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Abstract

We study a class of SYK models with N = 2 supersymmetry, described by N fermions in

chiral Fermi multiplets, as well as αN first-order bosons in chiral multiplets. The interactions

are characterised by two integers (p, q). We focus on the large N and low energy limit

of these models. Despite the presence of dynamical bosons, we find conformal behaviour

akin to the standard SYK model. We use I-extremization of a Witten index to study the

supersymmetric solutions. In particular, we find an exact expression for the entropy, which

matches the numerical solutions to the Schwinger–Dyson equations. We further solve the

model both in the large p and large p, q limits. Numerically, we verify our analytical results

and obtain estimates for the Schwarzian coupling in the near zero-temperature limit. We

also study the low-lying spectrum of operators to determine the parameter ranges where

the Schwarzian mode dominates the IR dynamics. Lastly, we study out-of-time-ordered

correlators to show that the model is maximally chaotic.
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1 Introduction and summary

The quantum-mechanical models introduced by Sachdev, Ye, and Kitaev (SYK) [1, 2] have

the properties of being solvable at strong coupling in the large N limit, exhibiting maximally

chaotic behaviour, and developing an emergent conformal symmetry in the infrared (IR)

[1–7]. Their IR physics is dominated by a pseudo Goldstone boson, the Schwarzian mode,

which is dual to the two-dimensional JT gravity in AdS2. Given the universal appearance of

near-AdS2 throats in the near-horizon region of near-extremal black holes, the SYK model

poses itself as a model of quantum black-hole physics: it captures the dynamics of a universal

“breathing” mode that lives in the near-horizon region [8, 9]. Many variations on the SYK

model have been studied, including [10–28] which are close to the subject of this paper.

An interesting question is whether one can microscopically derive a certain type of SYK-

like models directly from gravity or string theory [10]. A step in that direction was made

in [29] in the context of holography and black holes in higher-dimensional AdS space. The

quantum mechanical model found in [29] presents many peculiar features, e.g., it has N = 2

supersymmetry, it describes both dynamical fermions and bosons belonging to many species

with unequal abundance in a large N limit, it enjoys multiple Abelian symmetries.

With that motivation in mind, in this paper we study a class of SYK-like models with

N = 2 supersymmetry, made of N regular fermions in chiral Fermi multiplets, as well as

αN bosons in chiral multiplets with one-derivative kinetic terms (a.k.a. first-order bosons),

in the large N limit. The parameter α controls the relative abundance. The interactions

are described by “superpotential” J-terms (in the language of [30]), are controlled by two

positive integers (p, q) (where p is odd), and may include — depending on p, q — a scalar

potential and Yukawa interactions. As in SYK, the interactions are all-to-all and given by

random variables that represent quenched disorder.

Our model has some similarities to the N = 2 two-fermion model of [26]. Indeed our

model has both a U(1)R R-symmetry and a U(1)F flavor symmetry, and we study the model

with chemical potentials turned on, finding similar physical properties. We are particularly

interested in the role played by dynamical bosons, which could lead to a variety of phenom-

ena such as spin-glass phases or condensation, see e.g. [28, 31–35]. In our model, instead,

bosons turn out to be tamed and lead to conformal solutions — both with and without

supersymmetry — similarly to the standard SYK model. This implies that our (p, q) models

retain the main features expected from near-BPS black hole horizons, yet accommodating

the presence of dynamical bosons, and make us confident that also the more convoluted, but

also more realistic, quantum mechanical models of [29] might exhibit the same properties.

Let us summarize our results. In Section 2 we present our model. In Section 3 we solve the
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model in the annealed approximation and at leading order in 1/N , in terms of Schwinger–

Dyson equations. In particular we verify that the system admits both supersymmetric

and non-supersymmetric conformal solutions in the IR. For certain values of the chemical

potentials, we also find some non-conformal solutions in which the correlators behave as

those of gapped free fields. Supersymmetric solutions at zero temperature can also be studied

through a symmetry-refined Witten index. From it, employing I-extremization [36, 37] we

extract the zero-temperature entropy and the R-symmetry charge of the vacuum. Both are

compatible with our numerical computations and with the Luttinger–Ward relation [38].

The fact that the zero-temperature entropy computed in the annealed approximation agrees

with the exact large N result obtained from the index gives support to the validity of the

annealed approximation and to the claim that the model is conformal in the IR, rather than

in a spin-glass phase.1 We analyse the system at large p, as well as at large p and q. In these

limits we are able to reach an intermediate low-energy regime which is conformal, but not

the very low-energy behaviour, which is also conformal but with different spectrum. The

two agree only in the supersymmetric case.

In Section 4 we perform various numerical analyses of our model, both for supersymmetric

and non-supersymmetric values of the chemical potentials, for different values of (p, q). In

particular we solve the Schwinger–Dyson equations, confirming the IR conformal behaviour

found analytically. We test the Luttinger–Ward relations and the computation of the zero-

temperature entropy. Going to non-zero temperature allows us to extract the Schwarzian

coupling.

In Section 5 we study the low-lying spectrum of operator dimensions. Besides observing

the presence of the Schwarzian mode, the two currents for the R and flavor symmetries, and

their superpartners, we determine in which window of parameters we expect the Schwarzian

mode to dominate the IR dynamics, and identify windows in which other modes are expected

to dominate. In Section 6 we extract the Lyapunov exponents from the out-of-time-ordered

(OTOC) 4-point functions, finding that the model is maximally chaotic (it saturates the

bound of [39]).

We conclude in Section 7 by presenting a few puzzling results we hope to resolve in future

work. We provide many appendices with the technical details of computations.

1Ruling out a spin-glass phase is a notoriously delicate matter. The existence of a superconformal solution

to the Schwinger–Dyson equations in the annealed approximation and its compatibility with the Witten index

is only circumstantial evidence that our model is conformal in the IR, and a more direct proof would certainly

be welcome. We thank Yiyang Jia for correspondence on this issue.
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2 N = 2 SYK models with dynamical bosons

We are interested in a quantum mechanical model with N = 2 supersymmetry (one complex

supercharge) described by N Fermi multiplets Ya (a = 1, . . . , N) and αN chiral multiplets Φb

(b = 1, . . . , αN), where α is a positive real constant that we call the abundance parameter.2

The field content of a Fermi multiplet Y is a dynamical fermion η and an auxiliary scalar f ,

while that of a chiral multiplet Φ is, in our model, a dynamical boson ϕ (with one-derivative

kinetic term) and an auxiliary fermion ψ. In the Lagrangian formulation and in Lorentzian

signature, the model is described by the action:

SL =

∫
dt

[
iη†a
(
∂t + iµη

)
ηa + f †

afa + iϕ†
b

(
∂t + iµϕ

)
ϕb + ψ†

bψb (2.1)

− Ja1...apb1...bq

(
p fa1ηa2 · · · ηapϕb1 · · ·ϕbq + q ηa1 · · · ηapψb1ϕb2 · · ·ϕbq

)
+ h.c.

]
.

We use the convention that repeated indices are summed over. These so-called J-term

interactions in the second line are inspired from the ones obtained in [29], corresponding

here to the case p = 1, q = 2. The couplings Ja1...apb1...bq are complex Gaussian random

variables with zero mean and variance〈
Ja1...apb1...bqJ

∗
c1...cpd1...dq

〉
=

J

p q Np+q−1
δ[c1...cp]a1...ap

δ
(d1...dq)
b1...bq

. (2.2)

Here J has dimension of mass, and is kept fixed in the large N limit so that the averaged

partition function has uniform scaling. The couplings are antisymmetric in the first p indices

and symmetric in the next q indices. Note that p is odd, while q is any positive integer. In

(2.1) we have also included the chemical potentials µϕ, µη. Under charge conjugation

ηa 7→ η†a , fa 7→ f †
a , ϕb 7→ ϕ†

b , ψb 7→ ψ†
b , µη 7→ −µη , µϕ 7→ −µϕ , (2.3)

the Fermi multiplet kinetic terms are invariant, while the chiral multiplet kinetic terms are

odd and thus they break charge conjugation symmetry.

Integrating out the auxiliary fields, the action becomes

SL =

∫
dt

[
iη†a
(
∂t + iµη

)
ηa + iϕ†

b

(
∂t + iµϕ

)
ϕb (2.4)

−
∣∣∣p Ja1...apb1...bqηa2 · · · ηapϕb1 · · ·ϕbq ∣∣∣2 − ∣∣∣q Ja1...apb1...bqηa1 · · · ηapϕb2 · · ·ϕbq ∣∣∣2] .

In the Hamiltonian formulation, the bosonic conjugate momentum to ϕ is Πϕ = iϕ† and

therefore the (anti)commutation relations are {ηa, η†c} = δac and [ϕb, ϕ
†
d] = δbd (all other ones

vanishing). The Hamiltonian is H̃ = H + µηQη + µϕQϕ, where

H =
∣∣p Ja1...apb1...bqηa2 · · · ηapϕb1 · · ·ϕbq ∣∣2 + ∣∣q Ja1...apb1...bqηa1 · · · ηapϕb2 · · ·ϕbq ∣∣2 (2.5)

2At finite N the parameter α is quantized such that αN ∈ Z, but at large N , α is essentially continuous.

4



is the interacting Hamiltonian with chemical potentials turned off, while Qη = 1
2
[η†a, ηa]

and Qϕ = 1
2
{ϕ†

b, ϕb} are the charge operators. The ordering ambiguities in H are fixed by

supersymmetry by requiring that H = {Q,Q†} in terms of the supercharge

Q ∼ Ja1...apb1...bqηa1 · · · ηapϕb1 · · ·ϕbq . (2.6)

Each bosonic degree of freedom ϕ describes a particle in magnetic field (see, e.g., [40]). Upon

canonical quantization, Qϕ ≥ 1
2
and the bosonic Hilbert space is a Fock space with lowest

weight state |0⟩ defined by ϕ|0⟩ = 0 and generated by the creation operator ϕ†. For p = 1

the Hamiltonian H includes a positive-definite scalar potential for ϕ, and H̃ is bounded from

below for any given value of µϕ and finite N . However Ja1...apb1...bq goes to zero at large N ,

and thus one should take µϕ > 0 in order to avoid instabilities (as we will see, the limit

µϕ → 0 is stable after taking the large N limit). For p > 1, H has flat directions and thus

one should restrict to µϕ > 0 even at finite N .

To go to Euclidean signature, we set τ = it and define iSL = −SE (we also use a bar in

place of †). Then the Euclidean Lagrangian in components reads:

LE = ηa
(
∂τ + µη

)
ηa − fafa + ϕb

(
∂τ + µϕ

)
ϕb − ψbψb

+ Ja1...apb1...bq

(
p fa1ηa2 · · · ηapϕb1 · · ·ϕbq + q ηa1 · · · ηapψb1ϕb2 · · ·ϕbq

)
+ h.c. .

(2.7)

It will be convenient to work in superspace with coordinates (τ, θ, θ) and use the superfields

Φ = ϕ+ θψ +
1

2
θθ (∂τ + µϕ)ϕ , Y = η − θf +

1

2
θθ (∂τ + µη)η . (2.8)

Our conventions for supersymmetry and superspace are in Appendix A, while we refer to

[29,41] for more detailed presentations. Using superspace integrals, the Euclidean action is

SE = −
∫
d3T

(
YaYa + ΦbΦb

)
+ Ja1...apb1...bq

∫
d2T Ya1 · · · YapΦb1 · · ·Φbq + h.c. . (2.9)

In the following we will mostly work in Euclidean signature and drop the subscript E.

The group of continuous global symmetries is U(1)2, which we can parametrize by the

two charges Qη, Qϕ with charge assignments as in Table 1. An alternative parametrization

is U(1)F × U(1)R with charges QF = q Qη − pQϕ and R = R[η]Qη + R[ϕ]Qϕ that satisfy

pR[η] + q R[ϕ] = 1. Here QF is a flavour symmetry that commutes with supersymmetry,

whilst R is a generic R-symmetry. For future reference, Qη and Qϕ can be written in terms

of QF and R as

Qη = pR +R[ϕ]QF , Qϕ = q R−R[η]QF . (2.10)

When d ≡ gcd(p, q) is bigger than 1, there is also a discrete flavour symmetry Zd. Indeed

consider the discrete symmetry g that acts as

g : Ya 7→ e
2πi
p Ya , Φb 7→ Φb . (2.11)
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Qη Qϕ QF R

η 1 0 q R[η]

f 1− p −q q R[η]− 1

ϕ 0 1 −p R[ϕ]

ψ −p 1− q −p R[ϕ]− 1

Table 1: Charge assignments under the continuous global symmetries U(1)2, using two

alternative parametrizations. The R-charge assignments satisfy pR[η] + q R[ϕ] = 1.

One can check3 that gd ∈ U(1)F . Besides, one can write the fermion parity operator as

(−1)F = g
p−1
2 eπiR0 , (2.12)

where R0 is a reference R-symmetry with assignments R0[η] =
1
p
, R0[ϕ] = 0. When d = 1

this is eπiR for some R-symmetry R that is a linear combination of R0 and QF , but otherwise

it is not.

The relations between chemical potentials, according to Table 1, are

µF = R[ϕ]µη −R[η]µϕ , µR = p µη + q µϕ . (2.13)

In particular, whenever we want to impose µR = 0 because of supersymmetry, we also fix

µη = −q µϕ/p and µF = −µϕ/p, and therefore we should restrict to µη < 0 and µF < 0.

3 Solution in the annealed approximation

Having established the model, we want to explore its large N dynamics. When averaging

over the couplings, particularly when focusing on correlators and 4-point functions, it is in

principle preferable to first calculate the observables in one instance of the model, and then

average. This is usually called quenched disorder, which is analytically very hard to control.

The approach we follow here is that of annealed disorder, in which we calculate the averaged

action first and then derive the observables from it. For quantities such as correlators and

the entropy, those two approaches can lead to different results. In the standard SYK model,

many observables are found to be “self-averaging” which means that the differences between

distinct averaging schemes are subleading in 1/N . We expect a similar behaviour in our

model. A crucial counterexample would be if the entropy calculation were dominated by a

3Indeed let ℓ =
(
q/d
)−1
mod p/d, then a rotation U(1)F by an angle α = 2πℓ/p acts as gd.
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replica-breaking solution, which is not captured by the annealed approximation. The fact

that our model contains fermions might be crucial to rule this out, as argued in [33]. In the

rest of the paper we will use annealed disorder, assuming that it approximates the quenched

system to leading order in 1/N .

3.1 Equations of motion at large N

We follow the standard steps performed in [11, 26] to derive the equations of motion at

large N . For simplicity, we start with no chemical potentials turned on, and perform our

manipulations in superspace. The corresponding expressions in components, and including

non-vanishing chemical potentials, can be found in Appendix B.

After averaging over Ja1...apb1...bq , the partition function is

⟨Z⟩ =
∫

DYaDΦb exp

[ ∫
d3T

(
YaYa + ΦbΦb

)
+

J

p q Np+q−1

∫
d2T2 d

2T 1 × (3.1)

× Ya1(T1)Ya1(T2) · · · Yap(T1)Yap(T2) Φb1(T1) Φb1(T2) · · · Φbq(T1) Φbq(T2)

]
.

We define the bilocal fields

GY(T1, T2) ≡ 1

N

∑
a
Ya(T1)Ya(T2) , GΦ(T1, T2) ≡ 1

N

∑
b
Φb(T1) Φb(T2) , (3.2)

which are chiral in T2 and anti-chiral in T1. They encode the 2-point functions of the model.

We introduce them — together with the bilocal Lagrange multipliers ΣY and ΣΦ — into the

action by inserting the following identity in the path integral:

1 =

∫
DGYDΣYDGΦDΣΦ exp

{
−N

∫
d2T2 d

2T 1 ΣY(T1, T2)

[
GY(T1, T2)−

1

N
Ya(T1)Ya(T2)

]
−N

∫
d2T2 d

2T 1 ΣΦ(T1, T2)

[
GΦ(T1, T2)−

1

N
Φb(T1)Φb(T2)

]}
. (3.3)

At this stage, GY,Φ(T1, T2) and ΣY,Φ(T1, T2) are generic superfields which are chiral in T2 and

anti-chiral in T1. Each of them is specified by four independent functions of τ1,2 according

to the expansions in (B.1). The components of ΣY,Φ encode the self-energies of the fields in

the model. The kinetic term of Ya can be rewritten in a bilocal way using the identity∫
d3T YaYa =

∫
d2T2 d

2T 1 Ya(T1)D1D2δ
3(T1 − T2)Ya(T2) , (3.4)

and similarly for Φb. Here δ
3(T1 − T2) ≡ (θ1 − θ2)(θ1 − θ2)δ(τ1 − τ2) is the superspace delta

function, while D1 and D2 are (anti-)chiral superspace derivatives with respect to T1 and T2,
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respectively (see Appendix A). For concreteness, we have

D1D2 δ
3(T1 − T2) = δ(τ1 − τ2)−

θ1θ1 + θ2θ2 − 2θ2θ1
2

∂τ1δ(τ1 − τ2)−
θ1θ2θ1θ2

4
∂2τ1δ(τ1 − τ2)

= δ
(
τ1 − τ2 − 1

2
θ1θ1 − 1

2
θ2θ2 + θ2θ1

)
. (3.5)

The fields Ya and Φb only appear quadratically in the action and can be integrated out,

producing Berezinian (a.k.a. superdeterminant) factors in the path integral. We are left

with an expression for the annealed partition function in terms of the bilocal fields:

⟨Z⟩ =
∫

DGY DΣY DGΦ DΣΦ exp

{
−N

[
− log Ber

(
D1D2 δ

3(T1 − T2) + ΣY(T1, T2)
)

+ α log Ber
(
D1D2 δ

3(T1 − T2) + ΣΦ(T1, T2)
)
+

∫
d2T2 d

2T 1

(
ΣY(T1, T2)GY(T1, T2)

+ ΣΦ(T1, T2)GΦ(T1, T2)−
J

pq
GY(T1, T2)

p GΦ(T1, T2)
q

)]}
. (3.6)

Here Ber is the Berezinian (or superdeterminant), whose definition is given in (A.13).

Let us write down the equations of motion for the bilocal fields in terms of superfields.

Extremizing (3.6) with respect to GY,Φ leads to the algebraic equations:

ΣY(T1, T2) =
J

q
GY(T1, T2)

p−1 GΦ(T1, T2)
q , ΣΦ(T1, T2) =

J

p
GY(T1, T2)

p GΦ(T1, T2)
q−1 . (3.7)

Extremizing with respect to ΣY,Φ leads to the integro-differential equations:

D2GY(T1, T2) +

∫
d2T3 ΣY(T2, T3)GY(T1, T3) = δ

2
(T1, T2) ,

D2GΦ(T1, T2) +

∫
d2T3 ΣΦ(T2, T3)GΦ(T1, T3) = −α δ2(T1, T2) .

(3.8)

If the derivative terms D2GY,Φ are dropped, one can show that (3.7)–(3.8) are invariant under

super-reparametrizations Diff+(S1|2) defined in (A.11), where the superfields transform as

GY,Φ(T1, T2) 7→
(
Dθ′1

)
2∆η,ϕ

(
−D θ′2

)
2∆η,ϕ GY,Φ(T

′
1, T

′
2)

ΣY,Φ(T1, T2) 7→
(
Dθ′1

)
1−2∆η,ϕ

(
−D θ′2

)
1−2∆η,ϕ ΣY,Φ(T

′
1, T

′
2)

(3.9)

with p∆η + q∆ϕ = 1
2
. The chiral measure and the (anti-)chiral delta functions transform

as in (A.12) and (A.15). This shows that η and ϕ are chiral primary operators under

SU(1, 1|1) ⊂ Diff+(S1|2). While (3.8) is anti-chiral in T1,2, there is an equivalent way to

write the equations using chiral superfields:

−D1GY(T1, T2) +

∫
d2T 3 ΣY(T3, T1)GY(T3, T2) = δ2(T1, T2) ,

−D1GΦ(T1, T2) +

∫
d2T 3 ΣΦ(T3, T1)GΦ(T3, T2) = −α δ2(T1, T2) .

(3.10)
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The equations (3.8) and (3.10) are derived by extremizing Ber with respect to ΣY,Φ in (3.6).

Indeed, treating it formally like any other operator determinant, one gets:

GY(T1, T2) =
(
DD δ3 + ΣY

)−1
(T1, T2) , GΦ(T1, T2) = −α

(
DD δ3 + ΣΦ

)−1
(T1, T2) . (3.11)

By convoluting with either the chiral or anti-chiral coordinate of
(
DD δ3 +ΣY,Φ

)
and given

the property (A.7), one obtains (3.8) or (3.10).

3.2 Conformal solutions

We now assume that, at low energies, the kinetic terms are negligible and thus that the

integro-differential equations (3.8) can be approximated by dropping the first term on the

left-hand-side. Besides, assuming that the fermion number symmetry remains unbroken, we

search for solutions with vanishing mixed fermionic components in G and Σ, i.e., we impose

Gη̄f = Gf̄η = Gϕ̄ψ = Gψ̄ϕ = Ση̄f = Σf̄η = Σϕ̄ψ = Σψ̄ϕ = 0 . (3.12)

One can check that this is a consistent ansatz. The equations of motion for the remaining

bosonic components are:

Ση̄η(τ1, τ2) = J

(
p− 1

q
Gϕ̄ϕGf̄f +Gη̄η Gψ̄ψ

)
G p−2
η̄η G q−1

ϕ̄ϕ
,

Σϕ̄ϕ(τ1, τ2) = J

(
Gϕ̄ϕGf̄f +

q − 1

p
Gη̄η Gψ̄ψ

)
G p−1
η̄η G q−2

ϕ̄ϕ
,

Σf̄f (τ1, τ2) =
J

q
G p−1
η̄η G q

ϕ̄ϕ
, Σψ̄ψ(τ1, τ2) =

J

p
G p
η̄η G q−1

ϕ̄ϕ
,

(3.13)

where all functions are of (τ1, τ2), and∫
dτ3Ση̄η(τ2, τ3)Gη̄η(τ1, τ3) = δ(τ1−τ2),

∫
dτ3Σf̄f (τ2, τ3)Gf̄f (τ1, τ3) = −δ(τ1−τ2), (3.14)∫

dτ3Σϕ̄ϕ(τ2, τ3)Gϕ̄ϕ(τ1, τ3) = −α δ(τ1−τ2),
∫
dτ3Σψ̄ψ(τ2, τ3)Gψ̄ψ(τ1, τ3) = α δ(τ1−τ2).

We consider turning on chemical potentials µ for various U(1) global symmetries. This

corresponds to turning on a real background gauge field At = −µ in Lorentzian signature,

and an imaginary background field Aτ = iµ in Euclidean signature. Notice that the super-

reparametrization symmetry (3.9) can be preserved only if µR = pµη + qµϕ = 0. For generic

chemical potentials, one is left with the standard reparametrization symmetry Diff+(S1),

under which the component fields transform as

GĀA(τ1, τ2) 7→
(
∂τ1τ

′
1

)
∆A
(
∂τ2τ

′
2

)
∆A GĀA(τ1, τ2)

ΣĀA(τ1, τ2) 7→
(
∂τ1τ

′
1

)
1−∆A

(
∂τ2τ

′
2

)
1−∆A ΣĀA(τ1, τ2)

(3.15)
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where the label A runs over all field species. As argued in [19], shifting the self-energies Σ

by the chemical potentials, the EOMs in the IR remain unchanged.

In the presence of a chemical potential, we use the following conformal ansatz for the

2-point function at zero temperature (β = ∞) of a boson or fermion with charge Q and

dimension ∆:

G(τ) = g Gs (τ ; ∆, E) ≡ g
eπE Θ(τ) + s e−πE Θ(−τ)

|τ |2∆
, s = ±1 , E ∈ R , (3.16)

where s = 1 for a boson and s = −1 for a fermion. We review its derivation in Appendix C.

This ansatz is invariant under PSL(2,R) transformations acting as τ 7→ τ ′ = aτ+b
cτ+d

with

ad − bc = 1, accompanied by a suitable gauge transformation of Aτ .
4 The constant g is

bound to be positive by unitarity. The 2-point function at non-zero temperature is obtained

through the reparametrization ϕ(τ) = tan πτ
β

with τ ∈
(
−β

2
, β
2

)
:

G(τ) = g Gβ
s (τ ; ∆, E) ≡ g e−2πE τ

β

∣∣∣∣ π

β sin
(
πτ
β

)∣∣∣∣2∆ (eπE Θ(τ) + s e−πE Θ(−τ)
)
. (3.17)

The parameter E is called spectral asymmetry and is related to the chemical potential. Then

the extension of G(τ) beyond τ ∈
(
−β

2
, β
2

)
satisfies G(τ + β) = sG(τ).

We solve the equations of motion using the same strategy as in [26]. The equations (3.14)

can be uniformly written as∫
dτ3Σ(τ2, τ3)G(τ1, τ3) = −s δ(τ1 − τ2) ⇒ Σ(ω)G(−ω) = −s , (3.18)

where Σ is understood to be Ση̄η or Σf̄f for the Fermi multiplet components, and α−1Σϕ̄ϕ or

α−1Σψ̄ψ for the chiral multiplet ones. The Fourier transform of (3.16) reads5

G(ω) = −i g sgn(ω) Γ(1− 2∆) |ω|2∆−1
(
eπE+πi∆sgn(ω) − s e−πE−πi∆sgn(ω)

)
. (3.19)

The expressions for Σ in Fourier and normal space follow from (3.18):

Σ(ω) =
e−πE−πi∆sgn(ω) − s eπE+πi∆sgn(ω)

2ig sign(ω) Γ(1− 2∆)
(
cosh 2πE − s cos 2π∆

)
|ω|2∆−1

,

Σ(τ) =
(1− 2∆) sin 2π∆

2πg
(
cosh 2πE − s cos 2π∆

) (e−πE Θ(τ) + s eπE Θ(−τ)
)
|τ |2∆−2 .

(3.20)

We denote the parameters appearing in the ansatz for Gϕ̄ϕ as Eϕ, ∆ϕ, gϕ, and similarly for

the other fields. Plugging Σ from (3.20) into the algebraic equations in (3.13) and matching

4When the transformed time difference τ ′(τ) − τ ′(0) has the opposite sign with respect to τ , one needs

to keep track of the extra factor s e2πE when the operators commute past each other, see Appendix C.2.
5In our conventions G(ω) =

∫
dτ e−iωτ G(τ).
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spectral asymmetries and dimensions, one obtains four linear relations:

∆f = 1− (p− 1)∆η − q∆ϕ , Ef = −(p− 1) Eη − q Eϕ ,
∆ψ = 1− p∆η − (q − 1)∆ϕ , Eψ = −p Eη − (q − 1) Eϕ .

(3.21)

Matching the coefficients in (3.13) and making use of (3.21) gives the equations

(1− 2∆η) sin(2π∆η)

cosh(2πEη) + cos(2π∆η)
= 2πJgp−1

η gq−1
ϕ

(
p− 1

q
gϕgf + gηgψ

)
, (3.22)[

1− 2(p− 1)∆η − 2q∆ϕ

]
sin
[
2π(p− 1)∆η + 2πq∆ϕ

]
cosh

[
2π(p− 1)Eη + 2πqEϕ

]
− cos

[
2π(p− 1)∆η + 2πq∆ϕ

] = 2πJ

q
gp−1
η gqϕ gf ,

α (1− 2∆ϕ) sin(2π∆ϕ)

cosh(2πEϕ)− cos(2π∆ϕ)
= 2πJgp−1

η gq−1
ϕ

(
gϕgf +

q − 1

p
gηgψ

)
,

α
[
1− 2p∆η − 2(q − 1)∆ϕ

]
sin
[
2πp∆η + 2π(q − 1)∆ϕ

]
cosh

[
2πpEη + 2π(q − 1)Eϕ

]
+ cos

[
2πp∆η + 2π(q − 1)∆ϕ

] = 2πJ

p
gpη g

q−1
ϕ gψ .

Substituting the second and fourth equations into the first and third ones one can eliminate

the parameters g# and J and obtain two equations that determine ∆η and ∆ϕ as functions

of Eη and Eϕ:

(1− 2∆η) sin(2π∆η)

cosh(2πEη) + cos(2π∆η)
=

(p− 1)[1− 2(p− 1)∆η − 2q∆ϕ] sin[2π(p− 1)∆η + 2πq∆ϕ]

cosh[2π(p− 1)Eη + 2πqEϕ]− cos[2π(p− 1)∆η + 2πq∆ϕ]

+
αp[1− 2p∆η − 2(q − 1)∆ϕ] sin[2πp∆η + 2π(q − 1)∆ϕ]

cosh[2πpEη + 2π(q − 1)Eϕ] + cos[2πp∆η + 2π(q − 1)∆ϕ]
,

α(1− 2∆ϕ) sin(2π∆ϕ)

cosh(2πEϕ)− cos(2π∆ϕ)
=

q[1− 2(p− 1)∆η − 2q∆ϕ] sin[2π(p− 1)∆η + 2πq∆ϕ]

cosh[2π(p− 1)Eη + 2πqEϕ]− cos[2π(p− 1)∆η + 2πq∆ϕ]
(3.23)

+
α(q − 1)[1− 2p∆η − 2(q − 1)∆ϕ] sin[2πp∆η + 2π(q − 1)∆ϕ]

cosh[2πpEη + 2π(q − 1)Eϕ] + cos[2πp∆η + 2π(q − 1)∆ϕ]
.

Substituting the solution back into (3.22) then determines the combinations of coefficients

gp−1
η gqϕgf and gpηg

q−1
ϕ gψ. That only those two combinations can be determined in this way

is due to the fact that the IR Schwinger–Dyson equations have an emergent symmetry [11].

For solutions to be consistent with the approximation (3.14) in which we dropped the kinetic

terms, we need ∆η,ϕ > 0 and ∆f,ψ >
1
2
which, due to (3.21), imply:

∆η > 0 , ∆ϕ > 0 , (p− 1)∆η + q∆ϕ <
1

2
, p∆η + (q − 1)∆ϕ <

1

2
. (3.24)

3.3 Superconformal solutions

Assuming translational invariance and supersymmetry, the bilocal superfields must be func-

tions of the invariant T12 in (A.9). This implies that they are determined by their lowest
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components as defined in (B.1):

GY(T1, T2) = Gη̄η(T12) , GΦ(T1, T2) = Gϕ̄ϕ(T12) ,

ΣY(T1, T2) = Σf̄f (T12) , ΣΦ(T1, T2) = Σψ̄ψ(T12) .
(3.25)

Expanding the components of GY,Φ one obtains the constraints

∆f = ∆η+
1

2
, ∆ψ = ∆ϕ+

1

2
, Ef = Eη , Eψ = Eϕ , gf = 2∆ηgη , gψ = 2∆ϕgϕ . (3.26)

Together with (3.21), they imply

p∆η + q∆ϕ =
1

2
, p Eη + q Eϕ = 0 . (3.27)

In accord with (2.13), it will be convenient to parametrize the spectral asymmetries as

Eϕ = −p E , Eη = q E . (3.28)

At low temperature we can identify 2πE = −βµF in terms of the chemical potential µF for

U(1)F (while a chemical potential for U(1)R explicitly breaks supersymmetry). Note that

we should restrict to E ≥ 0. The consistency conditions in (3.22) reduce to two equations.

