
ar
X

iv
:2

40
2.

08
33

4v
1

 [
cs

.P
L

]
 1

3
Fe

b
20

24

An Executable Specification of Oncology

Dose-Escalation Protocols with Prolog

David C. Norris1 and Markus Triska2

1 Precision Methodologies, LLC, Wayland MA 01778, USA
david@precisionmethods.guru

https://precisionmethods.guru
2 triska@metalevel.at

https://www.metalevel.at

Abstract. We present, as a pure Prolog program, the first executable
specification of the 3 + 3 dose-escalation protocol commonly used in
early-phase oncology drug development. In this program, the imperative
operations of the protocol emerge as consequences of clinically meaning-
ful anticipatory-regret scenarios that are declared as CLP(Z) constraints.
This ‘regret-constrained’ (RC) specification yields a robust formulation
which can be used to prove clinically meaningful safety and liveness prop-
erties of the protocol before incorporating it into a trial, and then as an
on-line decision support system while the trial is underway. Our RC spec-
ification also readily accommodates certain pragmatic modifications to
trial enrollment which severely strain traditionally imperative formula-
tions. The features of modern Prolog systems let us describe the 3 + 3
protocol with a short and general program that has desirable algebraic
properties and can therefore be used, tested and reasoned about in sev-
eral different ways.

Keywords: System safety · Formal system verification · Clinical trials
· Dose finding.

1 Introduction

Clinical development of a new cancer drug for human use typically follows a 3-
phase process. Phase 1 trials, which concern us here, try a drug for the first time
in humans, exploring relations between dosing and toxicity which preclinical an-
imal experimentation cannot adequately characterize. Subsequent phase 2 and
3 trials address efficacy, and are premised on dosing recommendations yielded
by phase 1. Because cancer drugs’ toxicity usually becomes evident on a shorter
time-scale than their efficacy, phase 1 cancer trials often adopt a maximum toler-
ated dose (MTD) heuristic which calibrates dosing to produce mild-to-moderate
toxicity. While it has long been recognized that MTD varies from one patient to
another [1], it remains an almost universal practice in phase 1 oncology trials to
define ‘tolerability’ in population terms, according to what proportion of patients
experience a severe, ‘dose-limiting’ toxicity (DLT).

http://arxiv.org/abs/2402.08334v1
https://precisionmethods.guru
https://www.metalevel.at

2 D. Norris and M. Triska

2 Prolog prerequisites and compatibility considerations

Our key contribution, described in the following sections, is the specification of
a dose-escalation protocol in the form of an executable Prolog program. We have
chosen Prolog as implementation language for several reasons: First, Prolog is
highly suited for this application, allowing us to achieve a general and efficient
program with a small code-base. Second, Prolog remains the best-known logic
programming language, continuing to be taught at universities around the world.
This makes our specification immediately accessible to a substantial number of
programmers. Third, a number of different Prolog implementations exist, and
yet are mutually compatible to varying degrees thanks to the existence of an
ISO standard that defines their common syntactic and semantic features.

Standards are of great importance in the medical sector and play a signifi-
cant role in procurement decisions, resolution of legal disputes, warranty ques-
tions, and the preparation of teaching material. It is to be expected that the
use of an ISO-standardized programming language will enable the broadest pos-
sible adoption of our approach in such a safety-critical application area. For
these reasons, we are using Scryer Prolog for our application. Scryer Prolog
is a modern Prolog system written in Rust that aims for strict conformance
to the Prolog ISO standard and satisfies all syntactic conformity tests given
in https://www.complang.tuwien.ac.at/ulrich/iso-prolog/conformity_testing. It
is freely available from: https://www.scryer.pl. The queries we show are executed
with version 0.9.3.

A moderate knowledge of Prolog is required to fully understand the code
presented here. We are using only basic Prolog predicates, and features from
the following additional libraries that are available in Scryer Prolog and also for
several other Prolog systems:

:- use_module(library(lists)).

Commonly known relations over lists, such as length/2 and maplist/N.

:- use_module(library(clpz)).

Declarative integer arithmetic, with a monotonic execution mode requiring that
all logic variables standing for concrete integers be wrapped with the dedicated
functor (#)/1. We use CLP(Z) constraints such as (#=)/2 and (#>)/2 to denote
the respective relations between integer expressions, allowing for very general
definitions.

:- use_module(library(reif)).

This library provides the meta-predicates if_/3 and tfilter/3 as described
in [5].

:- use_module(library(dcgs)).

Definite clause grammars (DCGs) which are available in virtually all Prolog
systems. We are using this built-in grammar mechanism to describe sequences
of events. The nonterminal ... //0 means any sequence.

Executable Specification of Dose-Escalation Protocols with Prolog 3

:- use_module(library(error)).

This library provides sound type tests. If a term is not sufficiently instantiated
to decide its type, an instantiation error is raised to prevent incorrect failure in
cases where a more specific instantiation would yield a solution.

:- use_module(library(si)).

“si” stands for sufficiently instantiated, and also for sound inference. This library
provides additional sound type tests.

:- use_module(library(lambda)).

We use this higher-order construct to conveniently project away uninteresting
answer substitutions in toplevel interactions, and also to define anonymous aux-
iliary predicates that do not warrant a standalone definition or dedicated name.

