note ρ is
likely to differ between different counterfactual generation mechanisms. Consequently, the runtime
of Algorithm 1 scales linearly with the number of requested poisonous samples.

Limitations The major limitation of Algorithm 1 is that it requires access to a counterfactual
generation method for generating poisonous instances. A gradient-based approximation of the
counterfactual generation method could be an alternative to this. However, besides assuming gradients
(not possible for tree-based models), one would lose the correctness guarantees. Furthermore, our
approach still constitutes a more realistic assumption compared to (38) where an attacker is assumed
to be able to manipulate the loss function used in training.

4 Experiments

We empirically evaluate the robustness of counterfactual explanations (i.e. recourse) against data
poisonings by applying the data poisoning Algorithm 1 from Section 3 on combinations of several
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Table 1: Difference in the cost of recourse: no poisoning vs. global poisoning. The amount of
poisoning (percentage %) is specified for each method separately. Positive numbers denote an
increase in the cost of recourse, while negative numbers denote the opposite. We report the median
(over all folds) rounded to two decimal places.

Classifier Data set Nearest 10% DiCE 10% FACE 40% Proto 20%

SVC
Credit 4.94 7.59 −0.91 8.33

Diabetes 2.28 2.23 −0.03 2.46
Crime 9.81 9.45 15.24 14.22

RNF
Credit 3.56 4.9 2.35 6.05

Diabetes 0.64 0.91 −0.24 1.84
Crime 4.32 6.85 11.17 13.65

DNN
Credit 1.06 1.93 2.36 0.38

Diabetes 0.68 0.66 1.6 1.24
Crime 5.18 6.65 11.81 9.04

different benchmark data sets, classifiers, and state-of-the-art counterfactual explanation generation
methods and toolboxes. The Python implementation of the experiments (including all data sets), is
available on GitHub2.

4.1 Benchmark Data Sets & Machine Learning Classifiers

We consider three data sets that all contain a sensitive attribute such that we can also evaluate the
difference in the cost of recourse between protected groups: The “Diabetes” data set (17) (denoted
as Diabetes) contains data from 442 diabetes patients, each described by 9 numeric attributes and
the sensitive attribute “sex” of each patient. The target is a binarized quantitative measure of disease
progression one year after baseline. The “Communities & Crime” data set (15) (denoted as Crime)
contains 1994 socio-economic data, including the sensitive attribute “race”, records from the USA.
Following the pre-processing in (22), we are left with 100 encoded attributes to predict the crime rate
(low vs. high). The “German Credit Data set” (18) (denoted as Credit) is a data set for loan approval
and contains 1000 instances each annotated with 7 numerical and 13 categorical attributes, including
the sensitive attribute “sex”, with a binary target value. We use only the seven numerical features.

We consider a diverse set of ML classifiers h(·): deep neural networks (denotes as DNN), random
forests (denoted as RNF), and linear SVM ’s(denoted as SVC).

4.2 Counterfactual Generation Methods

Given the large amount of different counterfactual generation methods (19), we evaluate the data
poisoning method on a set of very different and popular state-of-the-art methods for computing com-
putational recourse: Nearest Training Sample (denoted as Nearest), as simple baseline; FACE (31) and
Counterfactuals guided by Prototypes (26) (denoted as Proto) for computing plausible counterfactuals;
DiCE (30) for diverse closest counterfactuals.

4.3 Setup

In all experiments (as described below), we use DiCE (30) as a counterfactual generation mechanism
for computing three diverse closest counterfactuals (i.e. k = 3 in Algorithm 1), that are as close
as possible to the original sample. We use the ℓ1 norm as a popular implementation (19) of the
cost of recourse – i.e. θ(·) = ∥·∥1. Furthermore, all experiments are run in 5-fold cross-validation.
In all global and sub-group data poisoning scenarios, we evaluate different amounts (5% to 70%)
of poisonous instances – i.e. original training data + poisoned instances. We not only evaluate the
influence of the number of poisonous instances on the cost of recourse, but also their influence on the
classifiers’ predictive performance – some of these results are shown in Figures 2,3a while the rest
can be found in the appendix. Note that, although we use the DiCE method (30) for constructing the
poisonous instances in Algorithm 1, it can still be considered a model-agnostic method because it is
also able to attack other counterfactual generation methods.