The first one is

α sin(2π∆ϕ) =
q

p
sin

(
π

p
− 2πq

p
∆ϕ

)
cosh(2πpE)− cos(2π∆ϕ)

cosh(2πqE) + cos
(
π
p
− 2πq

p
∆ϕ

) , (3.29)

which can be used to fix ∆ϕ in terms of E . The second one then determines the following

combination of the coefficients:

gpη g
q
ϕ =

α p

2πJ

sin(2π∆ϕ)

cosh(2πpE)− cos(2π∆ϕ)
. (3.30)

The bounds (3.24) on the consistency of the conformal solutions reduce to

0 < ∆ϕ <
1

2q
. (3.31)

At the lower bound one has ∆ϕ = 0, while at the upper bound one has ∆η = 0. An

alternative derivation of the equations in this section is provided in Appendix A.2.1.

3.4 Existence of superconformal solutions at fixed p and q

We search for solutions ∆ϕ(E) to (3.29) in the range ∆ϕ ∈
(
0, 1

2q

)
. To that purpose, we define

Rp,q,E(∆ϕ) as the right-hand-side of (3.29) and study the equation α sin(2π∆ϕ) = Rp,q,E(∆ϕ).

As stressed above, we shall restrict to E ≥ 0.

For p = q = 1 the model describes free fields with randomly distributed masses. For

α ̸= 1 eqn. (3.29) has no solutions, while for α = 1 it is a tautology. We will not consider

this model any further. The models with p = 1 or p > 1 have a rather different behavior

and we will consider them separately.
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Case p = 1, q ≥ 2. In this case the function R1,q,E(∆ϕ) is zero at the endpoints ∆ϕ = 0, 1
2q

while sin(2π∆ϕ) is monotonically increasing from zero, therefore at least one solution exists

if the gradient of R1,q,E(∆ϕ) at ∆ϕ = 0 is greater than that of α sin(2π∆ϕ). This condition is

α <
q2 sinh2(πE)
sinh2(πqE)

. (3.32)

It turns out that there is only one solution if (3.32) is satisfied, and no solutions otherwise.

The function of E in (3.32) has a maximum of 1 at E = 0 and it decreases to zero for larger

E . Therefore we must have α < 1 in order for a solution to exist. At fixed α < 1, the solution

only exists in the range E ∈
[
0, E∗(α)

)
, where E∗ saturates (3.32). In this case ∆ϕ(E) has a

maximum at E = 0 and it monotonically decreases to zero as E → E∗. At E = E∗ there is

a phase transition signalled by ∆ϕ = 0 and ∆η = 1/2 and beyond that point the conformal

solution ceases to exist.

This transition is similar to the transition found in the two-fermion model of [26]. There

it was observed that one of the fermion species saturates its charge while the other one does

not. In our model, at the transition point, the charge of the fermion reaches its maximal value

Qη = 1/2 while the boson is still above its minimal value. This is numerically investigated

in Section 4. Furthermore, in Section 3.8 we find gapped solutions that mirror massive free

particles. In [26] it was proposed that in the two-fermion model a jump occurs between two

distinct sets of solutions in the grand canonical ensemble. However, in Section 4 we illustrate

that in our model, for finite βµ, the phase after the transition seems to interpolate between

the conformal behaviour and an exponential behaviour of non-conformal solutions. Another

possibility, which neither our analytical nor numerical analysis would capture, is that the

breakdown of the conformal ansatz signals that a replica-breaking solution is preferred by

the path integral. Such a proposal requires further study.

In the special case p = 1, q = 2 we can explicitly solve (3.29) and (3.32):

∆ϕ(E) =
1

2π
arccos

(
α

2− α
cosh(2πE)

)
, E∗(α) =

1

π
arctanh

(√
1− α

)
. (3.33)

The corresponding solution to (3.30) is

gη g
2
ϕ =

α

4πJ (1− α)

√
(2− α)2 − α2 cosh2(2πE)

cosh(2πE)
. (3.34)

For p = 1, q = 3 analytic solutions can be found as well, although they are lengthier:

cos(2π∆ϕ) =
2α cosh(2πE) +

√
36 + 12α(4− α) sinh2(2πE)
4(3− α)

(3.35)
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gives the dimension ∆ϕ(E), while

E∗(α) =
1

2π
arccosh

(
3−

√
α

2
√
α

)
(3.36)

identifies the phase transition point. The solution for gηg
3
ϕ can be easily written.

Case p > 1, q ≥ 2. In this case the function Rp,q,E(∆ϕ) is zero at the endpoints ∆ϕ = 0, 1
2q

if E = 0, while it is positive at ∆ϕ = 0 if E > 0. For E = 0 eqn. (3.29) simplifies to

α p

q
= tan(π∆ϕ) tan

(
π

2p
− πq∆ϕ

p

)
. (3.37)

The right-hand-side is zero at ∆ϕ = 0, 1
2q

and attains a maximum in between. If α is small

enough such that αp/q is less than (or equal to) the maximal value then there are two (or

one) solutions, otherwise there are no solutions. For E > 0, since the right-hand-side of

(3.29) is positive at ∆ϕ = 0 and vanishes at ∆ϕ = 1
2q
, there must be at least one solution

regardless of α, E . However, there could be more than one solution. For fixed p > 1, q ≥ 2

and small α, we empirically find that by varying E from above 0 to ∞, we go from having 3

solutions to 1 solution through a critical value of E where there are 2 solutions. When α is

raised and this scan in E is repeated, there is a regime where the number of solutions goes

from 1 to 3 to 1. For even larger α there is only one solution regardless of E . Note that

unlike the case of p = 1 or the model of [26], there is no region in α, E where no solutions

exist.

The behaviour above can be seen explicitly in the case p = q > 1, where analytic

expressions for ∆ϕ can be obtained by solving the following quartic equation:

α−1
2
(x4 − 1) + cosh(2πpE)

(
e
iπ
2p (αx3 − x) + e−

iπ
2p (x3 − αx)

)
+ i(α + 1) sin

(
π
p

)
x2 = 0 (3.38)

in which x = exp
[
i
(
2π∆ϕ − π

2p

)]
. In Figure 1 we plot the number of acceptable solutions

satisfying ∆ϕ ∈
(
0, 1

2p

)
for p = q = 3 as α and E vary. Excluding the horizontal axis E = 0,

there are 3 solutions in the yellow region and 1 solution in the blue region. On the horizontal

axis, there are 2 solutions along the green segment within the yellow region, and no solution

along the black line. On the boundary of the two regions, where the discriminant of the

quartic (3.38) vanishes, there are two solutions for E > 0 and one solution for E = 0.

There are special values of E and α for which (3.38) simplifies. For α = 1, (3.38) reduces

to a quadratic equation and the unique solution with ∆ϕ ∈
(
0, 1

2p

)
is

∆ϕ =
1

4p
− 1

2π
arcsin

[
sin
(
π
2p

)
cosh(2πpE)

]
, (3.39)
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Figure 1: Left: Plot of the number of acceptable solutions to (3.29) for p = q = 3 as a

function of α and E . For E > 0 there are 3 solutions in the yellow region, 1 solution in

the blue region, and 2 solutions along their boundary. For E = 0 there are two solutions

along the green segment, no solutions along the black line, and 1 solution at their boundary.

Right: Solutions ∆ϕ(E) for α = 0.06, 0.075, 0.085.

acceptable whenever E > 0. The corresponding solution to (3.30) is

gpη g
p
ϕ =

p sin
(
π
2p

)
2πJ

√
cosh2(2πpE)− sin2

(
π
2p

) . (3.40)

For E = 0, (3.38) can be written as a quadratic equation in tan(π∆ϕ) which gives two

solutions:

∆ϕ =
1

π
arctan

[
1− α

2
tan
( π
2p

)
± 1

2

√
(1− α)2 tan2

( π
2p

)
− 4α

]
. (3.41)

The two solutions are real if and only if α ≤ tan2
(
π
4p

)
. Indeed α = tan2

(
π
4p

)
is where the

right boundary of the yellow region intersects the horizontal axis in Figure 1 and the two

solutions merge into one (disappearing for larger values of α). It follows from (3.41) that

both solutions satisfy ∆ϕ > 0, that the larger solution becomes ∆ϕ =
1
2p

for α = 0, and that

∆ϕ <
1
2p

for the allowed values α > 0. The corresponding solution to (3.30) is

gpη g
p
ϕ =

α p

2πJ tan(π∆ϕ)
. (3.42)

Case p > 1, q = 1. The behaviour of the function Rp,1,E(∆ϕ) is similar to the one in the

previous case, however the function sin(2π∆ϕ) vanishes at both endpoints ∆ϕ = 0, 1
2
. For

very small values of α, the number of solutions ∆ϕ(E) to (3.29) as we increase E from above

0 to ∞ is 2 (of which only 1 is acceptable at E = 0) and then 0. For larger values of α it is

1 (not acceptable at E = 0), then 2, and then 0. For even larger values of α there is only 1

solution (that becomes ∆ϕ = 0 at E = 0 and thus is not acceptable) up to E∗(α) and then

no solutions for E ≥ E∗(α).
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3.5 Solutions at large p and fixed q

Using the methods in [6, 11] and Appendix C of [12], we search for analytic solutions to

the Schwinger–Dyson equations at large p. We truncate to the bosonic components only,

assuming (3.12), but we do not neglect the kinetic terms. Let the chemical potentials

corresponding to Qη,ϕ be µη,ϕ respectively. The equations we want to solve are the algebraic

ones in (3.13) and the integro-differential ones in (3.8) that in components read as in (B.5):

−
(
∂τ2 + µη

)
Gηη(τ1, τ2) +

∫
dτ3Σηη(τ2, τ3)Gηη(τ1, τ3) = δ(τ1 − τ2) , (3.43)

Gff (τ1, τ2) +

∫
dτ3Σff (τ2, τ3)Gff (τ1, τ3) = −δ(τ1 − τ2) ,

−
(
∂τ2 + µϕ

)
Gϕϕ(τ1, τ2) +

∫
dτ3Σϕϕ(τ2, τ3)Gϕϕ(τ1, τ3) = −α δ(τ1 − τ2) ,

Gψψ(τ1, τ2) +

∫
dτ3Σψψ(τ2, τ3)Gψψ(τ1, τ3) = α δ(τ1 − τ2) .

Assuming that the theory becomes free in the large p limit, we search for solutions in a 1/p

expansion around the free 2-point functions. Generically, we expand the bilocal fields G

(assuming translational invariance) as

G(τ) = G0(τ) +
1

pn
G1(τ) +O(p−n−1) ,

G(ωk) = G0(ωk) +
1

pn
G1(ωk) +O(p−n−1) .

(3.44)

Here G0 are the free propagators (we review the correlators of free Fermi and chiral multiplets

in Appendix C), ωk are the appropriate Matsubara frequencies,6 n > 0 are suitable integers

that we determine below, and we require∣∣G0(ωk)
∣∣ ≫ |G1(ωk)|

pn
, ∀ωk fixed , p≫ 1 . (3.45)

More in detail, substituting the free propagators (C.16), (C.20), (C.24), (C.28) into the

definition (B.2) of the bilocal fields, one obtains:

G
(0)
η̄η (τ) =

eµητ

2 cosh
(µηβ

2

)[Θ(τ) e−
µηβ

2 −Θ(−τ) e
µηβ

2

]
, G

(0)

f̄f
(τ) = −δ(τ) , (3.46)

G
(0)

ϕ̄ϕ
(τ) = α

eµϕτ

2 sinh
(µϕβ

2

)[Θ(τ) e−
µϕβ

2 +Θ(−τ) e
µϕβ

2

]
, G

(0)

ψ̄ψ
(τ) = α δ(τ) .

Being them free propagators, they satisfy the free equations of motion, obtained from (3.43)

by setting all Σ’s to zero. We consider an ansatz for the bilocal fields that is an expansion

6In our conventions G(τ) =
∑

n∈Z+r G(n) e
2πinτ

β and G(n) = 1
β

∫ β

0
dτ e−

2πinτ
β G(τ), where r = 0 for

bosons and r = 1/2 for fermions.
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in 1/p around the free result:

Gη̄η(τ) = G
(0)
η̄η (τ)

(
1 +

G̃η̄η(τ)

p
+O(p−2)

)
, Gf̄f (τ) = −δ(τ) +

G̃f̄f (τ)

pnf
+O

(
p−nf−1

)
,

Gϕ̄ϕ(τ) = G
(0)

ϕ̄ϕ
(τ)

(
1 +

G̃ϕ̄ϕ(τ)

pnϕ
+O

(
p−nϕ−1

))
, Gψ̄ψ(τ) = α δ(τ) +

G̃ψ̄ψ(τ)

pnψ
+O

(
p−nψ−1

)
.

(3.47)

Here we assume that nf , nϕ, nψ > 0 and that G̃η̄η, G̃f̄f , G̃ϕ̄ϕ, G̃ψ̄ψ are O(1). We chose the

order of the leading correction in Gη̄η such that various terms in the equations of motion

simplify using [
Gη̄η

]p−n
=
[
G

(0)
η̄η

]p−n
eG̃η̄η

(
1 +O(p−1)

)
. (3.48)

This in turn leads to the same differential equation as in [6, 11], with the benefit of hind-

sight. In terms of the chemical potentials µF for U(1)F and µR for any R-charge U(1)R, the

potentials µη,ϕ are decomposed as

µη = q µF +R[η]µR , µϕ = −p µF +R[ϕ]µR , p µη + q µϕ = µR . (3.49)

The last equation follows from the constraint that the J-term has R-charge 1, i.e., from

pR[η] + q R[ϕ] = 1 . We want to be able to impose the supersymmetry constraint µR = 0

at large p. This implies that the scalings of µη and µϕ must be related as µϕ ∼ p µη. The

simplest scaling is µη ∼ µF ∼ R[η] ∼ O(p−1) and µϕ ∼ µR ∼ R[ϕ] ∼ O(1). In this way

both G
(0)
η̄η and G

(0)

ϕ̄ϕ
are O(1). Besides, the bilocal fields should agree with the free limits at

short distances, which implies the following boundary conditions: G̃(0) = G̃(β) = 0 for all

components. Plugging the ansatz (3.47) and the boundary conditions into (3.43) we get

0 =
1

p
G

(0)
η̄η (τ12) ∂τ12G̃η̄η(τ12) +

∫
dτ3Ση̄η(τ23)G

(0)
η̄η (τ13) +O(p−2) , (3.50)

0 =
1

pnf
G̃f̄f (τ12)− Σf̄f (τ21) +O

(
p−nf−1

)
,

0 =
1

pnϕ
G

(0)

ϕ̄ϕ
(τ12) ∂τ12G̃ϕ̄ϕ(τ12) +

∫
dτ3Σϕ̄ϕ(τ23)G

(0)

ϕ̄ϕ
(τ13) +O

(
p−nϕ−1

)
,

0 =
1

pnψ
G̃ψ̄ψ(τ12) + αΣψ̄ψ(τ21) +O

(
p−nψ−1

)
,

where τij = τi − τj. These equations can be solved to obtain the Σ’s in terms of the G’s at

leading order in 1/p. In particular, one acts with (∂τ1 − µη) on the first equation and with

(∂τ1 − µϕ) on the third equation, obtaining:7

Ση̄η(−τ) = −1
p
G

(0)
η̄η (τ) ∂

2
τ G̃η̄η(τ) +O(p−2), Σf̄f (−τ) = 1

p
nf
G̃f̄f (τ) +O(p−nf−1), (3.51)

7We have neglected the terms − 1
p δ(τ) ∂τ G̃η̄η(τ) in Ση̄η(−τ) and − 1

pnϕ δ(τ) ∂τ G̃ϕ̄ϕ(τ) in Σϕ̄ϕ(−τ) since

we are interested in the equations at τ ̸= 0.
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Σϕ̄ϕ(−τ) = 1

αp
nϕ
G

(0)

ϕ̄ϕ
(τ) ∂2τ G̃ϕ̄ϕ(τ) +O(p−nϕ−1), Σψ̄ψ(−τ) = − 1

αp
nψ
G̃ψ̄ψ(τ) +O(p−nψ−1).

Let us then consider the algebraic equations. Substituting the ansatz (3.47) into the last

two equations of (3.13) we determine the leading behavior of Σf̄f and Σψ̄ψ. This can then

be used in (3.51) to determine G̃f̄f and G̃ψ̄ψ. In order to have a well-defined large p limit,

the simplest choice is to scale J as 2pp−nf , so that the combination

J ≡ αq pnf J

2p+q−2 q coshp−2
(µηβ

2

)
sinhq

(µϕβ
2

) (3.52)

remains fixed as p becomes large. Recalling that p is odd, we obtain:

G̃f̄f (τ) =
J e(µη−µR)τ

2 cosh
(µηβ

2

) [Θ(τ) e−(µη−µR)β2 +Θ(−τ) e(µη−µR)
β
2

]
eG̃η̄η(−τ) ,

G̃ψ̄ψ(τ) =
qJ sinh

(µϕβ
2

)
e(µϕ−µR)τ

2 cosh2
(µηβ

2

) [
Θ(τ) e−(µϕ−µR)β2 −Θ(−τ) e(µϕ−µR)

β
2

]
eG̃η̄η(−τ) ,

(3.53)

together with nψ = nf + 1. Similarly, substituting these expressions and the ansatz (3.47)

into the first two equations of (3.13), we determine the leading behavior of Ση̄η and Σϕ̄ϕ:

Ση̄η(τ) = − J 2

p2nf−1
G

(0)
η̄η (−τ) eG̃η̄η(τ)+G̃η̄η(−τ) +O(p−2nf ) ,

Σϕ̄ϕ(τ) =
qJ 2 sinh2

(µϕβ
2

)
p2nf α2 cosh2

(µηβ
2

) G(0)

ϕ̄ϕ
(−τ) eG̃η̄η(τ)+G̃η̄η(−τ) +O(p−2nf−1) .

(3.54)

Equating these expressions with those in (3.51) to leading order in 1/p fixes nf = 1 and

nϕ = nψ = 2, and gives the following differential equations:

∂2τ G̃η̄η(τ) = J 2 eG̃η̄η(τ)+G̃η̄η(−τ) , ∂2τ G̃ϕ̄ϕ(τ) =
qJ 2 sinh2

(µϕβ
2

)
α cosh2

(µηβ
2

) eG̃η̄η(τ)+G̃η̄η(−τ) . (3.55)

Notice that the free propagators G
(0)
η̄η and G

(0)

ϕ̄ϕ
have dropped from the equations. The only

solution to the second equation that satisfies the boundary conditions is

G̃ϕ̄ϕ(τ) =
q sinh2

(µϕβ
2

)
α cosh2

(µηβ
2

) G̃η̄η . (3.56)

The differential equation for G̃η̄η is the same as the one found in [6,11,12]. Since the odd part

G̃odd(τ) =
1
2

(
G̃η̄η(τ)− G̃η̄η(−τ)

)
satisfies ∂2τ G̃odd(τ) = 0, the only solution compatible with

the boundary conditions is G̃odd(τ) = 0 and we can take G̃η̄η to be even. Then the general

solution with integration constants v, b is: exp
[
G̃η̄η(τ)

]
= v/

[
βJ sin

(
v
β
|τ |+ b

)]
where v > 0,

β has been introduced for later convenience, and b is defined modulo 2π. The boundary

conditions G̃(0) = G̃(β) = 0 imply βJ = v/ sin(b) and sin(b) = sin(v + b). One solution

18



to the second equation is v = 2πm for m ∈ N, however this does not lead to a function

exp
[
G̃η̄η(τ)

]
that is positive for all values of τ . The other solutions are b =

(
n + 1

2

)
π − v

2

for n ∈ Z and without loss of generality we consider n = 0, 1. The other equation reduces

to βJ = ±v/ cos
(
v
2

)
, where ± correspond to n = 0, 1, respectively. Only the case n = 0,

0 < v < π leads to a positive function exp
[
G̃η̄η(τ)

]
, and the second equation has one and

only one solution for all values of β. The final solution is thus:

eG̃η̄η(τ) =
v

βJ cos
(
v
β
|τ | − v

2

) , βJ =
v

cos
(
v
2

) , 0 < v < π . (3.57)

In the weak coupling limit βJ → 0 (keeping all µIβ’s fixed) one has v → 0 and v
βJ → 1

and therefore G̃η̄η, G̃ϕ̄ϕ → 0. From (3.53) we see that also G̃f̄f , G̃ψ̄ψ → 0 and the solution

reduces to the free UV one at leading order in 1/p. In the strong coupling limit βJ → ∞,

instead, one has v → π and, to this order of approximation and away from τ = 0, the 2-point

functions agree with the conformal ones (3.17) with the following parameters:

∆η =
1

2p
+O(p−2) , 2πEη = −βµη +O(p−2) ,

∆f =
1

2
+O(p−1) , 2πEf = β(µR − µη) +O(p−1) , (3.58)

∆ϕ =
q sinh2

(µϕβ
2

)
2αp2 cosh2

(µηβ
2

) +O(p−3) , 2πEϕ = −βµϕ +O(p−3) ,

∆ψ =
1

2
+O(p−1) , 2πEψ = β(µR − µϕ) +O(p−1) ,

as well as

gη =
1

2 cosh
(µηβ

2

)(1− 1

p
logJ

)
+O(p−2) , gf =

1

2p cosh
(µηβ

2

) +O(p−2) , (3.59)

gϕ =
α

2 sinh
(µϕβ

2

)(1− q sinh2
(µϕβ

2

)
αp2 cosh2

(µηβ
2

) logJ)+O(p−3) , gψ =
q sinh

(µϕβ
2

)
2p2 cosh2

(µηβ
2

) +O(p−3).

The conformal dimensions are compatible with the bounds (3.24) at leading order in 1/p, in

particular ∆η saturates p∆η =
1
2
+O(p−1). A higher order in 1/p it would be necessary to

verify that all bounds are satisfied. We see that the condition µϕ > 0 (discussed in Section 2)

is necessary in order to ensure gϕ, gψ > 0 as required by unitarity. We tentatively see that

the solution at large p interpolates between the free UV limit and the IR conformal-like

behavior. Notice in particular that the phase transition is not visible in this limit.

It might be tempting to think that the conformal data in (3.58) solves, at some given

order in 1/p, the self-consistency equations (3.23). This, in general, does not happen, due

to incompatibility between the large p and low energy limits. Write (3.43) in Fourier space:[
− s

G0(ωk)
+ β2Σ(ω−k)

]
G(ωk) = −s , (3.60)
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where Σ should again be understood as α−1Σ for ϕ and ψ, and we used that G0 is the free

propagator. In the large p limit (3.45), using the expansion (3.44), one further has

Σ(ω−k) =
−s

β2G0(ωk) +
β2

pn
G1(ωk) +O

(
1

pn+1

) + s

β2G0(ωk)
=

s

pn
G1(ωk)

β2G0(ωk)2
+O

(
1

pn+1

)
. (3.61)

In these terms, as one can see from (3.43), the low-energy regime we previously studied for

dynamical and auxiliary fields, respectively, corresponds to taking∣∣µϕ,η − β Σϕ,η(ω−k)
∣∣≫ |ωk| ,

∣∣β Σf,ψ(ω−k)
∣∣≫ 1 , ωk ≪ J . (3.62)

Combining with (3.61), for the auxiliary fields we find that

1

pn
∣∣G1(ωk)

∣∣≫ ∣∣G0(ωk)
∣∣ , (3.63)

which directly contradicts (3.45) (recall that
∣∣G0(ωk)

∣∣ = 1/β for auxiliary fields). This means

that, as long as we must include auxiliary fields in our considerations, there is no regime of

large p and small ωk in which the approximation we made in our large p computation and

the approximation of dropping the kinetic terms are both reliable.

This result suggests that, at large p, the system at low energies first enters into a quasi-

conformal regime described by (3.58)–(3.59) in which interactions compete with the kinetic

terms, while at extremely low temperatures the system ends up in a different conformal

regime that satisfies (3.22)–(3.23) and in which the kinetic terms are negligible.

A particular case, in this respect, is the supersymmetric one for which µR = 0. In this

case the IR conformal solution is supersymmetric since its parameters satisfy the constraints

(3.26)–(3.27) within the working accuracy. Moreover, (3.29) can be independently derived

from I-extremization, as we will do in Section 3.9, without assuming (3.63). At this point,

the zero-temperature limit where the index is computed can be taken safely by requiring

that p goes to infinity faster than G1(ω) as ω goes to zero, in such a way that (3.45) holds.

Because of this, (3.58)–(3.59) in the supersymmetric regime do actually solve (3.29).

3.5.1 Grand potential and entropy at large p

It is possible to compute the grand potential logZ in a large p expansion. To leading order in

1/N , this is just the averaged action (3.6) (or (B.3) in components) evaluated on the solution

provided by (3.57). Instead of a direct evaluation, we follow [11, 12] and first compute the

derivative of logZ with respect to J . Only the explicit dependence on J in (3.6) matters

when taking this derivative, and not the dependence through dimensionful coefficients such

as gη,ϕ in the bilocal fields Gη,ϕ since the fields solve the equations of motion. We get:

J ∂J
logZ

N
= J

∫
dτ1 dτ2

(
1

q
Gf̄f G

p−1
η̄η Gq

ϕ̄ϕ
+

1

p
Gp
η̄η Gψ̄ψ G

q−1

ϕ̄ϕ

)
(3.64)
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=
J 2 cos2

(
v
2

)
4p2 cosh2

(µηβ
2

) ∫ β

−β
dτ

β − |τ |
cos2

(
v
β
|τ | − v

2

) +O(p−3) =
v tan

(
v
2

)
2p2 cosh2

(µηβ
2

) +O(p−3) .

To the integral on the first line the delta functions in Gf̄f and Gψ̄ψ do not contribute, and

hence only the first term contributes at leading order, since the second term is suppressed

by 1/p2 with respect to the first one. Using the relation between βJ and v in (3.57) as well

as the linearity of βJ in J in (3.52), the derivative with respect to J can be exchanged for

a derivative with respect to v using the formula J ∂J = v/
[
1 + v

2
tan
(
v
2

)]
∂v. We obtain a

differential equation in v for logZ:

1

N
∂v logZ =

tan
(
v
2

) [
1 + v

2
tan
(
v
2

)]
2p2 cosh2

(µηβ
2

) +O(p−3) . (3.65)

The value of logZ at v = 0 is known because at that point the theory is free. We can read

off Z
∣∣
v=0

from (C.18) and (C.26). Integrating (3.65) from 0 to v at large p then gives

logZ

N
= log

[
2 cosh

(
µηβ

2

)]
− α log

[
2 sinh

(
µϕβ

2

)]
+

v tan
(
v
2

)
− v2

4

2p2 cosh2
(µηβ

2

) +O(p−3) . (3.66)

As p→ ∞, logZ tends to the free value, which is consistent with our starting ansatz (3.47).

In order to compute the von Neumann entropy S = (1 − β∂β) logZ, one needs to make

the β dependence in v explicit. Using β∂β = βJ cos
(
v
2

)
/
[
1 + v

2
tan
(
v
2

)]
· ∂v we obtain

S

N
= log

[
2 cosh

(
µηβ

2

)]
− µηβ

2
tanh

(
µηβ

2

)
− α log

[
2 sinh

(
µϕβ

2

)]
+
αµϕβ

2
coth

(
µϕβ

2

)
− v2

8p2 cosh2
(µηβ

2

) +O(p−3) . (3.67)

On the first line is the entropy of the free theory, as in (C.19) and (C.27), while on the

second line is the first correction. In order to obtain the low-temperature behavior, we take

βJ → ∞ while keeping βµη,ϕ fixed and expand v(βJ ) in (3.57):

v2 = π2 − 4π2

βJ
+

12π2

(βJ )2
+O

(
(βJ )−3

)
. (3.68)

In particular, the zero-temperature specific entropy S0 ≡ Sβ=∞/N can be expressed using

the relations βµη,ϕ = −2πEη,ϕ between the chemical potentials and the spectral asymmetries

of the IR conformal solution, which are valid at zero temperature:

S0 = log
[
2 cosh(−πEη)

]
− πEη tanh(πEη)− α log

[
2 sinh(−πEϕ)

]
+ απEϕ coth(πEϕ)

− π2

8p2 cosh2
(µηβ

2

) +O(p−3) . (3.69)

We shall see in Section 3.9 that this quantity, when evaluated on supersymmetric spectral

asymmetries satisfying pEη+qEϕ = 0, matches the large p expansion of the entropy extracted

from the Witten index.
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3.6 Solutions at large p and q

We can similarly search for analytic solutions to the Schwinger–Dyson equations at large p

and q, following the same steps as in Section 3.5. We consider an ansatz for the bilocal fields

similar to the one in (3.47), however we keep the ratio p/q fixed as we send p→ ∞:

Gη̄η(τ) = G
(0)
η̄η (τ)

(
1 +

1

p
G̃η̄η(τ) +O(p−2)

)
, Gf̄f (τ) = −δ(τ) + 1

p
G̃f̄f (τ) + . . . ,

Gϕ̄ϕ(τ) = G
(0)

ϕ̄ϕ
(τ)

(
1 +

1

q
G̃ϕ̄ϕ(τ) +O

(
p−2
))

, Gψ̄ψ(τ) = α δ(τ) +
1

q
G̃ψ̄ψ(τ) + . . . .

(3.70)

In particular
[
Gϕ̄ϕ

]q−n
=
[
G

(0)

ϕ̄ϕ

]q−n
eG̃ϕ̄ϕ

(
1 + O(p−1)

)
besides (3.48). We insist that no

chemical potential is larger than O(1), therefore according to (3.49) we shall choose the

scaling µη ∼ µϕ ∼ µR ∼ O(1) while µF ∼ O(p−1), with the possibility of setting µR = 0. In

particular µη = −(q/p)µϕ +O(p−1).

Expanding the Schwinger–Dyson equations determines G̃f̄f and G̃ψ̄ψ algebraically as

G̃f̄f (τ) =
J e(µη−µR)τ

2 cosh
(µηβ

2

)[Θ(τ) e−(µη−µR)β2 +Θ(−τ) e(µη−µR)
β
2

]
eG̃η̄η(−τ)+G̃ϕ̄ϕ(−τ), (3.71)

G̃ψ̄ψ(τ) =
q2 J sinh

(µϕβ
2

)
e(µϕ−µR)τ

2p2 cosh2
(µηβ

2

) [
Θ(τ) e−(µϕ−µR)β2 −Θ(−τ) e(µϕ−µR)

β
2

]
eG̃η̄η(−τ)+G̃ϕ̄ϕ(−τ).

We use the same definition of J as in (3.52) (with nf = 1), and we keep J fixed as p→ ∞.