:- initialization(assertz(clpz:monotonic)).

We run our application in the monotonic execution mode to ensure that all
admissible cases are taken into account, and consequently use for example the
term #X to denote a logic variable X that stands for a concrete integer.

We provide a collection of texts that explain these language features in more
detail at https://www.metalevel.at/prolog. These language features are explained
in more detail at https://www.scryer.pl and the resources it links to.

The Prolog code we present in the following sections is designed to run with
all conforming Prolog systems where the above provisions are present.

3 Dose-escalation trials

Participants in phase 1 oncology studies are typically patients with cancer for
whom standard treatments have stopped working or do not exist. These patients
enroll to pursue an experimental treatment with therapeutic intent [9] in the face
of unknown efficacy and great uncertainty about how toxicities may manifest and
at what doses.

The required therapeutic balance between tolerability and efficacy is typically
sought in dose-escalation trials that enroll patients serially into an escalating se-
quence of pre-specified doses. Small cohorts of 1–3 patients are enrolled together,
all assigned to the same dose level. Although we will demonstrate a pragmatically
important generalization to variable cohort sizes, initially we specify uniform co-
horts of size 3.

allowed_cohort_sizes([3]).

Whereas a complete trial protocol will specify complex clinical grading systems
for assessing a broad array of distinct toxicities, for dose-escalation purposes each
patient’s experienced toxicity gets tallied in binary terms, according to whether
the toxicity is severe enough to be deemed a ‘dose-limiting toxicity’ (DLT).

4 D. Norris and M. Triska

Eliding the time which must elapse from dosing to toxicity assessment, at any
given moment each dose will be characterized by a cumulative toxicity tally T/N

denoting that a DLT has occurred in T out of the N participants enrolled at that
dose:

valid_tally(T/N) :- valid_denom(N), 0 #=< #T, #T #=< N.

Rapid progress being imperative in cancer drug development, phase 1 trials are
typically designed to yield a recommended phase 2 dose without enrolling a
large number of patients. Thus, for phase 1 purposes, the maximum enrollment
deemed necessary to characterize any given dose may be quite modest:

valid_denom(N) :- N in 0..6.

If a dose has current tally T0/N0, then enrollment of a new cohort at this same
dose will yield a new tally T/N in the expected way:

enroll(T0/N0, T/N) :-

allowed_cohort_sizes(Cs),

member(Nnew, Cs),

#N #= #N0 + #Nnew,

valid_denom(N),

Tnew in 0..Nnew, indomain(Tnew),

#T #= #T0 + #Tnew.

The dose-escalation state at any moment consists of accumulated toxicity tallies
at each of an ascending sequence of up to 8 doses (a pragmatically relevant
maximum rarely exceeded by actual dose-escalation trials), together with an
index into this sequence identifying a ‘current dose’. We represent this by a
pair of tally-lists, the left-hand Ls listing lower doses in descending dose order
with the current dose at its head, and the right-hand Hs listing higher doses in
ascending order with the next-higher dose at its head.

valid_state(Ls - Hs) :-

append(Ls, Hs, Ds),

length(Ds, ND), ND in 1..8,

maplist(valid_tally, Ds).

state_tallies(Ls-Hs, Qs) :-

valid_state(Ls-Hs),

reverse(Ls, Js),

append(Js, Hs, Qs).

As tallies accumulate at the various dose levels, the ‘current dose level’ (into
which the next cohort is to be enrolled) may be updated by one of 3 possible
dose-escalation decisions: escalate, stay and de-escalate:

state0_decision_state(Ls - [H0|Hs], esc, [H|Ls] - Hs) :-

valid_state(Ls - [H0|Hs]),

Executable Specification of Dose-Escalation Protocols with Prolog 5

enroll(H0, H).

state0_decision_state([L0|Ls] - Hs, sta, [L|Ls] - Hs) :-

valid_state([L0|Ls] - Hs),

enroll(L0, L).

state0_decision_state([L,D0|Ls] - Hs, des, [D|Ls] - [L|Hs]) :-

valid_state([L,D0|Ls] - Hs),

enroll(D0, D).

The very data structures in which we have declared the basic template of a
dose-escalation protocol already limit which dose-escalation decisions are feasible
at any point in the trial. One cannot, for instance, escalate above the highest
dose; nor can one de-escalate from the lowest:

state0_decision_infeasible_t(_-[], esc, true).

state0_decision_infeasible_t([_]-_, des, true).

We encode maximum dose-wise enrollment also as a matter of feasibility:

state0_decision_infeasible_t(_-[_/N|_], esc, true) :- #N #>= 6.

state0_decision_infeasible_t([_/N|_]-_, sta, true) :- #N #>= 6.

state0_decision_infeasible_t([_,_/N|_]-_, des, true) :- #N #>= 6.

The false clauses of state0_decision_infeasible_t/3are obtained by demon-
strating that at least one valid subsequent state does exist:

state0_decision_infeasible_t(S0, E, false) :-

member(E, [esc,sta,des]),

Goal = exists_subsequent_state(S0, E),

once((term_si(Goal), Goal)).

exists_subsequent_state(S0, E) :-

state0_decision_state(S0, E, _).