2https://github.com/andreArtelt/DataPoisoningCounterfactuals
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Figure 2: Global data poisoning: a) Median (over all folds) difference in the cost of recourse vs.
percentage of poisoned instances. b) Cost of recourse vs. percentage of poisoned instances.

Table 2: Difference in the cost of recourse between protected groups: no vs. poisoning on a sub-group
level. The amount of poisoning (percentage %) is specified for each method separately. Positive
numbers denote an increase in the difference in the cost of recourse, while negative numbers denote
the opposite. We report the median (over all folds) rounded to two decimal places.

Classifier Data set Nearest 10% DiCE 40% FACE 40% Proto 50%

SVC
Credit 0.78 0.08 0.73 9.79

Diabetes 1.23 0.54 0.02 2.85
Crime 5.7 7.51 0.46 12.4

RNF
Credit 0.48 0.12 3.18 0.07

Diabetes 0.72 1.59 0.05 1.09
Crime 4.62 6.96 14.32 1.27

DNN
Credit 0.13 0.47 0.22 9.11

Diabetes 1.1 0.75 −0.2 2.29
Crime 9.06 10.09 1.86 0.47

Data poisoning on a global level For every, negative classified, sample in the test set, we compute
a counterfactual explanation. We evaluate the global increase in the cost of recourse, by computing
the difference in the cost of recourse: θ ◦CF(x⃗i, hDorig∪Dpoison)− θ ◦CF(x⃗i, hDorig). A positive score
means an increase in the recourse cost (due to the data poisoning), while a negative or near zero score
implies no change or a lower cost of recourse. We report the median to avoid the influence of outliers.
In Table 1 we show the increase in the cost of recourse together with the amount of poisoning that was
necessary for observing a significant increase – more detailed results are provided in the appendix.

Data poisoning on a sub-group level We consider sub-groups created based on the sensitive
attribute – note that this is a reasonable but only one out of many possible ways how sub-groups might
be created. We apply the data poisoning to poison instances from one protected group only, assuming
that the sensitive attribute of each instance is known. By this, we aim to increase the difference in the
cost of recourse between the two protected groups – i.e. group-unfairness in recourse (3; 44; 37).

For every, negative classified, sample in the test set (no matter to which sub-group it belongs), we com-
pute a counterfactual. We evaluate the difference in the cost of recourse between the two sub-groups
as follows: sDorig∪Dpoison − sDorig with sD = ∥θ ◦CF(x⃗i|s = 0, hD)− θ ◦CF(x⃗i|s = 1, hD)∥ ∀ x⃗i ∈
Dtest h(x⃗i) = 0 where we denote the sensitive attribute as s – i.e. x⃗i|s = 0 means that we only
consider xi if its sensitive attribute is equal to zero. A positive score refers to an increase in the
difference of the cost of recourse between the protected groups, while a negative score refers to the
opposite. Furthermore, note that we use the median (over all folds) to avoid the influence of outliers.
We show the results together with the minimum amount of poisoning that was necessary for observing
a significant increase in Table 2 – more detailed results are provided in the appendix.

8



0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percentage of poisoning instances

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
st

 o
f r

ec
ou

rs
e

data
original
poisoned

(a) h(·): SVC - CF: DiCE

Original data Untargeted instances Targeted instances

2

4

6

8

10

12

Co
st

 o
f r

ec
ou

rs
e

(b) CF: Nearest

Figure 3: a) Sub-group data poisoning on the Crime data set – no poisoning vs. different percentages
of poisoned instances. Difference in the median cost of recourse between the two protected groups.
b) Local data poisoning on the diabetes data set and a DNN classifier.