The algebraic equations then also determine

Ση̄η(τ) = −J 2

γ p
G

(0)
η̄η (−τ) eG̃η̄η(τ)+G̃η̄η(−τ)+G̃ϕ̄ϕ(τ)+G̃ϕ̄ϕ(−τ) + . . . (3.72)

Σϕ̄ϕ(τ) =
J 2 (1− γ)

α γ2 q
G

(0)

ϕ̄ϕ
(−τ) eG̃η̄η(τ)+G̃η̄η(−τ)+G̃ϕ̄ϕ(τ)+G̃ϕ̄ϕ(−τ) + . . .

where we defined
1

γ
≡ 1 +

q2 sinh2
(µϕβ

2

)
αp2 cosh2

(µηβ
2

) . (3.73)

The dynamical equations give two differential equations for G̃η̄η, G̃ϕ̄ϕ that can be recast as:

∂2τ G̃(τ) = J 2γ−2 eG̃(τ)+G̃(−τ) , G̃η̄η(τ) = γ G̃(τ) , G̃ϕ̄ϕ(τ) = (1− γ) G̃(τ) . (3.74)

Note that γ ∈ (0, 1). The solution for G̃ is again (3.57), with the substitution J → J γ−1. In

the weak coupling limit βJ → 0, the solution reduces to the free UV solution to first order

in 1/p. In the strong coupling limit, instead, we reproduce the conformal 2-point functions

with the following parameters, at this order of approximation:

∆η =
γ

2p
+O(p−2) , 2πEη = −βµη +O(p−2) , (3.75)
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∆f =
1

2
+O(p−1) , 2πEf = βµR − βµη +O(p−1) ,

∆ϕ =
1− γ

2q
+O(p−2) , 2πEϕ = −βµϕ +O(p−2) ,

∆ψ =
1

2
+O(p−1) , 2πEψ = βµR − βµϕ +O(p−1) ,

gη =
1

2 cosh
(µηβ

2

)(1 + γ

p
log γ

)
+O(p−2) , gf =

γ

2p cosh
(µηβ

2

) +O(p−2) ,

gϕ =
α

2 sinh
(µϕβ

2

)(1 + 1− γ

q
log γ

)
+O(p−2) , gψ =

α (1− γ)

2q sinh
(µϕβ

2

) +O(p−2) .

These values satisfy the consistency bounds (3.24).

As in the large p fixed q case, as long as we must include auxiliary fields in our consid-

erations, there is no regime of large p, q and small ωk for which the large p, q solution and

the conformal solution are both reliable. Again, I-extremization gives us an independent

derivation of (3.29) in the supersymmetric case.

3.6.1 Grand potential and entropy at large p and q

We now compute the grand potential logZ to leading order in 1/N in a large p expansion, at

fixed p/q, by evaluating the averaged action on the solution of the large p and q Schwinger–

Dyson equations. By differentiating logZ with respect to J we get:

J ∂J
logZ

N
= J

∫
dτ1 dτ2

(
1

q
Gf̄f G

p−1
η̄η Gq

ϕ̄ϕ
+

1

p
Gp
η̄η Gψ̄ψ G

q−1

ϕ̄ϕ

)
(3.76)

=
J 2 cos2

(
v
2

)
4p2γ cosh2

(µηβ
2

) ∫ β

−β
dτ

β − |τ |
cos2

(
v
β
|τ | − v

2

) +O(p−3) =
γv tan

(
v
2

)
2p2 cosh2

(µηβ
2

) +O(p−3) ,

where γ is defined in (3.73). Notice that, this time, both terms in the action contribute at

leading order. We follow the same steps as in Section 3.5.1, we exchange the derivative with

respect to J for a derivative with respect to v, we integrate from 0 to v, and obtain

logZ

N
= log

[
2 cosh

(
µηβ

2

)]
− α log

[
2 sinh

(
µϕβ

2

)]
+
γv tan

(
v
2

)
− γ v

2

4

2p2 cosh2
(µηβ

2

) +O(p−3) . (3.77)

In order to compute the entropy S = (1− β∂β) logZ we rewrite the β dependence through

v. By using β∂β =
(
1− βγ−1∂βγ

)
v /
[
1 + v

2
tan
(
v
2

)]
· ∂v, we get

S

N
= log

[
2 cosh

(
µηβ

2

)]
− µηβ

2
tanh

(
µηβ

2

)
− α log

[
2 sinh

(
µϕβ

2

)]
+
αµϕβ

2
coth

(
µϕβ

2

)
− γ v2

8p2 cosh2
(µηβ

2

)[1 + (1− γ)µϕβ coth

(
µϕβ

2

)
+ γ µηβ tanh

(
µηβ

2

)]
+
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+
γ v µηβ tan

(
v
2

)
tanh

(µηβ
2

)
2p2 cosh2

(µηβ
2

) +O(p−3) . (3.78)

We now take βJ → ∞ while keeping βµI fixed, in order to get the zero-temperature specific

entropy. Expressing everything in terms of the spectral asymmetries of the IR conformal

solution, and keeping only finite terms, we get

S0 = log
[
2 cosh(πEη)

]
− πEη tanh(πEη)− α log

[
2 sinh(−πEϕ)

]
+ απEϕ coth(πEϕ) (3.79)

− γ π2

8p2 cosh2
(
πEη
)[1 + 2(1− γ)πEϕ coth(πEϕ) + 2γπEη tanh(πEη)

]
+O(p−3) .

This result matches the large p, q expansion of the entropy extracted from the Witten index

in Section 3.9 for supersymmetric chemical potentials.

3.7 Luttinger–Ward relation

The “Luttinger–Ward” (LW) relation [38] gives the total charge ⟨Q⟩ of a conformal solution

in terms of a sum over contributions indexed by A, each associated with a field of abundance

NA, charge QA, statistics sA = ±1, dimension ∆A, and spectral asymmetry EA. As reviewed
in Appendix D, the relation is

⟨Q⟩ =
∑

A
NAQA qsA(∆A, EA) + C , C = const. (3.80)

qs(∆, E) = s

[(
∆− 1

2

) sinh(2πE)
cosh(2πE)− cos

[
2π
(
∆+ 1−s

4

)] + 1

2πi
log

sin
[
π
(
∆+ 1−s

4
+ iE

)]
sin
[
π
(
∆+ 1−s

4
− iE

)]].
The charge is only determined up to a constant C, because of ambiguities in matching the

UV limit (see also Appendix A of [26]).

For our model, the charges of fields are in Table 1. For the superconformal solutions,

using (3.26)–(3.27), the charges ⟨Qη⟩, ⟨Qϕ⟩, ⟨QF ⟩ are:

⟨Qη⟩
N

=
q∆ϕ sinh(2πEη)

cosh(2πEη) + cos(2π∆η)
+

α p∆ϕ sinh(2πEϕ)
cosh(2πEϕ)− cos(2π∆ϕ)

− p

2πi
log

cos[π(∆η + iEη)]
cos[π(∆η − iEη)]

+
α p

2πi
log

sin[π(∆ϕ + iEϕ)]
sin[π(∆ϕ − iEϕ)]

+ Cη ,

⟨Qϕ⟩
N

= − q∆η sinh(2πEη)
cosh(2πEη) + cos(2π∆η)

− α p∆η sinh(2πEϕ)
cosh(2πEϕ)− cos(2π∆ϕ)

− q

2πi
log

cos[π(∆η + iEη)]
cos[π(∆η − iEη)]

+
α q

2πi
log

sin[π(∆ϕ + iEϕ)]
sin(π(∆ϕ − iEϕ)]

+ Cϕ ,

⟨QF ⟩
N

=
q

2

sinh(2πEη)
cosh(2πEη) + cos(2π∆η)

+
αp

2

sinh(2πEϕ)
cosh(2πEϕ)− cos(2π∆ϕ)

+ q Cη − pCϕ . (3.81)

The constants Cη,ϕ will be determined by analyzing the Witten index in Section 3.9.
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3.8 Non-conformal solutions

In addition to the conformal solutions we discussed so far, which can describe the system at

low energies, we also find non-conformal solutions. This is not unusual: they have previously

been identified in SYK-like models, e.g. in [12, 26]. These solutions can be concurrent

with conformal solutions at a given fixed value of µη,ϕ, although they differ in their charge.

However, unlike the conformal solutions, they are exact solutions to the full Schwinger–Dyson

equations at β = ∞.

We identify two families of solutions that are compatible with the requirement µϕ > 0.8

Furthermore, we require that these solutions do not diverge for τ → ±∞. Such solutions

only exist when the chemical potentials µη,ϕ are in certain domains. When both chemical

potentials are above some critical value, i.e., when µη > µc
η and µϕ > 0, we find:

Gη̄η(τ) = −Θ(−τ) e(µη−µcη)τ , Gf̄f (τ) = −δ(τ) + Θ(τ) af e
−[(p−1)(µη−µcη)+q(µϕ−µcϕ)+af ]τ (3.82)

Gϕ̄ϕ(τ) = αΘ(−τ) e(µϕ−µcϕ)τ , Gψ̄ψ(τ) = α δ(τ) + α aψ Θ(τ) e−[p(µη−µ
c
η)+(q−1)(µϕ−µcϕ)−aψ]τ

where the constants take the following values:9

µc
η =

(p+ q − 1)αqJ

2p+q−2 q
, µc

ϕ = −(p+ q − 1)αq−1J

2p+q−2 p
, af =

Jαq

q
, aψ =

Jαq−1

p
. (3.83)

Note that the chemical potentials must also satisfy p (µη − µc
η) + (q − 1)(µϕ − µc

ϕ) > aψ. On

the other hand, when µη is below a critical value but µϕ is above, we find:

Gη̄η = Θ(τ) e−(µcη−µη)τ , Gf̄f = −δ(τ) + δp,1Θ(τ) af e
−[q(µϕ−µcϕ)+af ]τ

Gϕ̄ϕ = Θ(−τ)α e(µϕ−µcϕ)τ , Gψ̄ψ = α δ(τ)
(3.84)

with

µc
η =

(q − p+ 1)αqJ

2p+q−2q
, µc

ϕ =
(q − p− 1)αq−1J

2p+q−2p
, af =

Jαq

q
. (3.85)

In particular, for p = 1 and q = 2, the critical chemical potentials are µc
η =

1
2
Jα2 and µc

ϕ = 0.

In this solution, the boson behaves like a free boson while the fermion seems to acquire an

effective mass. This makes this solution similar to the non-conformal solutions found in the

two-fermion model of [26]. In the particular case where the chemical potentials do not break

supersymmetry, i.e. when µη = −2µϕ, the solution (3.82) cannot be realized. However, the

solution (3.84) is consistent for any µϕ > 0.

8We further require Gϕ̄ϕ > 0, since the sign of the Euclidean Gϕ̄ϕ is the sign of the Lorentzian spectral

density which must be non-negative, as we discuss in Appendix C. This rules out other exponential solutions

to the Schwinger–Dyson equations.
9We used the rule Θ(τ)m Θ(−τ)n δ(τ) = 2−m−n δ(τ), namely Θ(0) = 1

2 , which follows from using the

function P 1
iω + π δ(ω) as the Fourier transform of Θ(τ), and will be consistent with our numerical results.
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We can also explicitly calculate the entropy of these solutions. We take the finite-β

off-shell action and apply
(
1− βJ∂βJ − βµ∂βµ

)
. After simplifying with the EOMs, we find

S

N
= log

[
2 cosh

(βµη
2

)]
− α log

[
2 sinh

(βµϕ
2

)]
+ βµηQη + βµϕQϕ (3.86)

+
∑
k

[
log

(
1 + Ση̄η(ωk)

iωk−µη

1 + Σf̄f (ωk)

)
− α log

(
1 +

Σϕ̄ϕ(ωk)

iωk−µϕ

1 + Σψ̄ψ(ωk)

)]

− β

∫ β

0

dτ
[
Ση̄η(τ)Gη̄η(τ) + Σf̄f (τ)Gf̄f (τ) + Σϕ̄ϕ(τ)Gϕ̄ϕ(τ) + Σψ̄ψ(τ)Gψ̄ψ(τ)

]
where ωk are either the fermionic or bosonic Matsubara frequencies, depending on the field.

The first two terms are the free action, which appears from regulating the logarithmic term.

Promoting the sum to an integral, we can plug (3.82) or (3.84) in, so that the sum cancels

with the third line. This leaves the entropy to be solely the “free part”:

S

N
= lim

β→∞

{
log
[
2 cosh

(βµη
2

)]
− α log

[
2 sinh

(βµϕ
2

)]
+ 1

2

(
βµη + αβµϕ

)}
= 0 , (3.87)

where we assumed that µ does not scale with β. We obtain this result for both families,

irrespective of p and q.

3.9 Witten index and I-extremization

In supersymmetric quantum mechanics, a protected and computable quantity is the Witten

index IW = TrH (−1)F e−βH , which does not depend on β [42]. In the presence of a flavour

symmetry U(1)F , the index can be refined by inserting a complex fugacity x for the flavour

charge QF . Besides, with N = 2 supersymmetry and in the presence of a U(1) R-symmetry

R, one can construct an alternative index in which eiπR is used in place of (−1)F :

I(x) = TrH eiπR e−βH xQF . (3.88)

Let us explain the relation between the two indices, for the models considered in this paper.

When gcd(p, q) = 1 and there is no discrete Zgcd(p,q) flavour symmetry, there exists an

assignment of R-charges such that (−1)F = eiπR and hence (3.88) is identical to the ordinary

Witten index. Such an assignment is such that

R[η] = 2m+ 1 , R[ϕ] = 2n , pR[η] + q R[ϕ] = 1 (3.89)

for some m,n ∈ Z (and recall that p is odd). These equations have a solution if and only if

gcd(p, q) = 1. Any other R-charge assignment is then related to the one in (3.89) by mixing

with the flavour symmetry, namely, by rotating the phase of x.
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When d ≡ gcd(p, q) > 1, although the ordinary Witten index is not equal to (3.88), one

can consider Witten indices refined by an additional twist g for the Zd flavour symmetry,

where g was defined in (2.11) and gd is equivalent to a U(1)F rotation:

IW
r (x) = TrH (−1)F gr e−βH xQF for r = 0, . . . , d− 1 . (3.90)

The R-charge assignment such that (−1)Fgr = eiπR and thus I(x) = IW
r (x) should satisfy

R[η] = 1 + 2r
p
+ 2m, R[ϕ] = 2n and pR[η] + q R[ϕ] = 1. There is always one and only one

solution for r in the range 0 ≤ r < d which is r = 1+d
2

mod d, with r ̸= 0 whenever d > 1.

Thus (3.88) is equivalent to one of the refined Witten indices.

Writing the U(1)F fugacity as x = e2πiu = e2πiy+2πE with y, E ∈ R, the insertions in (3.88)

can be recast in the following way:

I = TrH eiπ(R+2yQF ) e−β(H +µQF ) where 2πE = −µβ . (3.91)

Here we used the symbol µ in place of µF in order to avoid cluttering, and later on we

will identify E with the same quantity introduced in (3.28). The I-extremization principle

introduced in [36, 37] states that the values ŷ, µ̂ that extremize I under Laplace transform

select the infrared Hamiltonian HIR = H + µ̂ QF and the infrared superconformal R-charge

Rsc = R + 2ŷ QF . (3.92)

Using the relation
{
G 1

2
,G− 1

2

}
= L0 − Rsc/2 in the superconformal algebra — see (A.22) —

we observe that chiral primaries annihilated by G 1
2
= Q and G− 1

2
= Q† must have ∆ = 1

2
Rsc.

Applying this to ϕ and η we get

∆ϕ = −p ŷ + R[ϕ]

2
, ∆η = q ŷ +

R[η]

2
, (3.93)

which allow us to trade ŷ for the conformal dimensions ∆ϕ,η. The fact that R is an R-charge

guarantees that the dimensions satisfy the supersymmetry constraint (3.27). Using (3.93)

and Table 1, Rsc can also be written as

Rsc = 2∆ηQη + 2∆ϕQϕ . (3.94)

The index has an ambiguity given by overall multiplication by a power of x. In the

Hamiltonian formalism this corresponds to the ambiguity in the assignment of charges to

the Fock vacuum (i.e., the normal ordering ambiguity in the definition of charge operators).

In the path-integral formalism it corresponds to the ambiguity in the regularization of 1-loop

determinants.10 We fix the ambiguity by demanding that the charge operators be written

10This is similar to the parity anomaly in 3d theories. For a complex fermion of charge 1, the fermionic

Fock space has two states, and if we insist on assigning integer charges then there is no canonical choice and

one is forced to break charge conjugation. On the other hand, one could assign charges ± 1
2 to the two states

in a charge-conjugation invariant fashion, but then the charges are not integer.

27



as (anti-)commutators in the Hamiltonian formalism. Each chiral multiplet contributes(
e−

iπR[ϕ]
2 x

p
2 − e

iπR[ϕ]
2 x−

p
2

)−1 while each Fermi multiplet e−
iπR[η]

2 x−
q
2 + e

iπR[η]
2 x

q
2 . The result is

I(x) =

[
e−

iπR[η]
2 x−

q
2 + e

iπR[η]
2 x

q
2(

e−
iπR[ϕ]

2 x
p
2 − e

iπR[ϕ]
2 x−

p
2

)α
]N

. (3.95)

In order to extract the degeneracy of BPS states d(QF , R) at fixed charges, which is captured

by the index written as

I(x) =
∑
QF ,R

d(QF , R) e
iπR xQF , (3.96)

it is useful to rewrite it as a constrained partition function for BPS states. Let xη = e2πiuη

and xϕ = e2πiuϕ be the two fugacities for Qη and Qϕ, respectively, and consider

TrBPS x
Qη
η x

Qϕ
ϕ = TrBPS exp

{
2πi
[(
p uη + q uϕ

)
R +

(
R[ϕ]uη −R[η]uϕ

)
QF

]}
(3.97)

where we used (2.10). When the chemical potentials are constrained to p uη + q uϕ =
1
2
, and

we identify u ≡ R[ϕ]uη − R[η]uϕ according to (2.13), that quantity reduces to the index

I(x). Therefore, the Laplace transform of the index computes:∮
dx

2πix
I(x)x−Qηη x

−Qϕ
ϕ

∣∣∣
puη+quϕ=

1
2

=

∫ 1

0

du exp
[
log I(x)− iπR− 2πiuQF

]
(3.98)

≡
∫ 1

0

du eN S(u;QF ,R) =
∑

R̃
d(QF , R̃) e

iπ(R̃−R) .

Here the function S(u;QF , R), sometimes called the entropy function, is 1
N
times the quantity

in brackets on the first line. At large N and QF , one can compute the integral in the saddle-

point approximation extremizing S with respect to u. On the right-hand-side of (3.98)

appears a weighted sum over R-charges of the degeneracy of states within a sector of fixed

QF . Assuming that this sum is dominated by one value, and comparing with the saddle

point computation, one observes that the R-charge R of each saddle is fixed by requiring

that S is real. Then the value of NS is the zero-temperature entropy, log d(QF , R).

The saddle point in terms of u is given by

α p cot
(
pπu− π

2
R[ϕ]

)
+ q tan

(
qπu+

π

2
R[η]

)
+ 2iQF = 0 , (3.99)

where we introduced QF = QF/N = O(1). Substituting (3.93) and (3.27), and using

y = u − iE , the real and imaginary parts of this equation can be written in terms of ∆ϕ

and E . The real part turns out to be precisely the relation (3.29) between the conformal

dimension ∆ϕ and the spectral asymmetry E in superconformal solutions. The imaginary

part reads:

α p sinh(2πpE)
cosh(2πpE)− cos(2π∆ϕ)

− q sinh(2πqE)
cosh(2πqE) + cos

(
π
p
− 2πq

p
∆ϕ

) + 2QF = 0 . (3.100)
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This coincides with the LW relation that determines QF in (3.81), if the constants satisfy

q Cη − pCϕ = 0. Setting ImS = 0 determines the R-charge to be

R

N
=

1

2πi
log

cos(π∆η − iπEη)
cos(π∆η + iπEη)

− α

2πi
log

sin(π∆ϕ − iπEϕ)
sin(π∆ϕ + iπEϕ)

+
α

2
−2

(
R[ϕ]

2p
−∆ϕ

p

)
QF , (3.101)

where the principal value is taken in the logarithms. Using (3.92) and (3.93), we can deter-

mine the superconformal R-charge of the BPS states:

Rsc

N
= − 1

2πi
log

[
cos(π∆η + iπEη)
cos(π∆η − iπEη)

]
+

α

2πi
log

[
sin(π∆ϕ + iπEϕ)
sin(π∆ϕ − iπEϕ)

]
+
α

2
. (3.102)

On the other hand, substituting the LW relations for Qη and Qϕ from (3.81) into (3.94) gives

another determination of Rsc. The latter agrees with (3.102) if 2∆ηCη+2∆ϕCϕ =
α
2
. Solving

this and the previous constraint determines the constants in the Luttinger–Ward relations:

Cη =
α p

2
, Cϕ =

α q

2
. (3.103)

We shall see that this is consistent with the numerical result in Figure 7. In particular, we

find out that Rsc takes a common non-zero value among the supersymmetric ground states.11

Finally, the real part of the entropy function that gives the entropy is

ReS =
1

2
log

[
21−α

cosh(2πqE) + cos
(
π
p
− 2πq

p
∆ϕ

)[
cosh(2πpE)− cos(2π∆ϕ)

]α
]
− 2πEQF . (3.104)

3.9.1 Entropy of various solutions

The index I(x) in (3.95) is the grand canonical partition function of the theory, while

d(QF , R) in (3.98) is the microcanonical degeneracy of states. It follows that after substi-

tuting E(QF ), the quantity ReS in (3.104) becomes the zero-temperature microcanonical

entropy S0(QF ). We compute it in various cases, within the regime of validity of the IR

conformal ansatz.

Solutions for p = 1, q = 2. Plugging the explicit solution (3.33) for ∆ϕ(E) into the LW

relation (3.100) we can determine the spectral asymmetry E and ∆ϕ as functions of QF :

E =
1

2π
arctanh

(
2QF

2− α

)
, ∆ϕ =

1

2π
arccos

(
α√

(2− α)2 − 4Q2
F

)
. (3.105)

11The fact that the ground states have a non-vanishing but well-defined R-charge (meaning that they are

still eigenvectors of the R-charge operator) means that the R-symmetry is unbroken in those states.
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Figure 2: Plot of the entropy S0(QF ) in the range 0 ≤ QF <
√
1− α for different values of

α, in the case p = 1, q = 2. The dashed line is the value of the entropy at the upper critical

value of QF as α is varied.

Due to the bound 0 ≤ tanh
(
πE
)
<

√
1− α in (3.33) for conformal solutions, the charge is

bound by 0 ≤ QF <
√
1− α at fixed α < 1. Evaluating the entropy function (3.104) on the

solution, one obtains the entropy S0 = ReS:

S0 =
1

2
log

[
42−α (1− α)1−α(

2− α + 2QF

)
1−α

2
+QF

(
2− α− 2QF

)
1−α

2
−QF

]
. (3.106)

The quantity eNS0(QF ) is the degeneracy of ground states at fixed charge QF . In Figure 2

we plot the entropy S0(QF ) for various values of α and we observe that it is always positive,

with a maximum at QF = 0. The entropy does not vanish as QF reaches the critical value√
1− α, and the dashed line is the envelop of the entropy at those values as α is varied.

Solutions for p = q > 1, α = 1 and E ̸= 0. Similarly, plugging the explicit solution

(3.39) for ∆ϕ(E) into the LW relation (3.100) we get

E = − 1

2πp
arcsinh

(
B√
2QF

)
, ∆ϕ =

1

4p
− 1

2π
arcsin

[√
2 |QF |
C

sin
( π
2p

)]
, (3.107)

where we defined the following functions of QF :

A = cos
(
π
2p

)√(
p2 −Q2

F

)
2 cos2

(
π
2p

)
+ 4p2Q2

F (3.108)

B =
√(

p2 −Q2
F

)
cos2

(
π
2p

)
+ A , C =

√
p2 +Q2

F −
(
p2 −Q2

F

)
sin2

(
π
2p

)
+ A .

Note that C2 −B2 = 2Q2
F . Evaluating the entropy function (3.104) on the solution we get

S0 = log

[
cos
(
π
2p

) (
pC + |QF |B

) (
C + sgn(QF )B)

QF
p

2
QF
2p

− 1
2 |QF |

QF
p B2

]
. (3.109)

Figure 3 shows S0(QF ) against QF for various values of p = q, and it is always positive.
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Figure 3: Plot of S0(QF ) against QF for the solutions when p = q = 3, 5, 7, 9 and E ̸= 0.
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Figure 4: Plot of S0 against α ∈
(
0, tan2 π

4p

)
for the solutions in the case p = q = 3, E = 0.

The blue/black curves correspond to the solutions with a plus/minus sign in (3.41).

Solutions for p = q > 1 and E = 0. In this case, whenever α < tan2
(
π
4p

)
there are two

acceptable conformal solutions (3.41) which coincide at α = tan2
(
π
4p

)
. The only solution to

the LW relation (3.100) is QF = 0. Evaluating (3.104) on (3.41) and with QF = 0 gives

S0 = log

 2
(
(1− α) tan

(
π
2p

)
±
√

(1− α)2 tan2
(
π
2p

)
− 4α

) 1−α
2

(1− α)
1−α
2 cosα

(
π
2p

) (
(1 + α) tan

(
π
2p

)
±
√

(1− α)2 tan2
(
π
2p

)
− 4α

) 1+α
2

. (3.110)
The signs above are correlated with the sign in (3.41). Figure 4 shows S0 against α for p = 3,

and it is always positive. In addition, we see that the solution with the plus sign always has

a higher entropy, and is expected to be the dominant saddle at large N .

Solution at large p. One can check that the conformal parameters given in (3.58) solve

the Schwinger–Dyson equation (3.29) in the supersymmetric case up to O(p−3). Substituting
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the large p values of ∆η and ∆ϕ into (3.104), using (3.81) and

cosh(2πEη) + cos(2π∆η) = 2 cosh2(πqE)− π2

2p2
+O(p−4) ,

cosh(2πEϕ)− cos(2π∆ϕ) = 2 sinh2(πpE) +O(p−4) ,
(3.111)

reproduces the expansion in (3.69). This is a consistency check for the large p computation.

4 Numerical results

In this section we present some results we obtained by numerically solving the Schwinger–

Dyson equations. Our first goal is to check that the analytic approximations we carried out

are sensible. Indeed we verify that the numerical solutions exhibit the conformal behaviour

of equations (3.17) in the appropriate parameter region, and the non-conformal behavior of

(3.84) outside that region. Second, we extract additional information which is analytically

unreachable: we check that the zero-temperature limit of the entropy matches the prediction

from the supersymmetric index, and we estimate the Schwarzian coupling.

4.1 Summary of the numerical method

The SD equations can be solved numerically by adapting the method used in [6]. We

discretize the interval [0, β] into M points, with M a power of 2.12 In frequency space we

pick theM fermionic and bosonic Matsubara frequencies with lowest absolute value, namely

ωf
k =

2π

β

(
k − M

2
+

1

2

)
, ωb

k =
2π

β

(
k − M

2
+ 1

)
, k = 0, . . . ,M − 1 , (4.1)

where the discretization is manifest because we take a finite number of frequencies.13 We

transform between the two descriptions with Fast Fourier Transforms. We update each

iteration with a weighing factor x, as in [6], for which we found x = 2/3 to be a good general

choice. Schematically,

G(ωk)i → Σ(τk)i = ΣEOM

[
G(τk)i

]
→ G(ωk)i+1 = (1− x)G(ωk)i + xGEOM

[
Σ(−ωk)i

]
. (4.2)

12One can sample the interval at either τi = i/M or τi =
(
i+ 1

2

)
/M , for i = 0, . . . ,M − 1. For sufficiently

high number of points, they give identical solutions within the numerical precision, however we found the

latter choice to be numerically more stable. Note that since the model depends on β only through βJ and

βµ, one can always take β = 1 for numerical purposes.
13Since M is even, the truncation is not symmetric around zero for the bosonic Matsubara frequencies:

ωb
k = −π(M−2)

β , . . . , 0, . . . , πMβ . This creates an apparent difficulty when calculating Σ(−ωk) for k =M − 1.

We fix this by assuming that the bilocal fields are real, so that Σ(−ωk) = Σ(ωk).
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Figure 5: Two solutions for βJ = 1000, α = 1/4, (p, q) = (1, 2). The colored full lines are

the numerical solution of the Schwinger–Dyson equations with M = 218 points. The black

dashed lines are a conformal solution for which the parameters Eη,µ and gη,µ have been fitted

numerically. (a): Supersymmetric chemical potentials. (b): Non-supersymmetric.

We iterate until
∑

k

∣∣G(ωk)i − G(ωk)i+1

∣∣2 is smaller than some precision goal. To begin the

iteration, we take the free solution.

For small µϕ and finite J , the equation of motion for Gϕ̄ϕ(ω = 0) is highly sensitive to

numerical errors in Σϕ̄ϕ(ω = 0). One possible workaround, proposed for example in [43],

is to change the equation of motion for Gϕ̄ϕ by replacing the parameter µϕ with ρ so that

Gϕ̄ϕ(ω = 0) = αρ. We replace the integro-differential equation for Gϕ̄ϕ with

Gϕ̄ϕ

[
Σ(−ωb

k)i
]
= − αρ

ρ
[
−iωb

k + Σϕ̄ϕ(−ωb
k)i − Σϕ̄ϕ(0)i

]
− 1

. (4.3)

One can then use the original equation of motion at the end to verify which value of µϕ is

realized. In principle, one could take µϕ = Σϕ̄ϕ(0) + 1/ρ, however it is best to average the

EOM in a window of frequency space. If one desires a specific value of µϕ, this approach

incurs a high additional numerical cost, since the solver must itself be iterated many times

to carry out a bisection search or equivalent technique. Nevertheless, we found this to be a

useful approach for those cases that are more numerically unstable, such as (p, q) ̸= (1, 2).

4.2 Conformal behaviour for (p, q) = (1, 2)

In this section we focus on the case (p, q) = (1, 2). Numerically, this turns out to be the

most accessible case. It is also of particular theoretical interest, as it is the closest choice to

the quantum mechanical model of [29].

We first test that the conformal ansatz is realized at low energies. We take a solution

with large βJ , and we scan the numerical solutions to (3.22) for the best quadratic fit. These
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Figure 6: Plot of Eη (blue points) and Eϕ (red points) as a function of µ. The data was

generated with M = 220 points, βJ = 600, and α = 1/5. The dashed lines in each plot

correspond to (4.4) (a: SUSY chemical potentials) and (4.5) (b: non-SUSY), respectively.

solutions are parameterised by Eη, Eϕ, gη, and gϕ. In principle, one could just fit Gη̄η and Gϕ̄ϕ,

which can be beneficial since the auxiliary fields tend to converge slower to the conformal

solution. However, we found that this results in less precise and less accurate estimates of

the E ’s, so we fit the four bilocal fields together. Clearly, we must exclude from the fit the

regions with τ close to 0 and β, where the approximation is invalid and singular. Tipically

we exclude
∣∣1
2
− τ

β

∣∣ > 3/8.