The existential quantification performed here uses the (generally, impure) pred-
icate once/1 to avoid redundant solutions for greater efficiency, yet it does so
in a safe way: term_si/1 ensures that once/1 is only called when its argument
is ground and can therefore yield at most one solution. Importantly, term_si/1
yields an instantiation error if its argument is not ground, differing crucially
from the standard predicate ground/1, which can fail silently even in cases that
admit solutions by further instantiations. Therefore our use of once/1 never
incurs silent loss of solutions.

In addition to the esc, sta and des decisions which permit the trial to
continue, there is also the possibility of stopping with a dose recommendation.
The rules which relate observed toxicity tallies to these decisions constitute the
design of a dose-escalation protocol.

6 D. Norris and M. Triska

4 The traditional rules of 3 + 3 dose-escalation

The conventional, and still most prevalent, dose-escalation design is the 3 + 3.
For an account of this design in practice, we are indebted to [4], quoted at length
in Figure 1. A similar description from [8] is given in Figure 2.

“Although there is no canonical ‘standard method’, we present the design that
we have most often encountered, which is used almost universally with minor
variations. First, there is a precise [clinical] definition in the protocol of what is
considered dose-limiting toxicity (DLT); it may differ in different settings. The
dose levels are fixed in advance, with the first patients treated at dose level 1.
Initially, one treats 3 patients at a level. If 0 out of 3 patients experiences DLT,
one proceeds to the next higher level with a cohort of 3 patients. If 1 out of
3 patients experiences DLT, treat an additional 3 patients at the same dose
level. If 1 out of 6 patients experiences DLT at a level, the dose escalates for
the next cohort of patients. If ≥ 2 out of 6 patients experience DLT, or ≥ 2 out
of 3 patients experience DLT in the initial cohort treated at a dose level, then
one has exceeded the MTD. Some investigations will, at this point, declare the
previous dose level as the MTD, but a more common requirement is to have
6 patients treated at the MTD (if it is higher than level 0). To satisfy this
requirement, one would treat another 3 patients at this previous dose level if
there were only 3 already treated. The MTD is then defined as the highest dose
level (≥ 1) in which 6 patients have been treated with ≤ 1 instance of DLT, or
dose level 0 if there were ≥ 2 instances of DLT at dose level 1.”

Fig. 1. Natural-language description of the 3 + 3 dose-escalation protocol, from [4].
Our specification implements the “more common requirement” described here.

“In the traditional 3 + 3, phase I cancer trial design, a minimum of three
participants are studied at each dose level. If none of these three participants
experience a DLT, a subsequent three participants are enrolled onto the next
highest dose level. If one of three participants at a dose level experiences a
DLT, up to three more participants are enrolled. When a DLT is observed in
at least two participants in a cohort of three to six, the MTD is [regarded as
having been] exceeded and an additional three participants (up to a total of six)
are treated at the next lower dose level. The MTD is defined as the dose level
at which none or one of six participants (0% to 17%) experience a DLT, when
at least two of three to six participants (33% to 67%) experience a DLT at the
next highest dose.”

Fig. 2. Natural-language description of the 3 + 3 dose-escalation protocol, from [8].
The “more common” variant of [4] appears to be taken for granted here.

Executable Specification of Dose-Escalation Protocols with Prolog 7

5 Indeterminacies in dose escalation

Before we can reconstruct the aforementioned rules, we must appreciate certain
essential indeterminacies inherent to dose escalation.

Whereas a dose-escalation decision determines the dose at which the next
cohort of trial participants will enroll, it does not fully determine the ensuing trial
state. This is because there is a nonzero probability of DLT in any participant
who receives a nonzero dose. Thus, the toxicity tally in a cohort of size C could
turn out as any of the C+1 possibilities [C/C,...,0/C]:

enroll_tallies(C, Qs) :-

n_countdown(C, Ts),

maplist(\T^(=(T/C)), Ts, Qs).

n_countdown(N, [N|Ns]) :- #N #> 0, #Nminus1 #= N - 1,

n_countdown(Nminus1, Ns).

n_countdown(0, [0]).

Moreover, under an important generalization to be explored in Section 12, the
actual number of patients who will be available to enroll after a dose-escalation
decision may itself be indeterminate, drawn from a list [C|Cs] of length ≥ 2:

enrollments_tallies([C|Cs], Qs) :-

enroll_tallies(C, Q0s),

append(Q0s, Q1s, Qs),

enrollments_tallies(Cs, Q1s).

enrollments_tallies([], []).

Thus, the decision to enroll a new cohort into a dose level that already has a
T0/N0 toxicity tally gives rise to multiple possible outcome Tallies:

tally0_tallies(T0/N0, Tallies) :-

valid_tally(T0/N0),

allowed_cohort_sizes(Cs),

enrollments_tallies(Cs, Qs),

maplist(\Qnew^Q^(Qnew=Tnew/Nnew,

#T #= T0 + Tnew,

#N #= N0 + Nnew, Q=T/N),

Qs, Tallies).

6 Regret-constrained specification of 3 + 3 designs

We can now introduce what we call regret-constrained protocol specifications,
which ground dose escalation in specified events deemed to induce clinically
meaningful decisional regret, thereby constraining what dose-escalation decisions
are permissible in the course of a trial. This renders explicit a linkage to un-
derlying aims and clinical motivations left implicit by customary treatments of

8 D. Norris and M. Triska

dose-escalation via painstaking procedural tabulations. We will exhibit a Prolog
program that, on the basis of a few suitably calibrated yet clinically intuitive
regret-constraints, behaves consistently with the natural-language 3 + 3 design
rules quoted above.