Data poisoning on a local level We compute a local data poisoning for every, negative classified,
sample in the test set. However, because of computational limitations – i.e. for every sample in the
test set (over all folds), the entire data poisoning has to be run and evaluated –, we only evaluate a
single scenario considering a DNN classifier on the diabetes data set. Some of the results are shown
in Figure 3b – more detailed results are given in the appendix.

Detection of poisonous instances To hinder their detection, the poisonous instances (Definition 3)
should look like plausible training samples. We evaluate this by applying two classic outlier detection
methods to the poisoned training data set Dorig ∪ Dpoison: Isolation Forest (25) and the Local Outlier
Factor method (9). Both methods are calibrated on the (unpoisoned) test set and applied to Dorig ∪
Dpoison to detect the poisonous instances Dpoison. We compare the performance of those two detection
methods to the baseline of predicting a poisonous sample with the ground-truth rate of poisonous
samples. The detailed results (precision and recall) are given in the appendix.

4.4 Results & Discussion

General trend We observe that in almost all scenarios, on local as well as on global levels (see
Tables 1,2 and appendix), even a relatively small amount of poisonous instances, added to the
training data set, leads to a significant increase in the cost of recourse. Increasing the number of
poisonous instances leads to an even larger increase in the cost of recourse (see Figure 2 and appendix).
However, we observe differences in the necessary amount of poisonous instances between different
counterfactual generation methods and toolboxes. For FACE (31) and counterfactuals guided by
prototypes (26), we need significantly more poisonous instances for increasing the cost of recourse –
in the case of FACE, we even have a few settings (in particular for SVC) where the poisoning does not
work which is likely due to the special nature of FACE that might require a different strategy. Since
both methods focus on plausibility, this might be an indicator that additional plausibility constraints
can act as a beneficial regularize for increased stability. Altogether, the results demonstrate the
vulnerability of existing (state-of-the-art) counterfactual generation methods to data poisonings.

Data poisoning on a sub-group level In the case of sub-groups, we observe (see Table 2) a similar
effect compared to the global and local poisoning. However, the increases are not as large as those
for the local or global poisoning and often the necessary amount poisonous instances is also larger
compared to the global poisoning – this is quite likely due to a strong overlap of the distributions
of the sub-groups which makes it difficult to just change the cost of recourse for one group but not
for the other. Furthermore, it is worth noting that in many cases the initial difference in the cost of
recourse is already quite significant (see Figure 3a and appendix).
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Effect on the predictive performance We observe the expected results that classifiers’ predictive
performance is decreasing the more poisoned instances are added – i.e. for a global data poisoning
the decrease in predictive performance is worse than for sub-group or local data poisonings.

Detection of poisonous instances Concerning the detectability of the generated poisonous instances,
we observe that both outlier detection methods are not able to reliably detect the poisonous instances.
Furthermore, while the detection precision is often not too bad, for the recall both methods are
outperformed by the baseline method of randomly predicting poisonous instances. These findings
demonstrate that the detection of our generated poisonous instances is non-trivial.

5 Conclusion & Summary

In this work, we studied the robustness of counterfactuals against data poisonings. We identified
and formalized data poisonings to increase the cost of recourse on different levels (local - global) by
adding poisonous instances to the training data. We observed that in almost all cases the injection of
already a small portion of poisonous instances into the training data leads to a significant increase in
the cost of recourse on all levels. These findings demonstrate how easily existing classifiers and state-
of-the-art counterfactual generation methods can be fooled by manipulating the training data. Since
counterfactuals are a widely used method for providing recourse and analyzing ML-based models,
(malicious) manipulations of those directly harm the user and consequently significantly reduce users’
trust in this XAI method. Thus, this work demonstrates the necessity of more robust counterfactual
generation methods as well as defense mechanisms against malicious data manipulations – we leave
this as future research together with the exploration of other data poisoning mechanisms.
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