We present two illustrative examples in Figure 5. Clearly, the conformal solution is

realized and it matches our proposed ansatz. For (p, q) = (1, 2) and supersymmetric chemical

potentials, we verified numerically that, at sufficiently large βJ , we have

2πEη ≃ −βµη = 2βµϕ , 2πEϕ ≃ −βµϕ , (4.4)

which matches the expectation from the supersymmetric index. This suggests that, even in

the deep IR, SUSY is at most lightly broken at small temperatures. For other choices of

chemical potentials, we also find a linear relation at low temperatures. The ansatz

2πEη ≃ −
(
1− 2α

5

)
βµη +

4α

5
βµϕ , 2πEϕ ≃ 1

2

(
1− 2α

5

)
βµη −

2α

5
βµϕ (4.5)

was numerically successful for large βJ and finite chemical potentials well below the critical

value, testing with different values of α. We plot a supersymmetric and a non-supersymmetric

example in Figure 6. This ansatz has the curious property of being supersymmetric irrespec-

tively of the chemical potentials, suggesting an emergent IR supersymmetry. When fitting

the low energy behaviour, ∆ϕ,η and gϕ,η also satisfy the respective supersymmetry constraints

within 1%− 5% at βJ between 200 and 600. This ansatz was further confirmed when com-

paring the numerical values of the charge and entropy to the Luttinger–Ward relation and
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Figure 7: We plot Qη (blue points) and Qϕ (red points) as a function of µF . The data

was generated with M = 218 points, βJ = 200 and (βµη, βµϕ) = (−2µ, µ). The gray full

line is the Luttinger–Ward formula (4.7), assuming (4.4). The gray dashed lines are the

continuations in (4.8). The vertical dotted line is at the value µF for which E∗ is reached.

the zero-temperature entropy for non-supersymmetric cases in Section 4.3. However, we note

that one expects, for physical fields at fixed Qη,ϕ, to have

µI(Qη,Qϕ, T ) = µ0,I(Qη,Qϕ) + 2πEI(Qη,Qϕ)T + . . . , (4.6)

see for instance [12, 44, 45]. Here the index I = η, ϕ labels the U(1) symmetries. Since we

work at fixed µ and the function QI(µ) is a priori complicated, eqn. (4.5) might be the

linearized behaviour of a more intricate function µ0,I

(
Qη(µη, µϕ), Qϕ(µη, µϕ)

)
.

4.3 Charge and entropy for (p, q) = (1, 2)

An important check of the conformal ansatz is the Luttinger–Ward relation between E and

Q, which we presented in Section 3.7. As previously noted, the Luttinger–Ward calculation

determines Q(E) up to undetermined constants, which we fixed exploiting the index in

(3.103). Numerically, we can verify these constants to be:

Qη = q−(Eη,∆η) + (1− p) q+(Ef ,∆f )− αp q−(Eψ,∆ψ) +
αp

2
,

Qϕ = α q+(Eϕ,∆ϕ) + α(1− q) q−(Eψ,∆ψ)− q q+(Ef ,∆f ) +
αq

2
,

(4.7)

where the function q is given in (3.80). This matches the index prediction (3.103). We note

that the charges do not vanish when µη,ϕ → 0, which is supported by the numerics, as can

be seen in Figure 7. The charges also converge very quickly to their low-temperature limit,

since they depend on βJ through E . Thus we can take βJ to be large and assume (4.4).

In the superconformal solution, as we take E close to E∗(α) defined in (3.33), we approach

the phase transition discussed in Section 3.4. In order to avoid working with E which is
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Figure 8: We plot ∆η and ∆ϕ for α = 1/4 and (βµη, βµϕ) = (−2µ, µ), assuming (4.4). The

data was generated by solving (3.29) numerically. The vertical dotted line is at the value of

µ for which E∗ is reached.

numerically more indirect, we label as βµ∗
ϕ = 2arccosh

(
α−1/2

)
the critical chemical potential,

which follows from (4.4).

Recall that, as E → E∗, the conformal dimensions converge to ∆η = 1/2 and ∆ϕ = 0, see

Figure 8. This is a solution — albeit a trivial one — to the consistency equations (3.23),

or equivalently (3.29), for any value of E . Focusing only on the consistency equations, the

absence of other nearby solutions for the conformal dimensions when E > E∗ suggests that

the would-be conformal solution should have these marginal values. While, technically, this

fact renders the conformal approximation no longer valid, since the kinetic and interacting

terms are of the same order in ω, we can conjecturally extend the Luttinger–Ward relation

by plugging the fixed dimensions in. We conjecture

Qη =
1

2
, Qϕ = 1− coth(βµF ) +

α

2
coth

(
βµF
2

)
. (4.8)

As we can see in the dashed line in Figure 7, the numerical results do not deviate significantly

from such an analytic continuation.

We can further combine this result with (3.106) in order to obtain a zero-temperature

analytic prediction for the entropy as a function of the flavour chemical potential, within

the conformal phase and, conjecturally, beyond. We use (3.86) to calculate the entropy

numerically at each finite temperature, and then we take βJ → ∞ with βµ fixed.

For the extrapolation to zero temperature, the precision strongly depends on how close

to the phase transition we are. For values of the chemical potential sufficiently below βµ∗
ϕ,

it suffices to probe values of βJ between 50 and 500 and use a polynomial fit to extract the

constant term, as can been seen in Figure 9a. The error is estimated by dropping points at
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Figure 9: We plot two examples of the extrapolation of the zero-temperature entropy for

(βµη, βµϕ) = (−2µ, µ). In plot 9a we take a small value of µ for which it suffices to fit with

a line, allowing us also to estimate the Schwarzian coupling. Meanwhile, in plot 9b we take

a value of µ close to the phase transition. Instead of fitting the points directly, we fit the

third Richardson transform with the ansatz (4.10). Here M is the number of points in the

discretized Schwinger–Dyson equation.

both ends of the sample. The resulting extrapolation of the zero-temperature entropy are

the red dots in Figure 10. However, as we move closer to the critical point, this extrap-

olation becomes harder. The main limiting factor is that we cannot probe arbitrarily low

temperatures due finite-size effects and numerical instabilities. Furthermore, if we assume

that the entropy behaves as

S(T ) ≈ S0 + gSch(βJ)
−1 + gγ(βJ)

−γ + . . . , (4.9)

what we observe numerically (as well as in the analysis of the spectrum in Section 5) is that

γ becomes close to 1. Thus, we generate points at integer values of βJ between 100 and 400

and then take one or more Richardson transforms, see [46, 47]. After the r-th Richardson

transform, we expect to converge to S0 as[
S(T )

]
r
≈ S0 + gγ,r(βJ)

−γ + gr(βJ)
−(1+r) + . . . . (4.10)

Fitting the form (4.10) for all the constants is more reliable at low temperature than (4.9)

since the exponents are more distinct, and we estimate the numerical error by varying the

points included in the fit and the order r of the Richardson transform. We used this strategy

for the light blue points in Figure 10, with a step of 10 for those on the left and a step of 4 for

those on the right (a smaller step increases the convergence of the Richardson acceleration).

Lastly, for points very close to the critical point the convergence to S0 is particularly slow, so

we considered only points with βJ between 200 and 400 with a step of 2. These are the dark

blue points in Figure 10. The error is estimated by varying the degree of the Richardson
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Figure 10: Plot of the zero-temperature entropy S0 as a function of the chemical potentials

(βµη, βµϕ) = (−2µ, µ) at α = 1/4. The red dots were generated with 222 points, βJ

spanning from 200 to 1000, and the entropy was obtained with simple linear extrapolation.

The light blue and dark blue dots were generated with 223 and 224 points, respectively, with

βJ spanning from 100 to 400, and extrapolated using the Richardson-transform fit described

in eqn. (4.10). The black line is the prediction from combining the index and the Luttinger–

Ward formula (4.7), while the dashed line uses the index and the continuation (4.8).

transform and by comparing with the previous method, taking the largest estimate. An

example of such a fit is given in Figure 9b. The exponent γ in (4.9) seems to be close to

1 at the transition point, but unfortunately the precision attainable with our points is not

enough to extract meaningful estimates, including whether it is smaller or larger than 1.

Unfortunately, βJ ∼ 500 is still slowly converging to the low-temperature behaviour

and the above techniques have limited success in isolating S0. Furthermore, the results

are sensitive to small changes in the extrapolation method, which we attempt to capture

with the error estimates in Figure 10, but which are likely underestimated. With these

significant caveats, what we can at best observe is that, in Figure 10, the kink that follows

from extrapolating QF (µ) with (4.8) seems to be close to the numerical results. This could

suggest some form of second-order phase transition. However, note that this would-be kink

only appears when working at fixed chemical potential, while at fixed charge we can just

apply (3.106) directly, which is smooth.

For chemical potentials sufficiently lower than the transition point, we can also extract

the coefficient of the linear term in T from the entropy, which should be proportional to

the Schwarzian coupling. However, as we move closer to the phase transition, the linear
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βµϕ = 1/8 βµϕ = 3/2

α QF gSch QF gSch

1/4 0.1087 1.09± 0.03 0.7920 1.09± 0.01

1/5 0.1119 0.97± 0.03 0.8147 0.96± 0.01

1/6 0.1140 0.90± 0.03 0.8298 0.90± 0.02

1/7 0.1155 0.87± 0.04 0.8405 0.86± 0.02

Table 2: Estimates of the Schwarzian coupling for (βµη, βµϕ) = (−2µ, µ).
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Figure 11: Solutions for βJ = 400, α = 1/4, (p, q) = (1, 2), (βµη, βµϕ) = (−6, 3). The

colored full lines are the numerical solution to the Schwinger–Dyson equations with 222

points. The black dashed lines are the zero-temperature prediction (3.84). The dotted lines

are the prediction from the conformal ansatz with ∆η =
1
2
, ∆ϕ = 0, Eη,ϕ as in (4.4), and gη,ϕ

fitted numerically. In the conformal solution Gf̄f = Gψ̄ψ = 0.

behaviour is less clear as it seems to require even lower temperatures. We show some of the

estimates of gSch for different values of QF in Table 2.

As for the solutions themselves, at βµϕ > βµ∗
ϕ they seem to interpolate between the

conformal solution and the exponential behaviour of the non-conformal solution (3.82), as

we illustrate in Figure 11. For τ in the middle of the interval (the IR regime), we see that

a conformal ansatz with ∆η = 1/2 and ∆ϕ = 0 is a good approximation of the physical

fields η, ϕ (for the auxiliary fields f, ψ, the ansatz gives 0), while at τ closer to 0 and β

the non-conformal solution is a better match. As we take βµF → ∞, the solution seems

to converge to (3.82), which analytically corresponds to the case β → ∞ and µ finite. As

shown in Figure 12, we can match Gη̄η, Gf̄f , and Gϕ̄ϕ with their zero-temperature limit.

Gψ̄ψ vanishes at zero temperature, so we observe that it is dominated by the subleading

contribution, which we did not establish analytically.
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Figure 12: Solutions for βJ = 400, α = 1/4, (p, q) = (1, 2), (βµη, βµϕ) = (−10, 5). The

colored full lines are the numerical solution to the Schwinger–Dyson equations with 218

points. The black dashed lines are the zero-temperature prediction (3.84).

4.3.1 Entropy for non-supersymmetric solutions

One can also solve the Schwinger–Dyson equations for non-supersymmetric chemical poten-

tials. Using a similar extrapolation as before, one can then obtain the zero-temperature

entropy. Since we empirically found a supersymmetric low-energy behaviour in (4.5), we

can conjecturally compare the non-supersymmetric zero-temperature entropy with the en-

tropy from I-extremization using the values of E in (4.5). In Figure 13 we plot such an

example. The theoretical prediction seems compatible with the numerical result within the

extrapolation error for smaller values of µη and µϕ. Unfortunately, the numerical iteration

is noticeably more unstable for non-supersymmetric potentials, and thus we could neither

probe a wider range of chemical potentials nor work with greater precision.

Even within the small band of values of µ probed numerically, these results are surprising.

They reinforce the SUSY IR behaviour found in (4.5). Unlike the check of Figure 6, this test

does not rely on fitting Eϕ,η at late τ , which is a delicate task. So this figure is independent

evidence of the emergent SUSY. Due to numerical limitations, we cannot however ascertain

whether this behaviour is valid only for small values of µ or due to numerical errors.

4.4 Results for other values of (p, q)

Solving the Schwinger–Dyson equation for values of (p, q) other than (1, 2) turns out to

be numerically more unstable. The standard prescription, when it stabilises, often lands

on the exponential-like non-conformal solutions. We can use the prescription (4.3) to find
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Figure 13: Plot of the zero-temperature entropy S0 as a function of the chemical potentials

(βµη, βµϕ) = (µ, 2µ) at α = 1/4. The red dots were generated with 223 points, βJ spanning

from 10 to 200, and linear extrapolation of the entropy. The black line is the prediction

obtained from the index, the Luttinger–Ward formula (4.7), and the ansatz (4.5).

conformal-like solutions, but this makes the study of supersymmetric solutions much more

costly since it requires iterating for many values of ρ, since for each value of µη it is a priori

unknown which value of ρ corresponds to the supersymmetric value of µϕ. In Figure 14 we

show some examples of the conformal solution being realized for p = q = 3. In this case we

can even compare a conformal and non-conformal solution for the same values of (βµη, βµϕ),

obtained with (4.2) instead.

5 Spectrum of low-lying operators

In order to understand the IR dynamics of the model, we find the spectrum of physical

excitations around conformal solutions. For simplicity, we present the full derivation only

for superconformal solutions, while we describe the non-supersymmetric case at the end.

5.1 Expanding the action

In order to derive the spectrum, we expand the fields around solutions to the equations of

motion, and then diagonalize the quadratic fluctuations. In superspace, one expands the

bilocal fields around the superconformal solutions as

GY(T1, T2) = G∗
η̄η(T12) +

1

N
1
2

δGY(T1, T2) , GΦ(T1, T2) = G∗
ϕ̄ϕ(T12) +

1

N
1
2

δGΦ(T1, T2) (5.1)
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(a) Conformal-like solution
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Figure 14: Two solutions for βJ = 450, α = 1
4
, (p, q) = (3, 3), and (βµη, βµϕ) = (−30, 30).

The colored full lines are the numerical solution to the Schwinger–Dyson equations with

220 points, using (4.3) on the left and the standard approach on the right. (a): The black

dashed lines are a fit of the conformal ansatz. (b): The black dashed lines represent the

zero-temperature non-conformal solution (3.84).

ΣY(T1, T2) = Σ∗
f̄f (T12) +

1

N
1
2

δΣY(T1, T2) , ΣΦ(T1, T2) = Σ∗
ψ̄ψ(T12) +

1

N
1
2

δΣΦ(T1, T2) . (5.2)

Here G∗ and Σ∗ indicate the superconformal solutions. Due to supersymmetry, the bilocal

superfields are determined by their lowest components as in (3.25). When expanding the

action (3.6), the terms containing δΣ’s at quadratic order are:

1

2

∫
d2T2 d

2T 1 d
2T4 d

2T 3 δΣ(T1, T2)
T

(
−G∗

η̄ηG
∗
η̄η 0

0 1
α
G∗
ϕ̄ϕ
G∗
ϕ̄ϕ

)
(T14, T32) δΣ(T3, T4)

+
1

2

∫
d2T2 d

2T 1 δG(T1, T2)T δΣ(T1, T2) +
1

2

∫
d2T2 d

2T 1 δΣ(T1, T2)
T δG(T1, T2) , (5.3)
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where we defined δΣ(T1, T2) =
(
δΣY
δΣΦ

)
(T1, T2) and δG(T1, T2) =

(
δGY
δGΦ

)
(T1, T2). In the matrix

on the first line, T14 and T32 are the arguments of the first and second G∗, respectively. Since

we are interested in the action for δG to leading order in N , it is sufficient to integrate out

δΣ classically. Combining the result with terms in the action involving δG only, we get the

quadratic terms

−1

2

∫
d2T2 d

2T 1 d
2T4 d

2T 3 δG(T1, T2)T F−1
0 ·

[
1−K

]
(T1, T2;T3, T4) δG(T3, T4) . (5.4)

The operator K, which we call the superspace kernel, is given by:

K(T1, T2;T3, T4) ≡

(
KYY(T1, T2;T3, T4) KYΦ(T1, T2;T3, T4)

KΦY(T1, T2;T3, T4) KΦΦ(T1, T2;T3, T4)

)
(5.5)

KYY(T1, T2;T3, T4) =
(p− 1)J

q
G∗
η̄η(T34)

p−2G∗
ϕ̄ϕ(T34)

q G∗
η̄η(T14)G

∗
η̄η(T32) ,

KYΦ(T1, T2;T3, T4) = J G∗
η̄η(T34)

p−1G∗
ϕ̄ϕ(T34)

q−1G∗
η̄η(T14)G

∗
η̄η(T32) ,

KΦY(T1, T2;T3, T4) = −J
α
G∗
ϕ̄ϕ(T34)

q−1G∗
η̄η(T34)

p−1G∗
ϕ̄ϕ(T14)G

∗
ϕ̄ϕ(T32) ,

KΦΦ(T1, T2;T3, T4) = −(q − 1)J

αp
G∗
ϕ̄ϕ(T34)

q−2G∗
η̄η(T34)

pG∗
ϕ̄ϕ(T14)G

∗
ϕ̄ϕ(T32) .

(5.6)

After plugging the supersymmetric conformal ansatz (3.16) in, we obtain

KYY =
(p− 1) gpηg

q
ϕJ

q
G−(T14; ∆η, Eη)G−(T32; ∆η, Eη)G−

(
T34;

1
2
− 2∆η,−2Eη

)
, (5.7)

KYΦ = gp+1
η gq−1

ϕ J G−(T14; ∆η, Eη)G−(T32; ∆η, Eη)G+

(
T34;

1
2
−∆η −∆ϕ,−Eη − Eϕ

)
,

KΦY = −
gp−1
η gq+1

ϕ J

α
G+(T14; ∆ϕ, Eϕ)G+(T32; ∆ϕ, Eϕ)G+

(
T34;

1
2
−∆η −∆ϕ,−Eη − Eϕ

)
,

KΦΦ = −
(q − 1) gpηg

q
ϕJ

αp
G+(T14; ∆ϕ, Eϕ)G+(T32; ∆ϕ, Eϕ)G−

(
T34;

1
2
− 2∆ϕ,−2Eϕ

)
.

We also defined the matrix F0 as

F0(T1, T2;T3, T4) ≡

(
−G∗

η̄ηG
∗
η̄η 0

0 1
α
G∗
ϕ̄ϕ
G∗
ϕ̄ϕ

)
(T14, T32) . (5.8)

From (5.4) we see that the spectrum is determined by the zeros of the kinetic operator 1−K,

which is determined by the eigenvalue equation

δG(T1, T2) =
∫
d2T 3 d

2T4 K(T1, T2;T3, T4) δG(T3, T4) . (5.9)
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5.1.1 Deriving the spectral problem from the Schwinger–Dyson equations

A shortcut to obtain the same eigenvalue equation is to expand the Schwinger–Dyson equa-

tions around superconformal solutions. The eqns. (3.7), (3.8), (3.10) can be recast as

J

∫
d2T4 GY(T34)

p−1 GΦ(T34)
q−1

(
GY(T14)GΦ(T34)

GΦ(T14)GY(T34)

)
=

(
q δ2(T1, T3)

−pα δ2(T1, T3)

)
,

J

∫
d2T 3 GY(T34)

p−1 GΦ(T34)
q−1

(
GY(T32)GΦ(T34)

GΦ(T32)GY(T34)

)
=

(
q δ2(T4, T2)

−pα δ2(T4, T2)

)
.

(5.10)

The kinetic terms in (3.8) and (3.10) have been justifiably neglected in the IR. The upper

component of the first equation in (5.10) can be expanded to linear order in δG as:

J

q

∫
d2T4

[
(p− 1)G∗

η̄η(T34)
p−2G∗

ϕ̄ϕ(T34)
qG∗

η̄η(T14)δGY(T3, T4) + (5.11)

+ qG∗
η̄η(T34)

p−1G∗
ϕ̄ϕ(T34)

q−1G∗
η̄η(T14)δGΦ(T3, T4) +G∗

η̄η(T34)
p−1G∗

ϕ̄ϕ(T34)
qδGY(T1, T4)

]
= 0 .

Multiplying by G∗
η̄η(T32), integrating over T3, and using the second equation in (5.10), we

obtain the upper component of (5.9). An analogous equation for GΦ can be obtained from

the bottom component of the first equation in (5.10), so reproducing the full (5.9).

5.1.2 4-point functions in the large N limit

With the quadratic action (5.4) we can also derive 4-point functions to order O(1/N). After

the disorder average, the 4-point functions we can compute are those expressed in terms of

bilocal fields, which we group into a matrix:

1

N2

〈
YaYaYbYb YaYaΦbΦb

ΦaΦaYbYb ΦaΦaΦbΦb

〉
(T1, T2;T3, T4) =

〈
GYGY GYGΦ

GΦGY GΦGΦ

〉
(T1, T2;T3, T4) =

=

(
G∗
ηηG

∗
ηη G∗

ηηG
∗
ϕϕ

G∗
ϕϕ
G∗
ηη G∗

ϕϕ
G∗
ϕϕ

)
(T12, T34) +

1

N

〈
δGYδGY δGYδGΦ

δGΦδGY δGΦδGΦ

〉
(T1, T2;T3, T4) . (5.12)

The notation here is that T1 is the coordinate of the first field from the left, T2 of the second

one, and so on. In the last equality we inserted the expansion (5.1). The 4-point functions

of fundamental fields are therefore computed by the 2-point functions of δG to leading order

in N . By adding sources to (5.4), completing the square, and taking functional derivatives

with respect to the sources, one obtains〈
δGYδGY δGYδGΦ

δGΦδGY δGΦδGΦ

〉
(T1, T2;T3, T4) = [1−K]−1 · F0(T1, T2;T3, T4) +O

(
1
N

)
. (5.13)

The product · includes both matrix multiplication as well as integration over chiral and

anti-chiral superspace coordinates, like in (5.9).
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5.2 Computing the spectrum

We search for eigenvectors of K with unit eigenvalue, as in (5.9). We denote the components

of δG as δGĀB where A, B range over the fields η, f , ϕ, and ψ. Eqn. (5.9) separates into three

independent equations: one for bosonic fluctuations δGB, and two for fermionic fluctuations

δGF and δGF. These are defined as

δGB =
(
δGη̄η, δGf̄f , δGϕ̄ϕ, δGψ̄ψ

)T
, δGF =

(
δGη̄f , δGϕ̄ψ

)T
, δGF =

(
δGf̄η, δGψ̄ϕ

)
. (5.14)

The vectors δGB(τ1, τ2), δG
F(τ1, τ2) and G

F(τ1, τ2) satisfy three equations as in (5.9), but in

terms of KB(τ1, τ2; τ3, τ4), K
F(τ1, τ2; τ3, τ4) and KF(τ1, τ2; τ3, τ4), respectively. The explicit

expressions for the 4 × 4 matrix KB and the 2 × 2 matrices KF, KF can be found in

Appendix E. The bosonic and fermionic fluctuations do not mix in these equations because

the superconformal solutions for fermionic 2-point functions are zero.

We follow the same steps as in [5, 6, 11, 26] to diagonalize the kernel operators KB, KF,

KF, so we shall be brief. Due to the conformal symmetry of the solutions G∗, the kernels

commute with all conformal generators and with the 2-particle conformal Casimir with

eigenvalue h(h− 1). Since Casimir and kernels can be simultaneously diagonalized, one can

focus on a subspace of fixed h. For each δGĀB, the corresponding space is spanned by two

eigenfunctions:

Gs

(
τ12;

∆A +∆B − h

2
, 0

)
=

Θ(τ12) + sΘ(−τ12)
|τ12|∆A+∆B−h , s = ±1 . (5.15)

Here Gs is the 2-point function defined in (3.16). We therefore expand each perturbation

δGĀB as

δGĀB(τ1, τ2) =
∑
s=±1

gL(A,B)Gs

(
τ12;

∆A +∆B − h

2
, 0

)
δgĀB;s . (5.16)

The factors gL(A,B) denote the coefficient g in the conformal ansatz (3.16) for the lowest

multiplet component between A and B. For example, if A = η and B = f , then L(A,B) = η.

One can think of these factors as rescalings of the expansion coefficients δgĀB;s. They are

included so that the matrix elements of the kernels only depend on the combinations gp−1
η gqϕgf

and gpηg
q−1
ϕ gψ determined by the equations of motion (3.22) (even in the non-supersymmetric

case), and not on the individual coefficients. As expected, the kernels act within the subspace

of fixed h, and can be represented by ordinary matrices acting on the coefficients δgĀB;s. This

is shown explicitly in Appendix E.1.1. However, the size of each matrix is doubled since each

subspace is two-dimensional and spanned by (5.15), thus KB is represented by a 8×8 matrix

while KF and KF are represented by 4× 4 matrices. Their explicit expressions can be found

in equations (E.9)–(E.12).

We are left with the ordinary problem of determining the values of h such that KB, KF or

KF have eigenvalue 1, which can be solved numerically. For each eigenvalue, we plot k(h)−1
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Figure 15: Case p = q = 3, α = 1, E = 1/3. Shifted eigenvalues k(h) − 1 of KB (blue) and

KF (black) as the operator dimension h varies. There is an operator Oh in the spectrum

whenever there is a horizontal intercept and k(h) = 1. The total number of fermionic

operators is doubled, due to the presence of KF as well.

as a function of h and look for zeros, where the graphs intersect the horizontal axis. The

number of coincident intersections tells us the number of modes at a given value of h. Since

h is interpreted as the conformal dimension of operators Oh around the given conformal

solution [5, 26], we are effectively finding the spectrum of operator dimensions. The modes

in KB correspond to bosonic operators, while those in KF or KF to fermionic operators. In

addition, it can be seen from (E.11) that KF is identical to KF as a matrix, so it is sufficient

to consider KF only, keeping in mind that the fermionic spectrum is doubled. Since the

solution we expand around is supersymmetric, the spectrum is organized into multiplets, as

we will verify. In the following figures, the graphs of k(h) − 1 for KB are displayed in blue

while those for KF in black. We now present our results for a few representative cases.

Case p = q = 3. For simplicity, we consider supersymmetric solutions with α = 1, so

that there is a unique solution given in (3.39). We also fix E = 1/3 for definiteness. We

read off the spectrum from Figure 15. Naively one would infer the presence of two N = 2

Schwarzian multiplets at h =
(
1, 2 × 3

2
, 2
)
, however one of the two multiplets is spurious,

due to an emergent IR reparametrization symmetry which is however incompatible with

the UV boundary conditions [11, 26]. There appear also two N = 2 current multiplets at

h =
(
2× 1

2
, 1
)
, but one is again spurious for the same reason. Lastly, we notice the presence

of a multiplet at h ≃
(
1.11, 2× 1.61, 2.11

)
. As pointed out in [7] and shown in [48, 49], the

contribution of a bosonic operator Oh with 1 < h < 3
2
to the free energy is proportional to

β2−2h, which dominates over the β−1 contribution from the Schwarzian at low temperatures.

This implies that the IR physics in this solution should be non-universal and not described
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Figure 16: Case p = 1, q = 2, α = 2/3. Shifted eigenvalues k(h) − 1 of KB (blue) and KF

(black). Top: supersymmetric case with Eη = 2E , Eϕ = −E , and E = 0.05 < E∗ ≃ 0.21.

Bottom: non-supersymmetric case with Eη = 0.10 and Eϕ = 0.05.

by the Schwarzian theory at leading order. We shall refer to the range 1 < h < 3
2
as the

“dangerous region”. Fermionic operators are excluded from this discussion since only bosonic

operators can enter the Lagrangian as deformations.

Case p = 1, q = 2. In the supersymmetric case the unique solution is given in (3.33) and

(3.34), which is valid for 0 < E < E∗. For concreteness, we fix α = 2/3 so that E∗ ≃ 0.21, and

E = 0.05. Looking at the top of Figure 16, there appear two N = 2 Schwarzian multiplets

at h =
(
1, 2× 3

2
, 2
)
and two N = 2 current multiplets at h =

(
2× 1

2
, 1
)
. Of these, only one

Schwarzian multiplet and one current multiplet is physical while the other copy is spurious,

as explained above. In addition, we notice a multiplet with h ≃
(
0.84, 2 × 1.34, 1.84

)
. The

presence of a bosonic operator Oh with h ≃ 0.84 < 1 is not a cause for concern because

this is a relevant deformation that can be tuned to zero by appropriately choosing the

UV parameters. Therefore, we expect the IR physics of this solution to be dominated by
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Figure 17: Case p = 1, q = 2. Bosonic operator dimensions closest to the dangerous region

1 < h < 3
2
, as α and E are varied. Different values of α are color coded. For α in the range

0.665 ≤ α ≤ 0.923, no dangerous modes are present in the spectrum.

the Schwarzian to leading order in 1/β, and this is confirmed by the numerical results in

Section 4.3. In the non-supersymmetric case we take Eη = 0.1 and Eϕ = 0.05 (they do not

satisfy (3.27)) and the solution is obtained by solving (3.22) numerically. Looking at the

bottom of Figure 16, we do not find a multiplet structure anymore. The presence of two

Schwarzian modes (h = 2) and four current modes (h = 1) is still required by the symmetries

of the theory — and half of these modes are spurious. We also discern two bosonic modes

with h ≃ 1.67, 2.20, outside the dangerous region. As expected, the fermionic modes split

and move away from h = 1
2
, 3
2
; there are in fact modes with h ≃ 0.35, 0.65, 1.28, 1.35, 1.65,

all with multiplicity two.

Since the Schwarzian mode can be the dominant one in the IR or not depending on the

parameters p, q, α, E , we study in which ranges the two behaviours take place. As we will

see, the spectrum is free of dangerous modes for p = 1 and 0.665 ≤ α ≤ 0.923, but not

otherwise. It is reasonable to expect a qualitative difference between the models with p = 1
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Figure 18: Cases with p = q > 1 and α = 1. Bosonic operator dimensions in the dangerous

region 1 < h < 3
2
as p = q are varied. Differently colored points correspond to different

values of E .

and p > 1, since the former has a scalar potential while the latter always contains fermions

in its interaction terms.

In Figure 17 we consider the case p = 1, q = 2. We plot the dimensions of the bosonic

operators which lie closest to the dangerous region 1 < h < 3
2
, as a function of E . This is

repeated for various values of α. We observe that when the abundance parameter α is bigger

than a critical value αmax ≃ 0.923, dangerous modes appear at small values of E . In this

regime, we expect the IR physics not to be captured by the Schwarzian action, although we

have not been able to observe this phenomenon numerically. Similarly, when α is smaller

than a critical value αmin ≃ 0.665, dangerous modes appear for large values of E .

In Figure 18 we study the bosonic operators close to the dangerous region in the case

p = q > 1 and with α = 1. As p = q is increased, one observes that the operator dimensions

tend to 1 from above, but are always within the dangerous region. This remains qualitatively

unchanged for various values of E , therefore we expect the IR physics not to be dominated

by the Schwarzian mode for p > 1.

Since reality of the conformal Casimir h(h−1) does not exclude complex values h = 1
2
+is

with s ∈ R, the reality of the operator dimensions is a nontrivial consistency check of the

spectrum. In Figure 19 we plot det(KB − 1) evaluated at h = 1
2
+ is against s for p = 1,

q = 2, α = 2/3 and various values of E . An operator with complex dimension can exist

only if det(KB − 1) = 0. For E < E∗ it is clear that det(KB − 1) is strictly positive and

there are no such operators. As E → E∗, the graph gets increasingly flatter and closer to

the horizontal axis. This phenomenon was also present at a phase transition of the N = 2

model of [11], as discussed in [26].
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Figure 19: Plot of det(KB − 1) evaluated at h = 1
2
+ is against s. We fix p = 1, q = 2,

α = 2/3 and vary E up to E∗.