To this end, we state that we regret a Decision when it yields some unde-
sirable TallyHistory, which for the purpose of modeling the 3 + 3 design needs
to take into account only the resulting tally T/N and the immediately preceding
tally T0/N0:

state0_decision_histories(S0, E, Hs) :-

(E = esc,

S0 = [T0/N0|_] - [Told/Nold|_]

; E = sta,

S0 = [T0/N0|_] - _,

Told = T0, Nold = N0

; E = des,

S0 = [T0/N0, Told/Nold | _] - _

),

tally0_tallies(Told/Nold, Qs),

maplist(\Q^(=([Q, T0/N0])), Qs, Hs).

6.1 Specific, clinically-motivated regrets

It is always possible that, after an esc decision, all three patients in the new
cohort will experience DLTs. Although such an outcome is of course regrettable,
investigators need not regret their decision to escalate if they feel it was justified
by a low enough toxicity observed at the previous dose. The judgment as to what
constitutes sufficiently low toxicity to justify escalation will generally depend on
clinical context. The 3 + 3 design embeds a judgment equating this condition
with N0 ≥ 3 and T0/N0 ≤ 1/6 ∈ Q. Accordingly, we regret escalation precisely
when this justification is absent:

decision_q0_q_regret(esc, T0/N0, _, #\ (#N0 #>= 3 #/\ #T0 * 6 #=< N0)).

The literature makes equally clear that overly cautious dose-escalation risks ex-
posing too many participants to subtherapeutic dosing [7]. Thus, decisional regret
can also serve to constrain des decisions. The 3 + 3 design is consistent with a
judgment regretting de-escalating from a moderately toxic tally {T0 ≤ 1, N0 ≥ 3}
upon appreciating very low net toxicity T/N < 1/6 at the new lower dose:

decision_q0_q_regret(des, T0/N0, T/N,

(#T0 #=< 1 #/\ #N0 #>= 3) #/\

(#N #> 0 #/\ #T * 6 #< #N)

).

The literature also exhibits ample evidence of interest in net properties of dose-
escalation trials ex post facto [3]. A 3 + 3 trial run without protocol violations

Executable Specification of Dose-Escalation Protocols with Prolog 9

can never record more than 4 DLTs at any single dose level. We express this fact
by positing a regret for any decision that results in ≥ 5 toxicities at any dose
level, regardless of preceding tally history:

decision_q0_q_regret(esc, _, T/_, #T #>= 5).

decision_q0_q_regret(sta, _, T/_, #T #>= 5).

decision_q0_q_regret(des, _, T/_, #T #>= 5).

Prolog has allowed us to state these regrets in a very general form: We regret
any situation that satisfies the given constraints, even if nothing else is known
about it. Indeed, we capture an infinite set of concrete tallies with each of these
clauses of decision_q0_q_regret/4.

6.2 Reification of regret

To achieve efficiency while retaining the desired generality of our code with the
constructs from [5], we reify these declared regrets in a predicate, regret_t/3.
We ensure the true and false branches of regret_t/3 are constructed without
copy-and-paste error by employing the term_expansion/2 mechanism to gen-
erate the false branch of regret_t/3 as the constructive negation of all true
clauses, using the reification mechanism of library(clpz):

% Generate e_vars_disjunction _at compile time_.

:- dynamic(e_vars_disjunction/3).

term_expansion(generate_clauses, Clauses) :-

findall(e_vars_disjunction(E, Vars, Disjunction),

(member(E, [esc,sta,des]),

findall(Vs-RC,

(decision_q0_q_regret(E, T0/N0, T/N, RC),

Vs = [N0,N,T0,T]

), VsRCs),

pairs_keys_values(VsRCs, Vs, RCs),

maplist(=(Vars), Vs),

foldl(\X^Disj0^Disj^(Disj=(Disj0#\/X)), RCs, 0#=1, Disjunction)

),

Clauses).

generate_clauses.

regret_t(E, H, Truth) :-

e_h_disjunction(E, H, Disjunction),

Disjunction #<==> #B,

b_t(B, Truth).

b_t(0, false).

b_t(1, true).

e_h_disjunction(E, H, Disjunction) :-

10 D. Norris and M. Triska

H = [T/N, T0/N0],

e_vars_disjunction(E, [N0,N,T0,T], Disjunction).

The e_vars_disjunction/3 clauses thus generated are:

?- listing(e_vars_disjunction/3).

e_vars_disjunction(esc,[A,B,C,D],0#=1#\/ #\ (#A#>=3#/\ #C*6#=<A)#\/ #D#>=5).

e_vars_disjunction(sta,[A,B,C,D],0#=1#\/ #D#>=5).

e_vars_disjunction(des,[A,B,C,D],

0#=1#\/ #C#=<1#/\ #A#>=3#/\(#B#>0#/\ #D*6#< #B)#\/ #D#>=5).

true.

6.3 Anticipatory regret

Whereas regret_t/3 looks backwards to already-realized toxicity tallies, it is
also possible to anticipate all possible Regrets:

state0_decision_regrets(S0, E, Regrets) :-

state0_decision_histories(S0, E, Hs),

tfilter(regret_t(E), Hs, Regrets).

A dose-escalation decision is regrettable iff the list of possible Regrets is
nonempty:

state0_decision_regrettable_t(S0, E, false) :-

state0_decision_regrets(S0, E, []).

state0_decision_regrettable_t(S0, E, true) :-

state0_decision_regrets(S0, E, [_|_]).

By conducting dose escalation to avert anticipated regret, resolving degener-
ate choices by therapeutically motivated preference relations esc ≻ sta ≻ des

that favor exploration of higher doses, we obtain an effective protocol specifica-
tion.

state0_nextdecision(S0, E) :-

if_((state0_decision_infeasible_t(S0, esc)

; state0_decision_regrettable_t(S0, esc)),

if_((state0_decision_infeasible_t(S0, sta)

; state0_decision_regrettable_t(S0, sta)),

if_((state0_decision_infeasible_t(S0, des)

; state0_decision_regrettable_t(S0, des)),

E = stop,

E = des),

E = sta),

E = esc).

Finally, we obtain all possible trial paths using a DCG path//1 which de-
scribes all paths of the trial from the current state S0:

Executable Specification of Dose-Escalation Protocols with Prolog 11

path(S0) --> { state0_nextdecision(S0, E),

state0_decision_state(S0, E, S) },

[E, S],

path(S).

path(S0) --> { state0_nextdecision(S0, stop),

stopstate_rec(S0, Rec) },

[stop, recommend_dose(Rec)].

path(recommend_dose(_)) --> [].

When none of the dose-escalation decisions [esc,sta,des] remains feasible, the
trial stops, yielding a dose recommendation. The relation between the final state
and this recommendation is specified by stopstate_rec/2:

stopstate_rec([]-_, 0).

stopstate_rec([T/N|TNs]-_, Rec) :-

(#T * 6 #> #N, length(TNs, Rec)

; #T * 6 #=< #N, length([_|TNs], Rec)

).

7 Algebraic properties of our formulation

With the lone exception of once/1, which is guaranteed to be used in a safe way
as explained in Section 3, the resulting program consists exclusively of mono-
tonic Prolog constructs. Our program thus by construction provides algebraic
properties that we consider essential in this safety-critical application area:

– If an answer says that no (further) solutions exist to a query, then there are
truly no (further) solutions, no matter which additional constraints we add.
In other words, our program cannot be “tricked” into yielding solutions that
other queries deny.

– The predicates of library(debug) can be used for declarative debugging of
the program itself.

– Every query either shows all possible answers, or yields an instantiation
error if the query is not sufficiently instantiated.

– Reordering any clauses or goals in the program can affect termination or the
existence of instantiation errors, but it does not change the set of described
solutions.

In addition, the Scryer Prolog toplevel always shows all pending constraints
and can therefore be used like a theorem prover: When a query succeeds uncon-
ditionally, a solution is guaranteed to exist.

These properties ensure that our program constitutes a declarative specifica-
tion that can be queried, run and reasoned about in different ways, and yields
only correct results in all possible usage modes. The only possible remaining
source of logic errors is a mistake in the protocol formulation itself.

12 D. Norris and M. Triska

8 Relation of our specification to natural-language

descriptions

From this program, we can elicit concretely much of the meaning of the text in
Figure 1, which we exhibit for the case of D = 3 doses:

– The dose levels are fixed in advance, with the first patients treated at dose
level 1.
?- setof(E^S1, Etc^(phrase(path([0/0]-[0/0,0/0]), [E, S1 | Etc])),

Starts).

Starts = [sta^([0/3]-[0/0,0/0]),sta^([1/3]-[0/0,0/0]),

sta^([2/3]-[0/0,0/0]),sta^([3/3]-[0/0,0/0])].

– If 0 out of 3 patients experiences DLT, one proceeds to the next higher level
with a cohort of 3 patients.
?- setof(E, Path^Ls^H^Hs^(phrase(path([0/0]-[0/0,0/0]), Path),

phrase((..., [[0/3|Ls]-[H|Hs]], [E], ...), Path)), Es).

Es = [esc].

– If 1 out of 3 patients experiences DLT, treat an additional 3 patients at the
same dose level.
?- setof(E, Path^Ls^H^Hs^(phrase(path([0/0]-[0/0,0/0]), Path),

phrase((..., [[1/3|Ls]-[H|Hs]], [E], ...), Path)), Es).

Es = [sta].

– If 1 out of 6 patients experiences DLT at a level, the dose escalates for the
next cohort of patients.
?- setof(E, Path^Ls^H^Hs^(phrase(path([0/0]-[0/0,0/0]), Path),

H = 0/0,

phrase((...,[[1/6|Ls]-[H|Hs]],[E],...), Path)), Es).

Es = [esc].

Notably, eliciting the intended meaning of the text in the last case required
positing that the next-higher dose H had not yet been enrolled. Without this
proviso, stop would also have been permissible.

From the decision cascade in the body of state0_nextdecision/2 it is evi-
dent that our formulation yields a unique decision in any concrete situation (with
ground S0); we therefore consider it a complete specification. The Appendix in-
cludes a complete enumeration of all 46 paths for the D = 2 case, easily checked
vis-à-vis the text of Figure 1.