6 Chaos exponents

An interesting feature to study both in quantum many-body systems and in toy models

of quantum gravity is the quantum chaotic behaviour. From the gravity side, it has long

been expected that black holes are maximally chaotic, see e.g. [39, 50–52], a feature that is

captured by the standard SYK model [6]. In this section we compute the chaos exponents

of various out-of-time-order correlators (OTOCs) in our models, using the retarded kernel

approach of [13]. Working in components, we first introduce the various component 4-point

functions and the integral equations that they satisfy, which follow from the superspace

integral equation (5.13). We then define the OTOCs as analytic continuations of the 4-point

functions and find the continued versions of the integral equations. Finally, analyzing the

equations at late times, we determine the chaos exponents. It turns out that one of these

exponents saturates the maximal chaos bound 2π/β [39].

6.1 Integral equations for component 4-point functions

In components, eqn. (5.13) decomposes into 3 equalities: one for the 4× 4 matrix of bosonic

4-point functions:

FB(τ1, τ2; τ3, τ4) ≡ lim
N→∞

〈
δGĀA δGB̄B

〉
4×4

(τ1, τ2; τ3, τ4) (6.1)

with A,B ∈ {η, f, ϕ, ψ} and computed from the 2-point functions of bosonic bilocal fluctu-

ations δGĀA, and two for the 2× 2 matrices of fermionic 4-point functions:

FF ≡ lim
N→∞

〈
δGη̄fδGf̄η δGη̄fδGψ̄ϕ

δGϕ̄ψδGf̄η δGϕ̄ψδGψ̄ϕ

〉
, FF ≡ lim

N→∞

〈
δGf̄ηδGη̄f δGf̄ηδGϕ̄ψ

δGψ̄ϕδGη̄f δGψ̄ϕδGϕ̄ψ

〉
(6.2)

50



computed from the 2-point functions of fermionic bilocal fluctuations δGĀB. As in the

previous section, this decomposition comes about because the kernel K does not mix bosonic

and fermionic components. Specifically, (5.13) implies that FB, FF, FF satisfy the equations

FB(τ1, τ2; τ3, τ4) =
1

1−KB
· FB

0 (τ1, τ2; τ3, τ4) =
∑∞

n=0

(
KB
)n · FB

0 (τ1, τ2; τ3, τ4) , (6.3)

FF(τ1, τ2; τ3, τ4) =
1

1−KF
· FF

0 (τ1, τ2; τ3, τ4) =
∑∞

n=0

(
KF
)n · FF

0 (τ1, τ2; τ3, τ4) ,

FF(τ1, τ2; τ3, τ4) =
1

1−KF
·
(
FF
0

)
T(τ1, τ2; τ3, τ4) =

∑∞

n=0

(
KF
)n · (FF

0

)
T(τ1, τ2; τ3, τ4) ,

where · indicates the convolution f · g (τ1, τ2; τ3, τ4) =
∫
dτ5dτ6 f(τ1, τ2; τ5, τ6) g(τ5, τ6; τ3, τ4)

together with the standard matrix product, while T denotes both a matrix transpose and

the swapping of arguments from (τ1, τ2; τ3, τ4) to (τ3, τ4; τ1, τ2). Lastly, FB
0 and FF

0 are the

diagonal matrices

FB
0 (τ1, τ2; τ3, τ4) = diag

{
−G∗

η̄η(τ1, τ4)G
∗
η̄η(τ3, τ2) , G

∗
f̄f (τ1, τ4)G

∗
f̄f (τ3, τ2) ,

1
α
G∗
ϕ̄ϕ(τ1, τ4)G

∗
ϕ̄ϕ(τ3, τ2) ,−

1
α
G∗
ψ̄ψ(τ1, τ4)G

∗
ψ̄ψ(τ3, τ2)

}
,

FF
0 (τ1, τ2; τ3, τ4) = diag

{
G∗
f̄f (τ3, τ2)G

∗
η̄η(τ1, τ4) ,− 1

α
G∗
ψ̄ψ(τ3, τ2)G

∗
ϕ̄ϕ(τ1, τ4)

}
.

(6.4)

Equivalently, (6.3) can be written as the integral equations

F (τ1, τ2; τ3, τ4)−
∫
dτ5 dτ6K(τ1, τ2; τ5, τ6)F (τ5, τ6; τ3, τ4) = F0(τ1, τ2; τ3, τ4) , (6.5)

written in terms of {FB, KB, FB
0 }, {FF, KF, FF

0 } and {FF, KF, (FF
0 )

T}, respectively. Each

component of these matrix equations is represented by a Feynman diagram of the form

Ā

CB

D̄

F −
Ā

B P

Q̄

K ·
Q̄

CP

D̄

F =

Ā D̄

B C

F0 (6.6)

In Appendix F one can find the diagrams for each component of K and F0.

6.2 OTOCs and chaos exponents

The OTOCs we want to compute are double commutators such as

1

N2
Tr
(
e−βH

[
Ca

(
β
2

)
, Bb

(
β
2
+ it2

)] [
Ab(it1), Da(0)

] )
(6.7)

=
1

N2
lim
ϵ→0+

〈(
Ca

(
β
2
+ ϵ
)
− Ca

(
β
2
− ϵ
))
Bb

(
β
2
+ it2

)
Ab(it1)

(
Da(−ϵ)−Da(ϵ)

)〉
β

= (−1)ξ1[Ā,B,C̄] lim
ϵ→0+

〈
GĀBGC̄D

(
it1,

β
2
+ it2;

β
2
+ ϵ,−ϵ

)
−GĀBGC̄D

(
it1,

β
2
+ it2;

β
2
+ ϵ, ϵ

)
+GĀBGC̄D

(
it1,

β
2
+ it2;

β
2
− ϵ, ϵ

)
−GĀBGC̄D

(
it1,

β
2
+ it2;

β
2
− ϵ,−ϵ

)〉
.
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Here A is from the same multiplet as B, and C is from the same multiplet as D, while the

indices a, b are summed over. If both A and D (or B and C) are fermionic, the bracket [ , ]

between them should be understood as an anti-commutator. In the second line, the shifts of

Euclidean time by ±ϵ implement the operator ordering. We also defined the parity operator

ξ1[Ā, B, C̄] ≡ F [Ā]F [B]+F [C̄]F [ĀB], where F [·] is the fermion number of a field, set to 0 for

bosons and 1 for fermions. The OTOC is constructed so that it is computed by expectation

values of bilocal fields in the third line, which are the only accessible observables after the

disorder average. In addition, it is especially convenient to consider double commutators

rather than a more general OTOC since we will see that the locations of operator insertions

in the contributing diagrams are heavily constrained [13]. As seen from (5.12), such 4-

point functions are computed at order O(1/N) by the expectation values ⟨δGĀB δGC̄D⟩ of

fluctuations around the conformal solutions, which are grouped into the matrices FB and

FF in (6.1) and (6.2). The double commutators in (6.7) are therefore computed at this order

by the following analytic continuations of FB or FF:

W (t1, t2) ≡ lim
ϵ→0+

[
F
(
it1,

β
2
+ it2;

β
2
+ ϵ,−ϵ

)
− F

(
it1,

β
2
+ it2;

β
2
+ ϵ, ϵ

)
+ F

(
it1,

β
2
+ it2;

β
2
− ϵ, ϵ

)
− F

(
it1,

β
2
+ it2;

β
2
− ϵ,−ϵ

)]
. (6.8)

From here on, we will often omit the superscripts B and F since most of the steps are

completely independent from them. We shall also consider another inequivalent double

commutator where Ā and B are swapped with respect to (6.7):

1

N2
Tr
(
e−βH

[
Ca

(
β
2

)
, Ab
(
β
2
+ it1

)] [
Bb(it2), Da(0)

])
(6.9)

=
1

N2
lim
ϵ→0+

〈(
Ca

(
β
2
+ ϵ
)
− Ca

(
β
2
− ϵ
))
Ab
(
β
2
+ it1

)
Bb(it2)

(
Da(−ϵ)−Da(ϵ)

)〉
β

= (−1)ξ2[Ā,B,C̄] lim
ϵ→0+

〈
GĀBGC̄D

(
β
2
+ it1, it2;

β
2
+ ϵ,−ϵ

)
−GĀBGC̄D

(
β
2
+ it1, it2;

β
2
+ ϵ, ϵ

)
+GĀBGC̄D

(
β
2
+ it1, it2;

β
2
− ϵ, ϵ

)
−GĀBGC̄D

(
β
2
+ it1, it2;

β
2
− ϵ,−ϵ

)〉
,

where we defined ξ2[Ā, B, C̄] ≡ F [C̄]F [ĀB]. Analogously as before, it is computed at

O(1/N) by different analytic continuations of FB or FF:

W̃ (t1, t2) ≡ lim
ϵ→0+

[
F
(
β
2
+ it1, it2;

β
2
+ ϵ,−ϵ

)
− F

(
β
2
+ it1, it2;

β
2
+ ϵ, ϵ

)
+ F

(
β
2
+ it1, it2;

β
2
− ϵ, ϵ

)
− F

(
β
2
+ it1, it2;

β
2
− ϵ,−ϵ

)]
. (6.10)

According to one measure of quantum chaos, the order O(1/N) contributions to the

double commutators of a chaotic theory at late times t1 = t2 = t should behave as

WB,F(t, t) ∝ exp
[
λB,FL t

]
, (6.11)

where 0 < λB,FL ≤ 2π
β

are the so-called Lyapunov exponents [13]. The goal in the following is

to compute these exponents using the retarded kernel approach.
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−ϵ ϵ
β
2
− ϵ β

2
+ ϵ

it1
β
2
+ it2 τ

Figure 20: Contour in the complex τ plane used for the evaluation of (6.5) and (6.7). The

four terms in the double commutator correspond to the choices of placing an operator at ±ϵ,
and another one at β

2
± ϵ.

6.3 The retarded kernel

The strategy in the retarded kernel approach is to use analytically continued versions of

(6.5) to constrain W and W̃ . Looking at the definitions (6.8) and (6.10) it is apparent that

one should sum four copies of (6.5) with τ3 and τ4 appropriately shifted by ±ϵ. We first

consider τ1 = it1 and τ2 =
β
2
+ it2, so that W is obtained from the first term of (6.5):

W (t1, t2)− lim
ϵ→0+

∫
dτ3 dτ4 K

(
it1,

β
2
+ it2; τ3, τ4

)[
F
(
τ3, τ4;

β
2
+ ϵ,−ϵ

)
(6.12)

− F
(
τ3, τ4;

β
2
+ ϵ, ϵ

)
+ F

(
τ3, τ4;

β
2
− ϵ, ϵ

)
− F

(
τ3, τ4;

β
2
− ϵ,−ϵ

)]
= W0(t1, t2) ,

where W0(t1, t2) is defined as in (6.8) but using F0 in place of F . We should determine the

integration contour for τ3, τ4 in the second term of (6.5), and it is useful to note that τ3, τ4

are the locations of interaction vertices in the Feynman diagrams drawn in (6.6). In the path

integral, Feynman vertices are derived from local interaction terms in the action, which have

the form
∫
dτ O(τ). Integrals over the positions of the vertices come directly from the time

integral in the action, therefore specifying the complex time contour that is used to compute

the path integral also specifies the contour for the vertex positions. Since we are computing

the double commutator (6.7), the contour must pass through all operator insertions in the

double commutator. We shall choose the same contour as in [13], shown in Figure 20. The

folds that pass through τ1 and τ2 are called the left and right rails; each rail has a left and

a right side. The four contributing terms in (6.8) correspond to different positions for the

operator insertions at the bottom of the rails.

A priori the interaction vertices at τ3 and τ4 could be placed at any point on the contour

in Figure 20, and the integrals should be performed over the whole contour. However, it

turns out that nonzero contributions to the integrals only occur when there is one vertex on

each rail. This is because if the left rail is free of vertices, the 4-point functions computed

by F
(
τ3, τ4;

β
2
+ ϵ,±ϵ

)
are equal as ϵ → 0, since there is no difference in operator ordering.

Consequently, the four terms under the integral in (6.12) cancel. Similarly, if the right rail

is free of vertices, the 4-point functions computed by F
(
τ3, τ4;

β
2
± ϵ, ϵ

)
are equal and the
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same cancellation occurs. Moreover, τ3 must be on the right rail and τ4 on the left rail, but

not the other way around. To see this, we first note from (E.5) that the time dependence in

every component of the kernels KB,F is given by a product of 3 conformal 2-point functions:

KĀB,C̄D(τ1, τ2; τ3, τ4) ∝ Gβ
s1
(τ14; ∆1, E1)Gβ

s2
(τ32; ∆2, E2)Gβ

s3
(τ34; ∆3, E3) . (6.13)

Suppose instead that τ3 is on the left rail. Then τ3 = ±ϵ̃ + it3 for some ϵ̃ ∈ (0, ϵ), where

the plus/minus sign corresponds to τ3 being on the right/left side of the rail, respectively.

Since Gβ
s2
(τ32; ∆2, E2) = Gβ

s2
(−β

2
± ϵ+ it32; ∆2, E2) has a smooth limit as ϵ→ 0, the integrand

in (6.12) is equal for the two sides of the rail. However, the contour in Figure 20 runs

from left to right with increasing Re τ , and there is a relative sign in the integration measure

dτ3 = ±i dt3 between the sides of the rail. Hence the contributions from the two sides cancel.

On the remaining contour where contributions are nonzero, τ3 = β
2
+ s4 ϵ̃ + it3 and

τ4 = s5 ϵ̃+ it4 with ϵ̃ ∈ (0, ϵ). The signs s4,5 = ±1 parametrize whether τ3,4 are on the right

or left side of the rails, and they should be summed over. Recall that the contour orientation

depends on which side we are on, so dτ3,4 = −i s4,5 dt3,4. Substituting this contour and (6.13)

into the integral term of (6.12), every component is a sum of terms proportional to

lim
ϵ→0+

∑
s4,s5=±1

(−s4s5)
∫ t2

0

dt3

∫ t1

0

dt4 G
β
1

(
−s5ϵ̃+ it14

)
Gβ

2

(
s4ϵ̃+ it32

)
Gβ

3

(
β
2
+ it34

)
× (6.14)

×
[
FC̄D

(
β
2
+ s4ϵ̃+ it3, s5ϵ̃+ it4;

β
2
+ ϵ,−ϵ

)
− FC̄D

(
β
2
+ s4ϵ̃+ it3, s5ϵ̃+ it4;

β
2
+ ϵ, ϵ

)
+ FC̄D

(
β
2
+ s4ϵ̃+ it3, s5ϵ̃+ it4;

β
2
− ϵ, ϵ

)
− FC̄D

(
β
2
+ s4ϵ̃+ it3, s5ϵ̃+ it4;

β
2
− ϵ,−ϵ

)]
,

where FC̄D is a component of F , and appropriate dependencies on the conformal ansatz

parameters are implied for Gβ. Since ϵ̃ ∈ (0, ϵ), sign(±ϵ − s4,5ϵ̃) = ±1 and the operator

ordering in the four FC̄D is unaffected if we send ϵ̃→ 0 at fixed ϵ. This simplifies (6.14) to∫ t2

0

dt3

∫ t1

0

dt4 G
R
s1
(t14; ∆1, E1) GR

s2
(t23; ∆2, E2) Glr

s3
(t34; ∆3, E3) W̃C̄D(t3, t4) , (6.15)

where we defined

GR
s (t; ∆, E) ≡ lim

ϵ→0+

∑
s′=±1

s′Gβ
s (s

′ϵ+ it; ∆, E) = 2π2∆e−iπ
1+s
4

− 2πiE
β

t[
β sinh

(
πt
β

)]2∆ sin
(
π
(
∆+ 1−s

4
+ iE

))
,

Glr(t; ∆, E) ≡ Gβ
s

(
β
2
+ it; ∆, E

)
=

π2∆ e−
2πiE
β

t[
β cosh

(
πt
β

)]2∆ . (6.16)

Note that GR
s (−t; ∆, E) = GR

s (t; ∆, E). In the literature, GR
s is sometimes called the retarded

propagator while Glr is called the ladder-rung propagator, due to how they arise from prop-

agators connecting the interaction vertices, which run horizontally between the vertical rails

in Figure 20.
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Therefore, we have shown that (6.12) can be written as

W (t1, t2)−
∫ t2

0

dt3

∫ t1

0

dt4 K
+
R (t1, t2; t3, t4) W̃ (t3, t4) = W0(t1, t2) , (6.17)

where the components of K+
R are obtained from those of K through the replacements

Gβ
1 (τ14)G

β
2 (τ32)G

β
3 (τ34) → GR

1 (t14)G
R
2 (t23)G

lr
3 (t34). On the other hand, one could choose

τ1 = β
2
+ it1, τ2 = it2 and sum over four copies of (6.5) to construct an analog of (6.12)

in which the first term is W̃ (t1, t2). Following the same steps as the above, one obtains an

equation as (6.17) but in which W ↔ W̃ , K+
R → K−

R and W0 → W̃0, where

W̃0(t1, t2) ≡ lim
ϵ→0+

[
F0

(
β
2
+ it1, it2;

β
2
+ ϵ,−ϵ

)
− F0

(
β
2
+ it1, it2;

β
2
+ ϵ, ϵ

)
+ F0

(
β
2
+ it1, it2;

β
2
− ϵ, ϵ

)
− F0

(
β
2
+ it1, it2;

β
2
− ϵ,−ϵ

)]
(6.18)

while the components of K−
R are obtained from those of K via Gβ

1 (τ14)G
β
2 (τ32)G

β
3 (τ34) →

s3G
R
1 (t14)G

R
2 (t23)G

lr(t34). Note that the only difference between the replacements to use in

K+
R and K−

R is the sign s3. Due to the mixing between W and W̃ , it is convenient to group

(6.17) and its analog for W̃ into a single equation:(
W

W̃

)
(t1, t2)−

∫ t2

0

dt3

∫ t1

0

dt4 KR(t1, t2; t3, t4)

(
W

W̃

)
(t3, t4) =

(
W0

W̃0

)
(t1, t2) (6.19)

where we introduced the matrix KR =
(

0 K+
R

K−
R 0

)
. Assuming that W and W̃ are exponen-

tially increasing at late times, the right hand side of (6.19) is in comparison exponentially

suppressed and can be neglected. Furthermore, the lower limits of integration can be modi-

fied to −∞ at this order of approximation, since the dominant contribution to the integral

comes from t3,4 close to t1,2 [13]. The equation we are left with shows that if W and W̃ are

chaotic, their columns are eigenvectors of the retarded kernel KR with eigenvalue 1. We find

it convenient to change variables to

z1,4 = e−
2π
β
t1,4 , z2,3 = −e−

2π
β
t2,3 ,

∫ t2

−∞
dt3

∫ t1

−∞
dt4 =

∫ z2

−∞
dz3

∫ ∞

z1

dz4
(β/2π)2

|z3||z4|
, (6.20)

after which the eigenvalue equation becomes(
W

W̃

)
(z1, z2) =

∫ z2

−∞
dz3

∫ ∞

z1

dz4 KR(z1, z2; z3, z4)

(
W

W̃

)
(z3, z4) . (6.21)

Notice that, with some abuse of notation, here we defined

|z3z4| KR(z1, z2; z3, z4) =
(
β
2π

)2
KR

(
t(z1), t(z2); t(z3), t(z4)

)
. (6.22)
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6.4 Exponents from the fermionic and bosonic retarded kernels

Applying the replacements that lead to K±
R to (E.3) and (E.1), we obtain the retarded

kernel KR in the t coordinates, appearing in (6.19), whose components are listed in (E.14)

and (E.13). After performing the change of variables (6.20), the components of KR in

the z coordinates are obtained through the substitution (E.16). The goal is now to find

eigenvectors of KB
R and KF

R with eigenvalue 1, which form the columns of
(
WB, W̃B

)
T and(

WF, W̃F
)
T, and extract their exponents at late times.

Each component KR
ĀB,C̄D

(z1, z2; z3, z4) has the form

KR
ĀB,C̄D =

gL(A)
(
2π
β

)∆A+∆B |z1|∆A+iEA|z2|∆B−iEB

gL(C)

(
2π
β

)∆C+∆D |z3|∆C+iEC |z4|∆D−iED
× K

|z14|2∆A|z23|2∆B |z34|2−∆A−∆B−∆C−∆D
,

where K is some z-independent proportionality constant that does not depend on the coef-

ficients gη,ϕ. Note that the components KR
ĀB,C̄D

are labelled such that ĀB is a row index

and C̄D is a column index in the matrices KB,±
R , KF,±

R . In a column of
(
WB, W̃B

)
T or(

WF, W̃F
)
T on which KB,±

R and KF,±
R act respectively, we naturally label the component

that is being contracted with KR
ĀB,C̄D

as WC̄D or W̃C̄D. It is then straightforward to check

that the eigenfunctions of KR
ĀB,C̄D

under convolution are

wC̄D(z3, z4) ≡ gL(C)

(
2π

β

)∆C+∆D |z3|∆C+iEC |z4|∆D−iED

|z34|∆C+∆D−h , (6.23)

where h is a free parameter that will be determined below by requiring that (6.21) be satisfied.

Indeed we have:∫ z2

−∞
dz3

∫ ∞

z1

dz4 K
R
ĀB,C̄D(z1, z2; z3, z4) wC̄D(z3, z4) = (6.24)

= K gL(A)

(
2π

β

)∆A+∆B

|z1|∆A+iEA|z2|∆B−iEB
∫ z2

−∞
dz3

∫ ∞

z1

dz4
1

|z14|2∆A|z23|2∆B |z34|2−∆A−∆B−h

= K
Γ(1− 2∆A) Γ(1− 2∆B) Γ(∆A +∆B − h)

Γ(2−∆A −∆B − h)
wĀB(z1, z2) .

We therefore take WĀB(z1, z2) to be proportional to wĀB(z1, z2). At t1 = t2 = t, the time

dependence in wĀB is

wĀB

(
e−

2πt
β ,−e−

2πt
β

)
∝ exp

[
2πt

β

(
−h+ iEB − iEA

)]
. (6.25)

The Lyapunov exponent is thus given by λ = −2π
β
Reh for values of h such that KR has

eigenvalue 1. In particular, we must have −1 ≤ Reh < 0 for consistency with the assumption

of exponential growth that was used to simplify the computation previously, and with the

maximal chaos bound λ ≤ 2π
β

[39].
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Figure 21: Plots of det
(
KF

R−14×4

)
in black (left) and det

(
KB

R −18×8

)
in blue (right) against

h, for the solution (3.33) at α = 1
2
and various values of E as a fraction of the critical value

E∗ = 1
π
arctanh

(
1/
√
2
)
.

When acting on (6.24), KR is represented by an ordinary matrix. The bosonic retarded

kernel KB
R and the fermionic retarded kernel KF

R can be found in (E.17) and (E.18), respec-

tively. We compute the chaos exponents by finding values of h at which det
(
KB,F

R −1
)
= 0.

Remarkably, det
[
KF

R(h = −1/2)− 14×4

]
= det

[
KB

R(h = −1)− 18×8

]
= 0 holds regardless of

the dimensions ∆η,ϕ, as long as they satisfy the supersymmetry constraint p∆η + q∆ϕ = 1
2
.

This shows that on all superconformal solutions there is maximal and half-maximal chaos in

the double commutators computed by
(
WB, W̃B

)
and

(
WF, W̃F

)
, respectively.

In addition, for the analytic superconformal solutions found in Section 3.4 there are no

other values of h ∈ [−1, 0) at which det
(
KB,F

R − 1
)
= 0. For example, in Figure 21 we plot

det
(
KF

R − 14×4

)
in black on the left and det

(
KB

R − 18×8

)
in blue on the right against h, for

the solution (3.33) and various values of E . It is clear that there are no other zeros except

at h = −1
2
,−1. The same qualitative behaviour is found for other superconformal solutions.

This suggests that for superconformal solutions there are no other chaos exponents except

the maximal and half-maximal ones that we found.

7 Discussion

For p = 1, our model bears many similarities with that of [28], although the abundance

parameter and the coupling of the fermions make it irredeemably distinct. In the conformal

phase of our model, the low-energy behaviour is closer to standard SYK and thus avoids

completely the “curious” behaviour of the model in [28]. Naively, even outside of the con-

formal phase the models behave differently, with the dynamical bosonic correlator taking

an exponential-like profile instead of a constant. However, it is possible that it realizes a
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charged version of the phase identified in [28]. This is consistent with ∆ϕ → 0 at the tran-

sition point, and numerically we do not rule out a sub-Schwarzian mode which scales with

T γ for non-integer γ. However, further study would be required to check whether there is a

meaningful connection.

Another interesting aspect of this model which could benefit from analytical understand-

ing is the “emergent” supersymmetric behaviour discussed in Section 4. It would be interest-

ing, for example, to derive the relation (4.5) analytically. A perhaps more crucial question is

to ascertain whether this is a physical phenomenon or simply an artifact of the Schwinger–

Dyson equations. It is not clear, for example, if one can reconcile such an IR behaviour and

the arguments in Appendix C.2 which set 2πE = −βµ by combining Ward identities and

(anti-)periodicity. Could the chemical potentials be “renormalized” in the IR? Or should

one consider these solutions to be simply outside of the physical Hilbert space? An actual

implementation of the model could clear this up, as could some holographic argument.

The dependency of the Schwarzian coupling on the charge Q is another point for which

we found numerical results but with insufficient precision to be conclusive. Far from the

critical value of µ, the variation of the coupling with the charge seems to be very flat but

probably not constant. This contrasts with some known black hole setups such as [53] where

the coupling varies with a rational power of the charge. Perhaps a specific gravitational dual

to this model could enlighten this aspect, since in SYK-like models the Schwarzian coupling

is notoriously difficult to fix from the quantum mechanical side alone. Another aspect on

which the numerical analysis is not conclusive and would benefit from analytic control is

whether a phase transition truly happens at the critical chemical potential.

This leads to a final interesting challenge, which is whether there is a concrete and specific

gravity dual to this model. In particular, both the inspiration from the quantum mechanical

model of [29] and the phases of solutions described in Section 3.4 suggest that the case p = 1,

q = 2 is the most “black-hole-like”, which is also the case in which we found most of the

interesting numerical results.

It would also be interesting to study the finite N model numerically, before taking the

approximation of the Schwinger–Dyson equation. This would require us to truncate the

bosonic Hamiltonian, or to consider a version with spin or hard bosons. This could confirm

the absence of a spin-glass phase.
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A Superspace conventions

In this appendix we collect our conventions about superspace and super-reparametrizations.

In terms of superspace coordinates, the supercharges are

Q = ∂θ −
θ

2
∂τ , Q = −∂θ +

θ

2
∂τ , (A.1)

with Q2 = Q2 = 0 and {Q,Q} = ∂τ . The chiral and anti-chiral superspace derivatives are

D = ∂θ +
θ

2
∂τ , D = −∂θ −

θ

2
∂τ , {D,D} = −∂τ . (A.2)

They satisfy {D,Q} = {D,Q} = {D,Q} = {D,Q} = 0. Chiral superfields Φ and Fermi

superfields Y (and they anti-chiral counterparts) have expansions

Φ = ϕ+ θψ +
1

2
θθ ∂τϕ , Φ = ϕ− θ ψ − 1

2
θθ ∂τϕ ,

Y = η − θf +
1

2
θθ ∂τη , Y = η − θ f − 1

2
θθ ∂τη .

(A.3)

They satisfy DΦ = DΦ = DY = DY = 0. In our conventions, conjugation reverses the

order of fermions. The integration measure over full superspace is written as d3T ≡ dτdθdθ,

while the measures over chiral and anti-chiral superspaces are d2T ≡ dτdθ and d2T ≡ dτdθ,

respectively. The measures over half superspace are fermionic: they anti-commute among

themselves and with other fermionic operators like D, D. The superspace delta functions

δ3(T1 − T2) ≡ (θ1 − θ2) (θ1 − θ2) δ(τ1 − τ2) ,

δ2(T1, T2) ≡ D2 δ
3(T1 − T2) = (θ1 − θ2) δ

(
τ1 − τ2 +

1
2
θ1θ1 − 1

2
θ2θ2

)
,

δ2(T1, T2) ≡ D2 δ
3(T1 − T2) = (θ1 − θ2) δ

(
τ1 − τ2 − 1

2
θ1θ1 +

1
2
θ2θ2

)
,

(A.4)
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are defined to satisfy∫
d3T1 δ

3(T1 − T2)X(T1) = X(T2) , for X generic ,∫
d2T1 δ

2(T1 − T2) Φ(T1) = Φ(T2) , for DΦ = 0 ,∫
d2T 1 δ

2(T1 − T2) Φ(T1) = Φ(T2) , for DΦ = 0 .

(A.5)

Note that δ2 is chiral in both arguments, and δ2 is anti-chiral in both arguments. Besides, δ3

is bosonic and even in the two arguments, whilst δ2 and δ2 are fermionic and anti-symmetric

when swapping the two arguments. For bilocal fields A,B(T1, T2) which are anti-chiral in

the first argument and chiral in the second argument, we define the convolutions

(A ⋆ B)(T1, T2) ≡
∫
d2T3 A(T2, T3)B(T1, T3) ,

(A ⋆ B)(T1, T2) ≡
∫
d2T 3 A(T3, T1)B(T3, T2) .

(A.6)

Here A⋆B is anti-chiral in both arguments, whilst A⋆B is chiral in both arguments. Inverse

operators under convolution shall be defined such that

A−1 ⋆ A = δ2 , A−1 ⋆ A = δ2 . (A.7)

Notice that one could have alternatively defined the convolutions in (A.6) with a swap of T1

and T2 on the right-hand-side, which would have led to an opposite sign in the definition of

the inverses (because δ2 and δ2 are anti-symmetric). The convention we chose was dictated

by comparing the equations of motion in (3.8) and (3.10) with their superspace derivation

in (3.11). With this definition of A−1, one can derive

δA−1(T1, T2)

δA(T3, T4)
= A−1(T1, T4)A

−1(T3, T2) . (A.8)

By starting with a general ansatz and imposing invariance under the supersymmetry

transformation δ = χQ−χQ, one can show that the most general supersymmetric completion

of the translationally invariant quantity τ1− τ2 is τ1− τ2+
1
2
θ2θ1+

1
2
θ2θ1+a(θ1− θ2)(θ1− θ2)

with a constant a. Imposing that the combination is anti-chiral in T1 and chiral in T2 further

fixes a = −1
2
. Therefore, a bilocal superfield G(T1, T2) that is anti-chiral in T1, chiral in T2,

translationally invariant, and supersymmetric, can only be a function of

T12 ≡ τ1 − τ2 − 1
2

(
θ1θ1 + θ2θ2 − 2θ2θ1

)
. (A.9)

A.1 Super-reparametrizations

The N = 2 super-reparametrizations, denoted Diff+(S1|2), are general coordinate transfor-

mations (τ, θ, θ) → (τ ′, θ′, θ′) under which (anti-)chiral superfields remains (anti-)chiral in
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the new coordinates. This implies the conditions

Dθ′ = Dθ
′
= 0 , Dτ ′ =

1

2
θ′D θ

′
, Dτ ′ =

1

2
θ
′
Dθ′ . (A.10)

They have general solutions parametrized by a real bosonic function f(τ), a complex fermionic

function χ(τ), and a real bosonic phase σ(τ) which implements U(1)R rotations on θ:

τ ′ = f +
1

2
θ |ρ|2χ+

1

2
θ |ρ|2χ+

1

4
θθ ∂τ (|ρ|2 χχ) , (A.11)

θ′ = ρχ+ θρ+
1

2
θθ ∂τ (ρχ) , ρ = |ρ| e−iσ ,

θ′ = ρχ+ θ ρ− 1

2
θθ ∂τ (ρχ) , |ρ|2 = ∂τf

(
1− 1

2
χ(∂τ + i∂τσ)χ− 1

2
χ(∂τ − i∂τσ)χ

)−1

.