9 Verification of safety properties

The text of Figure 1 trends from language that is initially imperative, toward
declarative statements near the end. The latter reflect clinical investigators’ in-
tense interest in asserting safety properties for their trials and (by extension) for
the conclusions drawn from them. Informally, a safety property states that bad
things do not happen. For example, the “more common requirement”

Executable Specification of Dose-Escalation Protocols with Prolog 13

to have 6 patients treated at the MTD (if it is higher than level 0)

expresses a concern to avoid recommending a dose on the strength of too little
experience.

Our executable specification exhibits safety properties expressed in Figure 1
through statements about ‘the MTD’. For example,

– If ≥ 2 out of 6 patients experience DLT, or ≥ 2 out of 3 patients experience
DLT in the initial cohort treated at a dose level, then one has exceeded the
MTD.

recommends_dose_exceeding_mtd :-

D in 1..8, indomain(D), % For trials of up to D=8 doses

InitD = [Q]-Qs, length([Q|Qs], D), % .. that start from the lowest dose

maplist(=(0/0), [Q|Qs]), % .. with no prior toxicity information,

phrase(path(InitD), Path), % does any Path exist

phrase((..., [Ls-_], ..., % .. on which a state Ls-_ appears,

[recommend_dose(Rec)] % .. such that the recommended dose Rec

), Path),

length(Ls,X), Rec #>= X, % .. was at least the current dose X,

Ls = [T/_|_], #T #> 1. % .. yet X ‘exceeded MTD’ per protocol?

%?- time(recommends_dose_exceeding_mtd).

%@ % CPU time: 574.029s, 2_701_969_903 inferences

%@ false. % This safety property is verified for trials of up to 8 doses.

Note that the featured statement effectively asserts a property of the desirable
dose recommendation (which it refers to as ‘the MTD’), namely that it should
be less than any dose at which ≥ 2 toxicities have been tallied.

10 Verification of liveness properties

Although clinical investigators’ keen attention to safety is more readily apparent
in the literature, any sensible dose-escalation design must also guarantee liveness
properties. Informally, liveness properties state that good things do happen. One
such property applicable to these trials is that they yield a recommendation, and
then immediately stop:

trial_fails_to_conclude_with_unique_rec :-

D in 1..8, indomain(D), length([Q|Qs], D), maplist(=(0/0), [Q|Qs]),

phrase(path([Q]-Qs), Path),

(phrase((..., [recommend_dose(Rec)], [_], ...), Path)

; \+ phrase((..., [recommend_dose(Rec)]), Path)

).

%?- time(trial_fails_to_conclude_with_unique_rec).

%@ % CPU time: 560.946s, 2_675_988_416 inferences

%@ false. % All trials of up to 8 doses yield a recommendation, then stop.

14 D. Norris and M. Triska

11 Generality and versatility of the specification

The DCG introduced in Section 9 is remarkably general and versatile. It is an
executable specification of the sequences of events which may occur in the trial,
in the sense that it states what holds, and it can be used in multiple modes. This
generality allows us to answer a variety of questions with comparatively simple
queries. For example, in one specific mode, we can use our specification as an
‘expert system’ that automatically determines what the next decision should
be at a point where we have reached the highest dose of a D = 3 trial, having
recorded a 0/3 tally at each dose:

?- setof(E, Path^(phrase(path([0/0]-[0/0,0/0]), Path),

phrase((...,[[0/3,0/3,0/3]-[], E], ...), Path)), Es).

Es = [sta].

We can as easily adopt a retrospective point of view, to ask what dose-escalation
decisions could have preceded this state:

?- setof(E0, Path^(phrase(path([0/0]-[0/0,0/0]), Path),

phrase((...,[E0, [0/3,0/3,0/3]-[]],...), Path)), E0s).

E0s = [esc].

We are also able to look far ahead, anticipating all recommendations that remain
possible at any time in an ongoing trial. Having recorded tallies of 0/3, 0/3 and
2/6 at dose levels 1, 2 and 3 of a D = 3 trial, for example:

?- setof(Rec, Path^(phrase(path([0/0]-[0/0,0/0]), Path),

phrase((..., [[2/6,0/3,0/3]-[]],

..., [recommend_dose(Rec)]), Path)), Recs).

Recs = [0,1,2]. % Only dose level 3 has been ruled out so far.

Finally, the DCG allows complete enumeration of all admissible trials :

?- J+\time((D = 8, length([Q|Qs], D), maplist(=(0/0), [Q|Qs]),

setof(Path, phrase(path([Q]-Qs), Path), Paths),

length(Paths, J))).

%@ % CPU time: 337.638s, 1_573_175_565 inferences

%@ J = 16138.

This capability can confer substantial benefits even on analyses of a sta-
tistical nature. For example, [6] employs such enumeration to derive statistical
characterizations of 3 + 3 trials, exempt from Monte Carlo error. The generality
and versatility of our Prolog code enables more usage modes than a procedu-
ral implementation can provide. We regard the run-times of our program in all
these modes as commensurate to the importance of reliable guarantees in this
domain, and therefore do not pursue any further performance considerations in
the present paper.

Executable Specification of Dose-Escalation Protocols with Prolog 15

12 Flexibly accommodating protocol variations

As shown by the expansive tabulations in [8] and [2], when working within the
tradition of informal protocol specifications, much labor is needed to adapt the
typically lumpy cohorts of dose-escalation designs to trial enrollment occurring
as a rather fluid arrival process in real time. Our RC specification framework,
by contrast, shows promise for being readily adaptable to this challenge.

If we recompile our program with an expanded set of possible cohort sizes,

allowed_cohort_sizes([3,2,1]).

then, as the following query shows, this added flexibility renders the protocol
adequate to admit paths in which participants enroll either singly or in pairs,
rather than waiting for arrival of a third participant to complete the traditional
cohort of 3. Such just-in-time or ‘rolling’ [8] enrollment may enable de-escalation
decisions to occur sooner, avoiding dosing patients at levels that are no longer
viable dose recommendations. This improves safety, and also accelerates progress
of the trial.

?- phrase(path([0/3,0/3,0/3]-[]), [sta, [2/5,0/3,0/3]-[],

des, [0/6,0/3]-[2/5],

stop, recommend_dose(2)]).

true % The above-described path is admissible.

;

13 Conclusion

Possibly the most essential aspect of our program’s declarativeness is its gener-
ality. This quality has allowed us to examine our program in numerous ways to
probe comprehensively for various forms of error. We can investigate individual
predicates with general queries that expose their full meaning as implemented, to
check for departures from intended meaning. Yet the very same program allows
us to recapitulate the best available natural-language description of the 3 + 3
protocol, and indeed in so doing to recognize deficiencies in that description
and correct them. Not only does this reduce the likelihood that we have failed
to model ‘the true’ 3 + 3 protocol, but it gives us a claim to have definitively
superseded the extant natural-language descriptions.

The internal consistency of our program, on the other hand, derives from its
very construction using a pure monotonic subset of Prolog. This enables us to
trust false answers from queries that search for violations of safety and liveness
properties, rendering such answers guarantees.

Acknowledgments. We thank Ulrich Neumerkel and several anonymous reviewers
for their valuable comments.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article. This work received no external funding.

16 D. Norris and M. Triska

References

1. Edler, L.: Statistical requirements of phase I studies. Onkologie 13(2), 90–95 (Apr
1990). https://doi.org/10.1159/000216733

2. Frankel, P.H., Chung, V., Tuscano, J., Siddiqi, T., Sampath, S., Longmate,
J., Groshen, S., Newman, E.M.: Model of a Queuing Approach for Patient
Accrual in Phase 1 Oncology Studies. JAMA Network Open 3(5), e204787–
e204787 (May 2020). https://doi.org/10.1001/jamanetworkopen.2020.4787,
https://doi.org/10.1001/jamanetworkopen.2020.4787

3. Italiano, A., Massard, C., Bahleda, R., Vataire, A.L., Deutsch, E., Magné,
N., Pignon, J.P., Vassal, G., Armand, J.P., Soria, J.C.: Treatment outcome
and survival in participants of phase I oncology trials carried out from 2003
to 2006 at Institut Gustave Roussy. Annals of Oncology: Official Journal
of the European Society for Medical Oncology 19(4), 787–792 (Apr 2008).
https://doi.org/10.1093/annonc/mdm548

4. Korn, E.L., Midthune, D., Chen, T.T., Rubinstein, L.V., Christian, M.C., Si-
mon, R.M.: A comparison of two phase I trial designs. Statistics in Medicine
13(18), 1799–1806 (Sep 1994). https://doi.org/10.1002/sim.4780131802 ,
http://doi.wiley.com/10.1002/sim.4780131802

5. Neumerkel, U., Kral, S.: Indexing dif/2. CoRR abs/1607.01590 (2016),
http://arxiv.org/abs/1607.01590

6. Norris, D.C.: What Were They Thinking? Pharmacologic priors implicit in a
choice of 3+3 dose-escalation design. arXiv:2012.05301 [stat.ME] (Dec 2020),
https://arxiv.org/abs/2012.05301

7. Simon, R., Freidlin, B., Rubinstein, L., Arbuck, S.G., Collins, J., Chris-
tian, M.C.: Accelerated titration designs for phase I clinical trials in oncol-
ogy. Journal of the National Cancer Institute 89(15), 1138–1147 (Aug 1997).
https://doi.org/10.1093/jnci/89.15.1138

8. Skolnik, J.M., Barrett, J.S., Jayaraman, B., Patel, D., Adam-
son, P.C.: Shortening the Timeline of Pediatric Phase I Tri-
als: The Rolling Six Design. Journal of Clinical Oncology 26(2),
190–195 (Jan 2008). https://doi.org/10.1200/JCO.2007.12.7712 ,
http://ascopubs.org/doi/full/10.1200/JCO.2007.12.7712