The chiral measure transforms as

dτ ′dθ′ = d
(
τ ′+1

2
θ′θ′
)
dθ′ = Ber

(
∂τ
(
τ ′+1

2
θ′θ′
)

∂τθ
′

∂θ
(
τ ′+1

2
θ′θ̄′
)

∂θθ
′

)
dτdθ = (A.12)

= Ber

(
∂τ
(
τ ′+1

2
θ′θ′
)

∂τθ
′

D
(
τ ′+1

2
θ′θ′
)

Dθ′

)
dτdθ = (Dθ′)−1

(
∂ττ

′ − 1
2
∂τθ

′θ′ − 1
2
∂τθ

′θ′
)
dτdθ = −D θ′ dτdθ

where we defined the Berezinian as

Ber

(
A B

C D

)
= det

(
A−BD−1C

)
det(D)−1 . (A.13)

Here A and D are bosonic operators, while B and C are fermionic. In the third equality we

used the identity Ber
(
A B
C D

)
= Ber

(
A B

C+ηA D+ηB

)
for any fermionic matrix η. In the fourth

equality we used the constraint (A.10). The last equality was derived by taking superspace

derivatives of the constraints, which imply ∂ττ
′ = 1

2

(
∂τθ

′θ′+∂τθ
′θ′
)
−Dθ′D θ′. By analogous

steps, one derives that the anti-chiral measure transforms as

dτ ′dθ′ = Dθ′ dτdθ . (A.14)

Consequently, the chiral and anti-chiral delta functions transform as

δ2(T1, T2) = −D1θ
′
1 δ

2(T ′
1, T

′
2) = −D2θ

′
2 δ

2(T ′
1, T

′
2) ,

δ2(T1, T2) = D1θ
′
1 δ

2(T ′
1, T

′
2) = D2θ

′
2 δ

2(T ′
1, T

′
2) .

(A.15)

Chiral or anti-chiral primary operators of scaling dimension ∆ transform as

Φ(T ) 7→ (−D θ′)2∆Φ(T ′) if DΦ = 0 ,

Φ(T ) 7→ (Dθ′)2∆ Φ(T ′) if DΦ = 0 .
(A.16)
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A.2 Superconformal algebra

The N = 2 superconformal group SU(1, 1|1) is a subgroup of the super-reparametrizations

introduced above. Its bosonic subgroup is SL(2,R)×U(1)R and there are 4 fermionic gener-

ators. First, we want to derive generators of the algebra su(1, 1|1) as differential operators
on superspace in our conventions. This can be done by equating

(−D θ′)2∆ Φ(T ′) =
(
1 + ϵQ+O(ϵ2)

)
Φ(T ) with DΦ = 0 (A.17)

for various infinitesimal transformations, which allows us to identify the generators Q.

Firstly, supertranslations, U(1)R rotations, and dilations with τ ′ = λ−1τ , θ′ = λ−
1
2 θ

directly satisfy (A.10). From (A.17) one obtains:

L0 = −τ∂τ −
θ

2
∂θ −

θ

2
∂θ −∆ , L1 = ∂τ , Rsc = θ∂θ − θ∂θ +QR ,

G 1
2
= Q = ∂θ −

θ

2
∂τ , G 1

2
= Q = −∂θ +

θ

2
∂τ .

(A.18)

To be precise, by the above procedure in Rsc we obtain QR = 2∆ due to the fact that Φ is

chiral, but we wrote a generic QR in order to represent the action on a generic superconformal

primary. We denoted bosonic and fermionic generators by L and G, respectively; their

subscripts indicate their scaling dimension.

To get the bosonic generator of special conformal transformations, we consider the in-

version τ ′ = −1/τ . In order to satisfy (A.10) and be an element of Diff+(S1|2), we also need

θ′ = θ/|τ |. The Jacobian of the inversion is −D θ′ = 1
τ
− θθ

2τ |τ | . After composing an inversion,

a translation by ϵ and another inversion, the result is:

Φ(T, θ, θ) 7→
(

1

1− ϵτ
+

θθ

2τ(1− ϵτ)2
− θθ

2τ(1− ϵτ)

)2∆

Φ

(
τ

1− ϵτ
,

θ

1− ϵτ
,

θ

1− ϵτ

)
(A.19)

for infinitesimal ϵ. Expanding to linear order in ϵ, we identify the generator of special

conformal transformations:

L−1 = τ 2∂τ + τθ∂θ + τθ∂θ + 2∆τ +
QR

2
θθ . (A.20)

Finally, the two remaining fermionic generators are obtained from the closure of the algebra:

G− 1
2
=
[
L−1,G 1

2

]
=

τθ

2
∂τ −

(
τ + 1

2
θθ
)
∂θ +

(
∆− 1

2
QR

)
θ ,

G− 1
2
=
[
L−1,G 1

2

]
= −τθ

2
∂τ +

(
τ − 1

2
θθ
)
∂θ −

(
∆+ 1

2
QR

)
θ .

(A.21)
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We write the generators as Lm=−1,0,1, Gr=± 1
2
, Gr=± 1

2
. Their commutation relations are:

[Lm, Ln] = (n−m)Lm+n , [Lm,Gr] =
2r −m

2
Gm+r , [Lm,Gr] =

2r −m

2
Gm+r ,

[Rsc, Lm] = 0 , [Rsc,Gr] = Gr , [Rsc,Gr] = −Gr ,

{Gr,Gs} = Lr+s −
r − s

2
Rsc , {Gr,Gs} = 0 , {Gr,Gs} = 0 . (A.22)

In the presence of multiple coordinates, the generators acting on a particular coordinate Ti

will be denoted by L
(i)
m , G(i)

r . We will also write L
(i)
m (∆, QR) when necessary. The “single-

particle” quadratic Casimir which commutes with all the generators is

C1p = L2
0 −

1

2
{L−1, L1} −

1

4
R2

sc +
1

2

[
G− 1

2
,G 1

2

]
+

1

2

[
G− 1

2
,G 1

2

]
= ∆2 − Q2

R

4
. (A.23)

On the right-hand-side we wrote the value of the Casimir for highest-weight representations,

in terms of the dimension ∆ and R-charge QR of the superconformal primary, annihilated

by L−1, G− 1
2
, G− 1

2
. We also define “two-particle” superconformal generators

L2p,∆
m g(T1, T2) ≡

[
L(1)
m (∆,−2∆) + L(2)

m (∆, 2∆)
]
g(T1, T2) , (A.24)

and similarly for Rsc, Gr, Gr. They act on fields which are anti-chiral in T1 and chiral in T2.

Analogously, the “two-particle” quadratic Casimir is defined as

C2p,∆ ≡
(
L2p,∆
0

)2 − 1

2

{
L2p,∆
−1 , L2p,∆

1

}
− 1

4

(
R2p,∆

sc

)2
+

1

2

[
G 2p,∆

− 1
2

,G2p,∆
1
2

]
+

1

2

[
G2p,∆

− 1
2

,G 2p,∆
1
2

]
= −

[
T 2
12 + T12(∂θ1T12)(∂θ2T12)

]
∂τ1∂τ2 − T12(∂θ1T12)∂τ1∂θ2 − T12(∂θ2T12)∂θ1∂τ2

+ T12∂θ1∂θ2 + 2∆T12(∂τ1 − ∂τ2) + 4∆2 . (A.25)

A.2.1 Superconformal solutions in superspace

The equations (3.29) and (3.30) determining the superconformal solutions can be derived

rather quickly in superspace. Writing the Fourier transforms of the 2-point functions as

GY,Φ(ω, θ1, θ2) and ΣY,Φ(ω, θ1, θ2), the expression for T12 in (A.9) implies

GY,Φ(ω, θ1, θ2) =
(
1− i

2
ω
(
θ1θ1 + θ2θ2 + 2θ1θ2

)
− 1

4
ω2θ1θ1θ2θ2

)
Gη̄η, ϕ̄ϕ(ω) ,

ΣY,Φ(ω, θ1, θ2) =
(
1− i

2
ω
(
θ1θ1 + θ2θ2 + 2θ1θ2

)
− 1

4
ω2θ1θ1θ2θ2

)
Σf̄f, ψ̄ψ(ω) .

(A.26)

Similarly, since the anti-chiral delta function can be written as

δ2(T1, T2) =
(
θ1 − θ2 +

1
2
θ1θ1 θ2∂τ1 +

1
2
θ1θ2θ2∂τ1

)
δ(τ1 − τ2) , (A.27)

its momentum-space expression is

δ2(ω) = θ1 − θ2 +
i
2
ω
(
θ1θ1 θ2 + θ1θ2θ2

)
. (A.28)
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Plugging (A.26) into (3.8) (dropping the first term on the LHS), we get the equations

iωΣf̄f (−ω)Gη̄η(ω) = −iω α−1Σψ̄ψ(−ω)Gϕ̄ϕ(ω) = 1 . (A.29)

With the ansatz (3.19) for Gη̄η and Gϕ̄ϕ, the algebraic equations determine Σf̄f and Σψ̄ψ.

Comparing with their general expression in (3.20) implies the relations (3.27) among dimen-

sions and spectral asymmetries, as well as the equations (3.29) and (3.30).

B Large N action and EOMs in components

We collect here actions and equations of motion in components, whose superspace expressions

are presented in the main text. The definitions of the bilocal fields GY , ΣY and GΦ, ΣΦ are:

GY(T1, T2) =
[
Gη̄η + θ2Gη̄f − θ1Gf̄η + θ1θ2Gf̄f

](
τ1 − 1

2
θ1θ1, τ2 +

1
2
θ2θ2

)
ΣY(T1, T2) =

[
Σf̄f − θ2Ση̄f − θ1Σf̄η + θ1θ2Ση̄η

](
τ1 − 1

2
θ1θ1, τ2 +

1
2
θ2θ2

)
(B.1)

GΦ(T1, T2) =
[
Gϕ̄ϕ + θ2Gϕ̄ψ − θ1Gψ̄ϕ + θ1θ2Gψ̄ψ

](
τ1 − 1

2
θ1θ1, τ2 +

1
2
θ2θ2

)
ΣΦ(T1, T2) =

[
Σψ̄ψ − θ2Σϕ̄ψ − θ1Σψ̄ϕ + θ1θ2Σϕ̄ϕ

](
τ1 − 1

2
θ1θ1, τ2 +

1
2
θ2θ2

)
.

Here the fields G are the 2-point functions

GĀB(τ1, τ2) =
1

N

〈
Āa(τ1)Ba(τ2)

〉
, (B.2)

where A and B stand for the species η, f , ϕ, or ψ, and a sum over repeated indices a is

implied. The action for these bilocal fields is:

S[G,Σ]

N
= − log Ber

(
(∂τ1 + µη)δ(τ1 − τ2)− Ση̄η(τ1, τ2) Σf̄η(τ1, τ2)

−Ση̄f (τ1, τ2) −δ(τ1 − τ2)− Σf̄f (τ1, τ2)

)
(B.3)

+ α log Ber

(
(∂τ1 + µϕ)δ(τ1 − τ2)− Σϕ̄ϕ(τ1, τ2) −Σψ̄ϕ(τ1, τ2)

Σϕ̄ψ(τ1, τ2) −δ(τ1 − τ2)− Σψ̄ψ(τ1, τ2)

)

+

∫
dτ1 dτ2

{
Ση̄ηGη̄η + Σf̄ηGη̄f + Ση̄fGf̄η + Σf̄fGf̄f + Σϕ̄ϕGϕ̄ϕ + Σψ̄ϕGϕ̄ψ

+ Σϕ̄ψGψ̄ϕ + Σψ̄ψGψ̄ψ − J

q

[
Gf̄fGη̄η + (p− 1)Gf̄ηGη̄f

]
Gp−2
η̄η Gq

ϕ̄ϕ

− J

p

[
Gψ̄ψGϕ̄ϕ + (q − 1)Gψ̄ϕGϕ̄ψ

]
Gp
η̄ηG

q−2

ϕ̄ϕ
− J

[
Gf̄ηGϕ̄ψ −Gη̄fGψ̄ϕ

]
Gp−1
η̄η Gq−1

ϕ̄ϕ

}
,

where in the last integral all functions have arguments (τ1, τ2). In the low-energy limit,

dropping the kinetic terms, the action reduces to:

SIR[G,Σ]

N
= − log Ber

(
−Ση̄η(τ1, τ2) Σf̄η(τ1, τ2)

−Ση̄f (τ1, τ2) −Σf̄f (τ1, τ2)

)
+ α log Ber

(
−Σϕ̄ϕ(τ1, τ2) −Σψ̄ϕ(τ1, τ2)

Σϕ̄ψ(τ1, τ2) −Σψ̄ψ(τ1, τ2)

)
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+

∫
dτ1 dτ2

{
Ση̄ηGη̄η + Σf̄ηGη̄f + Ση̄fGf̄η + Σf̄fGf̄f + Σϕ̄ϕGϕ̄ϕ + Σψ̄ϕGϕ̄ψ

+ Σϕ̄ψGψ̄ϕ + Σψ̄ψGψ̄ψ − J

q

[
Gf̄fGη̄η + (p− 1)Gf̄ηGη̄f

]
Gp−2
η̄η Gq

ϕ̄ϕ
(B.4)

− J

p

[
Gψ̄ψGϕ̄ϕ + (q − 1)Gψ̄ϕGϕ̄ψ

]
Gp
η̄ηG

q−2

ϕ̄ϕ
− J

[
Gf̄ηGϕ̄ψ −Gη̄fGψ̄ϕ

]
Gp−1
η̄η Gq−1

ϕ̄ϕ

}
.

Varying the action (B.3) one obtains two sets of equations. Varying with respect to the Σ

fields leads to a first set of integro-differential equations of motion:

−
(
∂τ2+µη

)
Gη̄η(τ1, τ2) +

∫
dτ3

(
Ση̄η(τ2, τ3)Gη̄η(τ1, τ3) + Σf̄η(τ2, τ3)Gη̄f (τ1, τ3)

)
= δ(τ1−τ2)

Gη̄f (τ1, τ2) +

∫
dτ3

(
Σf̄f (τ2, τ3)Gη̄f (τ1, τ3)− Ση̄f (τ2, τ3)Gη̄η(τ1, τ3)

)
= 0

−Gf̄f (τ1, τ2)−
∫
dτ3

(
Σf̄f (τ2, τ3)Gf̄f (τ1, τ3) + Ση̄f (τ2, τ3)Gf̄η(τ1, τ3)

)
= δ(τ1−τ2)(

∂τ2+µη
)
Gf̄η(τ1, τ2) +

∫
dτ3

(
Σf̄η(τ2, τ3)Gf̄f (τ1, τ3)− Ση̄η(τ2, τ3)Gf̄η(τ1, τ3)

)
= 0(

∂τ2+µϕ
)
Gϕ̄ϕ(τ1, τ2)−

∫
dτ3

(
Σϕ̄ϕ(τ2, τ3)Gϕ̄ϕ(τ1, τ3) + Σψ̄ϕ(τ2, τ3)Gϕ̄ψ(τ1, τ3)

)
= α δ(τ1−τ2)

Gϕ̄ψ(τ1, τ2) +

∫
dτ3

(
Σψ̄ψ(τ2, τ3)Gϕ̄ψ(τ1, τ3)− Σϕ̄ψ(τ2, τ3)Gϕ̄ϕ(τ1, τ3)

)
= 0

Gψ̄ψ(τ1, τ2) +

∫
dτ3

(
Σψ̄ψ(τ2, τ3)Gψ̄ψ(τ1, τ3) + Σϕ̄ψ(τ2, τ3)Gψ̄ϕ(τ1, τ3)

)
= α δ(τ1−τ2)(

∂τ2+µϕ
)
Gψ̄ϕ(τ1, τ2) +

∫
dτ3

(
Σψ̄ϕ(τ2, τ3)Gψ̄ψ(τ1, τ3)− Σϕ̄ϕ(τ2, τ3)Gψ̄ϕ(τ1, τ3)

)
= 0 . (B.5)

Varying the action with respect to the G fields, instead, we obtain a second set of algebraic

equations of motion. All fields appearing below have argument (τ1, τ2):

Ση̄η = J

[
p− 1

q

(
Gf̄fGη̄η + (p− 2)Gf̄ηGη̄f

)
G2
ϕ̄ϕ +

(
Gψ̄ψGϕ̄ϕ + (q − 1)Gψ̄ϕGϕ̄ψ

)
G2
η̄η

+ (p− 1)
(
Gf̄ηGϕ̄ψ −Gη̄fGψ̄ϕ

)
Gη̄ηGϕ̄ϕ

]
Gp−3
η̄η Gq−2

ϕ̄ϕ
, (B.6)

Σϕ̄ϕ = J

[(
Gf̄fGη̄η + (p− 1)Gf̄ηGη̄f

)
G2
ϕ̄ϕ +

q − 1

p

(
Gψ̄ψGϕ̄ϕ + (q − 2)Gψ̄ϕGϕ̄ψ

)
G2
η̄η

+ (q − 1)
(
Gf̄ηGϕ̄ψ −Gη̄fGψ̄ϕ

)
Gη̄ηGϕ̄ϕ

]
Gp−2
η̄η Gq−3

ϕ̄ϕ
,

Σf̄η = J

(
p− 1

q
Gf̄ηGϕ̄ϕ +Gψ̄ϕGη̄η

)
Gp−2
η̄η Gq−1

ϕ̄ϕ
, Σf̄f =

J

q
Gp−1
η̄η Gq

ϕ̄ϕ
,

Ση̄f = −J
(
p− 1

q
Gη̄fGϕ̄ϕ +Gϕ̄ψGη̄η

)
Gp−2
η̄η Gq−1

ϕ̄ϕ
, Σψ̄ψ =

J

p
Gp
η̄ηG

q−1

ϕ̄ϕ
,

Σψ̄ϕ = J

(
q − 1

p
Gψ̄ϕGη̄η +Gf̄ηGϕ̄ϕ

)
Gp−1
η̄η Gq−2

ϕ̄ϕ
,
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Σϕ̄ψ = −J
(
q − 1

p
Gϕ̄ψGη̄η +Gη̄fGϕ̄ϕ

)
Gp−1
η̄η Gq−2

ϕ̄ϕ
.

We are often interested in consistent truncations where the fermionic components are set to

zero. In those cases, the action for the bilocal field components takes the simple form:

S[G,Σ]

N
= − log det

[(
∂τ1+µη

)
δ(τ1−τ2)− Ση̄η(τ1, τ2)

]
+ log det

[
−δ(τ1−τ2)− Σf̄f (τ1, τ2)

]
+ α log det

[(
∂τ1+µϕ

)
δ(τ1−τ2)− Σϕ̄ϕ(τ1, τ2)

]
− α log det

[
−δ(τ1−τ2)− Σψ̄ψ(τ1, τ2)

]
(B.7)

+

∫
dτ1 dτ2

(
Ση̄ηGη̄η + Σf̄fGf̄f + Σϕ̄ϕGϕ̄ϕ + Σψ̄ψGψ̄ψ − J

q
Gf̄fG

p−1
η̄η Gq

ϕ̄ϕ
− J

p
Gp
η̄ηGψ̄ψG

q−1

ϕ̄ϕ

)
and the corresponding equations of motion are:

−
(
∂τ2+µη

)
Gη̄η(τ1, τ2) +

∫
dτ3Ση̄η(τ2, τ3)Gη̄η(τ1, τ3) = δ(τ1−τ2) (B.8)

Gf̄f (τ1, τ2) +

∫
dτ3Σf̄f (τ2, τ3)Gf̄f (τ1, τ3) = −δ(τ1−τ2)

−
(
∂τ2+µϕ

)
Gϕ̄ϕ(τ1, τ2) +

∫
dτ3Σϕ̄ϕ(τ2, τ3)Gϕ̄ϕ(τ1, τ3) = −α δ(τ1−τ2)

Gψ̄ψ(τ1, τ2) +

∫
dτ3Σψ̄ψ(τ2, τ3)Gψ̄ψ(τ1, τ3) = α δ(τ1−τ2)

J

[
p− 1

q
Gf̄fGϕ̄ϕ +Gψ̄ψGη̄η

]
Gp−2
η̄η Gq−1

ϕ̄ϕ
= Ση̄η ,

J

q
Gp−1
η̄η Gq

ϕ̄ϕ
= Σf̄f ,

J

[
Gf̄fGϕ̄ϕ +

q − 1

p
Gψ̄ψGη̄η

]
Gp−1
η̄η Gq−2

ϕ̄ϕ
= Σϕ̄ϕ ,

J

p
Gp
η̄ηG

q−1

ϕ̄ϕ
= Σψ̄ψ .

C IR conformal ansatz and UV limit

In this appendix we gather some properties of the conformal ansatz used in the IR limit and

the behavior of the model in the UV limit.

C.1 Reality of Euclidean 2-point functions

Since the Hamiltonian is Hermitian, Euclidean operators in the Heisenberg picture satisfy:

O(τ)† =
(
eτH O e−τH

)†
= e−τH O† eτH = O†(−τ) (C.1)

where O ≡ O(0). This is the quantum-mechanical version of reflection positivity. Therefore

the Euclidean 2-point function between O† and O is real, since

⟨O†(τ)O(0)⟩∗β =
[
Tr e−βHO†(τ)O(0)

]∗
= Tr e−βHO†(0)O(−τ) = Tr e−βHO†(τ)O(0)

= ⟨O†(τ)O(0)⟩β . (C.2)
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Under analytic continuation in τ , one similarly shows that O(τ)† = O†(−τ̄) and that

⟨O†(τ)O(0)⟩∗β = ⟨O†(τ̄)O(0)⟩β. Setting τ = it, the Lorentzian 2-point function satisfies〈
0
∣∣T O†(t)O(0)

∣∣0〉∗
L
= lim

ϵ→0+
β→∞

[
Θ(t) ⟨O†(ϵ+ it)O(0)⟩β +Θ(−t) ⟨O†(−ϵ+ it)O(0)⟩β

]∗
(C.3)

= lim
ϵ→0+
β→∞

[
Θ(t) ⟨O†(ϵ− it)O(0)⟩β +Θ(−t) ⟨O†(−ϵ− it)O(0)⟩β

]
=
〈
0
∣∣T−O†(−t)O(0)

∣∣0〉
L
.

Here T is the time ordering operator which arranges operators in order of increasing time

from right to left, while T− is the anti-time ordering operator.

C.2 Conformal ansatz with chemical potential

We review the discussion in Appendix B of [12]. Consider a reparametrization-invariant

quantum mechanics with a global U(1) symmetry, placed on a Euclidean S1 with circum-

ference β. To turn on a chemical potential, we couple the theory to an external gauge field

Aτ = iµ for the U(1) symmetry. Under reparametrizations of S1, the gauge field transforms

as

τ 7→ τ ′(τ) , Aτ 7→ A′
τ =

dτ

dτ ′
Aτ . (C.4)

Therefore we do not end up in a theory with the same chemical potential.14 In order to get

back the same chemical potential, we need to perform a compensating (complexified) U(1)

gauge transformation with parameter

Λ = iµ
(
τ ′(τ)− τ

)
, (C.5)

under conventions where the gauge field transforms as Aτ 7→ Aτ + ∂τΛ.

Now, suppose we have an operator O with scaling dimension ∆ and U(1) charge Q. The

conformal Ward identity for the thermal 2-point function ⟨O†O⟩β is

〈
O†(τ ′(τ1))O(τ ′(τ2))

〉
β
= eQµ(τ

′(τ1)−τ ′(τ2)−τ1+τ2)
[
dτ ′

dτ
(τ1)

dτ ′

dτ
(τ2)

]−∆

⟨O†(τ1)O(τ2)⟩β . (C.6)

Notice the extra exponential factor due to the compensating gauge transformation. We seek

the most general 2-point function that satisfies (C.6) for the subgroup PSL(2,R) ⊂ Diff+(S1)

which acts as

tan

(
πτ ′

β

)
=
a tan

(
πτ
β

)
+ b

c tan
(
πτ
β

)
+ d

with ad− bc = 1 . (C.7)

14The integrated chemical potential
∫
dτ Aτ remains invariant.
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This action is obtained by pulling back the fractional linear transformations on R under the

map τ ∈
(
−β

2
, β
2

)
7→ x = tan

(
πτ
β

)
∈ R. Due to translational invariance, the 2-point function

is only a function of τ ≡ τ1 − τ2. Then one can check that

⟨O†(τ)O(0)⟩β = eQµτ
∣∣∣∣ π

β sin
(
πτ
β

)∣∣∣∣2∆(AΘ(τ) +BΘ(−τ)
)

(C.8)

with A,B ∈ R indeed satisfies (C.6) under the transformations (C.7), for all values of τ1,2

such that sgn
(
τ ′(τ1)− τ ′(τ2)

)
= sgn(τ1 − τ2). The functional form is fixed by (C.6) and one

allows for a discontinuity at τ = 0 where the operators coincide. The reality of the constants

A, B follows from the reality of the Euclidean 2-point function.

Recall that there are two equivalent ways of introducing a chemical potential. One can

either work with fields with boundary conditions twisted by a U(1) transformation, or work

with periodic fields but introduce a background gauge field in the Lagrangian. We chose the

latter when deriving (C.6), which means that the Hamiltonian is deformed to H̃ = H +µQ,

and Heisenberg operators are defined using H̃ instead of H. Now:

⟨O†(τ + β)O(0)⟩β = Tr e−βH̃ O†(τ + β)O(0) = TrO†(τ) e−βH̃ O(0)

= Tr e−βH̃ O(0)O†(τ) = s ⟨O†(τ)O(0)⟩β ,
(C.9)

where s = +1 if O is bosonic and s = −1 if O is fermionic. Notice that a cyclic permutation

of fermionic operators in the trace does not introduce any sign (as it is clear by representing

the trace as a sum of matrix elements, and inserting a complete basis of states in the middle),

while the sign s appears in the last equality when we swap the two operators. Imposing the

KMS relation (C.9) to (C.8) implies

AeQµβ = sB . (C.10)

The solution is A = g e−
Qµβ
2 and B = g s e

Qµβ
2 for some g ∈ R. Defining 2πE = −Qµβ,15 the

thermal 2-point function takes the form〈
O†(τ)O(0)

〉
β
= g e−2πE τ

β

∣∣∣∣ π

β sin
(
πτ
β

)∣∣∣∣2∆(eπE Θ(τ) + s e−πE Θ(−τ)
)
. (C.11)

Taking the zero temperature limit β → ∞ while keeping E and τ finite, this becomes〈
O†(τ)O(0)

〉
β=∞ =

g

|τ |2∆
(
eπE Θ(τ) + s e−πE Θ(−τ)

)
. (C.12)

One can show that the coefficient g must be non-negative in order to be consistent with

the Källén-Lehmann spectral representation. Consider the Lorentzian 2-point function〈
0
∣∣O†(t)O(0)

∣∣0〉
L
= lim

ϵ→0+
⟨O†(ϵ+ it)O(0)⟩β=∞ =

g eπE−iπ∆

(t− iϵ)2∆
, (C.13)

15When we match E with µ using the KMS relation, we implicitly assume that the conformal ansatz holds

in the UV, which is not true in the actual model.
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that is obtained from analytically continuing (C.12) for τ > 0. By inserting a complete set

of energy eigenstates {|n⟩} with energies En ≥ E0, it can be rewritten as

〈
0
∣∣O†(t)O(0)

∣∣0〉
L
=
∑
n

e−i(En−E0)t
∣∣⟨n|O(0)|0⟩

∣∣2 = ∫ ∞

−∞

dω

2π
eiωt ρ(ω)

ρ(ω) =
∑
n

2π δ(ω + En − E0)
∣∣⟨n|O(0)|0⟩

∣∣2 > 0 .
(C.14)

Consequently the Fourier transform of the 2-point function only has support on ω ≤ 0 and

it must be non-negative. We shall impose this condition to the Fourier transform of (C.13):

ρ(ω) = g eπE−iπ∆ lim
ϵ→0+

∫ ∞

−∞
dt

e−iωt

(t− iϵ)2∆
= 2π g

eπE

Γ(2∆)
Θ(−ω) |ω|2∆−1 . (C.15)

In the last equality we used that the integrand has a branch point at t = iϵ, and the branch

cut must be taken in the upper half plane in order not to intersect the real axis. For ω > 0,

one can deform the contour so that it runs from −i∞ to 0 and back, giving zero. For ω < 0,

we deform the contour so that it hugs the left and right side of the branch cut that we take

along the positive imaginary axis, and the result follows from the discontinuity. Finally,

requiring ρ(ω) > 0 implies g > 0.

C.3 UV limits

Chiral multiplet. Consider the free chiral multiplet (ϕ, ψ) with one-derivative kinetic

term. Without chemical potential the action is topological,16 and it remains fully reparame-

trization invariant in the presence of a chemical potential µ if we think of the latter as a gauge

connection and accompany the reparametrization (C.4) with the gauge transformation (C.5).

The fermion ψ is auxiliary, has Lagrangian LL = ψ†ψ and has Euclidean 2-point function

⟨ψ(τ)ψ(0) ⟩β = δ(τ) . (C.16)

The complex boson ϕ in Lorentzian signature has Lagrangian LL = iϕ†∂tϕ − µϕ†ϕ. We

could decompose ϕ = 1√
2
(x + ip) and rewrite the Lagrangian as LL = pẋ − µ

2
(p2 + x2) up

to total derivatives. Here µ is the chemical potential for the U(1) global symmetry whose

infinitesimal action is δϕ = iϵϕ. The canonical momentum conjugate to ϕ is Πϕ = iϕ†, so

that in the Hamiltonian formulation [ϕ, ϕ†] = 1 and the Hamiltonian reads

H = µQϕ =
µ

2
{ϕ†, ϕ} , (C.17)

16The Lagrangian written as LL = iϕ†∂tϕ+ iψ†γtψ is manifestly a 1-form. When the fermion Lagrangian

is written simply as LL = ψ†ψ, the fermion ψ takes values in a square root of the cotangent bundle.
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where Qϕ = 1
2
{ϕ†, ϕ} = ϕ†ϕ + 1

2
is the conserved charge for the U(1) global symmetry, and

we have fixed the ordering ambiguity for later convenience. As argued after (2.5), we should

restrict to µ > 0. Defining the number operator N = ϕ†ϕ, the Hilbert space is then a Fock

space of eigenstates of N , i.e., N |n⟩ = n|n⟩. They satisfy ϕ|0⟩ = 0 and are generated by ϕ†,

i.e., the normalized eigenstates are |n⟩ = 1√
n!
(ϕ†)n|0⟩. When going to Euclidean signature,

we will use the notations ϕ and ϕ† interchangeably.