9. Weber, J.S., Levit, L.A., Adamson, P.C., Bruinooge, S.S., Burris, H.A., Carducci,
M.A., Dicker, A.P., Gönen, M., Keefe, S.M., Postow, M.A., Thompson, M.A.,
Waterhouse, D.M., Weiner, S.L., Schuchter, L.M.: Reaffirming and Clarifying the
American Society of Clinical Oncology’s Policy Statement on the Critical Role
of Phase I Trials in Cancer Research and Treatment. Journal of Clinical On-
cology 35(2), 139–140 (Nov 2016). https://doi.org/10.1200/JCO.2016.70.4692 ,
http://ascopubs.org/doi/full/10.1200/JCO.2016.70.4692

https://doi.org/10.1159/000216733
https://doi.org/10.1159/000216733
https://doi.org/10.1001/jamanetworkopen.2020.4787
https://doi.org/10.1001/jamanetworkopen.2020.4787
https://doi.org/10.1001/jamanetworkopen.2020.4787
https://doi.org/10.1093/annonc/mdm548
https://doi.org/10.1093/annonc/mdm548
https://doi.org/10.1002/sim.4780131802
https://doi.org/10.1002/sim.4780131802
http://doi.wiley.com/10.1002/sim.4780131802
http://arxiv.org/abs/1607.01590
https://arxiv.org/abs/2012.05301
https://doi.org/10.1093/jnci/89.15.1138
https://doi.org/10.1093/jnci/89.15.1138
https://doi.org/10.1200/JCO.2007.12.7712
https://doi.org/10.1200/JCO.2007.12.7712
http://ascopubs.org/doi/full/10.1200/JCO.2007.12.7712
https://doi.org/10.1200/JCO.2016.70.4692
https://doi.org/10.1200/JCO.2016.70.4692
http://ascopubs.org/doi/full/10.1200/JCO.2016.70.4692

Executable Specification of Dose-Escalation Protocols with Prolog 17

Appendix

A complete listing of all 46 paths of the 3 + 3 design for the D = 2 case. These
may be checked one-by-one against the text of Figure 1.

:- use_module(library(format)).
?- J+\(setof(Path, (phrase(path([0/0]-[0/0]), Path)), Paths)

, maplist(portray_clause, Paths), length(Paths, J)).
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[0/6,0/3]-[],stop,recommend_dose(2)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[1/6,0/3]-[],stop,recommend_dose(2)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[2/6,0/3]-[],des,[0/6]-[2/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[2/6,0/3]-[],des,[1/6]-[2/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[2/6,0/3]-[],des,[2/6]-[2/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[2/6,0/3]-[],des,[3/6]-[2/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[3/6,0/3]-[],des,[0/6]-[3/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[3/6,0/3]-[],des,[1/6]-[3/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[3/6,0/3]-[],des,[2/6]-[3/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[0/3,0/3]-[],sta,[3/6,0/3]-[],des,[3/6]-[3/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[1/6,0/3]-[],stop,recommend_dose(2)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[2/6,0/3]-[],des,[0/6]-[2/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[2/6,0/3]-[],des,[1/6]-[2/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[2/6,0/3]-[],des,[2/6]-[2/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[2/6,0/3]-[],des,[3/6]-[2/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[3/6,0/3]-[],des,[0/6]-[3/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[3/6,0/3]-[],des,[1/6]-[3/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[3/6,0/3]-[],des,[2/6]-[3/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[3/6,0/3]-[],des,[3/6]-[3/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[4/6,0/3]-[],des,[0/6]-[4/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[4/6,0/3]-[],des,[1/6]-[4/6],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[4/6,0/3]-[],des,[2/6]-[4/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[1/3,0/3]-[],sta,[4/6,0/3]-[],des,[3/6]-[4/6],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[2/3,0/3]-[],des,[0/6]-[2/3],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[2/3,0/3]-[],des,[1/6]-[2/3],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[2/3,0/3]-[],des,[2/6]-[2/3],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[2/3,0/3]-[],des,[3/6]-[2/3],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[3/3,0/3]-[],des,[0/6]-[3/3],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[3/3,0/3]-[],des,[1/6]-[3/3],stop,recommend_dose(1)].
[sta,[0/3]-[0/0],esc,[3/3,0/3]-[],des,[2/6]-[3/3],stop,recommend_dose(0)].
[sta,[0/3]-[0/0],esc,[3/3,0/3]-[],des,[3/6]-[3/3],stop,recommend_dose(0)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[0/3,1/6]-[],sta,[0/6,1/6]-[],stop,recommend_dose(2)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[0/3,1/6]-[],sta,[1/6,1/6]-[],stop,recommend_dose(2)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[0/3,1/6]-[],sta,[2/6,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[0/3,1/6]-[],sta,[3/6,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[1/3,1/6]-[],sta,[1/6,1/6]-[],stop,recommend_dose(2)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[1/3,1/6]-[],sta,[2/6,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[1/3,1/6]-[],sta,[3/6,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[1/3,1/6]-[],sta,[4/6,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[2/3,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[1/6]-[0/0],esc,[3/3,1/6]-[],stop,recommend_dose(1)].
[sta,[1/3]-[0/0],sta,[2/6]-[0/0],stop,recommend_dose(0)].
[sta,[1/3]-[0/0],sta,[3/6]-[0/0],stop,recommend_dose(0)].
[sta,[1/3]-[0/0],sta,[4/6]-[0/0],stop,recommend_dose(0)].
[sta,[2/3]-[0/0],stop,recommend_dose(0)].
[sta,[3/3]-[0/0],stop,recommend_dose(0)].

J = 46.

	An Executable Specification of Oncology Dose-Escalation Protocols with Prolog