The partition function is

Z = Tr e−βH =
1

2 sinh
(
µβ
2

) . (C.18)

The von Neumann entropy S = (1− β∂β) logZ is

S = − log
[
2 sinh

(
µβ
2

)]
+ µβ

2
coth

(
µβ
2

)
, (C.19)

which diverges as µβ → 0. The Euclidean thermal 2-point function ⟨ϕϕ⟩β is:

⟨ϕ(τ)ϕ(0) ⟩β = Z−1
[
Θ(τ) Tr e−(β−τ)H ϕ e−τH ϕ+Θ(−τ) Tr e−(β−|τ |)H ϕ e−|τ |H ϕ

]
=

eµτ

2 sinh
(
µβ
2

)[e−µβ
2 Θ(τ) + e

µβ
2 Θ(−τ)

]
.

(C.20)

One can check invariance of the Euclidean action under the combination of (C.4) and (C.5).

The corresponding Ward identity for ϕ, that has dimension zero, is〈
ϕ
(
τ ′(τ)

)
ϕ
(
τ ′(0)

)〉
β
= eµ(τ

′(τ)−τ ′(0)−τ) 〈ϕ(τ)ϕ(0) 〉
β

(C.21)

for any reparametrization τ ′(τ), and it is satisfied by (C.20).

In the zero temperature limit β → ∞, (C.20) becomes ⟨ϕ(τ)ϕ(0) ⟩β=∞ = eµτ Θ(−τ).
One can deduce the time-ordered 2-point function in Lorentzian signature by performing an

analytic continuation to τ = it with ϵ-prescription:〈
0
∣∣T ϕ(t)ϕ(0)

∣∣0〉
L
= lim

ϵ→0+

[
Θ(t) ⟨ϕ(it+ ϵ)ϕ(0)⟩β=∞ +Θ(−t) ⟨ϕ(it− ϵ)ϕ(0)⟩β=∞

]
= eiµtΘ(−t) . (C.22)

This matches the direct computation in Minkowski signature. In order to define the Fourier

transform of (C.22), we use the regularization

lim
ϵ→0+

∫ 0

−∞
dt ei(ω+µ−iϵ)t = lim

ϵ→0+

−i
ω + µ− iϵ

= P −i
ω + µ

+ π δ(ω + µ) , (C.23)

where P denotes the Cauchy principal value.
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Fermi multiplet. Consider the theory of a free Fermi multiplet (η, f).17 The auxiliary

field f has Euclidean 2-point function

⟨ f(τ) f(0) ⟩β = −δ(τ) . (C.24)

The dynamical fermion η has classical Lagrangian LL = iη†∂tη−µη†η in Lorentzian signature.

The conjugate momentum to η is iη† and the canonical commutation relation is {η, η†} = 1.

The Hamiltonian is

H = µQη =
µ

2
[η†, η] , (C.25)

where Qη = 1
2
[η†, η] = η†η − 1

2
is the conserved charge, and we have fixed the ordering

ambiguity in a charge-conjugation invariant way. The Hilbert space consists of two states:

the Fock vacuum |0⟩ annihilated by η, and η†|0⟩. There are no restrictions on µ.

For the fermion, the Euclidean partition function is

Z = Tr e−βH = 2 cosh
(
µβ
2

)
. (C.26)

The von Neumann entropy S = (1− β∂β) logZ follows,

S = log
[
2 cosh

(
µβ
2

)]
− µβ

2
tanh

(
µβ
2

)
. (C.27)

Lastly, the Euclidean thermal 2-point function (using η† and η interchangeably) is

⟨ η(τ) η(0) ⟩β = Z−1
[
Θ(τ) Tr e−(β−τ)H η e−τH η −Θ(−τ) Tr e−(β−|τ |)H η e−|τ |H η

]
=

eµτ

2 cosh
(
µβ
2

)[e−µβ
2 Θ(τ)− e

µβ
2 Θ(−τ)

]
.

(C.28)

D Luttinger–Ward identities

In this section we push forward the consequences of the presence of U(1) symmetries in the

model. In doing so, we follow [19] (see also [12, 54,55]). First of all, let us define

Σ̃ĀA(τ1, τ2) = ΣĀA(τ1, τ2) + σĀA(τ1, τ2) , ση̄η(τ1, τ2) = −δ′(τ1 − τ2)− µη δ(τ1 − τ2) ,

σf̄f (τ1, τ2) = σψ̄ψ(τ1, τ2) = δ(τ1 − τ2) , σϕ̄ϕ(τ1, τ2) = −δ′(τ1 − τ2)− µϕ δ(τ1 − τ2) ,
(D.1)

where the index A runs over all the fields η, f , ϕ, and ψ. Then we rewrite the action (3.6)

for the bilocal fields — which is (B.7) for the bosonic components — as

S [Σ, G] ≡ SIR[Σ̃, G]−N

∫
dτ1 dτ2

∑
A
σĀA(τ1, τ2)GĀA(τ1, τ2) , (D.2)

17The theory becomes topological if η, f are an anticommuting scalar and a commuting spinor, respectively.
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where SIR is the action generating the IR equations of motion (3.13)-(3.14). We vary (D.2)

with respect to local versions of the U(1) transformations, parametrized by functions λI(τ)

where the index I = η, ϕ labels the two U(1) symmetries, that act on the bilocal fields as

δGĀA(τ1, τ2) = i
∑

I
QA,I

(
λI(τ2)− λI(τ1)

)
GĀA(τ1, τ2) ,

δΣ̃ĀA(τ1, τ2) = i
∑

I
QA,I

(
λI(τ1)− λI(τ2)

)
Σ̃ĀA(τ1, τ2) .

(D.3)

Here we used the shorthand QA,I to indicate the charge of the field A under the symmetry

transformation generated by QI , as spelled out in Table 1 (first two columns). One can

explicitly check from (B.4) that SIR is invariant under these transformations, i.e., they are

symmetries of the IR equations of motion. The variation of the bilocal action hence only

comes from the second term in (D.2) and it takes the form:

δS = iN

∫
dτ2
∑
I

λI(τ2)

∫
dτ1
∑
A

QA,I

[
σĀA(τ2, τ1)GĀA(τ2, τ1)− σĀA(τ1, τ2)GĀA(τ1, τ2)

]
.

(D.4)

The expression in brackets is a “current”, therefore we define

jA(τ1, τ2) = σĀA(τ1, τ2)GĀA(τ1, τ2)− σĀA(τ2, τ1)GĀA(τ2, τ1)

JI(τ1, τ2) =
∑

A
QA,I jA(τ1, τ2) . (D.5)

Notice that both jA(τ1, τ2) and JI(τ1, τ2) are antisymmetric under the exchange of the two

arguments. The evaluation of (D.4) on exact solutions to the full Schwinger–Dyson equations

vanish, and therefore the following conservation equations hold:

0 =

∫
dτ1 JI(τ1, τ2) ∀ τ2 . (D.6)

The latter can be used to construct two conserved charges:

QI = N

∫ τ0

−∞
dτ2

∫ ∞

τ0

dτ1 JI(τ1, τ2) for I = η, ϕ . (D.7)

These are independent of τ0. In the case of time translation invariance, they take the form:

QI

N
=

∫ ∞

0

dτ τ JI(τ) =
1

2

∫ ∞

−∞
dτ τ JI(τ) (D.8)

=
1

2

∫ ∞

−∞
dτ τ

∑
A
QI,A

[
σĀA(τ)GĀA(τ)− σĀA(−τ)GĀA(−τ)

]
.

We now observe the following fact. By making use of the Schwinger–Dyson equations (B.8)

and the charge assignments in Table 1 we can prove that∑
A
QI,AΣĀA(τ)GĀA(τ) = 0 . (D.9)

72



Because of this, we can trade σ in (D.8) for Σ̃, obtaining

QI

N
=

1

2

∫ ∞

−∞
dτ
∑

A
QI,A

[
τ Σ̃ĀA(τ)GĀA(τ)− τ Σ̃ĀA(−τ)GĀA(−τ)

]
. (D.10)

We now consider the IR convergence properties of this integral. At large τ , conformality is

a good approximation. Therefore, using the conformal ansatz (3.16), one can conclude that

both terms in brackets behave as |τ |−1 as τ → ±∞, leading to logarithmic divergences. The

presence of the relative minus sign, however, makes the full integral convergent. By working

in Fourier space and using (B.8), we can write

QI = −
∑
A

sANA

2πi
QA,I

∫ ∞

0

dω
[
∂ωG

−1
ĀA

(ω)GĀA(ω)− ∂ωG
−1
ĀA

(−ω)GĀA(−ω)
]
. (D.11)

Here the logarithmic IR divergences we discussed have been mapped to the ω → 0 region.

We now proceed to regularize and evaluate the integral. Let ϵ ≪ 1 be a regularization

parameter, ω∗ be a reference frequency, and Gϵ be the regularized propagator

GĀA,ϵ(ω) =

gAGsA(ω; ∆A + ϵ, EA) for |ω| ≤ ω∗ ,

GĀA(ω) for |ω| ≥ ω∗ .
(D.12)

It is important that ω∗ ≪ 1 so that g Gs(ω,∆, E), the Fourier transform (3.19) of the

conformal ansatz (3.16), is a good approximation to the bilocal G. We also require that

ϵ log 1
ω∗ ≪ 1. Expanding (3.19) for small ϵ, up to O(ϵ2) in the terms in brackets, for |ω| ≤ ω∗

we have

GĀA,ϵ(ω) ≃ GĀA(ω) |ω|2ϵ
[
1−2ϵ

Γ′(1− 2∆A)

Γ(1− 2∆A)
+πϵ cotπ

(
∆A+

1− sA
4

−iEA signω
)]
. (D.13)

The regularized charge integral is finally defined as

QI = −
∑
A

sANA

2πi
QA,I lim

ϵ→0

∫ ∞

0

dω
[
∂ωG

−1
ĀA

(ω)GĀA,ϵ(ω)− ∂ωG
−1
ĀA

(−ω)GĀA,ϵ(−ω)
]
. (D.14)

The integral can be explicitly performed using (D.12) and (3.19), giving as a result:

(2∆A − 1) 2πiϵ Imcotπ
(
∆A + 1−sA

4
− iEA

)∫ ω∗

0

dω

ω1−2ϵ
−
∫ ∞

ω∗
dω ∂ω log

GĀA(−ω)
GĀA(ω)

= 2πi sA qsA(∆A, EA) + const. , (D.15)

where we defined the single-field charge contributions

qs(∆, E) ≡ s

[(
∆− 1

2

) sinh 2πE
cosh 2πE − cos 2π

(
∆+ 1−s

4

) + 1

2πi
log

sin π
(
∆+ 1−s

4
+ iE

)
sin π

(
∆+ 1−s

4
− iE

)]. (D.16)

This differs by an overall sign in the bosonic case with respect to the one in [26]. Notice the

presence of an additional constant coming from the UV contribution to the second integral
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in (D.15). This constant can be reabsorbed in the arbitrary constant which is intrinsic in

the charge definition (D.7). The final result takes the form

QI =
∑

A
NAQA,I qsA(∆A, EA) + CI , (D.17)

where CI are constants to be fixed.

E Kernel components and action on eigenfunctions

E.1 Euclidean kernel components

In the following three equations we present the entries of the fermionic kernels KF, KF and

of the bosonic kernel KB appearing in Sections 5 and 6.

KF =

(
Kη̄f,η̄f Kη̄f,ϕ̄ψ

Kϕ̄ψ,η̄f Kϕ̄ψ,ϕ̄ψ

)
(τ1, τ2; τ3, τ4) with (E.1)

Kη̄f,η̄f =
p−1
q
J G∗

η̄η(τ14)G
∗
f̄f (τ32)G

∗
η̄η(τ34)

p−2G∗
ϕ̄ϕ(τ34)

q

Kη̄f,ϕ̄ψ = J G∗
η̄η(τ14)G

∗
f̄f (τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kϕ̄ψ,η̄f = −J
α
G∗
ϕ̄ϕ(τ14)G

∗
ψ̄ψ(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kϕ̄ψ,ϕ̄ψ = − q−1
p

J
α
G∗
ϕ̄ϕ(τ14)G

∗
ψ̄ψ(τ32)G

∗
η̄η(τ34)

pG∗
ϕ̄ϕ(τ34)

q−2

KF =

(
K f̄η,f̄η K f̄η,ψ̄ϕ

K ψ̄ϕ,f̄η K ψ̄ϕ,ψ̄ϕ

)
(τ1, τ2; τ3, τ4) with (E.2)

K f̄η,f̄η =
p−1
q
J G∗

f̄f (τ14)G
∗
η̄η(τ32)G

∗
η̄η(τ34)

p−2G∗
ϕ̄ϕ(τ34)

q

K f̄η,ψ̄ϕ = J G∗
f̄f (τ14)G

∗
η̄η(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

K ψ̄ϕ,f̄η = −J
α
G∗
ψ̄ψ(τ14)G

∗
ϕ̄ϕ(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

K ψ̄ϕ,ψ̄ϕ = − q−1
p

J
α
G∗
ψ̄ψ(τ14)G

∗
ϕ̄ϕ(τ32)G

∗
η̄η(τ34)

pG∗
ϕ̄ϕ(τ34)

q−2

KB =


Kη̄η,η̄η Kη̄η,f̄f Kη̄η,ϕ̄ϕ Kη̄η,ψ̄ψ

Kf̄f,η̄η Kf̄f,f̄f Kf̄f,ϕ̄ϕ Kf̄f,ψ̄ψ

Kϕ̄ϕ,η̄η Kϕ̄ϕ,f̄f Kϕ̄ϕ,ϕ̄ϕ Kϕ̄ϕ,ψ̄ψ

Kψ̄ψ,η̄η Kψ̄ψ,f̄f Kψ̄ψ,ϕ̄ϕ Kψ̄ψ,ψ̄ψ

 (τ1, τ2; τ3, τ4) with (E.3)

Kη̄η,η̄η = −p−1
q
J G∗

η̄η(τ14)G
∗
η̄η(τ32)

{
G∗
η̄η
p−3G∗

ϕ̄ϕ
q−1
[
(p− 2)G∗

f̄f G
∗
ϕ̄ϕ + q G∗

η̄η G
∗
ψ̄ψ

]}
(τ34)

Kη̄η,f̄f = −p−1
q
J G∗

η̄η(τ14)G
∗
η̄η(τ32)G

∗
η̄η(τ34)

p−2G∗
ϕ̄ϕ(τ34)

q

Kη̄η,ϕ̄ϕ = −J G∗
η̄η(τ14)G

∗
η̄η(τ32)

{
G∗
η̄η
p−2G∗

ϕ̄ϕ
q−2
[
(p− 1)G∗

f̄f G
∗
ϕ̄ϕ + (q − 1)G∗

η̄η G
∗
ψ̄ψ

]}
(τ34)
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Kη̄η,ψ̄ψ = −J G∗
η̄η(τ14)G

∗
η̄η(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kf̄f,η̄η =
p−1
q
J G∗

f̄f (τ14)G
∗
f̄f (τ32)G

∗
η̄η(τ34)

p−2G∗
ϕ̄ϕ(τ34)

q

Kf̄f,f̄f = Kf̄f,ψ̄ψ = Kψ̄ψ,f̄f = Kψ̄ψ,ψ̄ψ = 0

Kf̄f,ϕ̄ϕ = J G∗
f̄f (τ14)G

∗
f̄f (τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kϕ̄ϕ,η̄η =
J
α
G∗
ϕ̄ϕ(τ14)G

∗
ϕ̄ϕ(τ32)

{
G∗
η̄η
p−2G∗

ϕ̄ϕ
q−2
[
(p− 1)G∗

f̄f G
∗
ϕ̄ϕ + (q − 1)G∗

η̄η G
∗
ψ̄ψ

]}
(τ34)

Kϕ̄ϕ,f̄f =
J
α
G∗
ϕ̄ϕ(τ14)G

∗
ϕ̄ϕ(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kϕ̄ϕ,ϕ̄ϕ =
q−1
p

J
α
G∗
ϕ̄ϕ(τ14)G

∗
ϕ̄ϕ(τ32)

{
G∗
η̄η
p−1G∗

ϕ̄ϕ
q−3
[
pG∗

f̄f G
∗
ϕ̄ϕ + (q − 2)G∗

η̄η G
∗
ψ̄ψ

]}
(τ34)

Kϕ̄ϕ,ψ̄ψ = q−1
p

J
α
G∗
ϕ̄ϕ(τ14)G

∗
ϕ̄ϕ(τ32)G

∗
η̄η(τ34)

pG∗
ϕ̄ϕ(τ34)

q−2

Kψ̄ψ,η̄η = −J
α
G∗
ψ̄ψ(τ14)G

∗
ψ̄ψ(τ32)G

∗
η̄η(τ34)

p−1G∗
ϕ̄ϕ(τ34)

q−1

Kψ̄ψ,ϕ̄ϕ = − q−1
p

J
α
G∗
ψ̄ψ(τ14)G

∗
ψ̄ψ(τ32)G

∗
η̄η(τ34)

pG∗
ϕ̄ϕ(τ34)

q−2 .

Let us define the function

UĀB,C̄D(τ1, τ2; τ3, τ4) ≡ J gpη g
q
ϕGsĀ

(
τ14; ∆Ā, EĀ

)
GsB

(
τ32; ∆B, EB

)
×

×GsĀsD

(
τ34; 1− 1

2

(
∆Ā +∆B +∆C̄ +∆D

)
, −1

2

(
EĀ + EB + EC̄ + ED

))
. (E.4)

Inserting the conformal solution (3.16) in these expressions gives:

Kη̄f,η̄f =
(p−1)
q

gf
gη
Uη̄f,η̄f , Kη̄f,ϕ̄ψ =

gf
gϕ
Uη̄f,ϕ̄ψ , (E.5)

Kϕ̄ψ,η̄f = − gψ
αgη

Uϕ̄ψ,η̄f , Kϕ̄ψ,ϕ̄ψ = − (q−1)
αp

gψ
gϕ
Uϕ̄ψ,ϕ̄ψ ,

K f̄η,f̄η =
(p−1)
q

gf
gη
Uf̄η,f̄η , K f̄η,ψ̄ϕ =

gf
gϕ
Uf̄η,ψ̄ϕ ,

K ψ̄ϕ,f̄η = − gψ
αgη

Uψ̄ϕ,f̄η , K ψ̄ϕ,ψ̄ϕ = − (q−1)
αp

gψ
gϕ
Uψ̄ϕ,ψ̄ϕ ,

Kη̄η,η̄η = − (p−1)
q

[
(p− 2)

gf
gη

+ q
gψ
gϕ

]
Uη̄η,η̄η , Kη̄η,f̄f = − (p−1)

q
Uη̄η,f̄f ,

Kη̄η,ϕ̄ϕ = −
[
(p− 1)

gf
gϕ

+ (q − 1)
gη gψ
g2ϕ

]
Uη̄η,ϕ̄ϕ , Kη̄η,ψ̄ψ = − gη

gϕ
Uη̄η,ψ̄ψ ,

Kf̄f,η̄η =
(p−1)
q

g2f
g2η
Uf̄f,η̄η , Kf̄f,ϕ̄ϕ =

g2f
gη gϕ

Uf̄f,ϕ̄ϕ ,

Kϕ̄ϕ,η̄η =
[
(p− 1)

gf gϕ
g2η

+ (q − 1)
gψ
gη

]
Uϕ̄ϕ,η̄η , Kϕ̄ϕ,f̄f =

gϕ
αgη

Uϕ̄ϕ,f̄f ,

Kϕ̄ϕ,ϕ̄ϕ =
(q−1)
αp

[
p
gf
gη

+ (q − 2)
gψ
gϕ

]
Uϕ̄ϕ,ϕ̄ϕ , Kϕ̄ϕ,ψ̄ψ = (q−1)

αp
Uϕ̄ϕ,ψ̄ψ ,

Kψ̄ψ,η̄η = − g2ψ
αgη gϕ

Uψ̄ψ,η̄η , Kψ̄ψ,ϕ̄ϕ = − (q−1)
αp

g2ψ
g2ϕ
Uψ̄ψ,ϕ̄ϕ ,

where all functions have arguments (τ1, τ2; τ3, τ4). At finite temperature, substituting (3.17)

into the components gives the same expressions with Gs replaced by Gβ
s in the definition

of the function U . Remember here that ∆f , ∆ψ, Ef , and Eψ are given by (3.21). In the

supersymmetric case, we have to further require (3.26).
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E.1.1 Action on conformal Casimir eigenfunctions

It was claimed after (5.16) that the action of the kernel operators closes on the conformal

Casimir operator eigenspaces, where each eigenspace corresponding to δGĀB is spanned by

two basis functions G±
(
τ12;

∆A+∆B−h
2

, 0
)
. In the following we will show this explicitly.

From (E.5) notice that every kernel component is a product of three conformal 2-point

functions with arguments τ14, τ32 and τ34. Therefore we need to evaluate the integral

I =

∫
dτ3 dτ4 Gs1(τ14; ∆1, E1)Gs2(τ32; ∆2, E2)Gs′s3(τ34; ∆3 +∆, E3) . (E.6)

After the change of variables τ3 = τ12 u+ τ2 and τ4 = τ12 v + τ2, the integral becomes:

I =
Θ(τ12)

|τ12| 2
∑
i∆i+2∆−2

∫
du dv Gs1(1− v; ∆1, E1)Gs2(u; ∆2, E2)Gs′s3(u− v; ∆3 +∆, E3)

+
Θ(−τ12)

|τ12| 2
∑
i∆i+2∆−2

∫
du dv Gs1(v − 1;∆1, E1)Gs2(u; ∆2, E2)Gs′s3(u+ v; ∆3 +∆, E3) .

Notice that the dependence on τ12 is factored out of the integral. Now, the Fourier transform

of G(τ) in (3.19) can be written as

G(ω) = g |ω|2∆−1
(
Θ(−ω) + sΘ(ω)

)
cs
(
∆,− sgn(ω) E

)
,

cs(∆, E) ≡ iΓ(1− 2∆)
(
e−iπ(∆+iE) − s eiπ(∆+iE)

)
.

(E.7)

Plugging the Fourier transforms of the factors depending on u± v in, the integrals in u and

v decouple into two independent Fourier transforms. The result simplifies to

I =
1

4π

∑
s=±1

cs

(
3
2
−
∑

i∆i −∆, 0
)[

s1s2 cs1(∆1,−E1) cs2(∆2,−E2) cs′s3(∆3 +∆, E3)

+ ss′s3 cs1(∆1, E1) cs2(∆2, E2) cs′s3(∆3 +∆,−E3)
]
Gs

(
τ12;

∑
i∆i +∆− 1, 0

)
, (E.8)

which is a linear combination of Casimir eigenfunctions. This identity allows us to evaluate

the action of the kernel on the expansions (5.16) and one can check that this action is closed.

In particular, all diagonal entries of the kernels satisfy
∑

i∆i = 1, in which case (E.8) shows

that the eigenfunctions G±
(
τ12;

∆A+∆B−h
2

, 0
)
are mapped to themselves under the kernel’s

action. For the off-diagonal entries,
∑

i∆i − 1 ̸= 0 precisely accounts for the difference

between incoming and outgoing dimensions.

Each entry of the kernels is represented by a 2× 2 matrix on the space of eigenfunctions.

Explicitly, the spectral problem (5.9) simplifies to the ordinary eigenvalue problems(
δgη̄f ;s

δgϕ̄ψ;s

)
=
∑
s′

(
Kη̄f,η̄f ;ss′ Kη̄f,ϕ̄ψ;ss′

Kϕ̄ψ,η̄f ;ss′ Kϕ̄ψ,ϕ̄ψ;ss′

)(
δgη̄f ;s′

δgϕ̄ψ;s′

)
,
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(
δgf̄η;s
δgψ̄ϕ;s

)
=
∑
s′

(
K f̄η,f̄η;ss′ K f̄η,ψ̄ϕ;ss′

K ψ̄ϕ,f̄η;ss′ K ψ̄ϕ,ψ̄ϕ;ss′

)(
δgf̄η;s′

δgψ̄ϕ;s′

)
, (E.9)

δgη̄η;s

δgf̄f ;s
δgϕ̄ϕ;s
δgψ̄ψ;s

 =
∑
s′


Kη̄η,η̄η;ss′ Kη̄η,f̄f ;ss′ Kη̄η,ϕ̄ϕ;ss′ Kη̄η,ψ̄ψ;ss′

Kf̄f,η̄η;ss′ 0 Kf̄f,ϕ̄ϕ;ss′ 0

Kϕ̄ϕ,η̄η;ss′ Kϕ̄ϕ,f̄f ;ss′ Kϕ̄ϕ,ϕ̄ϕ;ss′ Kϕ̄ϕ,ψ̄ψ;ss′

Kψ̄ψ,η̄η;ss′ 0 Kψ̄ψ,ϕ̄ϕ;ss′ 0



δgη̄η;s′

δgf̄f ;s′

δgϕ̄ϕ;s′

δgψ̄ψ;s′

 .

To parametrize the matrix elements conveniently, we define

Cs1,s2,s3
s,s′ (∆1,∆2,∆3; E1, E2, E3) =

Jgpη g
q
ϕ

4π

[
s1s2 cs1(∆1;−E1) cs2(∆2;−E2) cs′s3(∆3; E3)

+ ss′s3 cs1(∆1; E1) cs2(∆2; E2) cs′s3(∆3;−E3)
]
cs
(
3
2
−
∑

i∆i; 0
)
. (E.10)

This is symmetric under the exchange (s1,∆1, E1) ↔ (s2,∆2, E2). The 2× 2 matrix for each

kernel entry is then proportional to (E.10), where the parameters si, ∆i, Ei can be read off

directly from (E.5). The matrices which make up the fermionic kernels are:

Kη̄f,η̄f ;ss′ =
(p−1)
q

gf
gη
C−,+,−
s,s′

(
∆η,∆f , 1− 1

2
(∆η +∆f + h); Eη, Ef ,−Eη − Ef

)
, (E.11)

Kη̄f,ϕ̄ψ;ss′ =
gf
gη
C−,+,+
s,s′

(
∆η,∆f , 1− 1

2
(∆η +∆f + h); Eη, Ef ,−1

2
(Eη + Ef + Eϕ + Eψ)

)
,

Kϕ̄ψ,η̄f ;ss′ = − gψ
αgϕ

C+,−,+
s,s′

(
∆ϕ,∆ψ, 1− 1

2
(∆ϕ +∆ψ + h); Eϕ, Eψ,−1

2
(Eη + Ef + Eϕ + Eψ)

)
,

Kϕ̄ψ,ϕ̄ψ;ss′ = − (q−1)
αp

gψ
gϕ
C+,−,−
s,s′

(
∆ϕ,∆ψ, 1− 1

2
(∆ϕ +∆ψ + h); Eϕ, Eψ,−Eϕ − Eψ

)
,

K f̄η,f̄η;s′s =
(p−1)
q

gf
gη
C+,−,−
s,s′

(
∆f ,∆η, 1− 1

2
(∆η +∆f + h); Ef , Eη,−Eη − Ef

)
,

K f̄η,ψ̄ϕ;s′s =
gf
gη
C+,−,+
s,s′

(
∆f ,∆η, 1− 1

2
(∆η +∆f + h); Ef , Eη,−1

2
(Eη + Ef + Eϕ + Eψ)

)
,

K ψ̄ϕ,f̄η;s′s = − gψ
αgϕ

C−,+,+
s,s′

(
∆ψ,∆ϕ, 1− 1

2
(∆ϕ +∆ψ + h); Eψ, Eϕ,−1

2
(Eη + Ef + Eϕ + Eψ)

)
,

K ψ̄ϕ,ψ̄ϕ;s′s = − (q−1)
αp

gψ
gϕ
C−,+,−
s,s′

(
∆ψ,∆ϕ, 1− 1

2
(∆ϕ +∆ψ + h); Eψ, Eϕ,−Eϕ − Eψ

)
.

Using the symmetry of Cs1,s2,s3
s,s′ (∆1,∆2,∆3; E1, E2, E3) it is apparent that the matrices of KF

and KF are identical. The entries of KB are instead:

Kη̄η,η̄η;ss′ = − (p−1)
q

[
(p− 2)

gf
gη

+ q
gψ
gϕ

]
C−,−,+
s,s′

(
∆η,∆η, 1−∆η − h

2
; Eη, Eη,−2Eη

)
, (E.12)

Kη̄η,f̄f ;ss′ = − (p−1)
q

gf
gη
C−,−,−
s,s′

(
∆η,∆η, 1−∆η − h

2
; Eη, Eη,−Eη − Ef

)
,

Kη̄η,ϕ̄ϕ;ss′ = −
[
(p− 1)

gf
gη

+ (q − 1)
gψ
gϕ

]
C−,−,−
s,s′

(
∆η,∆η, 1−∆η − h

2
; Eη, Eη,−Eη − Eϕ

)
,

Kη̄η,ψ̄ψ;ss′ = −gψ
gϕ
C−,−,+
s,s′

(
∆η,∆η, 1−∆η − h

2
; Eη, Eη,−Eη − Eψ

)
,

Kf̄f,η̄η;ss′ =
(p−1)
q

gf
gη
C+,+,−
s,s′

(
∆f ,∆f , 1−∆f − h

2
; Ef , Ef ,−Eη − Ef

)
,
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Kf̄f,ϕ̄ϕ;ss′ =
gf
gη
C+,+,+
s,s′

(
∆f ,∆f , 1−∆f − h

2
; Ef , Ef ,−Ef − Eϕ

)
,

Kϕ̄ϕ,η̄η;ss′ =
1
α

[
(p− 1)

gf
gη

+ (q − 1)
gψ
gϕ

]
C+,+,−
s,s′

(
∆ϕ,∆ϕ, 1−∆ϕ − h

2
; Eϕ, Eϕ,−Eη − Eϕ

)
,

Kϕ̄ϕ,f̄f ;ss′ =
gf
αgη

C+,+,+
s,s′

(
∆ϕ,∆ϕ, 1−∆ϕ − h

2
; Eϕ, Eϕ,−Ef − Eϕ

)
,

Kϕ̄ϕ,ϕ̄ϕ;ss′ =
(q−1)
αp

[
p
gf
gη

+ (q − 2)
gψ
gϕ

]
C+,+,+
s,s′

(
∆ϕ,∆ϕ, 1−∆ϕ − h

2
; Eϕ, Eϕ,−2Eϕ

)
,

Kϕ̄ϕ,ψ̄ψ;ss′ =
(q−1)
αp

gψ
gϕ
C+,+,−
s,s′

(
∆ϕ,∆ϕ, 1−∆ϕ − h

2
; Eϕ, Eϕ,−Eϕ − Eψ

)
,

Kψ̄ψ,η̄η;ss′ = − gψ
αgϕ

C−,−,+
s,s′

(
∆ψ,∆ψ, 1−∆ψ − h

2
; Eψ, Eψ,−Eη − Eψ

)
,

Kψ̄ψ,ϕ̄ϕ;ss′ = − (q−1)
αp

gψ
gϕ
C−,−,−
s,s′

(
∆ψ,∆ψ, 1−∆ψ − h

2
; Eψ, Eψ,−Eϕ − Eψ

)
.

E.2 Retarded kernel components

The components of the retarded kernels KB,F
R in (6.19) are obtained by applying the replace-

ments after (6.17) to (E.5). They are given by

KF
R(t1, t2; t3, t4) =

(
0 KF,+

R

KF,−
R 0

)
(t1, t2; t3, t4) , KF,±

R =

(
±KR

η̄f,η̄f KR
η̄f,ϕ̄ψ

KR
ϕ̄ψ,η̄f

±KR
ϕ̄ψ,ϕ̄ψ

)
,

KR
η̄f,η̄f = − i (p− 1)

Γ(2∆η) Γ(−2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η +

1
2
, 1
2
− 2∆η, Eη, Eη

)
,

KR
η̄f,ϕ̄ψ = − i q gη

gϕ Γ(2∆η) Γ(−2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η +

1
2
, 1
2
−∆η −∆ϕ, Eη, Eϕ

)
,

KR
ϕ̄ψ,η̄f =

i p gϕ
gη Γ(2∆ϕ) Γ(−2∆ϕ)

V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ +

1
2
, 1
2
−∆η −∆ϕ, Eϕ, Eη

)
,

KR
ϕ̄ψ,ϕ̄ψ =

i (q − 1)

Γ(2∆ϕ) Γ(−2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ +

1
2
, 1
2
− 2∆ϕ, Eϕ, Eϕ

)
, (E.13)

and

KB
R =

(
0 KB,+

R

KB,−
R 0

)
, KB,±

R =


KR
η̄η,η̄η ±KR

η̄η,f̄f
±KR

η̄η,ϕ̄ϕ
KR
η̄η,ψ̄ψ

±KR
f̄f,η̄η

0 KR
f̄f,ϕ̄ϕ

0

±KR
ϕ̄ϕ,η̄η

KR
ϕ̄ϕ,f̄f

KR
ϕ̄ϕ,ϕ̄ϕ

±KR
ϕ̄ϕ,ψ̄ψ

KR
ψ̄ψ,η̄η

0 ±KR
ψ̄ψ,ϕ̄ϕ

0

 ,

KR
η̄η,η̄η = − (p− 1) (1− 4∆η)

Γ(2∆η) Γ(1− 2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η, 1− 2∆η, Eη, Eη

)
,

KR
η̄η,f̄f = − p− 1

Γ(2∆η) Γ(1− 2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η,

1
2
− 2∆η, Eη, Eη

)
, (E.14)

KR
η̄η,ϕ̄ϕ = − q gη (1− 2∆η − 2∆ϕ)

gϕ Γ(2∆η) Γ(1− 2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η, 1−∆η −∆ϕ, Eη, Eϕ

)
,

KR
η̄η,ψ̄ψ = − q gη

gϕ Γ(2∆η) Γ(1− 2∆η)
V β
(
t1, t2, t3, t4; ∆η,∆η,

1
2
−∆η −∆ϕ, Eη, Eϕ

)
,
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KR
f̄f,η̄η = − 2(p− 1)∆η

Γ(2∆η) Γ(−2∆η)
V β
(
t1, t2, t3, t4; ∆η +

1
2
,∆η +

1
2
, 1
2
− 2∆η, Eη, Eη

)
,

KR
f̄f,ϕ̄ϕ = − 2q gη∆η

gϕ Γ(2∆η) Γ(−2∆η)
V β
(
t1, t2, t3, t4; ∆η +

1
2
,∆η +

1
2
, 1
2
−∆η −∆ϕ, Eη, Eϕ

)
,

KR
ϕ̄ϕ,η̄η =

p gϕ (1− 2∆η − 2∆ϕ)

gη Γ(2∆ϕ) Γ(1− 2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ, 1−∆η −∆ϕ, Eϕ, Eη

)
,

KR
ϕ̄ϕ,f̄f =

p gϕ
gη Γ(2∆ϕ) Γ(1− 2∆ϕ)

V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ,

1
2
−∆η −∆ϕ, Eϕ, Eη

)
,

KR
ϕ̄ϕ,ϕ̄ϕ =

(q − 1) (1− 4∆ϕ)

Γ(2∆ϕ) Γ(1− 2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ, 1− 2∆ϕ, Eϕ, Eϕ

)
,

KR
ϕ̄ϕ,ψ̄ψ =

q − 1

Γ(2∆ϕ) Γ(1− 2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ,∆ϕ,

1
2
− 2∆ϕ, Eϕ, Eϕ

)
,

KR
ψ̄ψ,η̄η =

2p gϕ∆ϕ

gη Γ(2∆ϕ) Γ(−2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ +

1
2
,∆ϕ +

1
2
, 1
2
−∆η −∆ϕ, Eϕ, Eη

)
,

KR
ψ̄ψ,ϕ̄ϕ =

2(q − 1)∆ϕ

Γ(2∆ϕ) Γ(−2∆ϕ)
V β
(
t1, t2, t3, t4; ∆ϕ +

1
2
,∆ϕ +

1
2
, 1
2
− 2∆ϕ, Eϕ, Eϕ

)
.

We defined the function

V β
(
t1, t2, t3, t4; ∆1,∆2,∆3, E1, E2) ≡

≡ e
2πi
β

(−E1t12+E2t34)
(

π

β sinh
(
π t14
β

))2∆1
(

π

β sinh
(
π t23
β

))2∆2
(

π

β cosh
(
π t34
β

))2∆3

. (E.15)

We used (3.30) to eliminate the combination of coefficients Jgpηg
q
ϕ. We then perform the

change of variables in (6.20). Note that z1,4 > 0 and z2,3 < 0 by definition. Additionally, one

has z23 > 0 and z41 > 0 in the domain of integration, implying |z3| − |z2| = z2 − z3 = |z23|,
|z4| − |z1| = z4 − z1 = |z14| and |z3|+ |z4| = z4 − z3 = |z34|. One can then rewrite

V β
(
t1, t2, t3, t4; ∆1,∆2,∆3, E1, E2) =

=

(
2π

β

)2
∑3
a=1 ∆a |z1|∆1+iE1 |z2|∆2−iE1 |z3|∆2+∆3−iE2 |z4|∆1+∆3+iE2

|z14|2∆1 |z23|2∆2 |z34|2∆3
. (E.16)

On the space of eigenfunctions (6.23) one can use (6.24) to evaluate the convolutions when

the kernels act. In particular, the bosonic retarded kernel becomes the ordinary matrix:

KB
R =

(
0 KB,+

R

KB,−
R 0

)
, KB,±

R =


KR
η̄η,η̄η ±KR

η̄η,f̄f
±KR

η̄η,ϕ̄ϕ
KR
η̄η,ψ̄ψ

±KR
f̄f,η̄η

0 KR
f̄f,ϕ̄ϕ

0

±KR
ϕ̄ϕ,η̄η

KR
ϕ̄ϕ,f̄f

KR
ϕ̄ϕ,ϕ̄ϕ

±KR
ϕ̄ϕ,ψ̄ψ

KR
ψ̄ψ,η̄η

0 ±KR
ψ̄ψ,ϕ̄ϕ

0

 , (E.17)

KR
η̄η,η̄η = −(p− 1)(1− 4∆η)

Γ(1−2∆η) Γ(2∆η−h)
Γ(2∆η) Γ(2−2∆η−h) , KR

η̄η,f̄f = −(p− 1) 2∆η Γ(1−2∆η) Γ(2∆η−h)
Γ(2∆η) Γ(2−2∆η−h) ,

KR
η̄η,ϕ̄ϕ = −q(1− 2∆η − 2∆ϕ)

Γ(1−2∆η) Γ(2∆η−h)
Γ(2∆η) Γ(2−2∆η−h) , KR

η̄η,ψ̄ψ = −q 2∆ϕ Γ(1−2∆η) Γ(2∆η−h)
Γ(2∆η) Γ(2−2∆η−h) ,
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KR
f̄f,η̄η = (p− 1) Γ(1−2∆η) Γ(2∆η+1−h)

2∆η Γ(2∆η) Γ(1−2∆η−h) , KR
f̄f,ϕ̄ϕ = q Γ(1−2∆η) Γ(2∆η+1−h)

2∆η Γ(2∆η) Γ(1−2∆η−h) ,

KR
ϕ̄ϕ,η̄η = p(1− 2∆η − 2∆ϕ)

Γ(1−2∆ϕ) Γ(2∆ϕ−h)
Γ(2∆ϕ) Γ(2−2∆ϕ−h)

, KR
ϕ̄ϕ,f̄f = p

2∆η Γ(1−2∆ϕ) Γ(2∆ϕ−h)
Γ(2∆ϕ) Γ(2−2∆ϕ−h)

,

KR
ϕ̄ϕ,ϕ̄ϕ = (q − 1)(1− 4∆ϕ)

Γ(1−2∆ϕ) Γ(2∆ϕ−h)
Γ(2∆ϕ) Γ(2−2∆ϕ−h)

, KR
ϕ̄ϕ,ψ̄ψ = (q − 1)

2∆ϕ Γ(1−2∆ϕ) Γ(2∆ϕ−h)
Γ(2∆ϕ) Γ(2−2∆ϕ−h)

,

KR
ψ̄ψ,η̄η = −p Γ(1−2∆ϕ) Γ(2∆ϕ+1−h)

2∆ϕ Γ(2∆ϕ) Γ(1−2∆ϕ−h)
, KR

ψ̄ψ,ϕ̄ϕ = −(q − 1)
Γ(1−2∆ϕ) Γ(2∆ϕ+1−h)
2∆ϕ Γ(2∆ϕ) Γ(1−2∆ϕ−h)

.

Similarly, the fermionic retarded kernel becomes:

KF
R =

(
0 KF,+

R

KF,−
R 0

)
, KF,±

R =

(
±KR

η̄f,η̄f KR
η̄f,ϕ̄ψ

KR
ϕ̄ψ,η̄f

±KR
ϕ̄ψ,ϕ̄ψ

)
, (E.18)

KR
η̄f,η̄f = −i(p− 1)

Γ(1−2∆η) Γ(2∆η+ 1
2
−h)

Γ(2∆η) Γ( 3
2
−2∆η−h)

, KR
η̄f,ϕ̄ψ = −iq Γ(1−2∆η) Γ(2∆η+ 1

2
−h)

Γ(2∆η) Γ( 3
2
−2∆η−h)

,

KR
ϕ̄ψ,η̄f = ip

Γ(1−2∆ϕ) Γ(2∆ϕ+ 1
2
−h)

Γ(2∆ϕ) Γ( 3
2
−2∆ϕ−h)

, KR
ϕ̄ψ,ϕ̄ψ = i(q − 1)

Γ(1−2∆ϕ) Γ(2∆ϕ+ 1
2
−h)

Γ(2∆ϕ) Γ( 3
2
−2∆ϕ−h)

.

F Ladder diagrams for 4-point functions

Here we present the Feynman diagrams for each component of FB,F
0 and KB,F entering the

integral equations (6.5). We start with FB,F
0 which simply correspond to free propagators:

FB
0,ηη =

η̄i, τ1 η̄j, τ4

ηj, τ3ηi, τ2
FB
0,ff =

f̄i, τ1 f̄j, τ4

fj, τ3fi, τ2

FB
0,ϕϕ =

ϕ̄i, τ1 ϕ̄j, τ4

ϕj, τ3ϕi, τ2
FB
0,ψψ =

ψ̄i, τ1 ψ̄j, τ4

ψj, τ3ψi, τ2

FF
0,ηη =

η̄i, τ1 η̄j, τ4

fj, τ3fi, τ2
F

F

0,ηη =
f̄i, τ1 f̄j, τ4

ηj, τ3ηi, τ2

FF
0,ϕϕ =

ϕ̄i, τ1 ϕ̄j, τ4

ψj, τ3ψi, τ2
F

F

0,ϕϕ =
ψ̄i, τ1 ψ̄j, τ4

ϕj, τ3ϕi, τ2

On the other hand, the diagrams corresponding to the components of the kernels KB,F are:

KF
ηη =

η̄i, τ1
τ4

fi, τ2 τ3
fj

η̄j

(p−2)× ×q KF
ηϕ =

η̄i, τ1
τ4

fi, τ2 τ3
ψj

ϕ̄j

(p−1)× ×(q−1)
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KF
ϕη =

ϕ̄i, τ1
τ4

ψi, τ2 τ3
fj

η̄j

(p−1)× ×(q−1) KF
ϕϕ =

ϕ̄i, τ1
τ4

ψi, τ2 τ3
ψj

ϕ̄j

p× ×(q−2)

K
F

ηη =

f̄i, τ1
τ4

ηi, τ2
τ3

ηj

f̄j

(p−2)× ×q K
F

ηϕ =

f̄i, τ1
τ4

ηi, τ2
τ3

ϕj

ψ̄j

(p−1)× ×(q−1)

K
F

ϕη =

ψ̄i, τ1
τ4

ϕi, τ2 τ3
ηj

f̄j

(p−1)× ×(q−1) K
F

ϕϕ =

ψ̄i, τ1
τ4

ϕi, τ2 τ3
ϕj

ψ̄j

p× ×(q−2)

KB
ηη =

η̄i, τ1
τ4

ηi, τ2
τ3

ηj

η̄j

(p−3)× ×q +

η̄i, τ1
τ4

ηi, τ2
τ3

ηj

η̄j

(p−2)× ×(q−1)

KB
ηf =

η̄i, τ1
τ4

ηi, τ2
τ3

fj

f̄j

(p−2)× ×q KB
fη =

f̄i, τ1
τ4

fi, τ2 τ3
ηj

η̄j

(p−2)× ×q

KB
ηϕ =

η̄i, τ1
τ4

ηi, τ2
τ3

ϕj

ϕ̄j

(p−2)× ×(q−1) +

η̄i, τ1
τ4

ηi, τ2
τ3

ϕj

ϕ̄j

(p−1)× ×(q−2)

KB
ηψ =

η̄i, τ1
τ4

ηi, τ2
τ3

ψj

ψ̄j

(p−1)× ×(q−1) KB
ψη =

ψ̄i, τ1
τ4

ψi, τ2 τ3
ηj

η̄j

(p−1)× ×(q−1)

KB
ϕη =

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
ηj

η̄j

(p−2)× ×(q−1) +

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
ηj

η̄j

(p−1)× ×(q−2)

KB
fϕ =

f̄i, τ1
τ4

fi, τ2 τ3
ϕj

ϕ̄j

(p−1)× ×(q−1) KB
ϕf =

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
fj

f̄j

(p−1)× ×(q−1)
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KB
ϕϕ =

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
ϕj

ϕ̄j

(p−1)× ×(q−2) +

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
ϕj

ϕ̄j

p× ×(q−3)

KB
ϕψ =

ϕ̄i, τ1
τ4

ϕi, τ2 τ3
ψj

ψ̄j

p× ×(q−2) KB
ψϕ =

ψ̄i, τ1
τ4

ψi, τ2 τ3
ϕj

ϕ̄j

p× ×(q−2)

References

[1] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum

Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.

[2] A. Kitaev, “A simple model of quantum holography.” Talks at KITP, 7 April 2015

and 27 May 2015. http://online.kitp.ucsb.edu/online/entangled15/kitaev/

http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

[3] O. Parcollet and A. Georges, “Non-Fermi-liquid regime of a doped Mott insulator,”

Phys. Rev. B 59 (1999) 5341, arXiv:cond-mat/9806119.

[4] S. Sachdev, “Holographic metals and the fractionalized Fermi liquid,” Phys. Rev. Lett.

105 (2010) 151602, arXiv:1006.3794 [hep-th].

[5] J. Polchinski and V. Rosenhaus, “The Spectrum in the Sachdev-Ye-Kitaev Model,”

JHEP 04 (2016) 001, arXiv:1601.06768 [hep-th].

[6] J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys.

Rev. D 94 (2016) 106002, arXiv:1604.07818 [hep-th].

[7] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in

two-dimensional nearly Anti-de-Sitter space,” PTEP 2016 (2016) 12C104,

arXiv:1606.01857 [hep-th].

[8] L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black

holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].

[9] M. Heydeman, L. V. Iliesiu, G. J. Turiaci, and W. Zhao, “The statistical mechanics of

near-BPS black holes,” J. Phys. A 55 (2022) 014004, arXiv:2011.01953 [hep-th].

[10] D. Anninos, T. Anous, and F. Denef, “Disordered Quivers and Cold Horizons,” JHEP

12 (2016) 071, arXiv:1603.00453 [hep-th].

82

http://dx.doi.org/10.1103/PhysRevLett.70.3339
http://arxiv.org/abs/cond-mat/9212030
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://dx.doi.org/10.1103/PhysRevB.59.5341
http://arxiv.org/abs/cond-mat/9806119
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://arxiv.org/abs/1006.3794
http://dx.doi.org/10.1007/JHEP04(2016)001
http://arxiv.org/abs/1601.06768
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://dx.doi.org/10.1103/PhysRevD.94.106002
http://arxiv.org/abs/1604.07818
http://dx.doi.org/10.1093/ptep/ptw124
http://arxiv.org/abs/1606.01857
http://dx.doi.org/10.1007/JHEP05(2021)145
http://arxiv.org/abs/2003.02860
http://dx.doi.org/10.1088/1751-8121/ac3be9
http://arxiv.org/abs/2011.01953
http://dx.doi.org/10.1007/JHEP12(2016)071
http://dx.doi.org/10.1007/JHEP12(2016)071
http://arxiv.org/abs/1603.00453


[11] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, “Supersymmetric

Sachdev-Ye-Kitaev models,” Phys. Rev. D 95 (2017) 026009, arXiv:1610.08917

[hep-th]. [Addendum: Phys.Rev.D 95, 069904 (2017)].

[12] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev,

“Thermoelectric transport in disordered metals without quasiparticles: The

Sachdev-Ye-Kitaev models and holography,” Phys. Rev. B 95 (2017) 155131,

arXiv:1612.00849 [cond-mat.str-el].

[13] J. Murugan, D. Stanford, and E. Witten, “More on Supersymmetric and 2d Analogs

of the SYK Model,” JHEP 08 (2017) 146, arXiv:1706.05362 [hep-th].

[14] C. Peng, M. Spradlin, and A. Volovich, “Correlators in the N=2 Supersymmetric

SYK Model,” JHEP 10 (2017) 202, arXiv:1706.06078 [hep-th].

[15] K. Bulycheva, “A note on the SYK model with complex fermions,” JHEP 12 (2017)

069, arXiv:1706.07411 [hep-th].

[16] K. Bulycheva, “N=2 SYK model in the superspace formalism,” JHEP 04 (2018) 036,

arXiv:1801.09006 [hep-th].

[17] E. Marcus and S. Vandoren, “A new class of SYK-like models with maximal chaos,”

JHEP 01 (2019) 166, arXiv:1808.01190 [hep-th].

[18] Y. Wang, “Solvable Strong-coupling Quantum Dot Model with a Non-Fermi-liquid

Pairing Transition,” Phys. Rev. Lett. 124 (2020) 017002, arXiv:1904.07240

[cond-mat.str-el].

[19] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, “Notes on the complex

Sachdev-Ye-Kitaev model,” JHEP 02 (2020) 157, arXiv:1910.14099 [hep-th].

[20] G. Pan, W. Wang, A. Davis, Y. Wang, and Z. Y. Meng, “Yukawa-SYK model and

self-tuned quantum criticality,” Phys. Rev. Res. 3 (2021) 013250, arXiv:2001.06586

[cond-mat.str-el].

[21] C. Peng and S. Stanojevic, “Soft modes in N=2 SYK model,” JHEP 01 (2021) 082,

arXiv:2006.13961 [hep-th].

[22] M. Tikhanovskaya, H. Guo, S. Sachdev, and G. Tarnopolsky, “Excitation spectra of

quantum matter without quasiparticles I: Sachdev-Ye-Kitaev models,” Phys. Rev. B

103 (2021) 075141, arXiv:2010.09742 [cond-mat.str-el].

[23] M. Tikhanovskaya, H. Guo, S. Sachdev, and G. Tarnopolsky, “Excitation spectra of

quantum matter without quasiparticles II: random t-J models,” Phys. Rev. B 103

(2021) 075142, arXiv:2012.14449 [cond-mat.str-el].

[24] S. J. Gates, Y. Hu, and S. N. H. Mak, “On 1D, N=4 Supersymmetric SYK-Type

Models (I),” JHEP 06 (2021) 158, arXiv:2103.11899 [hep-th].

83

http://dx.doi.org/10.1103/PhysRevD.95.026009
http://arxiv.org/abs/1610.08917
http://arxiv.org/abs/1610.08917
http://dx.doi.org/10.1103/PhysRevB.95.155131
http://arxiv.org/abs/1612.00849
http://dx.doi.org/10.1007/JHEP08(2017)146
http://arxiv.org/abs/1706.05362
http://dx.doi.org/10.1007/JHEP10(2017)202
http://arxiv.org/abs/1706.06078
http://dx.doi.org/10.1007/JHEP12(2017)069
http://dx.doi.org/10.1007/JHEP12(2017)069
http://arxiv.org/abs/1706.07411
http://dx.doi.org/10.1007/JHEP04(2018)036
http://arxiv.org/abs/1801.09006
http://dx.doi.org/10.1007/JHEP01(2019)166
http://arxiv.org/abs/1808.01190
http://dx.doi.org/10.1103/PhysRevLett.124.017002
http://arxiv.org/abs/1904.07240
http://arxiv.org/abs/1904.07240
http://dx.doi.org/10.1007/JHEP02(2020)157
http://arxiv.org/abs/1910.14099
http://dx.doi.org/10.1103/PhysRevResearch.3.013250
http://arxiv.org/abs/2001.06586
http://arxiv.org/abs/2001.06586
http://dx.doi.org/10.1007/JHEP01(2021)082
http://arxiv.org/abs/2006.13961
http://dx.doi.org/10.1103/PhysRevB.103.075141
http://dx.doi.org/10.1103/PhysRevB.103.075141
http://arxiv.org/abs/2010.09742
http://dx.doi.org/10.1103/PhysRevB.103.075142
http://dx.doi.org/10.1103/PhysRevB.103.075142
http://arxiv.org/abs/2012.14449
http://dx.doi.org/10.1007/JHEP06(2021)158
http://arxiv.org/abs/2103.11899


[25] S. J. Gates, Y. Hu, and S. N. H. Mak, “On 1D, N=4 supersymmetric SYK-type

models. Part II,” JHEP 03 (2022) 148, arXiv:2110.15562 [hep-th].

[26] M. Heydeman, G. J. Turiaci, and W. Zhao, “Phases of N=2 Sachdev-Ye-Kitaev

models,” JHEP 01 (2023) 098, arXiv:2206.14900 [hep-th].

[27] J. Murugan, R. P. Slayen, and H. J. R. Van Zyl, “A Study of the SYK2 Model with

Twisted Boundary Conditions,” arXiv:2307.01099 [hep-th].

[28] A. Biggs, J. Maldacena, and V. Narovlansky, “A supersymmetric SYK model with a

curious low energy behavior,” arXiv:2309.08818 [hep-th].

[29] F. Benini, S. Soltani, and Z. Zhang, “A quantum mechanics for magnetic horizons,”

JHEP 05 (2023) 070, arXiv:2212.00672 [hep-th].

[30] E. Witten, “Phases of N=2 theories in two dimensions,” Nucl. Phys. B 403 (1993)

159–222, arXiv:hep-th/9301042.

[31] W. Fu and S. Sachdev, “Numerical study of fermion and boson models with

infinite-range random interactions,” Phys. Rev. B 94 (2016) 035135,

arXiv:1603.05246 [cond-mat.str-el].

[32] G. Gur-Ari, R. Mahajan, and A. Vaezi, “Does the SYK model have a spin glass

phase?,” JHEP 11 (2018) 070, arXiv:1806.10145 [hep-th].

[33] C. L. Baldwin and B. Swingle, “Quenched vs Annealed: Glassiness from SK to SYK,”

Phys. Rev. X 10 (2020) 031026, arXiv:1911.11865 [cond-mat.dis-nn].

[34] M. Christos, F. M. Haehl, and S. Sachdev, “Spin liquid to spin glass crossover in the

random quantum Heisenberg magnet,” Phys. Rev. B 105 (2022) 085120,

arXiv:2110.00007 [cond-mat.str-el].

[35] B. Swingle and M. Winer, “A bosonic model of quantum holography,” Phys. Rev. B

109 (2024) 094206, arXiv:2311.01516 [hep-th].

[36] F. Benini, K. Hristov, and A. Zaffaroni, “Black hole microstates in AdS4 from

supersymmetric localization,” JHEP 05 (2016) 054, arXiv:1511.04085 [hep-th].

[37] F. Benini, K. Hristov, and A. Zaffaroni, “Exact microstate counting for dyonic black

holes in AdS4,” Phys. Lett. B771 (2017) 462–466, arXiv:1608.07294 [hep-th].

[38] J. M. Luttinger and J. C. Ward, “Ground state energy of a many fermion system. 2.,”

Phys. Rev. 118 (1960) 1417–1427.

[39] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP 08 (2016)

106, arXiv:1503.01409 [hep-th].

84

http://dx.doi.org/10.1007/JHEP03(2022)148
http://arxiv.org/abs/2110.15562
http://dx.doi.org/10.1007/JHEP01(2023)098
http://arxiv.org/abs/2206.14900
http://arxiv.org/abs/2307.01099
http://arxiv.org/abs/2309.08818
http://dx.doi.org/10.1007/JHEP05(2023)070
http://arxiv.org/abs/2212.00672
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://arxiv.org/abs/hep-th/9301042
http://dx.doi.org/10.1103/PhysRevB.94.035135
http://arxiv.org/abs/1603.05246
http://dx.doi.org/10.1007/JHEP11(2018)070
http://arxiv.org/abs/1806.10145
http://dx.doi.org/10.1103/PhysRevX.10.031026
http://arxiv.org/abs/1911.11865
http://dx.doi.org/10.1103/PhysRevB.105.085120
http://arxiv.org/abs/2110.00007
http://dx.doi.org/10.1103/PhysRevB.109.094206
http://dx.doi.org/10.1103/PhysRevB.109.094206
http://arxiv.org/abs/2311.01516
http://dx.doi.org/10.1007/JHEP05(2016)054
http://arxiv.org/abs/1511.04085
http://dx.doi.org/10.1016/j.physletb.2017.05.076
http://arxiv.org/abs/1608.07294
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1007/JHEP08(2016)106
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409


[40] G. V. Dunne, R. Jackiw, and C. A. Trugenberger, “Topological (Chern-Simons)

Quantum Mechanics,” Phys. Rev. D 41 (1990) 661.

[41] K. Hori, H. Kim, and P. Yi, “Witten Index and Wall Crossing,” JHEP 01 (2015) 124,

arXiv:1407.2567 [hep-th].

[42] E. Witten, “Constraints on Supersymmetry Breaking,” Nucl. Phys. B 202 (1982) 253.

[43] M. Christos, D. G. Joshi, S. Sachdev, and M. Tikhanovskaya, “Critical metallic phase

in the overdoped random t-J model,” Proc. Nat. Acad. Sci. 119 (2022) e2206921119,

arXiv:2203.16548 [cond-mat.str-el].

[44] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta, “Overscreened multichannel

SU(N) Kondo model: Large-N solution and conformal field theory,” Phys. Rev. B 58

(1998) 3794, arXiv:cond-mat/9711192.

[45] S. Sachdev, “Bekenstein-Hawking Entropy and Strange Metals,” Phys. Rev. X 5

(2015) 041025, arXiv:1506.05111 [hep-th].

[46] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and

engineers. Springer-Verlag, 1999.

[47] M. Mariño, R. Schiappa, and M. Weiss, “Nonperturbative Effects and the Large-Order

Behavior of Matrix Models and Topological Strings,” Commun. Num. Theor. Phys. 2

(2008) 349–419, arXiv:0711.1954 [hep-th].

[48] A. Milekhin, “Non-local reparametrization action in coupled Sachdev-Ye-Kitaev

models,” JHEP 12 (2021) 114, arXiv:2102.06647 [hep-th].

[49] A. Milekhin, “Coupled Sachdev-Ye-Kitaev models without Schwartzian dominance,”

arXiv:2102.06651 [hep-th].

[50] Y. Sekino and L. Susskind, “Fast Scramblers,” JHEP 10 (2008) 065,

arXiv:0808.2096 [hep-th].

[51] S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 03

(2014) 067, arXiv:1306.0622 [hep-th].

[52] P. Hayden and J. Preskill, “Black holes as mirrors: Quantum information in random

subsystems,” JHEP 09 (2007) 120, arXiv:0708.4025 [hep-th].

[53] J. Boruch, M. T. Heydeman, L. V. Iliesiu, and G. J. Turiaci, “BPS and near-BPS

black holes in AdS5 and their spectrum in N=4 SYM,” arXiv:2203.01331 [hep-th].

[54] A. Georges, O. Parcollet, and S. Sachdev, “Quantum fluctuations of a nearly critical

Heisenberg spin glass,” Phys. Rev. B 63 (2001) 134406, arXiv:cond-mat/0009388.

[55] A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 (2006)

2–111, arXiv:cond-mat/0506438.

85

http://dx.doi.org/10.1103/PhysRevD.41.661
http://dx.doi.org/10.1007/JHEP01(2015)124
http://arxiv.org/abs/1407.2567
http://dx.doi.org/10.1016/0550-3213(82)90071-2
http://dx.doi.org/10.1073/pnas.2206921119
http://arxiv.org/abs/2203.16548
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://arxiv.org/abs/cond-mat/9711192
http://dx.doi.org/10.1103/PhysRevX.5.041025
http://dx.doi.org/10.1103/PhysRevX.5.041025
http://arxiv.org/abs/1506.05111
http://dx.doi.org/10.4310/CNTP.2008.v2.n2.a3
http://dx.doi.org/10.4310/CNTP.2008.v2.n2.a3
http://arxiv.org/abs/0711.1954
http://dx.doi.org/10.1007/JHEP12(2021)114
http://arxiv.org/abs/2102.06647
http://arxiv.org/abs/2102.06651
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://arxiv.org/abs/0808.2096
http://dx.doi.org/10.1007/JHEP03(2014)067
http://dx.doi.org/10.1007/JHEP03(2014)067
http://arxiv.org/abs/1306.0622
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025
http://arxiv.org/abs/2203.01331
http://dx.doi.org/10.1103/PhysRevB.63.134406
http://arxiv.org/abs/cond-mat/0009388
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://arxiv.org/abs/cond-mat/0506438

	Introduction and summary
	N=2 SYK models with dynamical bosons
	Solution in the annealed approximation
	Equations of motion at large N
	Conformal solutions
	Superconformal solutions
	Existence of superconformal solutions at fixed p and q
	Solutions at large p and fixed q
	Solutions at large p and q
	Luttinger–Ward relation
	Non-conformal solutions
	Witten index and I-extremization

	Numerical results
	Summary of the numerical method
	Conformal behaviour for (p,q)=(1,2)
	Charge and entropy for (p,q)=(1,2)
	Results for other values of (p,q)

	Spectrum of low-lying operators
	Expanding the action
	Computing the spectrum

	Chaos exponents
	Integral equations for component 4-point functions
	OTOCs and chaos exponents
	The retarded kernel
	Exponents from the fermionic and bosonic retarded kernels

	Discussion
	Superspace conventions
	Super-reparametrizations
	Superconformal algebra

	Large N action and EOMs in components
	IR conformal ansatz and UV limit
	Reality of Euclidean 2-point functions
	Conformal ansatz with chemical potential
	UV limits

	Luttinger–Ward identities
	Kernel components and action on eigenfunctions
	Euclidean kernel components
	Retarded kernel components

	Ladder diagrams for 4-point functions

